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Abstract. The object of study in the present paper is a class of null curves in Lorentzian hypersurfaces M
of a 5-dimensional cosymplectic B-metric manifold M, which are Legendre curves in the ambient manifold.
We construct a basis along the examined curves through the almost contact B-metric structure of M and the
induced objects in M. By using this basis, we prove that there exists a unique Cartan frame for the curves
belonging to the investigated class. We show that if the Lorentzian hypersurface M is totally geodesic (resp.
totally umbilical), then the curve is geodesic (resp. non-geodesic). Special attention is paid to the case when
M is totally umbilical. We obtain that if M is an extrinsic sphere, then the studied curves are helices. We
construct an example of a helix belonging to the considered class of null curves in a 4-dimensional anti-de
Sitter space H4

1 , which is a Lorentzian hypersurface ofR5
2, endowed with a cosymplectic B-metric structure.

1. Introduction

The study of null curves is of special interest from the point of view of both mathematical physics and
differential geometry. This study is different from that of space-like and time-like curves. A distinguishing
feature of null curves is that the length of any arc vanishes. For this reason, a new parameter (called the
pseudo-arc), which normalizes the derivative of the tangent vector, is introduced. Also, contrary to the
case of non-null curves, the normal bundle TC⊥ of a null curve C in a proper semi-Riemannian manifold M
contains the tangent bundle TC while TC⊥ is also a null subbundle of TM. Thus, the sum of TC and TC⊥

is not the whole of TM along a null curve C. In [9] Bejancu and Duggal developed the general theory of
null curves considering TM as a sum of three non-intersecting complementary (but non-orthogonal) vector
bundles - TC, the screen vector bundle S(TC⊥), which is non-degenerate and finally the unique null vector
bundle ntr(C) for a given S(TC⊥).
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The general Frenet frame and its general Frenet equations of a null curve C in a Lorentzian manifold
are given in [9, 10]. Since they depend on the parameter on C and the screen vector bundle, there exist
different Frenet frames and equations of C. Bonnor dealt with this non-uniqueness problem by introducing
a unique Frenet frame (called the Cartan frame) along a null curve in R4

1, parameterized by a pseudo-arc
parameter. The Cartan frame consists of the minimum number of curvature functions, called the Cartan
curvatures. The results of Bonnor were generalized by Ferrández-Giménez-Lucas in [2], where the authors
examined null curves C(t) in a Lorentzian manifold (Mm

1 , 1) for which t is a pseudo-arc parameter and
{Ċ(t), C̈(t), . . . ,C(m)(t)} is a basis of TC(t)Mm

1 for all t. They proved that for a null curve belonging to this
class there exists a unique Cartan frame expressed in terms of the considered basis. We deal here with
4-dimensional Lorentz manifolds, but 3-dimensional Lorentz manifolds are also of interest for investigation
[13].

After the work [2], the study of null curves in 4-dimensional Lorentzian manifolds is focused on null
curves in 4-dimensional Minkowski spaces (see [14], [1], [3], and the references therein). This fact motivate
us to investigate null curves in 4-dimensional Lorentzian manifolds. On the other hand, Legendre curves in
contact manifolds are important because a diffeomorphism of a contact manifold is a contact transformation
if and only if it maps a Legendre curve to a Legendre curve. In [12], Belkhelfa et al. have examined Legendre
curves in Riemannian and Lorentzian manifolds.

The main goal of the present paper is to study null curves in Lorentzian hypersurfaces of a 5-dimensional
cosymplectic B-metric manifold, which are Legendre curves in the ambient manifold.

The paper is organized as follows. Section 2 contains some preliminaries about almost contact B-metric
manifolds and geometry of null curves in 4-dimensional Lorentzian manifolds. In Section 3 we consider
a Lorentzian hypersurface (M, 1) of a 5-dimensional almost contact B-metric manifold (M, φ, ξ, η, 1) with a
unit time-like normal vector field N such that ξ, φN and φX (X ∈ TM) are in a general position with respect
to M, i.e. they have a tangent and a normal part. We prove (Proposition 3.3) that for a null curve C(t) in M,
which is a Legendre curve in M, the vector fields {Ċ, φĊ, ξ0, ξ1} form a basis of TC(t)M for all t, where φĊ, ξ0

and ξ1 are the tangent parts ofφĊ, ξ andφN, respectively. Also, we show that three classes of the considered
curves are interesting to be investigated, with respect to the functions n = 1(Ċ, φĊ) and α(Ċ) = −1(Ċ, ξ1).
One of these classes, in case M is a Lorentzian hypersurface of a 5-dimensional cosymplectic B-metric
manifold M, we study in Section 4. This class consists of null curves C in M, which are Legendre curves in
M, such that any integral curve C of φĊ is also curve in M. Thus, C belongs to the same class as C, i.e. C
is a null curve in M, which is a Legendre curve in M. We give necessary and sufficient conditions for the
examined curves to be geodesic (Theorem 4.4, Proposition 4.6). We establish that if M is totally geodesic,
then C is geodesic. The main result in this section is Theorem 4.7, where we prove that for C, parameterized
by the pseudo-arc, there exists a unique Cartan frame up to an orientation, which is expressed by the basis
{Ċ, φĊ, ξ0, ξ1} along C. We note that in this theorem we do not suggest the derivative vectors of C form a
basis as in Theorem 3.1 [2, p. 5]. The last Section 5 is devoted to the study of the curves C from Section
4 when the Lorentzian hypersurface M of the cosymplectic B-metric manifold M is totally umbilical. We
show (Corollary 5.2) that if M is totally umbilical, then C is non-geodesic. We find the unique Cartan frame
and the Cartan curvatures σ̃1 and σ̃2. In Proposition 5.4 we give equivalent conditions to the condition σ̃2
is a constant. We prove (Theorem 5.8) that if the function n is constant or M is an extrinsic sphere, then C
is a helix (i.e. C has constant Cartan curvatures). Moreover, if M is an extrinsic sphere and ξ is tangent to
M, then both σ̃1 and σ̃2 vanish (Corollary 5.9). At the end of Section 5, we construct a family of the studied
curves in a 4-dimensional anti-de Sitter space H4

1, which is a Lorentzian hypersurface of R5
2, endowed with

a cosymplectic B-metric structure. We find a Cartan curve Ĉ belonging to this family and its Cartan frame.
The obtained curve Ĉ is a helix.

