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Abstract. We use the first variational formula on the fibers to deduce the necessary and sufficient condi-
tions for the harmonicity of pointwise semi-slant semi Riemannian maps, which are defined on Lorentzian
para-Sasakian manifolds. We define the sets of Legendre, Hamiltonian and Harmonic variations for any
fibre of the map. Moreover, we address the characterization theorem for pointwise semi-slant semi Rieman-
nian maps from Lorentzian para Saskian manifold to a semi-Riemannian metric manifold by considering
the vertical Reeb vector field and investigate the properties of totally umbilical fibers. Beside from the
peculiarities of pointwise semi-slant semi Riemannian maps, geometry of the distributions associated with
the map such as integrability and totally geodesicness are also studied. In the end, we discuss a number of
examples illustrating the existence of such maps.

1. Introduction

Watson introduced the almost Hermitian submersion concept in 1958, which revealed that in most
cases, the base manifold and each fiber have the same structure as the total space [41]. The theory of
semi-Riemannian metric manifolds was subsequently developed in 1966 by O’Neill [26, 27] and Gray [13].
In [14], Garcia and Kupeli studied the more geometric properties related to semi-Riemannian maps and
their applications, which has since become a thriving research field in mathematics, mathematical physics
and physics in space science with applications in Kaluza-Klein theory [17, 19], Yang-Mills theory [3], su-
pergravity [24], and superstring theories [18]. Sahin later introduced several other submersions, such as
anti-invariant, semi-invariant, and slant Riemannian maps using the base manifold as Hermitian manifolds,
in [30, 35–37]. Further research on semi-Riemannian submersions has been conducted, including those with
para-contact para-complex manifolds [10–12, 26], real and complex pseudo-hyperbolic spaces [4], almost
para-cosymplectic manifolds [32], anti-invariant [7, 40], semi-invariant [1] semi-Riemannian submersions
studied, The integrability of distributions and geodesic properties on slant submersions in paracontact
geometry studied in [15]. The pointwise slant lightlike submersions investigated in [20]. Fischer developed
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the theory of Riemannian maps in [27], which extended the concepts of isometric immersions and course
of Riemannian submersions.

In the sequence of study on para geometry para-Kaehler manifolds were defined by Libermann [23] in
1952, and the properties of para-Kaehler manifolds were introduced by Rashevskij in [34]. There has been
a great deal of research in recent years into the geometry of Riemannian maps between various structures,
including slant [29], hemi-slant [31], semi-slant [22, 30] Riemannian maps. Some important properties
on harmonic maps between semi-Riemannian spheres have been obtained in [25], and with respect to
these studies nowadays authors extended the above study on point-wise concepts such as point-wise slant
Riemannian maps [2, 16]. For a deeper understanding and exploration of the concepts discussed, we
highly recommend to go through these articles [5–8, 10, 11, 20, 29, 37, 38], which offer valuable insights
and contribute significantly to the literature in this field. Our study in this paper is based on the notion
of pointwise semi-slant semi-Riemannian maps from Loretz para-Sasakian manifolds to semi-Riemannian
manifold which will extend the theory of point-wise slant submersions and pointwise slant Riemannian
maps.

The study uses the following abbreviations in its subsequent sections: PSSSRM for pointwise semi-slant
semi-Riemannian map and LPS manifold for Lorentzian para-Sasakian manifold.

2. Preliminaries

LPS manifold is a differentiable manifold of dimension (2n + 1) defined based on a set of geometric
structures. These structures includeΩ a (1, 1)-tensor field , ξ a Reeb vector field,ω a 1-form, and a Lorentzian
metric 1m. The conditions that classify a manifold as an LPS manifold involve specific relationships among
these structures.

∧(ξ) = −1, (1)

Ω2 = I + ∧ ⊗ ξ, (2)

1m(ΩX1,ΩX2) = 1m(X1,X2) + ∧(X1) ∧ (X2), (3)

1m(X1, ξ) = ∧(X1), ∇X1ξ = ΩX1, (4)

Ω(X1,X2) = 1m(X1,ΩX2) = 1m(ΩX1,X2) = Ω(X2,X1), (5)

(∇X1Ω)(X2,X3) = 1m(X2, (∇X1Ω)X3) = (∇X1Ω)(X3,X2), (6)

The covariant differentiation with respect to 1m is denoted by ∇. The Reeb vector field ξ is timelike,
that is, 1m(ξ, ξ) = −1, and the triple (Ω, ξ,∧) defines an almost para contact structure on Σm according to
Sato’s definition. The Lorentzian metric defined in Equation (4) is analogous to the almost para contact
semi-Riemannian metric. The structure (Ω, ξ,∧, 1m) is a Lorentzian para contact manifold if

Ω(X1,X2) =
1
2

((∇X1∧)X2 + (∇X2∧)X1).
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The structure (Ω, ξ,∧, 1m) is called LPS manifold if

(∇X1Ω)X2 = 1m(ΩX1,ΩX2)ξ + ∧(X2)Ω2X1.

