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Abstract. This article is concerned with a classic problem on the constructions and classifications of
operator range equalities for algebraic operations of operators and their generalized inverses on a Hilbert
space. We shall establish miscellaneous novel formulas and facts associated with ranges of mixed products
of two or three operators and their Moore–Penrose inverses, and present some new formulas and facts
about the well-known the reverse order law (AB)† = B†A† for the Moore–Penrose inverse of two operator
product and its variations by using the operator range methodology.

1. Introduction

Let H and K be two infinite dimensional complex Hilbert spaces and let B(K , H) be the set of all
bounded linear operators fromK intoH and abbreviate B(K , H) to B(H) to denote the C∗-algebra inH if
K = H . It is well known that C∗-algebras are the study of operators acting on a Hilbert space with algebraic
methods. In this note, we use R(T) to denote the range of T ∈ B(K , H). The adjoint of T ∈ B(K , H) is
denoted by T∗ ∈ B(H , K ). The four Penrose equations associated T are defined to be

(1) TXT = T, (2) XTX = X, (3) (TX)∗ = TX, (4) (XT)∗ = XT. (1.1)

If the four equations have a common solution, then the solution is unique, denoted by X = T†, and is called
the Moore–Penrose generalized inverse of T. It is now a well-recognized fact in operator theory that the
Moore–Penrose inverse of an operator T exists if and only if the range of T is closed. Also as we know
in the current operator theory, generalized inverses have been taken as one of the fundamental concepts
with essential applications in dealing with many theoretical problems. The most significant fact is that we
can use generalized inverses of matrices and operators in the case when ordinary inverses do not exist in
order to solve some matrix and operator equations. Hence, generalized inverses now play important roles
in the theoretical and numerical analysis of many matrix and operator problems. As demonstrated above,
generalized inverses are defined to be common solutions of one or more algebraic equations as certain
extensions of the ordinary inverses of invertible operators. In comparison, the Moore–Penrose inverses
and the group inverses of operators are two highly-recognized generalized inverses, which are known to
have many remarkable algebraic and computational properties, and thus have been extensively studied in
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mathematics and applications. In particular, the Moore–Penrose inverse of an operator was defined and
approached in operator algebra and applications in 1920s (cf. [1, 21]), and it was reputed as a core and
influential part in the discipline of generalized inverses. Now the two kinds of generalized inverses are
regarded as the main bodies that are built around theory of generalized inverses of operators. Interested
readers may wish to consult [2–4, 6, 8, 12, 14–16, 19, 20] for more expositions regarding generalized inverses
of operators.

Recall the range of an operator is one of the fundamental characteristics associated with the operator,
which can be used to describe a variety of algebraic properties and performances of operators and their
operations. In view of this fact, algebraists are interested in establishing various equalities for the range of
an operators and using them in to deal with various operator problems. As one of such work, we show
how construct and characterize different kinds of range equalities for expressions that involve operator and
their generalized inverses.

To illustrate a motivation of this study, let us recall a fundamental range equality in operator theory: a
T ∈ B(H) is said to be EP (range-Hermitian) if and only if

R(T) = R(T∗) (1.2)

holds. The concept of EP matrix was first introduced by Schwerdtfeger in [25], and there has been a long-
lasting interest in the exploration of the characterizations and performances of EP objects from theoretical
and applied points of view. A broad range of operators are known to be in the class of EP objects. For
example, if A is invertible, then it is trivially an EP operator; if A is self-adjoint/skew-self-adjoint (A = ±A∗),
then it is EP; if A is normal (AA∗ = A∗A), then it is EP; if A is bi-normal ((AA∗)(A∗A) = (A∗A)(AA∗) and
R(A2) = R(A)), then it is EP. One of the most important applications of the EP property of operator is to
characterize various reverse order laws for the Moore–Penrose inverses of operator products. Here, we
mention the following three well-known mutual implication facts:

(AB)† = B†A† ⇔ R(A∗ABB∗) = R(BB∗A∗A) (cf. [2, p. 161]), (1.3)

(AB)† = B†A† ⇔ R(A†ABB∗) = R(BB∗A†A) and R(A∗ABB†) = R(BB†A∗A) (cf. [17]), (1.4)

(AB)† = B†(A†ABB†)†A† ⇔ R(AB) = R(AA∗AB) and R((AB)∗) = R(B∗B(AB)∗) (cf. [5]) (1.5)

associated with operator range equalities, as well as the following equivalent reverse order laws