2. Preliminaries

Let M be a (2n + 1)-dimensional smooth manifold, which is endowed with an almost contact structure
(φ, ξ, η). Here φ is an endomorphism of the tangent bundle TM, ξ is a Reeb vector field whoose dual 1-form
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is η and finally φ, ξ, η satisfy the following relations:

φ2X = −X + η(X)ξ, η(ξ) = 1. (1)

If M is equipped with a pseudo-Riemannian metric 1 (known as a B-metric), satisfying

1(φX, φY) = −1(X,Y) + η(X)η(Y), (2)

then M is called an almost contact B-metric manifold [7] and it is denoted by (M, φ, ξ, η, 1). The term of B-metric
used here is known in literature also as Norden metric. Here and further X, Y, Z are tangent vector fields
on M. Immediate consequences of (1) and (2) are:

η ◦ φ = 0, φξ = 0, 1(φX,Y) = 1(X, φY),

η(X) = 1(X, ξ), 1(ξ, ξ) = 1.
(3)

The distributionD : x ∈M −→ Dx ⊂ TxM, where

Dx = Ker η = {Xx ∈ TxM : η(Xx) = 0}

is called a contact distribution generated by η. Then the tangent space TxM at each x ∈ M splits into the
following orthogonal direct sum

TxM = Dx ⊕ spanR{ξx}.

The tensor field 1̃ of type (0, 2) given by 1̃(X,Y) = 1(X, φY) + η(X)η(Y) is also a B-metric, called an associated
metric to 1. Both metrics 1 and 1̃ are necessarily of signature (n + 1,n) (+ . . . + − . . .−).

The tensor field F of type (0, 3) on M is defined by

F(X,Y,Z) = 1((∇Xφ)Y,Z), (4)

where ∇ is the Levi-Civita connection of the metric 1. It has the following properties:

F(X,Y,Z) = F(X,Z,Y) = F(X, φY, φZ) + η(Y)F(X, ξ,Z) + η(Z)F(X,Y, ξ).

Moreover, we have

F(X, φY, ξ) = (∇Xη)Y = 1(∇Xξ,Y). (5)

In [7] a classification of the almost contact B-metric manifolds with respect to the tensor F is made and eleven
basic classes Fi(i = 1, 2, . . . , 11) are obtained. The special class F0 is the intersection of all basic classes and it
is determined by the condition F(X,Y,Z) = 0. The class F0 is known as the class of the cosymplectic B-metric
manifolds. By using (4) and (5), for a cosymplectic B-metric manifold (M, φ, ξ, η, 1) we get

∇φ = 0, ∇ ξ = 0, ∇η = 0. (6)

In the remaining part of this section we provide basic concepts about null curves in a 4-dimensional
Lorentzian manifold M4

1 that we need in the following sections.
A Lorentzian scalar product on an n-dimensional real vector space V is a nondegenerate symmetric bilinear

form ⟨·, ·⟩ of index 1. This means one can find a basis {e1, e2, . . . , en} of V such that

⟨e1, e1⟩ = −1; ⟨ei, ei⟩ = 1, i ∈ {2, . . . ,n};
〈
ei, e j

〉
= 0, i , j.
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A Lorentzian manifold is a pair (Mn
1 , 1), where M is an n-dimensional smooth manifold and 1 is a Lorentzian

metric, i.e. 1x is a Lorentzian scalar product on the tangent space TxM at each point x ∈M.
Let (M4

1, 1) be a 4-dimensional Lorentzian manifold and C : I −→ M4
1 be a smooth curve in M4

1 given
locally by

xi = xi(t), t ∈ I ⊆ R, i ∈ {1, 2, 3, 4}

for a coordinate neighborhood U of C. The tangent vector field is given by

d
dt
= (ẋ1, ẋ2, ẋ3, ẋ4) = Ċ,

where we denote dxi
dt by ẋi for i ∈ {1, 2, 3, 4}.

The smooth curve C is said to be a null (lightlike) curve in (M4
1, 1), if at each point x of C we have

1(Ċ, Ċ) = 0, Ċ , 0 for ∀t ∈ I. (7)

Consider a smooth null curve C immersed in an (m + 2)-dimensional proper semi-Riemannian manifold
(Mm+2

q , 1) of a constant index q ≥ 1. It is known [9, 10] that the tangent bundle TM along C splits into a sum
of the following three non-intersecting complementary (but non-orthogonal) vector bundles:

TM|C = {TC ⊕ ntr(C)} ⊕orth S(TC⊥). (8)

The m-dimensional vector bundle S(TC⊥) is called a screen vector bundle of C in M. It is semi-Riemannian
of index (q − 1) and a complementary vector bundle to TC in the normal bundle TC⊥ of C, i.e. TC⊥ =
TC⊕orth S(TC⊥). Moreover, given a S(TC⊥) for a null curve C, there exists a unique null vector bundle ntr(C)
of rank 1 which is called a null transversal bundle.

