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Abstract. The object of study in the present paper is a class of null curves in Lorentzian hypersurfaces M
of a 5-dimensional cosymplectic B-metric manifold M, which are Legendre curves in the ambient manifold.
We construct a basis along the examined curves through the almost contact B-metric structure of M and the
induced objects in M. By using this basis, we prove that there exists a unique Cartan frame for the curves
belonging to the investigated class. We show that if the Lorentzian hypersurface M is totally geodesic (resp.
totally umbilical), then the curve is geodesic (resp. non-geodesic). Special attention is paid to the case when
M is totally umbilical. We obtain that if M is an extrinsic sphere, then the studied curves are helices. We
construct an example of a helix belonging to the considered class of null curves in a 4-dimensional anti-de
Sitter space Hi‘, which is a Lorentzian hypersurface of ]Rg, endowed with a cosymplectic B-metric structure.

1. Introduction

The study of null curves is of special interest from the point of view of both mathematical physics and
differential geometry. This study is different from that of space-like and time-like curves. A distinguishing
feature of null curves is that the length of any arc vanishes. For this reason, a new parameter (called the
pseudo-arc), which normalizes the derivative of the tangent vector, is introduced. Also, contrary to the
case of non-null curves, the normal bundle TC* of a null curve C in a proper semi-Riemannian manifold M
contains the tangent bundle TC while TC+* is also a null subbundle of TM. Thus, the sum of TC and TC*
is not the whole of TM along a null curve C. In [9] Bejancu and Duggal developed the general theory of
null curves considering TM as a sum of three non-intersecting complementary (but non-orthogonal) vector

bundles - TC, the screen vector bundle S(TC*), which is non-degenerate and finally the unique null vector
bundle ntr(C) for a given S(TC™).
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The general Frenet frame and its general Frenet equations of a null curve C in a Lorentzian manifold
are given in [9, 10]. Since they depend on the parameter on C and the screen vector bundle, there exist
different Frenet frames and equations of C. Bonnor dealt with this non-uniqueness problem by introducing
a unique Frenet frame (called the Cartan frame) along a null curve in R}, parameterized by a pseudo-arc
parameter. The Cartan frame consists of the minimum number of curvature functions, called the Cartan
curvatures. The results of Bonnor were generalized by Ferrandez-Giménez-Lucas in [2], where the authors
examined null curves C(f) in a Lorentzian manifold (MY, g) for which ¢ is a pseudo-arc parameter and
{C(t), C(t), ..., Ci")(#)} is a basis of TeepM? for all t. They proved that for a null curve belonging to this
class there exists a unique Cartan frame expressed in terms of the considered basis. We deal here with
4-dimensional Lorentz manifolds, but 3-dimensional Lorentz manifolds are also of interest for investigation
[13].

After the work [2], the study of null curves in 4-dimensional Lorentzian manifolds is focused on null
curves in 4-dimensional Minkowski spaces (see [14], [1], [3], and the references therein). This fact motivate
us to investigate null curves in 4-dimensional Lorentzian manifolds. On the other hand, Legendre curves in
contact manifolds are important because a diffeomorphism of a contact manifold is a contact transformation
if and only if it maps a Legendre curve to a Legendre curve. In [12], Belkhelfa et al. have examined Legendre
curves in Riemannian and Lorentzian manifolds.

The main goal of the present paper is to study null curves in Lorentzian hypersurfaces of a 5-dimensional
cosymplectic B-metric manifold, which are Legendre curves in the ambient manifold.