(AB)† = B†A† ⇔ (AB)† = B†(A†ABB†)†A† and (A†ABB†)† = BB†A†A (cf. [12]), (1.6)

where A ∈ B(K , H) and B ∈ B(L, K ) and A, B, AB, and A†ABB† are assumed to have closed ranges.
As basic operation rules, the above reverse order laws and their variations can be utilized to construct
and simplify various concrete expressions and equalities that are composed of generalized inverses of
products of operators, as well as to approach properties and performances of generalized inverse operations
under various assumptions. In fact, it is generally recognized that the above reverse order law problems
have been attractive issues in the theory of generalized inverses, while the corresponding investigations
and contributions have given rise to greater progresses and cross-fertilizations of ideas in the theory of
generalized inverses of matrices and operators in the past several decades, see, e.g., [2, 5, 7, 9–13, 17, 18, 22–
24, 27–35] for some earlier and recent references related. In a recent paper [32], it was shown that many
kinds of range equalities can reasonably be established for algebraic expressions that involve matrices
and their generalized inverses. Motivated by the study in [32], we shall present an extended approach to
the constructions and classifications of nontrivial and meaningful operator range equalities for algebraic
expressions that involve products of operators and their generalized inverses.

The rest of this article is organized as follows. In Section 2, we introduce some preliminary facts
and results concerning ranges and generalized inverses of matrices. In Section 3, we propose and study
miscellaneous operator range equalities associated with mixed products of two and three operators and
their Moore–Penrose generalized inverses. Section 4 presents some new facts related to the reverse order
law in (1.3) and (1.4) and its variations. Concluding remarks are given in Section 5.
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2. Preliminaries

In this section, we first present some existing simple general formulas and facts addressing basic
operations of operators, as well ranges of operators on Hilbert space (cf. [2, 6]), which we shall exploit in
the derivations of the main results in the article.

Lemma 2.1. Let T ∈ B(K , H) with closed range. Then, the following operator equalities hold:

(T†)∗ = (T∗)†, (T†)† = T, (2.1)

T† = T∗(TT∗)† = (T∗T)†T∗ = T∗(T∗TT∗)†T∗, (2.2)

(T∗)†T∗ = (TT†)∗ = TT†, T∗(T∗)† = (T†T)∗ = T†T, (2.3)

(TT∗)† = (T†)∗T†, (T∗T)† = T†(T†)∗, (TT∗T)† = T†(T†)∗T†, (2.4)

and the following operator range equalities hold:

R(TT∗T) = R(TT∗) = R(TT†) = R((T†)∗) = R(T), (2.5)

R(T∗TT∗) = R(T∗T) = R(T†T) = R(T†) = R(T∗). (2.6)

Lemma 2.2. Let T ∈ B(K , H) and Q ∈ B(K , L) with closed range. Then, the following operator range equalities
hold:

R(TQ†Q) = R(TQ†) = R(TQ∗Q) = R(TQ∗), (2.7)

and the following implicating facts

R(T) ⊆ R(S)⇒ R(PT) ⊆ R(PS), (2.8)
R(T) = R(S)⇒ R(PT) = R(PS) (2.9)

hold for general operators T ∈ B(K , H), S ∈ B(L, H) , and P ∈ B(H , G).

3. Miscellaneous operator range equalities associated with mixed products of two operators and their
Moore–Penrose inverses

As usual in the investigation of certain specified algebraic objects, there is an enough interest to create
various required products of operators and to approach their properties from theoretical and applied points
of view. Correspondingly, we are able to create many types of range equalities for the products of operators
and their generalized inverses and to approach their algebraic properties and performances. In this section,
our main attention is focussed on the constructions and classifications of various operator range equalities
that are composed mixed operations of Moore–Penrose inverse of operators. Here are the main results
that we shall prove on a wide selection of specified operator range equalities associated with some regular
mixed products of two operators and their Moore–Penrose inverses.