Based on the decomposition (8), there exists a quasi-orthonormal basis F = {Ċ,N,W1,W2} along a null
curve C on a 4-dim Lorentzian manifold M4

1, which means that the vector fields in F satisfy the equalities:

1(N,N) = 1(N,W1) = 1(N,W2) = 1(Ċ,W1) = 1(Ċ,W2) = 0,
1(Ċ,N) = 1(W1,W1) = 1(W2,W2) = 1. (9)

Also, from the decomposition (8), we have

TC = span{Ċ}, ntr(C) = span{N}, S(TC⊥) = span{W1,W2}.

In [9, 10] the following general Frenet equations of a null curve C in M4
1 with respect to F and the Levi-Civita

connection ∇ on M4
1 were obtained:

∇ĊĊ = hĊ + k1W1,
∇ĊN = −hN + k2W1 + k3W2,
∇ĊW1 = −k2Ċ − k1N + k4W2,
∇ĊW2 = −k3Ċ − k4W1,

(10)

where h and {k1, k2, k3, k4} are smooth functions on a coordinate neighborhood U of C. The frame F =
{Ċ,N,W1,W2} is called a general Frenet frame on M4

1 along C with respect to the screen vector bundle
S(TC⊥) = span{W1,W2}. The functions {k1, k2, k3, k4} are the curvature functions of C with respect to F.
The general Frenet frame F and its general Frenet equations (10) depend on the parameter and the choice
of the screen vector bundle S(TC⊥) of C and therefore they are not unique (see [9, 10]). In [15] Bonnor
introduced a unique Frenet frame along a null curve in R4

1. This Frenet frame consists of the minimum
number of curvature functions. It is called the Cartan frame and the null curve - a Cartan curve. Ferrández-
Giménez-Lucas [2] studied null Cartan curves C in a Lorentzian manifold (Mm+2

1 , 1) which are parameterized
by a pseudo-arc parameter, that is, 1(∇ĊĊ,∇ĊĊ) = 1. From Theorem 3.1 [2, p. 5] it is known that for a null
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curve C(t) in M4
1 parameterized by the pseudo-arc such that {Ċ, C̈,C(3),C(4)

} is a basis of TC(t)M4
1 for all t,

there exists a unique Cartan frame satisfying the following Cartan equations:

∇ĊĊ =W1,
∇ĊN = σ1W1 + σ2W2,
∇ĊW1 = −σ1Ċ −N,
∇ĊW2 = −σ2Ċ,

(11)

where σ1 and σ2 are called the Cartan curvatures.

3. Null curves in Lorentzian hypersurfaces of a 5-dimensional almost contact B-metric manifold, which
are Legendre curves in the ambient manifold

Let (M, φ, ξ, η, 1) be a 5-dimensional almost contact B-metric manifold and M be a hypersurface of M.
We assume that there exists a unit time-like vector field N, defined globally over M, i.e.

1(N,N) = −1. (12)

We denote by 1 the restriction of 1 on M. Then (M, 1) is a 4-dimensional Lorentzian manifold. In what
follows, we use the notations F (M) and χ(M) for the set of all smooth real functions and vector fields on
M, respectively. Also, X,Y,Z,W stand for vector fields belonging to χ(M).

Let us consider the following decomposition for ξ, φX, φN with respect to TM and N:

ξ = ξ0 + aN, (13)

φX = φX + α(X)N, X ∈ χ(M) (14)

φN = ξ1 + bN, (15)

where: ξ0, ξ1 ∈ χ(M); a, b ∈ F (M); φ is a tensor field of type (1, 1) on M and α is a 1-form on M. By using
the latter three equalities and (2), (3), (12), we obtain

a = −η(N), b = −1(N, φN), (16)

α(X) = −1(X, φN) = −1(X, ξ1), (17)

1(ξ0, ξ0) = 1 + a2, 1(ξ0, ξ1) = ab, 1(ξ1, ξ1) = 1 + a2 + b2. (18)

We note that contrary to the case of almost contact metric and almost paracontact metric manifolds, the
function b is not zero in general. The equalities (1), (13), (14) and (15) imply

φ2X = −X − α(X)ξ1 + η(X)ξ0,

α(φX) + bα(X) = aη(X).
(19)

By using (2) and (14) we get

1(X, φY) = 1(φX,Y),

1(φX, φY) = −1(X,Y) + α(X)α(Y) + η(X)η(Y).
(20)

From φξ = 0 and φ2N = −N + η(N)ξ, taking into account (13)÷(16), we derive

φξ0 = −aξ1 and φξ1 = −aξ0 − bξ1, (21)
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respectively.
Let ∇ and ∇ be the Levi-Civita connections of the metrics 1 and 1 on M and M, respectively. Then the
Gauss-Weingarten formulas are:

∇XY = ∇XY + B(X,Y),
∇XN = −ANX + ∇⊥XN.

Here, B is the second fundamental form, AN is the shape operator with respect to N and ∇⊥ is the normal
connection on the normal bundle TM⊥. For B, AN and ∇⊥ we obtain

B(X,Y) = −1(ANX,Y)N = −1(X,ANY)N, ∇⊥XN = 0. (22)

Hence, the Gauss-Weingarten formulas become:

∇XY = ∇XY − 1(ANX,Y)N,
∇XN = −ANX.

(23)

D. E. Blair introduced in [6] a Legendre curve γ as an integral curve in the contact distribution D = Ker η
of a contact manifold (M′, φ, ξ, η). Having in mind that a Frenet curve γ in M′ is a Legendre curve if and
only if η(γ̇) = 0 (see [6]), a Legendre curve in an almost contact B-metric manifold is defined as follows:

Definition 3.1. A smooth curve C in an almost contact B-metric manifold (M, φ, ξ, η, 1) is said to be a Legendre
curve if η(Ċ) = 0 at each point of C.