The paper is organized as follows. Section 2 contains some preliminaries about almost contact B-metric
manifolds and geometry of null curves in 4-dimensional Lorentzian manifolds. In Section 3 we consider
a Lorentzian hypersurface (M, g) of a 5-dimensional almost contact B-metric manifold (Z\_/I, ®, E, 1,9) with a
unit time-like normal vector field N such that &, N and X (X € TM) are in a general position with respect
to M, i.e. they have a tangent and a normal part. We prove (Proposition 3.3) that for a null curve C(t) in M,
which is a Legendre curve in M, the vector fields (C, (pC, o, &1} form a basis of TcyM for all t, where (pC, &o
and &; are the tangent parts of @C, &and @N, respectively. Also, we show that three classes of the considered
curves are interesting to be investigated, with respect to the functions n = 7(C, GC) and a(C) = -9(C, &).
One of these classes, in case M is a Lorentzian hypersurface of a 5-dimensional cosymplectic B-metric
manifold M, we study in Section 4. This class consists of null curves C in M, which are Legendre curves in
M, such that any integral curve C of ¢C is also curve in M. Thus, C belongs to the same class as C, i.e. C
is a null curve in M, which is a Legendre curve in M. We give necessary and sufficient conditions for the
examined curves to be geodesic (Theorem 4.4, Proposition 4.6). We establish that if M is totally geodesic,
then C is geodesic. The main result in this section is Theorem 4.7, where we prove that for C, parameterized
by the pseudo-arc, there exists a unique Cartan frame up to an orientation, which is expressed by the basis
C, (pC‘, &o, &1} along C. We note that in this theorem we do not suggest the derivative vectors of C form a
basis as in Theorem 3.1 [2, p. 5]. The last Section 5 is devoted to the study of the curves C from Section
4 when the Lorentzian hypersurface M of the cosymplectic B-metric manifold M is totally umbilical. We
show (Corollary 5.2) that if M is totally umbilical, then C is non-geodesic. We find the unique Cartan frame
and the Cartan curvatures 07 and 0. In Proposition 5.4 we give equivalent conditions to the condition o,
is a constant. We prove (Theorem 5.8) that if the function # is constant or M is an extrinsic sphere, then C
is a helix (i.e. C has constant Cartan curvatures). Moreover, if M is an extrinsic sphere and &is tangent to
M, then both 77 and o, vanish (Corollary 5.9). At the end of Section 5, we construct a family of the studied
curves in a 4-dimensional anti-de Sitter space H}, which is a Lorentzian hypersurface of R}, endowed with
a cosymplectic B-metric structure. We find a Cartan curve C belonging to this family and its Cartan frame.
The obtained curve C is a helix.

2. Preliminaries

Let M be a (21 + 1)-dimensional smooth manifold, which 1is endowed with an almost contact structure
(p, &, 1). Here @ is an endomorphism of the tangent bundle TM, & is a Reeb vector field whoose dual 1-form
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is 77 and finally @, &, 7] satisfy the following relations:
PX=-X+708  T®=1 M
If M is equipped with a pseudo-Riemannian metric § (known as a B-metric), satisfying
F@X,§Y) = =g(X, ) + 7X)a(Y), @)

then M is called an almost contact B-metric manifold [7] and it is denoted by (M, @, £, 7, 7). The term of B-metric

used here is known in literature also as Norden metric. Here and further X, Y, Z are tangent vector fields
on M. Immediate consequences of (1) and (2) are:

Tog=0, §£=0, F@X,Y)=7XpY),
1X)=9(X,8), gEo=1
The distribution D : x € M — D, C T,M, where
D, = Ker7] = {X, € T,M : 7j(X;) = 0}

is called a contact distribution generated by 7. Then the tangent space T,M at each x € M splits into the
following orthogonal direct sum

T.M=D,® span]R{Ex}.

The tensor field ;of type (0,2) given by ?(X Y) = 3(X,9Y) + 7(X)7(Y) is also a B-metric, called an associated
metric to g. Both metrics g and g are necessarily of signature (n +1,1) (+...+—...-).
The tensor field F of type (0, 3) on M is defined by

FX,Y,Z) = g(Vxp)Y, 2), (4)

where V is the Levi-Civita connection of the metric . It has the following properties:

EX,Y,Z)=FX,Z,Y) = FX,9Y,9Z) + (NEX, E,Z) + (Z)EX, Y, E).
Moreover, we have
FX,9Y,&) = (VY = 5(VgE, Y). (5)

In [7] a classification of the almost contact B-metric manifolds with respect to the tensor Fismade and eleven
basic classes Fi(i = 1,2,...,11) are obtained. The special class ¥ is the intersection of all basic classes and it
is determined by the condition F(X, Y, Z) = 0. The class 7 is known as the class of the cosymplectic B-metric
manifolds. By using (4) and (5), for a cosymplectic B-metric manifold (Z\_/L @, E, 1,9) we get

Vp=0, VE=0, Vi=0. (6)

In the remaining part of this section we provide basic concepts about null curves in a 4-dimensional
Lorentzian manifold M; that we need in the following sections.

A Lorentzian scalar product on an n-dimensional real vector space V is a nondegenerate symmetric bilinear
form (-, -) of index 1. This means one can find a basis {eq, e, ..., ¢,} of V such that

(e,e)==1; (epey=1,i€(2,...,nf; (ee;)=0,i%#].
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A Lorentzian manifold is a pair (M}, g), where M is an n-dimensional smooth manifold and g is a Lorentzian
metric, i.e. gy is a Lorentzian scalar product on the tangent space T,M at each point x € M.