Theorem 3.1. Let A ∈ B(K , H) and B ∈ B(L, K ). Then, the following range equalities hold:

R(ABB∗A∗AB) = R(ABB∗A∗) = R(ABB∗) = R(AB), (3.1)
R(B∗A∗ABB∗A∗) = R(B∗A∗AB) = R(B∗A∗A) = R(B∗A∗). (3.2)

Proof. By (2.5) and (2.6), the following range inclusions

R(AB) = R(ABB∗A∗AB) ⊆ R(ABB∗A∗) ⊆ R(ABB∗) ⊆ R(AB),
R(B∗A∗) = R(B∗A∗ABB∗A∗) ⊆ R(B∗A∗AB) ⊆ R(B∗A∗A) ⊆ R(B∗A∗)

hold, which naturally imply the range equalities in (3.1) and (3.2).
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Theorem 3.2. Let A ∈ B(K , H) and B ∈ B(L, K ) and assume that A, B and AB have closed ranges. Then, the
following operator range equalities hold:

R(ABB†A†AB) = R(ABB†A†) = R(AB), (3.3)

R(B†A†ABB†A†) = R(B†A†AB) = R(B†A†), (3.4)

R((B†A†)†(AB)†(B†A†)†) = R((B†A†)†(AB)†) = R((B†A†)∗), (3.5)

R((AB)†(B†A†)†(AB)†) = R((AB)†(B†A†)†) = R((AB)∗). (3.6)

Proof. The following fact

R(ABB†A†AB) ⊆ R(ABB†A†) ⊆ R(AB) (3.7)

is obvious according to the orders of the products of the operators. On the other hand,

R(ABB†A†AB) = R(ABB†A†ABB†)

= R(A(BB†A†A)(BB†A†A)∗)

= R(ABB†A†A)

= R(A(A†ABB†)(A†ABB†)∗)

= R(AA†ABB†) = R(AB). (3.8)

In this case, combining (3.7) and (3.8) leads to (3.3). Replacing A and B in (3.3) with B† and A†, respectively,
yields (3.4). Also by (2.7),

R((B†A†)†(AB)†(B†A†)†) = R((B†A†)†(AB)†(B†A†)∗)

= R((B†A†)†(AB)†((AB)†)∗(AB)∗(A†)∗(B†)∗)

= R((B†A†)†(AB)†((AB)†)∗B∗A†AB)

= R((B†A†)†(AB)†((AB)†)∗B∗A∗)

= R((B†A†)†(AB)†)

= R((B†A†)†((B†A†)†)∗(B†A†)∗B∗A∗)

= R((B†A†)†((B†A†)†)∗(A†)∗A†ABB†A∗)

= R((B†A†)†((B†A†)†)∗(A†)∗A†AB)

= R((B†A†)†((B†A†)†)∗(B†A†)∗)

= R((B†A†)†),

as required for (3.5). Replacing A and B in (3.5) with B† and A†, respectively, and simplifying yields (3.6).

Theorem 3.3. Let A ∈ B(K , H) and B ∈ B(L, K ) and assume that A, B and AB have closed ranges. Then, the
following operator range equalities hold:

R(B(AB)†A) = R(B(AB)∗A), (3.9)

R(A†(B†A†)†B†) = R(A†(B†A†)∗B†) = R((A∗A)†(BB∗)†), (3.10)

R((B(AB)†A)†) = R((B(AB)†A)∗) = R((B(AB)∗A)†) = R((B(AB)∗A)∗) = R(A∗ABB∗), (3.11)

R((A†(B†A†)†B†)†) = R((A†(B†A†)†B†)∗) = R((A†(B†A†)∗B†)†) = R((A†(B†A†)∗B†)∗) = R((BB∗)†(A∗A)†). (3.12)

In particular, if A,B ∈ B(H) are two projections, then the following operator range equalities hold:

R(B(AB)†A) = R(BA), R((B(AB)†A)†) = R(AB). (3.13)
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Proof. By the definition of the range and (2.2), the following facts

R(B(AB)†A) ⊇ R(B(AB)†AB(AB)∗) = R(B(AB)∗) ⊇ R(B(AB)∗A), (3.14)

and

R(B(AB)∗A) ⊇ R(B(AB)∗((AB)†)∗(AB)†) = R(B(AB)†) ⊇ R(B(AB)†A) (3.15)

hold. Combining (3.14) and (3.15) leads to the range equality in (3.9). Replacing A and B in (3.9) with B†

and A†, respectively, and performing simplification operations yields (3.10). Applying (2.5), (2.6), (3.9), and
(3.10) to (B(AB)†A)† and (A†(B†A†)†B†)† leads to the range equalities in (3.11) and (3.12), respectively. Eq.
(3.13) follows immediately from (3.9) and (3.11).