= 1m(X1,X2)ξ + ∧(X2)X1 + 2 ∧ (X1) ∧ (X2)ξ (7)

In a Lorentzian para-Sasakian (LPS) manifold, the 1-form ∧ is closed. It has been demonstrated that if
there exists a timelike unit vector field ξ in an odd-dimensional Lorentzian manifold (Σm, 1m) such that the
associated 1-form ∧ is closed and fulfills the condition:

(∇X1∇X2∧)X3 = 1m(X1,X2) ∧ (X3) + 1m(X1,X3) ∧ (X2) + 2 ∧ (X1) ∧ (X2) ∧ (X3).
Then Σm admits an LPS structure.
Consider two semi-Riemannian metric manifolds (Σm, 1m) and (Σn, 1n) . LetΨ : (Σm, 1m)→ (Σn, 1n) be a

C∞-map. The mapΨ is called a semi-Riemannian submersion if it is surjective and (Ψ∗)p has maximal rank
having length preserving properties for any p ∈ Σm means, (Ψ∗)p : ((ker(Ψ∗)p)⊥, (1m)p)→ (TΨ(p)Σn, (1n)Ψ(p))
is a linear isometry for each p ∈ Σm. Here, (ker(Ψ∗)p)⊥ is the orthogonal to ker(Ψ∗)p in the tangent space TpΣm
of Σm at p. Finally, Ψ is a semi-Riemannian map if (Ψ∗)p : ((ker(Ψ∗)p)⊥, (1m)p) → ((ran1eΨ∗)Ψ(p), (1n)Ψ(p))
is a linear isometry for each p ∈ Σm, where (ran1eΨ∗)Ψ(p) := (Ψ∗)p((ker(Ψ∗)p)⊥) for p ∈ Σm.

Let (Σm,Ω, 1m) be an almost para Hermitian manifold, and (Σn, 1n) be a semi-Riemannian metric man-
ifold, where Ω is an almost para complex structure on Σm. Consider Ψ is semi-Riemannian map between
two manifolds (Σm,Ω, 1m) and (Σn, 1n) such that Ψ : (Σm,Ω, 1m) → (Σn, 1n). The map Ψ is called a slant
semi-Riemannian map if the angle θ = θ(X1) between ΩX1 and the space ker(Ψ∗)p is invariant for nonzero
X1 ∈ ker(Ψ∗)p and p ∈ Σm. The angle θ is referred to as the slant angle of slant semi-Riemannian map.

The second fundamental form ofΨ can be expressed as:

(∇Ψ∗)(X1,X2) := ∇ΨX1
Ψ∗X2 −Ψ∗(∇X1 X2) f or X1,X2 ∈ ⨿(TΣm). (8)

Where X,Y ∈ X(Σm), ∇ is the Levi-Civita connection, and ⊤ denotes projection onto the horizontal space.
Remind that Ψ is said to be harmonic if we have the tension field τ(Ψ) := trace(∇Ψ∗) = 0 and we call

the map Ψ a totally geodesic map if (∇Ψ∗)(X1,X2) = 0 for X1,X2 ∈ ⨿(TΣm). Denote the range of Ψ∗ by
ran1eΨ∗ as a subset of the pullback bundle F−1TΣn. With its orthogonal complement (ran1eΨ∗)⊥ we have
the following decomposition F−1TΣn = ran1eΨ∗ ⊕ (ran1eΨ∗)⊥. Moreover, we get TΣm = kerΨ∗ ⊕ (kerΨ∗)⊥.
Then we easily have

Lemma 2.1. Let Ψ : (Σm, 1m) −→ (Σn, 1n) be a semi-Riemannian map from a semi-Riemannian metric mani-
fold (Σm, 1m), where metric is 1m into a semi-Riemannian metric manifold (Σn, 1n), where metric is 1n . Then
(∇Ψ∗)(Y1,Y2) ∈ ⨿((ran1eΨ∗)⊥) f or Y1,Y2 ∈ ⨿((kerΨ∗)⊥).