Let (M7, g) be a 4-dimensional Lorentzian manifold and C : I — M be a smooth curve in M] given
locally by

xi=x(t), telCR, iell,2,34)

for a coordinate neighborhood U of C. The tangent vector field is given by

5 = (X2, X3, 24) = C,
where we denote % by %; for i € {1,2,3,4}.
The smooth curve C is said to be a null (lightlike) curve in (M3, g), if at each point x of C we have

g(C,C) =0, C#0 for Vtel. (7)

Consider a smooth null curve C immersed in an (m + 2)-dimensional proper semi-Riemannian manifold
(M;™+?, g) of a constant index g > 1. It is known [9, 10] that the tangent bundle TM along C splits into a sum
of the following three non-intersecting complementary (but non-orthogonal) vector bundles:

TMc = {TC & ntr(C)} ®op, S(TCH). 8

The m-dimensional vector bundle S(TC%) is called a screen vector bundle of C in M. It is semi-Riemannian
of index (4 — 1) and a complementary vector bundle to TC in the normal bundle TC* of C, i.e. TC* =
TC @i S(TC). Moreover, given a S(TC*) for a null curve C, there exists a unique null vector bundle ntr(C)
of rank 1 which is called a null transversal bundle.

Based on the decomposition (8), there exists a quasi-orthonormal basis F = {C,N, Wy, Wy} along a null
curve C on a 4-dim Lorentzian manifold M, which means that the vector fields in F satisfy the equalities:

g(N,N) = g(N,W1) = g(N, Wy) = g(C, W1) = g(C, W,) = 0, o
g(C,N) = g(Wy1, Wy) = g(Wp, Wp) = 1.

Also, from the decomposition (8), we have
TC = span{C}, ntr(C) =span{N}, S(TC*) = span{W;, W,}.

In [9, 10] the following general Frenet equations of a null curve C in M with respect to F and the Levi-Civita
connection V on M were obtained:

Vcc = hC + k1W1,

VC‘N = —hN + k2W1 + k3W2,
VCW1 = —k2C - klN + k4W2,
VW, = —k3C — ks Wy,

(10)

where h and {ki, kz, k3, k4} are smooth functions on a coordinate neighborhood U of C. The frame F =
{C,N, Wy, W} is called a general Frenet frame on M} along C with respect to the screen vector bundle
S(TC*) = span{W;, W,}. The functions {ki, k», k3, ks} are the curvature functions of C with respect to F.

The general Frenet frame F and its general Frenet equations (10) depend on the parameter and the choice
of the screen vector bundle S(T'C*) of C and therefore they are not unique (see [9, 10]). In [15] Bonnor
introduced a unique Frenet frame along a null curve in R}. This Frenet frame consists of the minimum
number of curvature functions. It is called the Cartan frame and the null curve - a Cartan curve. Ferrdndez-
Giménez-Lucas [2] studied null Cartan curves C in a Lorentzian manifold (M'l’“z, g) which are parameterized

by a pseudo-arc parameter, that is, g(V-C,V+C) = 1. From Theorem 3.1 [2, p. 5] it is known that for a null
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curve C(t) in M} parameterized by the pseudo-arc such that {C,C,C®,C%} is a basis of TcyM; for all ¢,
there exists a unique Cartan frame satisfying the following Cartan equations:

VeC =W,

VC‘N =0 Wi +0,W,,
VCW1 = —O‘1C - N,
VCWZ = —OzC,

(11)

where 07 and o, are called the Cartan curvatures.

3. Null curves in Lorentzian hypersurfaces of a 5-dimensional almost contact B-metric manifold, which
are Legendre curves in the ambient manifold

Let (Z\_/L @, E, 1,9) be a 5-dimensional almost contact B-metric manifold and M be a hypersurface of M.
We assume that there exists a unit time-like vector field N, defined globally over M, i.e.

g(N,N) = 1. (12)

We denote by g the restriction of y on M. Then (M, g) is a 4-dimensional Lorentzian manifold. In what
follows, we use the notations (M) and x(M) for the set of all smooth real functions and vector fields on
M, respectively. Also, X, Y, Z, W stand for vector fields belonging to x(M).

Let us consider the following decomposition for &, X, pN with respect to TM and N:

E = 50 + ﬂﬁ, (13)
PX = X +a(X)N, X e x(M) (14)
PN =& + DN, (15)

where: &, &1 € x(M); a,b € F(M); ¢ is a tensor field of type (1,1) on M and «a is a 1-form on M. By using
the latter three equalities and (2), (3), (12), we obtain

a=-7(N), b=-g(N,@N), (16)
a(X) = —g(X,pN) = —g(X, &), (17)
9(%0,&0) =1+ 4%, (&0, 1) = ab, g(&1,&1) =1+ a* + b2 (18)

We note that contrary to the case of almost contact metric and almost paracontact metric manifolds, the
function b is not zero in general. The equalities (1), (13), (14) and (15) imply

P°X = -X - a(X)& + N(X)&o,

(19)
a(pX) + ba(X) = an(X).
By using (2) and (14) we get
9(X, @Y) = g(@X,Y),
(20)

9(@X, @Y) = —g(X,Y) + a(X)a(Y) + (X)1(Y).
From @E =0and azﬁ =-N+ ﬁ(ﬁ)g, taking into account (13)+(16), we derive

P&y = —aé&; and @& = —a&y—béy, (21)
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respectively.