Obviously, the right-hand sides of (3.9)–(3.12) illustrate some attractive extrusion properties in contrast
with the left-hand sides. Hence, they can be named as operator range extrusion equalities. Since the
appearance and derivation of (3.9)–(3.12) are all with the ordinary algebraic operations of operators and
their generalized inverses, we believe intuitively that there are many possible variations and extensions in
response to range extrusion equalities associated with various mixed operator products. In what follows,
we present several groups of explicit range extrusion equalities as such concrete examples without proofs.

Theorem 3.4. Let A ∈ B(K , H) and B ∈ B(L, K ) and assume that A, B and AB have closed ranges. Then, the
following operator range equalities hold:

R(A(B(AB)†A)†B) = R(A(B(AB)∗A)†B) = R(A(B(AB)†A)∗B)
= R(A(B(AB)∗A)∗B) = R(AA∗ABB∗B),

R((A(B(AB)†A)†B)†) = R((A(B(AB)∗A)†B)†) = R((A(B(AB)†A)∗B)†)

= R((A(B(AB)†A)†B)∗) = R((A(B(AB)∗A)∗B)†)

= R((A(B(AB)∗A)†B)∗) = R((A(B(AB)†A)∗B)∗)
= R((A(B(AB)∗A)∗B)∗) = R(B∗BB∗A∗AA∗),

R(B†(A†(B†A†)†B†)†A†) = R(B†(A†(B†A†)∗B†)†A†) = R(B†(A†(B†A†)†B†)∗A†)

= R(B†(A†(B†A†)∗B†)∗A†) = R((BB∗B)†(AA∗A)†),

R((B†(A†(B†A†)†B†)†A†)†) = R((B†(A†(B†A†)∗B†)†A†)†) = R((B†(A†(B†A†)†B†)∗A†)†)

= R((B†(A†(B†A†)†B†)†A†)∗) = R((B†(A†(B†A†)∗B†)∗A†)†)

= R((B†(A†(B†A†)∗B†)†A†)∗) = R((B†(A†(B†A†)†B†)∗A†)∗)

= R((B†(A†(B†A†)∗B†)∗A†)∗) = R((A∗AA∗)†(B∗BB∗)†).

In particular, if A,B ∈ B(H) are two projections, then the following operator range equalities hold:

R(A(B(AB)†A)†B) = R(A(B(AB)∗A)∗B) = R(AB),

R((A(B(AB)†A)†B)†) = R((A(B(AB)∗A)∗B)∗) = R(BA).

Theorem 3.5. Let A ∈ B(K , H) and B ∈ B(L, K ) and assume that A, B and AB have closed ranges. Then, the
following operator range equalities hold:

R((B(A(B(AB)†A)†B)†A)†) = R((B(A(B(AB)∗A)†B)†A)†)

= R((B(A(B(AB)∗A)∗B)†A)†)

= R((B(A(B(AB)∗A)∗B)∗A)†)
= R((B(A(B(AB)∗A)∗B)∗A)∗)

= R((A∗A)2(BB∗)2),
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R((A†(B†(A†(B†A†)†B†)†A†)†B†)†) = R((A†(B†(A†(B†A†)∗B†)†A†)†B†)†)

= R((A†(B†(A†(B†A†)∗B†)∗A†)†B†)†)

= R((A†(B†(A†(B†A†)∗B†)∗A†)∗B†)†)

= R((A†(B†(A†(B†A†)∗B†)∗A†)∗B†)∗)

= R(((BB∗)2)†((A∗A)2)†).

Theorem 3.6. Let A ∈ B(K , H) and B ∈ B(L, K ) and assume that A, B and AB have closed ranges. Also define
Â = AA∗AA∗A and B̂ = BB∗BB∗B. Then, the following two groups of operator range equalities hold:

R(A(B(A(B(AB)†A)†B)†A)†B) = R(A(B(A(B(AB)∗A)†B)†A)†B)

= R(A(B(A(B(AB)∗A)∗B)†A)†B)

= R(A(B(A(B(AB)∗A)∗B)∗A)†B)
= R(A(B(A(B(AB)∗A)∗B)∗A)∗B)

= R(ÂB̂),

R(B†(A†(B†(A†(B†A†)†B†)†A†)†B†)†A†) = R(B†(A†(B†(A†(B†A†)∗B†)†A†)†B†)†A†)

= R(B†(A†(B†(A†(B†A†)∗B†)∗A†)†B†)†A†)

= R(B†(A†(B†(A†(B†A†)∗B†)∗A†)∗B†)†A†)

= R(B†(A†(B†(A†(B†A†)∗B†)∗A†)∗B†)∗A†)

= R(B̂†Â†).