Let C be a null curve in (M, 1), which is a Legendre curve in (M, φ, ξ, η, 1). We put

1(Ċ, φĊ) = n, (24)

where n is a smooth function on a curve C in M. By using (13), (14), (17), (20), (21) and (24) we find

η(Ċ) = 1(Ċ, ξ0) = 0, (25)

1(φĊ, φĊ) = α((Ċ))2, 1(φĊ, ξ0) = aα(Ċ), 1(φĊ, ξ1) = bα(Ċ). (26)

Proposition 3.2. Let C : I −→M be a null curve in M, which is a Legendre curve in M. For every t ∈ I at least one
of n(t) and α(Ċ(t)) is not zero.

Proof. Let us assume that there exists t1 ∈ I such that n(t1) = 0 and α(Ċ(t1)) = 0. The condition α(Ċ(t1)) = 0
and (14) implyφĊ(t1) is a tangent vector field to M. Moreover, taking into account (2), we have 1(φĊ, φĊ) = 0
along C. Hence, Ċ(t1) andφĊ(t1) are orthogonal lightlike tangent vector fields to M. From a well known fact
in the Lorentzian geometry it follows that Ċ(t1) and φĊ(t1) are linearly dependent. Then φĊ(t1) = uĊ(t1),
u ∈ R. Acting with φ to the both sides of this equality, we get −Ċ(t1) = u2Ċ(t1). The latter leads to a
contradiction.

Proposition 3.3. Let C : I −→ M be a null curve in M, which is a Legendre curve in M. Then the vector fields
{Ċ, φĊ, ξ0, ξ1} form a basis of TC(t)M for all t ∈ I.

Proof. In a standard way, using (18), (25) and (26), we obtain that the vector fields {Ċ, φĊ, ξ0, ξ1} are linearly
independent along C if and only if ∆ , 0, where

∆ = −n2
(
1 + a2

)2
−

(
nb + (α(Ċ))2

)2
.

Now, applying Proposition 3.2, we complete the proof.
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4. Null curves in Lorentzian hypersurfaces of a 5-dimensional cosymplectic B-metric manifold, which
are Legendre curves in the ambient manifold

From now on, (M, φ, ξ, η, 1) is a 5-dimensional cosymplectic B-metric manifold and (M, 1) is the Lorentzian
hypersurface of M, defined by (12). Further, by straightforward computations, we establish that the induced
objects φ, α, ξ0, ξ1 on M satisfy the following conditions:

• by using (∇Xφ)Y = 0, (14), (15) and (23), we obtain

(∇Xφ)Y = −1(ANX,Y)ξ1 + α(Y)ANX,

(∇Xα)Y = 1(ANX, φY) − b1(ANX,Y);
(27)

• the equalities (∇Xφ)N = 0, (14), (15), (17) and (23) imply

∇Xξ1 = bANX − φ(ANX), (28)

X(b) = 21(ANX, ξ1); (29)

• from ∇Xξ = 0, (13) and (23) we get

∇Xξ0 = aANX, (30)

X(a) = 1(ANX, ξ0). (31)

Next, we study the considered null curves in Section 3 using the basis constructed in Proposition 3.3.
According to Proposition 3.2, we can investigate the following three classes of such curves: both α( ˙C(t))
and n(t) are not zero for all t; α( ˙C(t)) , 0 and n(t) = 0 for all t; α( ˙C(t)) = 0 and n(t) , 0 for all t.

The condition α( ˙C(t)) = 0 along C has a clear geometric meaning, namely φ ˙C(t) ∈ χ(M). Moreover, if C
is an integral curve of φĊ in M, then C is also a null curve in M, which is a Legendre curve in M. Motivated
by this fact, in the present paper we begin with the examination of curves of the third class.

In the remaining part of the paper, C will stand for a null curve in M, which is a Legendre curve in M,
such that α(Ċ) = 0 and n , 0 along C. Then, taking into account that φĊ = φĊ, (26) becomes:

1(φĊ, φĊ) = 1(φĊ, ξ0) = 1(φĊ, ξ1) = 0. (32)

Further, for the sake of brevity, we use the notations Q = 1(∇
Ċ
Ċ, ξ0), P = 1(∇

Ċ
Ċ, ξ1) and Ċ( f ) = ˙f for any

f ∈ F (M). We give the following

Lemma 4.1. For C the following equalities are fulfilled:

1(∇
Ċ
Ċ, Ċ) = 0, (33)

1(∇
Ċ
Ċ, φĊ) = 1(∇

Ċ
φĊ, Ċ) =

ṅ
2
, (34)

Q = −a1(ANĊ, Ċ), (35)

P =
(
∇
Ċ
α
)
Ċ = 1(ANĊ, φĊ) − b1(ANĊ, Ċ). (36)

Proof. As an immediate consequence from (7) we obtain (33). The first equality in (27), α(Ċ) = 0 and (24)
imply (34). By virtue of (30) and (25) we get (35). By using (17) and the second equality in (27) we receive
(36).
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Proposition 4.2. With respect to the basis {Ċ, φĊ, ξ0, ξ1} of TC(t)M the vector field ∇
Ċ
Ċ is given by

∇
Ċ
Ċ = λ1Ċ + µ1φĊ + ν1ξ0 + δ1ξ1, (37)

where λ1, µ1, ν1, δ1 are the following functions along C

λ1 =
ṅ
2n
, µ1 = 0, (38)

ν1 =
(1 + a2 + b2)Q − abP

(1 + a2)2 + b2 , (39)

δ1 =
−abQ + (1 + a2)P

(1 + a2)2 + b2 . (40)

For the curvature k1 we have

k2
1 =

(1 + a2 + b2)Q2
− 2abQP + (1 + a2)P2

(1 + a2)2 + b2 . (41)

Proof. With respect to the basis {Ċ, φĊ, ξ0, ξ1} of TC(t)M, ∇
Ċ
Ċ has the decomposition (37). Using (33), (34)

we obtain the following linear system of equations for λ1, µ1, ν1, δ1∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1(∇
Ċ
Ċ, Ċ) = 0 = nµ1

1(∇
Ċ
Ċ, φĊ) =

ṅ
2
= nλ1

Q = (1 + a2)ν1 + abδ1

P = abν1 + (1 + a2 + b2)δ1.