Let V and V be the Levi-Civita connections of the metrics 7 and g on M and M, respectively. Then the
Gauss-Weingarten formulas are:

VxY = VxY + B(X, Y),
VN = —AgX + ViN.

Here, B is the second fundamental form, Ay is the shape operator with respect to N and V* is the normal
connection on the normal bundle TM+*. For B, Ay and V+ we obtain

B(X,Y) = —g(AgX, Y)N = —g(X, AzY)N, ViN =0. (22)
Hence, the Gauss-Weingarten formulas become:

VxY = VxY — g(AgX, )N,

23
VxN = —AgX. @)

D. E. Blair introduced in [6] a Legendre curve y as an integral curve in the contact distribution D = Ker n
of a contact manifold (M’, ¢, &, 17). Having in mind that a Frenet curve y in M’ is a Legendre curve if and
only if n(y) = 0 (see [6]), a Legendre curve in an almost contact B-metric manifold is defined as follows:

Definition 3.1. A smooth curve C in an almost contact B-metric manifold (M, 9,&,7,7) is said to be a Legendre
curve if (C) = 0 at each point of C.

Let C be a null curve in (M, g), which is a Legendre curve in (M, g, &, 7, 7). We put
7(C, 90 =n, (24)
where 7 is a smooth function on a curve C in M. By using (13), (14), (17), (20), (21) and (24) we find
7(C) = 9(C, &) =0, (25)
9(@C,9C) = a((©)?,  9(@C, o) =aa(C), g(pC, &1) = ba(©). (26)

Proposition 3.2. Let C : I — M be a null curve in M, which is a Legendre curve in M. For every t € I at least one
of n(t) and a(C(t)) is not zero.

Proof. Let us assume that there exists t; € I such that n(t;) = 0 and a(C(t;)) = 0. The condition a(C(t;)) = 0
and (14) imply pC(t;) is a tangent vector field to M. Moreover, taking into account (2), we have g(@C, C) = 0
along C. Hence, C(t1) and ¢C(t;) are orthogonal lightlike tangent vector fields to M. From a well known fact
in the Lorentzian geometry it follows that C(t;) and ¢C(t;) are linearly dependent. Then pC(t1) = uC(t;),
u € R. Acting with @ to the both sides of this equality, we get —C(t1) = u>C(t;). The latter leads to a
contradiction. [

Proposition 3.3. Let C : I — M be a null curve in M, which is a Legendre curve in M. Then the vector fields
{C, 9C, &, &1} form a basis of TcwM forall t € 1.

Proof. In a standard way, using (18), (25) and (26), we obtain that the vector fields {C, (pC, &o, 1) are linearly
independent along C if and only if A # 0, where

) 2 - 2)\2

A=-n?(1+a2) = (nb+(@C)?) .

Now, applying Proposition 3.2, we complete the proof. O



G. Nakova, C.-L. Bejan / Filomat 40:1 (2026), 153-168 159

4. Null curves in Lorentzian hypersurfaces of a 5-dimensional cosymplectic B-metric manifold, which
are Legendre curves in the ambient manifold

Fromnow on, (Z\_/I, @, g, 7, 9)is a 5-dimensional cosymplectic B-metric manifold and (#], g) is the Lorentzian
hypersurface of M, defined by (12). Further, by straightforward computations, we establish that the induced
objects ¢, a, &, &1 on M satisfy the following conditions:

e by using (Vx@)Y =0, (14), (15) and (23), we obtain

(Vx@)Y = —g(AgX, V)& + a(V)AGX,

(27)
(Vx)Y = g(AgX, 9Y) - bg(AgX, Y);
e the equalities (Vx@)N = 0, (14), (15), (17) and (23) imply
Vx&i = bAgX — p(AxX), (28)
X(b) = 29(AgX, &1); (29)
e from Vx& = 0, (13) and (23) we get
Vx&o = aAgX, (30)
X(a) = g(AgX, o). (31)

Next, we study the considered null curves in Section 3 using the basis constructed in Proposition 3.3.
According to Proposition 3.2, we can investigate the following three classes of such curves: both a(C(t))
and n(t) are not zero for all t; a(C(t)) # 0 and n(t) = 0 for all t; «(C(t)) = 0 and n(t) # 0 for all ¢.

The condition a(C(t)) = 0 along C has a clear geometric meaning, namely @C(t) € x(M). Moreover, if C

is an integral curve of C in M, then C is also a null curve in M, which is a Legendre curve in M. Motivated
by this fact, in the present paper we begin with the examination of curves of the third class.