The remarkable facts in the above theorems suggest us how to construct different kinds of range equalities
that involve mixed products of operators s and their generalized inverses. Continuingly, considering the
perspective of establishing range equalities for multiple operator products, it is possible to extend the
previous results to mixed product by a similar approach, Below, we give, as natural extensions of the
above results and facts, two groups of examples for the purpose of showing the establishments of the range
equalities for triple operator products without proofs.

Theorem 3.7. Let A ∈ B(K , H), B ∈ B(L, K ) and C ∈ B(J , L), and assume that A, B, C, AB, BC and ABC have
closed ranges. Then, the following operator range equalities hold:

R(C(ABC)†A) = R(C(ABC)∗A),

R((C(ABC)†A)†) = R((C(ABC)∗A)∗) = R(A∗ABCC∗),

R(A(C(ABC)†A)†C) = R(A(C(ABC)∗A)∗C) = R(AA∗ABCC∗C),

the following operator range equalities hold:

R((A(C(ABC)†A)†C)†) = R((A(C(ABC)∗A)∗C)∗) = R(C∗C(ABC)∗AA∗),

R(C(A(C(ABC)†A)†C)†A) = R(C(A(C(ABC)∗A)∗C)∗A) = R(CC∗C(ABC)∗AA∗A),

R((C(A(C(ABC)†A)†C)†A)†) = R((C(A(C(ABC)∗A)∗C)∗A)∗) = R((A∗A)2B(CC∗)2),

R(A(C(A(C(ABC)†A)†C)†A)†C) = R(A(C(A(C(ABC)∗A)∗C)∗A)∗C) = R((AA∗)2ABC(C∗C)2),

R((A(C(A(C(ABC)†A)†C)†A)†C)†) = R((A(C(A(C(ABC)∗A)∗C)∗A)∗C)∗) = R((C∗C)2(ABC)∗(AA∗)2),

R(BC(ABC)†AB) = R(BC(ABC)∗AB),

R((BC(ABC)†AB)†) = R((BC(ABC)∗AB)∗) = R((AB)∗ABC(BC)∗),

R(B(BC(ABC)†AB)†B) = R(B(BC(ABC)∗AB)∗B) = R(B(AB)∗ABC(BC)∗B),

R(AB(BC(ABC)†AB)†BC) = R(AB(BC(ABC)∗AB)∗BC) = R((AB)(AB)∗ABC(BC)∗BC),
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and the following operator range equalities hold:

R(B(BC(AB(BC(ABC)†AB)†BC)†AB)†B) = R(B(BC(AB(BC(ABC)∗AB)∗BC)∗AB)∗B)
= R(B(AB)∗AB(AB)∗ABC(BC)∗BC(BC)∗B),

R(AB(BC(AB(BC(ABC)†AB)†BC)†AB)†BC) = R(AB(BC(AB(BC(ABC)∗AB)∗BC)∗AB)∗BC)

= R((AB(AB)∗)2ABC((BC)∗BC)2).

Moreover, it is expected that the operator range expansion equalities for the following mixed operations

C(BC(BCD(ABCD)†ABC)†BC)†B, C(CD(BCD(BCDE(ABCDE)†ABCD)†BCD)†BC)†C,

etc. can also be established routinely for the given operators A, B, C, D, and E with closed ranges such that
the products ABCD and ABCDE can be defined with closed ranges as well.

4. The reverse order law (AB)† = B†A† and its equivalent forms

As indicated in Section 1, a main subject in operator theory that algebraists are interested in is the
constructions and classifications of various operator equalities, as well as the characterizations of their
properties and performances. In fact, algebraic operator equalities have been a classical and attractive
research topic for a very longtime and have widespread applications in the discipline of operator theory.
Recall that reverse order laws, as theoretical basis of operations of generalized inverses, have been traditional
but attractive research issues with fruitful outcomes during the development course of current operator
theory. In view of this fact, there seems to be at present and future a continuing interest in the research
of reverse order laws and related issues. Notice that the range equalities in (1.3) and (1.5) involve no
operations of the Moore–Penrose generalized inverses of the given operators. It is thereby convenient to
gain the inherent properties of the reverse order law and to use this range equality in the characterization
of the reverse order law and its variation forms under various situations. As intriguing applications of the
equalities and facts in the preceding section, we derive in this section some new equivalent facts in relation
to the reverse order law in (1.3) and (1.4) using the ideas and techniques associated with operator range
equalities.