The determinant of the above system is ∆1 = −n2
(
(1 + a2)2 + b2

)
. Since n , 0, the system has a unique

solution given by (38), (39) and (40). From the first equality in (10) it follows that

k2
1 = 1(∇ĊĊ,∇ĊĊ) = (1 + a2)ν2

1 + 2abν1δ1 + (1 + a2 + b2)δ2
1.

Substituting (39) and (40) in the latter equality we obtain (41).

As an immediate consequence of Proposition 4.2, we state

Corollary 4.3. The original parameter t is a pseudo-arc parameter of C(t) if and only if

(1 + a2 + b2)Q2
− 2abQP + (1 + a2)P2

(1 + a2)2 + b2 = 1. (42)

It is known [9] that a null curve is geodesic if and only if the curvature k1 vanishes. Using (41) we obtain
that C(t) is geodesic if and only if Q = P = 0 for all t. Now, taking into account (13), (35) and (36), we state

Theorem 4.4. Let (M, φ, ξ, η, 1) be a 5-dimensional cosymplectic B-metric manifold and M be the Lorentzian hyper-
surface of M, defined by (12). Then for C(t) in M the following assertions are equivalent:

(i) C(t) is geodesic in M;
(ii) ξ is tangent to M along C or 1(ANĊ, Ċ) = 0 for all t and α is parallel along C.
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Definition 4.5. [11] A submanifold S in a (semi-) Riemannian manifold (S, h) is said to be:
(i) totally geodesic if its shape operator A vanishes identically, that is, A = 0 or equivalently the second fundamental

form B vanishes identically;
(ii) umbilical with respect to the normal vector field V to S if AV = f I (I is the identity transformation) for some

function f ;
(iii) totally umbilical if S is umbilical with respect to every normal vector field to S.

Proposition 4.6. Each of the following statements
(i) M is totally geodesic;
(ii) ξ0 is parallel along C and ξ is not tangent to M along C;
(iii) ξ is tangent to M and α is parallel along C.
(iv) ξ1 is parallel along C;

is sufficient to guarantee that C is geodesic.

Proof. With the help of (13), (30), (35), (36) and (41), we easy check that any of the statements (i), (ii) and (iii)
is sufficient to guarantee that C is geodesic.

(iv) Since ∇
Ċ
ξ1 = 0, from (28) we have bANĊ = φ(ANĊ). Acting with φ to the both sides of this equality

and using the first equality in (19), we obtain (b2 + 1)(ANĊ) = −α(ANĊ)ξ1 + η(ANĊ)ξ0. Now, taking into
account (32), (35), (36) and (41), we complete the proof.

Theorem 4.7. Let the original parameter t of C(t) be a pseudo-arc parameter. Then there exists a unique Cartan
frame {Ċ,N ,W1,W2} up to an orientation, which with respect to the basis {Ċ, φĊ, ξ0, ξ1} of TC(t)M is given by

W1 = ∇ĊĊ = λ1Ċ + ν1ξ0 + δ1ξ1, (43)

W2 = λ2Ċ + µ2φĊ + ν2ξ0 + δ2ξ1, (44)

N = αĊ + βφĊ + γξ0 + δξ1, (45)

where λ1, ν1, δ1 are given by (38), (39), (40) and λ2, µ2, ν2, δ2, α, β, γ, δ are the following functions along C

λ2 =
ϵ

[(1 + a2)2 + b2]
3
2

{
(PQ̇ −QṖ)

[
(1 + a2)2 + b2

]
+ȧb

[
(1 + b2)Q2

− 2abQP + a2P2
]

+
ḃ
2

[
a(1 + a2

− b2)Q2 + 2(1 + a2)bQP − a(1 + a2)P2
]}
,

(46)

µ2 = 0, ν2 =
ϵP√

(1 + a2)2 + b2
, δ2 =

ϵQ√
(1 + a2)2 + b2

, (47)

α = −
1
2

(
λ2

2 +
ṅ2

4n2

)
, β =

1
n
, (48)

γ = −
ϵλ2P√

(1 + a2)2 + b2
+

ṅ[abP − (1 + a2 + b2)Q]
2n [(1 + a2)2 + b2]

, (49)

δ =
ϵλ2Q√

(1 + a2)2 + b2
−

ṅ[(1 + a2)P − abQ]
2n [(1 + a2)2 + b2]

, ϵ = ±1. (50)
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Proof. A frame {Ċ,N,W1,W2} along a null curve C, parameterized by the pseudo-arc parameter, is a Cartan
frame in the sense of Theorem 3.1 and Definition 3.2 [2, p. 5] if it satisfies (9) and (11). Note that (11) are
obtained from (9) by h = 0, k1 = 1, k4 = −1(∇ĊW2,W1) = 0 and labeling k2 = σ1, k3 = σ2.