In the remaining part of the paper, C will stand for a null curve in M, which is a Legendre curve in M,
such that @(C) = 0 and n # 0 along C. Then, taking into account that pC = ¢C, (26) becomes:

9@C,9C) = 9(@C, &o) = 9(@C, &1) = 0. (32)

Further, for the sake of brevity, we use the notations Q = g(VCC', &o), P = g(VCC, &1) and O( f) = f for any
f € F(M). We give the following

Lemma 4.1. For C the following equalities are fulfilled:

9(VeC,0) =0, (33)
9(VeC,9C) = g(VepC, C) = g (34)
Q = _ag(AﬁCr C)/ (35)
P = (Vo) C = g(AzC, 7C) - bg(AxC, ). (36)

Proof. As an immediate consequence from (7) we obtain (33). The first equality in (27), «(C) = 0 and (24)
imply (34). By virtue of (30) and (25) we get (35). By using (17) and the second equality in (27) we receive
36). O
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Proposition 4.2. With respect to the basis C, @C‘, Eo, &1} of ToM the vector field VCC is given by
Vcc = AlC‘ + y1¢C +1v1&p + 61&4, (37)

where Av, p1, v1, 01 are the following functions along C

n

/\1 = ﬂ/ Pll = O, (38)
(1 + a® +b*)Q — abP

[ G P R 9
—abQ + (1 + a®)P

N TP (40)

For the curvature ki we have
2 L 12\)2 _ 2\ P2
kf=(1+a +b9)Q ZwQP+(1+a)P‘ (1)

(1+a2)?+b?

Proof. With respect to the basis {C,pC, &, &1} of TeyM, ViC has the decomposition (37). Using (33), (34)
we obtain the following linear system of equations for Ay, 1, v1, 01

g(VeC,C) =0 =nw

9(VeC,C) = 5 = nhs

Q = (1 +a®)vy +abd,

P =abvi + (1 + a% + b?)61.

The determinant of the above system is A; = —n? ((1 +a%)? + b2). Since n # 0, the system has a unique
solution given by (38), (39) and (40). From the first equality in (10) it follows that

kG = g(VeC, VeC) = (1 +a*)vi + 2abvidy + (1 +a® + b))
Substituting (39) and (40) in the latter equality we obtain (41). [
As an immediate consequence of Proposition 4.2, we state
Corollary 4.3. The original parameter t is a pseudo-arc parameter of C(t) if and only if

(1+ﬁ+b%Q2—2wQP+a+a%W__1

(1+a2)?+b? (42)

It is known [9] that a null curve is geodesic if and only if the curvature k; vanishes. Using (41) we obtain
that C(t) is geodesic if and only if Q = P = 0 for all . Now, taking into account (13), (35) and (36), we state

Theorem 4.4. Let (M, g, &,1,9) be a 5-dimensional cosymplectic B-metric manifold and M be the Lorentzian hyper-
surface of M, defined by (12). Then for C(t) in M the following assertions are equivalent:

(i) C(t) is geodesic in M;

(ii) & is tangent to M along C or 9(A5C,C) = 0 for all t and « is parallel along C.
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Definition 4.5. [11] A submanifold S in a (semi-) Riemannian manifold (S, h) is said to be:

(i) totally geodesic if its shape operator A vanishes identically, that is, A = 0 or equivalently the second fundamental
form B vanishes identically;

(if) umbilical with respect to the normal vector field V to S if Ay = fI (I is the identity transformation) for some
function f;

(iii) totally umbilical if S is umbilical with respect to every normal vector field to S.

Proposition 4.6. Each of the following statements
(i) M is totally geodesic;
(ii) &y is parallel along C and & is not tangent to M along C;
(iii) € is tangent to M and « is parallel along C.
(iv) &1 is parallel along C;

is sufficient to Quarantee that C is geodesic.

Proof. With the help of (13), (30), (35), (36) and (41), we easy check that any of the statements (i), (i) and (ii)
is sufficient to guarantee that C is geodesic.

(iv) Since V&1 = 0, from (28) we have bA3C = p(AxC). Acting with ¢ to the both sides of this equality
and using the first equality in (19), we obtain (b* + 1)(AWC‘) = —a(AN%“)& + ﬁ(AﬁC)éo. Now, taking into
account (32), (35), (36) and (41), we complete the proof. [

Theorem 4.7. Let the original parameter t of C(t) be a pseudo-arc parameter. Then there exists a unique Cartan
frame CN, Wi, W) up to an orientation, which with respect to the basis C, @C’, &o, &1} of TewM is given by

Wy =VeC = AC+v1&o + 61&1, (43)
Wy = G + 1ha@C +12&o + 0261, (44)
N =aC + ppC + y&o + 6&1, (45)

where A1, v1, 01 are given by (38), (39), (40) and Az, o, va, 62, a, B, ¥, 6 are the following functions along C

Ny = ——————— (PO - QP)[(1 + )2 + 1?]