Lemma 2.2. Let Ψ : (Σm, 1m) −→ (Σn, 1n) be a semi-Riemannian map from semi-Riemannian manifold (Σm, 1m),
where metric is 1m into a semi-Riemannian metric manifold (Σn, 1n), where metric is 1n. Then, the tension field τ of
Ψ is

τ = −m1Ψ∗(H) +m2H2, (9)

where m1 = dim(kerΨ∗),m2 = rankΨ, H and H2 are the mean curvature vector fields of the distributions kerΨ∗ and
ran1eΨ∗, respectively.

LetΨ : (Σm, 1m) −→ (Σn, 1n) be a semi-Riemannian map from a semi-Riemannian metric manifold (Σm, 1m),
where metric is 1m into a semi-Riemannian metric manifold (Σn, 1n), where metric is 1n . Then we define T
andA as

APQ = H∇HPVQ +V∇HPHQ, (10)

TPQ = H∇VPVQ +V∇VPHQ, (11)
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for vector fields P,Q on Σm, where ∇ is the Levi-Civita connection of semi-Riemannian metric 1m. In
fact one can see that these tensor fields are O’Neill’s tensor fields which are defined for semi-Riemannian
submersions. For any P ∈ ⨿(TΣm), A is anti-symmetric on horizontal distribution and T is symmetric on
vertical distribution (⨿(TΣm), 1m). It is also easy to see that, TP = TVP and A A = AHP. We note that the
tensor field T satisfies

TX1 X2 = TX2 X1, (12)

AX1 Y2 = −AX1 Y2 =
1
2
V[X1,Y2],

for X1,X2 ∈ ⨿(kerΨ∗) and Y1,Y2 ∈ ⨿(kerΨ∗)⊥.
On the other hand, from (11) and (12), we obtain

∇X1 X2 = TX1 X2 + ∇̂X1 X2, (13)

∇Y2 X1 = H∇Y2 X1 + TY2 X1, (14)

∇X1 Y2 = AX1 Y2 +V2∇X1 Y2, (15)

∇X1 Y2 = H∇X1 Y2 +AX1 Y2, (16)

for Y1,Y2 ∈ ⨿((kerΨ∗)⊥) and X1,X2 ∈ ⨿(kerΨ∗), where ∇̂X1 X2 =V∇X1 X2.

3. Geometry of foliations of PSSSRM

This section introduces the PSSSRM and investigate the conditions under which PSSSRM is totally
geodesic map. A characterization theorem for PSSSRM with totally umbilical fibres is also given.

Definition 3.1. Let Ψ be a semi-Riemannian map from an almost para-contact manifold (Σm,Ω, ξ,∧, 1m) with
semi-Riemannian metric 1m into a semi-Riemannian metric manifold (Σn, 1n) with semi-Riemannian metric 1n. Ψ is
a pointwise slant map defined as, for a given point x ∈ Σm, the angle θ(X1) betweenΩX1 is independent of the choice
for X1 , 0 ∈ (kerΨ∗)x − {ξ}). In this case, the angle θ is treated as function then it is called the slant function of the
pointwise slant mapΨ.

Definition 3.2. Let (Σm,Ω, ξ,∧, 1m) be an almost para contact manifold and (Σn, 1n) a semi-Riemannian metric
manifold. A semi-Riemannian map Ψ : (Σ,Ω, ξ,∧, 1m) → (Σn, 1n) is called a semi-slant semi-Riemannian map if
there is a distribution D ⊂ kerΨ∗ such that kerΨ∗ = D ⊕Dθ⊕ < ξ >, Ω(D) = D, and the angle θ = θ(X1) between
ΩX1 and the space (Dθ)p is independent of the choice for X1 , 0 ∈ (Dθ)p and p ∈ Σm, whereD andDθ are orthogonal
in kerΨ∗.

The term ”semi-slant angle” refers to the angle θ. A point p in a PSSSRM is regarded as totally real if
its semi-slant is θ = π

2 at p. Conversely, if a point p in a PSSSRM has a semi-slant function of θ = 0, it is
classified as a complex point. A PSSSRM is said to be proper if θ = 0, π2 .

If P-SS semi-Riemannian map is classified as semi-slant then function θ is overall constant, indicating
that it is independent of the point on Σm. The constant θ in this case is named as the semi-slant angle of the
semi-slant Riemannian map.