The vector fieldW1, defined by (43), satisfies the first equation in (11). Since t is a pseudo-arc parameter
ofC(t), we have 1(W1,W1) = 1. From Corollary 4.3 it follows that for the functions a, b, Q and P the equality
(42) holds. Next, we look for a vector fieldW2 such that 1(W2, Ċ) = 1(W2,W1) = 0, 1(W2,W2) = 1 and
k4 = −1(∇ĊW2,W1) = 0. By using (18), (24), (25), (32), we obtain the following system for the functions λ2,
µ2, ν2, δ2 in (44):

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

nµ2 = 0

Qν2 + Pδ2 = 0

(1 + a2)ν2
2 + 2abν2δ2 + (1 + a2 + b2)δ2

2 = 1

λ2 + ȧ(aν1ν2 + bν1δ2 + aδ1δ2)

+
ḃ
2

(aδ1ν2 + aν1δ2 + 2bδ1δ2) − Q̇ν2 − Ṗδ2 = 0.

(51)

Taking into account that n , 0, from the first equation in (51) we get µ2 = 0. Since C(t) is non-geodesic,

we have (Q,P) , (0, 0) along C(t). Let us assume that P , 0. Then δ2 = −
Qν2

P
, which we substitute in the

third equation in (51) and obtain the expressions for ν2 and δ2 in (47). The function λ2 we find from the
last equation in (51), using (39), (40) and (47). The unique null transversal bundle ntr(C) of C with respect
to the screen vector bundle S(TC⊥) = span{W1,W2} is spanned by the vector field N , which satisfies the
conditions: 1(N , Ċ) = 1, 1(N ,W1) = 1(N ,W2) = 1(N ,N) = 0. The functions α, β, γ, δ in (45) we determine
from the system

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

nβ = 1

Qγ + Pδ +
ṅ

2n
= 0

λ2 + [(1 + a2)ν2 + abδ2]γ + [abν2 + (1 + a2 + b2)δ2]δ = 0

(1 + a2)γ2 + 2abγδ + (1 + a2 + b2)δ2 + 2α = 0.

(52)

From the first and the second equation in (52) we obtain β =
1
n

and δ = −
Q
P
γ −

ṅ
2nP

, respectively. By using
the latter equality and (47), from the third equation in (52) we get (49), (50). Substituting (49) and (50) in the
last equation in (52), we find the function α, which is given in (48).

After substituting the obtained expression for λ2 in (48), (49) and (50), we see that the functions α, γ
and δ do not depend on ϵ, which means that N is unique. If we replace ϵ with 1 (respectively -1) in (46)
and (47), we obtain two opposite vector fields, which we denote byW+

2 (respectivelyW−

2 ). Hence, both
frames {Ċ,N ,W1,W+

2 } and {Ċ,N ,W1,W−

2 } are Cartan frames of C that differ only in having opposite
orientations.

Remark 4.8. In Theorem 4.4, we proved that there exists a unique Cartan frame for C without the condition
{Ċ, C̈,C(3),C(4)

} to be linearly independent. Let us note that in Theorem 3.1 [2, p. 5], Ferrández et al. obtained a
unique Cartan frame by the assumption that the derivative vectors of the curve form a basis.
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5. Null curves in totally umbilical Lorentzian hypersurfaces of a 5-dimensional cosymplectic B-metric
manifold, which are Legendre curves in the ambient manifold

In Proposition 4.6 we established that if M is totally geodesic, then C is geodesic. In this section we

consider the case when M is totally umbilical. Then AN = f I, where f =
trAN

4
.

Lemma 5.1. If M is totally umbilical, we have:
(i) the functions a and b are constant along C;
(ii) ∇

Ċ
ξ0 = a f Ċ , ∇

Ċ
ξ1 = b f Ċ − fφĊ ;

(iii) Q = 0, P = f n ;
(iv) the original parameter t of C(t) is a pseudo-arc parameter if and only if

f = ϵ1
1
n

√
(1 + a2)2 + b2

1 + a2 , ϵ1 = ±1. (53)

Proof. (i) We substitute X with Ċ in (29) and (31). Taking into account that ANĊ = f Ċ, α(Ċ) = 0, 1(Ċ, ξ0) = 0,
we get ḃ = 0 and ȧ = 0, respectively. Hence, the functions a and b are constant along C.

In case M is totally umbilical, (30), (28) and (35), (36) become the equalities in (ii) and (iii), respectively.
(iv) According to Corollary 4.3, the original parameter t of C(t) is a pseudo-arc parameter if and only if

(42) holds. Substituting Q = 0 and P = f n in (42) we obtain (53).

The assertion (iii) in Lemma 5.1 and (41) imply

Corollary 5.2. If M is totally umbilical, then C is non-geodesic.

By using Theorem 4.7 and Lemma 5.1, we state the following theorem:

Theorem 5.3. Let the original parameter t of C(t) be a pseudo-arc parameter, M totally umbilical and f n > 0
(respectively f n < 0) for all t. Then there exists a unique Cartan frame {Ċ, Ñ ,W̃1,W̃2} up to an orientation, which
with respect to the basis {Ċ, φĊ, ξ0, ξ1} of TC(t)M is given by

W̃1 =
ṅ

2n
Ċ −

ϵ1ab√
(1 + a2) ((1 + a2)2 + b2)

ξ0 +
ϵ1
√

1 + a2√
(1 + a2)2 + b2

ξ1,

W̃2 =
ϵϵ1
√

1 + a2
ξ0,

Ñ = −
ṅ2

8n2 Ċ +
1
n
φĊ +

ϵ1abṅ

2n
√

(1 + a2) ((1 + a2)2 + b2)
ξ0

−
ϵ1
√

1 + a2ṅ

2n
√

(1 + a2)2 + b2
ξ1,

(54)

where ϵ = ±1 and ϵ1 = 1 (respectively ϵ1 = −1) if f n > 0 (respectively f n < 0) for all t.