[+ + b
+db (1 + 1?)Q? — 2abQP + a?P?] (46)
+§ [a(l +a* - b?)Q% +2(1 + a®)bQP — a(1 + aZ)pZ]},

eP eQ

—0, Mm e = 47
T T ere U Gy n v
1 72 1
a:_i(g{?), p=1 (48)
~ eAP i[abP — (1 + a® + b*)Q] 49
y__\/er (A +a??+07] >
__ ehQ il +a*)P—abQ] c= 1l (50)

[A+@2+p2 2n[(1+a2)?+0?]’
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Proof. A frame {C,N, Wy, W,) along a null curve C, parameterized by the pseudo-arc parameter, is a Cartan
frame in the sense of Theorem 3.1 and Definition 3.2 [2, p. 5] if it satisfies (9) and (11). Note that (11) are
obtained from (9) by h =0, ky =1, ky = —g(V-W>, W1) = 0 and labeling k; = o1, k3 = 0.

The vector field W, defined by (43), satisfies the first equation in (11). Since t is a pseudo-arc parameter
of C(t), we have g(‘W1, W) = 1. From Corollary 4.3 it follows that for the functions a, b, Q and P the equality
(42) holds. Next, we look for a vector field W, such that g(’Wz,C) = g(Wo, W1) =0, g(Wp, W) =1 and
ky = —g(VeWo, Wh) = 0. By using (18), (24), (25), (32), we obtain the following system for the functions A,,
Uz, va, 62 in (44)

nyz =0
QVZ + P, =0
(1+a*)va + 2abvydy + (1 +a®> + 0263 = 1 (51)

/\2. + d(avyva + bv16; + ad107)

+g (a511/2 +av10; + 21751(52) - QV2 - P(Sz =0.

Taking into account that n # 0, from the first equation in (51) we get u, = 0. Since C(t) is non-geodesic,

we have (Q, P) # (0,0) along C(t). Let us assume that P # 0. Then 6, = —%, which we substitute in the

third equation in (51) and obtain the expressions for v, and 0, in (47). The function A, we find from the
last equation in (51), using (39), (40) and (47). The unique null transversal bundle ntr(C) of C with respect
to the screen vector bundle S(TC*) = span{W;, W5} is spanned by the vector field N, which satisfies the
conditions: g(N,C) =1, g(N, W1) = g(N, Wa) = g(N, N) = 0. The functions a, B, y, § in (45) we determine
from the system

np=1
n
Q)/+P6+E—O

(52)
Ay + [(1 +a?)vy + abdy]y + [abvy + (1 + a2 + 1?)5,]6 = 0

(1 +a?)y? + 2abyd + (1 + a* + b*)6* + 2a = 0.

Q

From the first and the second equation in (52) we obtain § = % and 6 = V- %, respectively. By using
the latter equality and (47), from the third equation in (52) we get (49), (50). Substituting (49) and (50) in the
last equation in (52), we find the function a, which is given in (48).

After substituting the obtained expression for A, in (48), (49) and (50), we see that the functions «, y
and 6 do not depend on €, which means that NV is unique. If we replace € with 1 (respectively -1) in (46)
and (47), we obtain two opposite vector fields, which we denote by ‘W (respectively W). Hence, both
frames {C, N, W1, W} and CN,W. 1, W5} are Cartan frames of C that differ only in having opposite
orientations. [

Remark 4.8. In Theorem 4.4, we proved that there exists a unique Cartan frame for C without the condition
{C,C,C¥,CW} to be linearly independent. Let us note that in Theorem 3.1 [2, p. 5], Ferrindez et al. obtained a
unique Cartan frame by the assumption that the derivative vectors of the curve form a basis.
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5. Null curves in totally umbilical Lorentzian hypersurfaces of a 5-dimensional cosymplectic B-metric
manifold, which are Legendre curves in the ambient manifold

In Proposition 4.6 we established that if M is totally geodesic, then C is geodesic. In this section we
trA<
consider the case when M is totally umbilical. Then Ay; = fI, where f = TN

Lemma 5.1. If M is totally umbilical, we have:
(i) the functions a and b are constant along C;
(i) Ve&o=afC, V&1 = bfC - foC;
(iii) Q=0, P=fn;

(iv) the original parameter t of C(t) is a pseudo-arc parameter if and only if

1 [(1+a2)2+ b2
f = 61; W, €1 = +1. (53)

Proof. (i) We substitute X with C in (29) and (31). Taking into account that AxC = fC, a(C) = 0, g(C, &) = 0,
we get b = 0 and 4 = 0, respectively. Hence, the functions a and b are constant along C.
In case M is totally umbilical, (30), (28) and (35), (36) become the equalities in (ii) and (iii), respectively.
(iv) According to Corollary 4.3, the original parameter ¢ of C(f) is a pseudo-arc parameter if and only if
(42) holds. Substituting Q = 0 and P = fn in (42) we obtain (53). O