As a result, we define a new type of semi-Riemannian map as follows:

Definition 3.3. Consider (Σm,Ω, ξ,∧, 1m) be LPS manifold and (Σn, 1n)be a semi-Riemannian metric manifold. A
semi-Riemannian mapΨ : (Σ,Ω, ξ,∧, 1m)→ (Σn, 1n) is called a PSSSRM, if distribution D ⊂ kerπ∗ such that

kerΨ∗ = D ⊕Dθ⊕ < ξ >, ΩD = D, (17)
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where Dθ and D are orthogonal in kerΨ∗ and the angle θ = θ(X1) between ΩX1 and the space (Dθ)p is
free of the choice of X1 , 0 ∈ ⨿(Dθ)p for p ∈ M i.e. θ is a function on Σm, which is named as slant function
of thePSSSRM. We callΨ is proper if the slant function is θ , 0, π2 .

Let Ψ : (Σ,Ω, ξ,∧, 1m) → (Σn, 1n) be a PSSSRM from LPS manifold into a semi-Riemannian metric
manifold.

The angle θ is a P-wise SS angle of semi-Riemannian map. Then distribution D ⊂ kerΨ∗ such that
kerΨ∗ = D ⊕Dθ⊕ < ξ >, Ω(D) = D, and the angle θ = θ(X1) between ΩX1 and the space (Dθ)x is constant
for nonzero X1 ∈ (Dθ)x and x ∈ Σm, where Dθ and D are orthogonal in kerΨ∗.

Then for X1 ∈ ⨿(kerΨ∗), we infer

X1 = PX1 +QX1 − ∧(X1)ξ, (18)

where PX1 ∈ ⨿(D) and QX1 ∈ ⨿(Dθ),

for X1 ∈ ⨿(kerΨ∗). We put

ΩX1 = ω1X1 + ω2X1, (19)

where ω1X1 ∈ ⨿(kerΨ∗) and ω2X1 ∈ ⨿(kerΨ∗)⊥,

for Y1 ∈ ⨿(kerΨ∗)⊥, we infer

ΩY1 = BY1 + CY1, (20)

where BY1 ∈ ⨿(kerΨ∗) and CY1 ∈ ⨿(kerΨ∗)⊥,

for X ∈ ⨿(TΣm), we get

X = VX +HX, (21)

where VX ∈ ⨿(kerΨ∗) and HX ∈ ⨿(kerΨ∗)⊥,

for Y ∈ ⨿(Ψ−1TΣn), we write

Y = P̄Y + Q̄Y, (22)

where P̄Y ∈ ⨿(ran1eΨ∗) and Q̄Y ∈ ⨿((ran1eΨ∗)⊥).

Then

(kerΨ∗)⊥ = ω2Dθ ⊕ µ, (23)

where µ is the orthogonal complement of ω2Dθ in (kerΨ∗)⊥ and is invariant under Ω.

Lemma 3.4. Let Ψ be a PSSSRM from LPS (Σm,Ω, ξ,∧, 1m) into a semi-Riemannian manifold (Σn, 1n). Then, we
obtain

(1) ω2
1 + Bω2 = I + ∧ ⊗ ξ,

(2) ω2ω1 + Cω2 = 0,
(3) ω1B + BC = 0,
(4) ω2B + C2 = I,
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Lemma 3.5. Let Ψ be a PSSSRM from LPS manifold (Σm,Ω, ξ,∧, 1m) into a semi-Riemannian manifold (Σn, 1n).
Then, we get

(1) ω1D = D,
(2) ω1Dθ ⊂ Dθ,
(3) ω2D = {0}.

Lemma 3.6. Let Ψ be a PSSSRM from LPS manifold (Σm,Ω, ξ,∧, 1m) into a semi-Riemannian metric manifold
(Σn, 1n). Then, we have

(a) B(ΩDθ) = Dθ,
(b) Bµ = {0},
(c) C(ΩDθ) = ω2Dθ,
(d) Cµ = µ.

Now, we obtain the effect of Ω on the tensors T andA of a PSSSRMΨ : (Σ,Ω, ξ,∧, 1m)→ (Σn, 1n).