Theorem 4.1. Let A ∈ B(K , H) and B ∈ B(L, K ) and assume that A, B and AB have closed ranges. Then, the
following five statements are equivalent:

(i) (AB)† = B†A†.
(ii) (ABB∗A∗AB)† = (A∗AB)†(ABB∗)†.

(iii) ((A∗ABB∗)2)† = ((A∗ABB∗)†)2.
(iv) ((A∗A)1/2(BB∗)1/2)† = ((BB∗)1/2)†((A∗A)1/2)†, where (A∗A)1/2 and (BB∗)1/2 are the square roots of the positive

operators A∗A and BB∗, respectively.
(v) R(B(AB)†A) = R(A∗(B∗A∗)†B∗), i.e., B(AB)†A is an EP operator.

In particular, let A ∈ B(H) with closed range. Then, the following five statements are equivalent:

(i’) (A2)† = (A†)2, namely, A is bi-dagger.
(ii’) (A2(A∗)2A2)† = (A∗A2)†(A2A∗)†.

(iii’) ((A∗A2A∗)2)† = ((A∗A2A∗)†)2.
(iv’) ((A∗A)1/2(AA∗)1/2)† = ((AA∗)1/2)†((A∗A)1/2)†.
(v’) R(A(A2)†A) = R(A∗((A∗)2)†A∗), i.e., A(A2)†A is an EP operator.

Proof. It is easy to obtain by (2.5) and (2.6) that

R((A∗ABB∗)2) ⊆ R(A∗ABB∗), (4.1)

R((A∗ABB∗)2) ⊇ R((A∗ABB∗)2A∗A) = R(A∗ABB∗A∗(A∗ABB∗A∗)∗) = R(A∗ABB∗A∗) = R(A∗ABB∗) (4.2)
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hold. The two facts in (4.1) and (4.2) imply that the following range equality

R((A∗ABB∗)2) = R(A∗ABB∗) (4.3)

holds. Similarly, we are able to obtain the following range equality

R((BB∗A∗A)2) = R(BB∗A∗A). (4.4)

Now let P = ABB∗ and Q = A∗AB. Then, P∗PQQ∗ = (BB∗A∗A)3 and QQ∗P∗P = (A∗ABB∗)3 hold. In this case,
we obtain from (4.3) and (4.4) the following range equalities

R(P∗PQQ∗) = R((BB∗A∗A)3) = R((BB∗A∗A)2) = R(BB∗A∗A), (4.5)

R(QQ∗P∗P) = R((A∗ABB∗)3) = R((A∗ABB∗)2) = R(A∗ABB∗). (4.6)

By (1.3), the equality (PQ)† = Q†P† holds if and only if R(P∗PQQ∗) = R(QQ∗P∗P), which is equivalent to
R(A∗ABB∗) = R(BB∗A∗A) by (4.5) and (4.6), thus establishing the equivalence of (i) and (ii).

Letting M = A∗ABB∗ and applying (1.3) to M2, we see that the bi-dagger operator equality (M2)† = (M†)2

holds if and only if

R(M∗M2M∗) = R(M(M∗)2M), (4.7)

where by (2.5)–(2.7), (4.3), and (4.4), the following range equalities

R(M∗M2M∗) = R(M∗M2) = R(M∗M) = R(M∗),

R(M(M∗)2M) = R(M(M∗)2) = R(MM∗) = R(M)

hold. These two groups of range equalities imply that (4.7) is equivalent to R(M) = R(M∗), the range
equality in (1.3), thus establishing the equivalence of (i) and (iii).

The square root of a positive self-adjoint operator was defined in [26]. Applying (1.3) to the product
(A∗A)1/2(BB∗)1/2, and noting that

((A∗A)1/2)∗(A∗A)1/2 = A∗A and (BB∗)1/2((BB∗)1/2)∗ = BB∗

leads to the equivalence of the two operator equalities in (i) and (iv) via the range equality in (1.3).
The equivalence of (i) and (v) follows from (1.3), (3.9) and (3.11). The equivalences of (i’)–(v’) follow

immediately from (i)–(v) by letting A = B.