The assertion (iii) in Lemma 5.1 and (41) imply
Corollary 5.2. If M is totally umbilical, then C is non-geodesic.
By using Theorem 4.7 and Lemma 5.1, we state the following theorem:

Theorem 5.3. Let the original parameter t of C(t) be a pseudo-arc parameter, M totally umbilical and fn > 0

(respectively fn <0) for all t. Then there exists a unique Cartan frame (C,N, Wy, W,) up to an orientation, which
with respect to the basis {C, pC, &o, &1} of TewM is given by

—_ - 2
”W1=£C— €1ab £yt c1Vl+a £

2n \JA +a?) (1 +a2)? + b2) V1 +a2)? + 12
W, = ——=L_¢,

V1 +a?
— 72 . 7 (54)
N:_n_20+1¢0+ e1abn £,

8ns - n 2n+J(1 +a?) (1 + a2)? + 1?)

€1 V1 +a?n

- 51/
2n+/(1 +a?)? + b?
where € = +1 and €1 = 1 (respectively €1 = —1) if fn > 0 (respectively fn < 0) for all .

Further, using (11), for the Cartan curvatures 0; and 0, of C in a totally umbilical Lorentzian hypersurface
M we have

o1 = —g(Vc@1,N), 0y = —Q(VC;VVVL N).
By standard calculations, taking into account Lemma 5.1 and (54), we obtain

—  1( nn 3 b
o1=—|—%<+

n\ 2" 81 1+a2) (55)



G. Nakova, C.-L. Bejan / Filomat 40:1 (2026), 153-168 164
ea/(1+a%)?+b?
n(l+a?)

As an immediate consequence of (56), Lemma 5.1 and (13), we establish

Op =

€= =+1. (56)

Proposition 5.4. Let M be totally umbilical and let 6, be the Cartan curvature of C. Then the following assertions
are equivalent:

(i) 0 is a constant function;

(ii) n is a constant function;

(iii) f is a constant function along C.

Moreover, 6, = 0 if and only if & is tangent to M along C.

Corollary 5.5. If M is totally umbilical and Eis tangent to M, then 6, = 0.

= trB
Let us recall that the mean curvature vector H of a submanifold S in S is defined by H = FimS’ where B
stands for the second fundamental form. If V! is the normal connection on TS+, then the mean curvature

vector H is called parallel if V*H = 0 identically.

Definition 5.6. [5] A totally umbilical submanifold with a non-zero parallel mean curvature vector is said to be an
extrinsic sphere.

Definition 5.7. [2] A null curve is said to be a helix if it has constant Cartan curvatures.

Theorem 5.8. Each of the following statements
(i) M is totally umbilical and n is a constant function;
(ii) M is an extrinsic sphere;
is sufficient to guarantee that C is a helix, whose Cartan curvatures o1 and o, satisfy

Gi=—Cbr g (57)

PN GEY o

Proof. (i) If n is a constant function, then from (55), (56) and a, b are constant functions along C it follows
that the Cartan curvatures o1 and o, are also constant, for which (57) holds.
trAx) — —
( N)N. Since VyxN = 0, from VyH = 0 we
obtain that X(trAy) = 0. The latter implies trAg is a constant on M and hence f is also a constant on M.
From (53) we deduce that # is a constant function, completing the proof. [

(i) The mean curvature vector H of M is given by H = —

Corollary 5.9. Let M be an extrinsic sphere.
(i) If N is tangent to M, then 61 = 0;
(ii) Ifg is tangent to M, then 61 = 0, = 0.

Example 5.10. Let M = RS = {u = (z!,22,2%,2%,2°) | 2 € R}. We define an almost contact B-metric structure
@,&,1,9) on RS in the following way:

(V.o (2 N__o .,
P\oz )~ 92 P\oz2) = "oz T 7
d

_( d _
(P(E)_Or é_ﬁl T]—dZ

(58)

and g is a pseudo-Euclidean scalar product, determined by the equality

2
uy =Y -G+ @22 + @) (59)

i=1
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It is easy to see that Vg = 0. Hence, M = (RS, @, &,1,7) is a cosymplectic B-metric manifold.
Identifying the point (z',22,2%,2%,2°) € (RS, 9,&,7,9) with its position vector Z, we define a hypersurface
M = H? by
1

32, 2) = -1.