Further, using (11), for the Cartan curvatures σ̃1 and σ̃2 of C in a totally umbilical Lorentzian hypersurface
M we have

σ̃1 = −1(∇ĊW̃1, Ñ), σ̃2 = −1(∇ĊW̃2, Ñ).

By standard calculations, taking into account Lemma 5.1 and (54), we obtain

σ̃1 =
1
n

(
−

n̈
2
+

3ṅ2

8n
−

b
1 + a2

)
, (55)
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σ̃2 = −
ϵa

√
(1 + a2)2 + b2

n(1 + a2)
, ϵ = ±1. (56)

As an immediate consequence of (56), Lemma 5.1 and (13), we establish

Proposition 5.4. Let M be totally umbilical and let σ̃2 be the Cartan curvature of C. Then the following assertions
are equivalent:

(i) σ̃2 is a constant function;
(ii) n is a constant function;
(iii) f is a constant function along C.

Moreover, σ̃2 = 0 if and only if ξ is tangent to M along C.

Corollary 5.5. If M is totally umbilical and ξ is tangent to M, then σ̃2 = 0.

Let us recall that the mean curvature vector H of a submanifold S in S is defined by H =
trB

dimS
, where B

stands for the second fundamental form. If ∇⊥ is the normal connection on TS⊥, then the mean curvature
vector H is called parallel if ∇⊥H = 0 identically.

Definition 5.6. [5] A totally umbilical submanifold with a non-zero parallel mean curvature vector is said to be an
extrinsic sphere.

Definition 5.7. [2] A null curve is said to be a helix if it has constant Cartan curvatures.

Theorem 5.8. Each of the following statements
(i) M is totally umbilical and n is a constant function;
(ii) M is an extrinsic sphere;

is sufficient to guarantee that C is a helix, whose Cartan curvatures σ̃1 and σ̃2 satisfy

σ̃1 =
ϵb̃σ2

a
√

(1 + a2)2 + b2
, ϵ = ±1. (57)

Proof. (i) If n is a constant function, then from (55), (56) and a, b are constant functions along C it follows
that the Cartan curvatures σ̃1 and σ̃2 are also constant, for which (57) holds.

(ii) The mean curvature vector H of M is given by H = −
(trAN)

4
N. Since ∇⊥XN = 0, from ∇⊥XH = 0 we

obtain that X(trAN) = 0. The latter implies trAN is a constant on M and hence f is also a constant on M.
From (53) we deduce that n is a constant function, completing the proof.

Corollary 5.9. Let M be an extrinsic sphere.
(i) If φN is tangent to M, then σ̃1 = 0;
(ii) If ξ is tangent to M, then σ̃1 = σ̃2 = 0.

Example 5.10. Let M = R5
2 = {u = (z1, z2, z3, z4, z5) | zi

∈ R}. We define an almost contact B-metric structure
(φ, ξ, η, 1) on R5

2 in the following way:

φ

(
∂

∂zi

)
=
∂

∂zi+2
, φ

(
∂

∂zi+2

)
= −

∂

∂zi , i = 1, 2;

φ

(
∂

∂z5

)
= 0, ξ =

∂

∂z5 ; η = dz5
(58)

and 1 is a pseudo-Euclidean scalar product, determined by the equality

⟨u,u⟩ =
2∑

i=1

{
−(zi)2 + (zi+2)2

}
+ (z5)2. (59)
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It is easy to see that ∇φ = 0. Hence, M = (R5
2, φ, ξ, η, 1) is a cosymplectic B-metric manifold.

Identifying the point (z1, z2, z3, z4, z5) ∈ (R5
2, φ, ξ, η, 1) with its position vector Z, we define a hypersurface

M = H4
1 by

1(Z,Z) = −1.

We consider the following parametric equations of H4
1:

H4
1 :


z1 = cos u cosh v
z2 = sin u cosh v
z3 = sinh v sin w sin q
z4 = sinh v sin w cos q
z5 = sinh v cos w

, v , 0, w , 0. (60)

The position vector Z is normal to TH4
1 = span

{
∂Z
∂u
,
∂Z
∂v
,
∂Z
∂w
,
∂Z
∂q

}
, where



∂Z
∂u
= (− cosh v sin u, cosh v cos u, 0, 0, 0) ,

∂Z
∂v
=

(
cos u sinh v, sin u sinh v, cosh v sin w sin q,

cosh v sin w cos q, cosh v cos w
)
,

∂Z
∂w
=

(
0, 0, sinh v cos w sin q, sinh v cos w cos q,− sinh v sin w

)
,

∂Z
∂q
=

(
0, 0, sinh v sin w cos q,− sinh v sin w sin q, 0

)

.

The induced metric 1 of 1 on H4
1 is given by

1

(
∂Z
∂u
,
∂Z
∂u

)
= − cosh2 v, 1

(
∂Z
∂v
,
∂Z
∂v

)
= 1,

1

(
∂Z
∂w
,
∂Z
∂w

)
= sinh2 v, 1

(
∂Z
∂q
,
∂Z
∂q

)
= sinh2 v sin2 w,

1

(
∂Z
∂u
,
∂Z
∂u

)
= 1

(
∂Z
∂v
,
∂Z
∂v

)
= 1

(
∂Z
∂w
,
∂Z
∂w

)
= 1

(
∂Z
∂q
,
∂Z
∂q

)
= 0,

which means that 1 is a Lorentzian metric on H4
1. Hence, (H4

1, 1) is a Lorentzian hypersurface of (R5
2, φ, ξ, η, 1). Note

that (H4
1, 1) is a 4-dimensional anti-de Sitter space [8].