Concluding this section, we give our second group of results associated with the first reverse order law
in (1.3) and (1.4).

Theorem 4.2. Let A ∈ B(K , H) and B ∈ B(L, K ), and assume that A, B, and AB have closed ranges. Then, the
following four statements are equivalent:

(i) (AB)† = B†A†.
(ii) (A∗ABB∗)† = (BB∗)†(A∗A)† and (AA∗ABB∗B)† = (BB∗B)†(AA∗A)†.

(iii) R((A∗A)2(BB∗)2) = R((BB∗)2(A∗A)2) and R((A∗A)3(BB∗)3) = R((BB∗)3(A∗A)3), i.e., (A∗A)2(BB∗)2 and
(A∗A)3(BB∗)3 are EP operators.

(iv) R(A∗A(BB∗A∗A)†BB∗) = R(BB∗(A∗ABB∗)†A∗A) and R(A∗AA∗(B∗BB∗A∗AA∗)†B∗BB∗)
= R(BB∗B(AA∗ABB∗B)†AA∗A), i.e., A∗A(BB∗A∗A)†BB∗ and A∗AA∗(B∗BB∗A∗AA∗)†B∗BB∗ are EP operators.

Proof. Under (1.3), we are able to obtain the following range equalities

R((A∗A)2(BB∗)2) = R((A∗A)2BB∗) = R(A∗ABB∗A∗A) = R(A∗ABB∗),

R((A∗A)3(BB∗)3) = R((A∗A)3BB∗) = R((A∗A)2BB∗) = R(A∗ABB∗).
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Similarly, we are able to establish the following range equalities

R((BB∗)3(A∗A)3) = R((BB∗)2(A∗A)2) = R(BB∗A∗A).

The combination of these facts with (1.3) leads to

R((A∗A)2(BB∗)2) = R((BB∗)2(A∗A)2), R((A∗A)3(BB∗)3) = R((BB∗)3(A∗A)3).

Thus, (i) implies (iii).
The equivalence of (ii) and (iii) follows immediately from (1.3).
If (iii) holds, then it is easy to verify that

R((BB∗)3(A∗A)3) = R(BB∗(BB∗)2(A∗A)2) = R(BB∗(A∗A)2(BB∗)2) = R(BB∗A∗A),

R((A∗A)3(BB∗)3) = R(A∗A(A∗A)2(BB∗)2) = R(A∗A(BB∗)2(A∗A)2) = R(A∗ABB∗)

hold. Combining these facts leads to the range equality in (1.3). Thus, (iii) implies (i) by (1.3).
The equivalence of (ii) and (iv) follows immediately from Theorem 4.1(i) and (v).

Apparently, it is easy to construct a great variety of algebraic equalities involving products of operators
and their generalized inverses according to various conventional algebraic operation rules of operators. In
addition to the basic reverse order laws considered in this section, more complicated reverse order laws for
the Moore–Penrose inverses of multiple operator products can be formulated, and therefore we are able to
make further profound study on these operator equality problems in the theory of generalized inverses of
operators by using the classic but powerful operator range methodology.

5. Conclusion

We constructed, as an extended study of range equalities for matrix expressions that involve matrices and
their generalized inverses, a wide variety of operator range equalities that are composed of mixed products
of operators and their generalized inverses using various ordinary algebraic operations of operators and
their generalized inverses. Most of these research findings are given in simple general forms and have
not been described in details in the existing literature on operator operations. Since the main results and
their derivations are obtained within the core domain of the Hilbert space operator theory, we hope that
this new and insightful study can actively encourage and cultivate deep-doing and fruitful approaches and
advances in the constructions and classifications of various essential and useful operator range equalities
so as to explore new horizons in this area of research.

Finally, we claim that the rigorous and resultful analysis in the preceding sections establishes a variety of
essential connections among different operator expressions and operator equalities that involve algebraic
operations of operators and their generalized inverses, and thus they can help readers know what is
new and exciting on research fronts related to the well-known classic reverse order law problems. As is
well known, one of the main concerns in operator theory is to construct and classify various algebraic
equalities that are composed of operators and their generalized inverses from theoretical and applied point
of view. Generally speaking, to describe the range properties of these operator equalities is an important
motivational attempt, but this kind of research is challenging in most cases, and more technical and helpful
preparations are required for substantially dealing with the corresponding classification and simplification
problems on algebraic operations of operators and their different types of generalized inverses.
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