. . . . 4 .
We consider the following parametric equations of HY:

z! = cosucoshv
z? = sinu coshv
H:{ 22 =sinhvsinwsing , v#0, w#0. (60)
z* = sinhvsinw cosq
z? = sinhvcosw
. 07 07 d0Z JZ
The position vector Z is normal to TH‘lL = span {8_u' 5%’ 9w’ 8_q}' where
7 .
5 (= coshvsinu,coshvcosu,0,0,0),
7 . . . . .
3o = (cos u sinh v, sinu sinh v, cosh v sinw sing,
coshvsinw cos g, coshv cosw),
oz ) . . . .
o = (0,0, sinh v cos wsin g, sinh v cos w cos 4, — sinh vsin w),
2z . . . . .
&’_q = (0,0, sinhvsinw cos g, — sinh vsinw sin g, 0)

The induced metric g of g on Hy is given by

Z I\ %) -
Now ou) =" No o)™

8_Z&_Z — cinh2 8_ZB_Z i 2 2
g(&w'&w)_smh v, g(aq, &q)—smh vsin” w,

02 97\ _ (92 97\ _ (07 oz _ (92 o7 _
Now o) =N\ o0 90) =9\ ow 9w) =7 dq" dq)

which means that g is a Lorentzian metric on Hy. Hence, (H3, g) is a Lorentzian hypersurface of (R3, @, £,7,7). Note
that (HY, 9) is a 4-dimensional anti-de Sitter space [8].
By using (16), (58), (59) and (60), we have

a=-sinhvcosw, b= —sinh2vsinwsin(u + q). (61)

Since the Levi-Civita connection V of g is flat, we have VxZ = X for any X € X(H}). Then the Gauss-Weingarten
formulas are

VxY = VxY +g(X, Y)Z,
VxZ=X, XYe€xH}.
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Thus, Az = =l and f = —1. Hence, H‘f is totally umbilical. Moreover, trAz = =2 implies that H‘l1 is an extrinsic
sphere.
Letw(lt): Ic R — (—%, O) U (0, %) be a non-constant function. Consider the family of curves Cy, : I — Hf

given locally by
Co(t) = (Z(t), Z22(t), Z22(1), Z(t), Z°(t)), where

(sin w(t) + /1 + cos? w(t)]
=In

cos w(t)
. ln(l + /1 + cos? w(t)] ' (62)
cos w(t)
w = w(t)
qg=-u

By straightforward computations, using (58), (59), (60), (62) and the components of the metric g, we see that Cy,
satisfy the conditions:

9(Cuw, Cu) = — cosh? u(it)? + (9)? + sinh? v(w)? + sinh? v sin® w(4)? = 0,
7(Cw) = cosh v cos wo — sinh v sin wi = 0,
a(Cy) = (2123 + 2224 + 2821 + 242%) = (2'2% + 222%)

= (coshvsinhvsinwsin(u + q)) = 0,

4(w)?

, tel 63
cos?2 w(l + cos? w) 63)

Ny = ?(er @Cw) =

Hence, the curves Cy, belong to the studied type of curves in this paper.

Since Hy is totally umbilical, from Lemma 5.1 it follows that the original parameter t of Cy(t) is a pseudo-arc
parameter if and only if (53) holds. By using (61) and (62) we get a = =1 and b = 0 along C,,. Now, taking into
account that f = =1, from (53) we obtain ny, = —€1 V2, €1+ 1. The equality (63) implies €1 = —1. Thus, the original

parameter t of Cy(t) is a pseudo-arc parameter if and only if the following condition is fulfilled

4(w)*
= ) 64
cos?2 w(l + cos? w) 64)
The function
. e%t -2
W(t) = arctan -
2e 5
is a solution of the ordinary differential equation (64). Substituting w(t) with W(t) in (62), we obtain
oo b
V8
b= ln(\/ef‘@ a4V +2)— L m2
4 B (65)
N [6‘ V2t _ 2]
W = arctan
2e ¥
7=
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According to Theorem 5.3, for the curve C(t) = (2'(t), 22(t), 22(t), (1), 2°(t)) given by (65), there exists only one

Cartan frame (C, N, (Wl,(Wz} up to an orientation. In (54) we replace €, n, a, b with -1, V2, -1, 0, respectively,
and using (60), (65) we get

C= 1 t {(eé@—Z)cos%—(e%t+2)sin%,
2+/8e % V8 \

+ (e%t - Z)SinL

Yzt
(e + 2) Ccos %

t
é/g

. V2t _ [, V2 Lt
(e Z)COS% (e +2)sm el

t
\4/§1

2_x 1 i t i .t
N = —(pClC = {(e 2 _ 2) Ccos — + (e + 2) sin —,
2 4\4/56%@ V8 V8

_ |, V2 it (%ﬁt_)- t
(e +2)cos%+e 2 |sin

2 _ [, st
(e Z)COS% (e +2)sm %

Va2t t V2t _ 5\ gin L
(e +2)Cos %+(e 2)s1n %,0}.

For the Cartan curvatures 61 and 6, of C we find

61=0, 0=
1=Y 0-2 - 2 7
i.e. Cis a helix in the extrinsic sphere H;.
This example is relevant to Proposition 5.4 and Theorem 5.8.
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