By using (16), (58), (59) and (60), we have

a = − sinh v cos w, b = − sinh 2v sin w sin(u + q). (61)

Since the Levi-Civita connection ∇ of 1 is flat, we have ∇XZ = X for any X ∈ χ(H4
1). Then the Gauss-Weingarten

formulas are

∇XY = ∇XY + 1(X,Y)Z,
∇XZ = X, X,Y ∈ χ(H4

1).
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Thus, AZ = −I and f = −1. Hence, H4
1 is totally umbilical. Moreover, trAZ = −2 implies that H4

1 is an extrinsic
sphere.

Let w(t) : I ⊂ R −→
(
−
π
2 , 0

)
∪

(
0, π2

)
be a non-constant function. Consider the family of curves Cw : I −→ H4

1
given locally by
Cw(t) = (z1(t), z2(t), z3(t), z4(t), z5(t)), where

u = ln

sin w(t) +
√

1 + cos2 w(t)
cos w(t)


v = ln

1 +
√

1 + cos2 w(t)
cos w(t)


w = w(t)
q = −u

. (62)

By straightforward computations, using (58), (59), (60), (62) and the components of the metric 1, we see that Cw
satisfy the conditions:

1(Ċw, Ċw) = − cosh2 u(u̇)2 + (v̇)2 + sinh2 v(ẇ)2 + sinh2 v sin2 w(q̇)2 = 0,

η(Ċw) = cosh v cos wv̇ − sinh v sin wẇ = 0,

α(Ċw) = −(z1ż3 + z2ż4 + z3ż1 + z4ż2) = (z1z3 + z2z4).

= (cosh v sinh v sin w sin(u + q)). = 0,

nw = 1(Ċw, φCw) =
4(ẇ)2

cos2 w(1 + cos2 w)
, 0, t ∈ I. (63)

Hence, the curves Cw belong to the studied type of curves in this paper.
Since H4

1 is totally umbilical, from Lemma 5.1 it follows that the original parameter t of Cw(t) is a pseudo-arc
parameter if and only if (53) holds. By using (61) and (62) we get a = −1 and b = 0 along Cw. Now, taking into
account that f = −1, from (53) we obtain nw = −ϵ1

√
2, ϵ1 ± 1. The equality (63) implies ϵ1 = −1. Thus, the original

parameter t of Cw(t) is a pseudo-arc parameter if and only if the following condition is fulfilled

√

2 =
4(ẇ)2

cos2 w(1 + cos2 w)
. (64)

The function

ŵ(t) = arctan

 e
4√2t
− 2

2e
t

4√8


is a solution of the ordinary differential equation (64). Substituting w(t) with ŵ(t) in (62), we obtain

û =
t

4√8

v̂ = ln
(√

e2 4√2t + 4 + e
4√2t + 2

)
−

t
4√8
− ln 2

ŵ = arctan

 e
4√2t
− 2

2e
t

4√8


q̂ = −û

. (65)
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According to Theorem 5.3, for the curve Ĉ(t) = (z1(t), z2(t), z3(t), z4(t), z5(t)) given by (65), there exists only one
Cartan frame { ˙̂C, N̂ ,Ŵ1,Ŵ2} up to an orientation. In (54) we replace ϵ, n, a, b with −1,

√
2, −1, 0, respectively,

and using (60), (65) we get

˙̂
C =

1

2 4√8e
t

4√8

{(
e

4√2t
− 2

)
cos

t
4√8
−

(
e

4√2t + 2
)

sin
t

4√8
,

(
e

4√2t + 2
)

cos t
4√8
+

(
e

4√2t
− 2

)
sin t

4√8
,

−

(
e

4√2t
− 2

)
cos t

4√8
−

(
e

4√2t + 2
)

sin t
4√8
,

(
e

4√2t + 2
)

cos t
4√8
−

(
e

4√2t
− 2

)
sin t

4√8
, 0

}
Ŵ1 = −

√
2

2
ξ1|Ĉ = −

√
2

4e
t

4√8

{(
e

4√2t
− 2

)
sin

t
4√8
,−

(
e

4√2t
− 2

)
cos

t
4√8
,

(
e

4√2t + 2
)

cos t
4√8
,
(
e

4√2t + 2
)

sin t
4√8
, 0

}
Ŵ2 = −

ϵ
√

2
2
ξ0|Ĉ = −

ϵ
√

2

4e
t

4√8

{(
e

4√2t + 2
)

cos
t

4√8
,
(
e

4√2t + 2
)

sin
t

4√8
,

−

(
e

4√2t
− 2

)
sin t

4√8
,
(
e

4√2t
− 2

)
cos t

4√8
, 2

}
,

N̂ =

√
2

2
φ ˙̂
C|
Ĉ
=

1

4 4√2e
t

4√8

{(
e

4√2t
− 2

)
cos

t
4√8
+

(
e

4√2t + 2
)

sin
t

4√8
,

−

(
e

4√2t + 2
)

cos t
4√8
+

(
e

4√2t
− 2

)
sin t

4√8
,

(
e

4√2t
− 2

)
cos t

4√8
−

(
e

4√2t + 2
)

sin t
4√8
,

(
e

4√2t + 2
)

cos t
4√8
+

(
e

4√2t
− 2

)
sin t

4√8
, 0

}
.

For the Cartan curvatures σ̂1 and σ̂2 of Ĉ we find

σ̂1 = 0, σ̂2 =
ϵ
√

2
2
,

i.e. Ĉ is a helix in the extrinsic sphere H4
1.

This example is relevant to Proposition 5.4 and Theorem 5.8.
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