Lemma 3.7. Let Ψ be a PSSSRM from LPS manifold (Σm,Ω,∧, ξ, 1m) into a semi-Riemannian metric manifold
(Σn, 1n). Then, we have

∇̂X1ω1X2 + TX1ω2X2 = ω1∇̂X1 X2 + BTX1 X2, (24)

TX1ω1X2 +H∇X1ω2X2 = ω2∇̂X1 X2 + CTX1 X2, (25)

V∇Y1 BY2 +AY1 CY2 = ω1AY1 Y2 + BH∇Y1 Y2, (26)

AY1 BY2 +H∇Y1 CY2 = ω2AY1 Y2 + CH∇Y1 Y2, (27)

∇̂X1 BY1 + TX1 CY1 = ω1TX1 Y1 + BH∇X1 Y1, (28)

TX1 BY1 +H∇X1 CY1 = ω2TX1 Y1 + CH∇X1 Y1, (29)

V∇Y1ω1X1 +AY1ω2X1 = BAY1 X1 + ω1X1∇Y1 X1, (30)

AY1ω1X1 +H∇Y1ω2X1 = CAY1 X1 + ω2X1∇Y1 X1, (31)

where X1,X2 ∈ ⨿(kerπ∗), and Y1,Y2 ∈ ⨿(kerπ⊥∗ ).

Proposition 3.8. LetΨ be a PSSSRM from LPS manifold (Σm,Ω, ξ,∧, 1m) into a semi-Riemannian metric manifold
(Σn, 1n). Then, we obtain

ω2
1X1 = cos2θX1, (32)

for X1 ∈ ⨿(Dθ), where θ denotes the slant function.
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Proof. If X1 ∈ ⨿(Dθ) is vanishing, then done. For any nonzero X1 ∈ ⨿(Dθ), we obtain

cosθ =
1m(ω1X1,ΩX1)
∥ω1X1∥∥ΩX1∥

=
∥ω1X1∥

∥ΩX1∥
, (33)

so that 1m(ω1X1, ω1X1) = 1m(ω2
1X1,X1) = cos2θ1m(ΩX1,ΩX1). Substituting X1 by X1 +X2,X2 ∈ Dθ, at the

above equation, we induce

1m((ω2
1 − cos2θ(I + ∧ ⊗ ξ))(X1),X2) + 1m(X1, (ω2

1 − cos2θ(I + ∧ ⊗ ξ))(X2)) = 0 (34)

ω2
1 − cos2θ(I + ∧ ⊗ ξ) is symmetric so that 1m((ω2

1 − cos2θ(I + ∧ ⊗ ξ))(X1), (X2)) = 0, we obtain
ω2

1X1 = cos2θX1 X1 ∈ Dθ

Easily, we observe that Proposition 3.8 is also true in its converse.

Theorem 3.9. Let Ψ be a PSSSRM from LPS manifold (Σm,Ω, ξ,∧, 1m) into a semi-Riemannian metric manifold
(Σn, 1n). The invariant distribution D is integrable iff

ω1(∇̂X3 X4 − ∇̂X4 X3) ∈ D, (35)

for X3,X4 ∈ ⨿(D).

Proof. X3,X4 ∈ D and X1 ∈ Dθ we know [X3,X4] ∈ D iff Ω[X3,X4] ∈ D, from (19), we infer,

1m(Ω[X3,X4],X1) = 1m(Ω(∇X3 X4 − ∇X4 X3),X1),

= 1m(Ω(TX3 X4 + ∇̂X3 X4 − TX4 X3 − ∇̂X4 X3),X1),

= 1m(ω1(∇̂X3 X4 − ω1(∇̂X4 X3),X1), .

Thus, [X3,X4] ∈ D iff ω1(∇̂X3 X4 − ω1(∇̂X4 X3) ∈ D.

The proof of the next theorem is similar to the above theorem.

Theorem 3.10. LetΨ be a PSSSRM from LPS manifold (Σm,Ω, ξ,∧, 1m) into a semi-Riemannian metric manifold
(Σn, 1n). Then, the slant distribution Dθ is integrable iff

ω1(∇̂X1 X2 − ∇̂X2 X1) ∈ Dθ,

for X1,X2 ∈ ⨿(Dθ).

Lemma 3.11. Let Ψ be a proper PSSSRM from LPS manifold (Σm,Ω, ξ,∧, 1m) into a semi-Riemannian metric
manifold (Σn, 1n). Then, we obtain

1m(∇X3 X4,X1) = cosec2θ{1m(TX3 X4, ω2ω1X1) + 1m(TX3ω1X4, ω2X1)}, (36)

1m(∇X1 X2,X3) = cosec2θ{1m(TX1ω2ω1X2,X3) + 1m(TX1ω2X2, ω1X3)}, (37)

where θ is so call slant fuction, X3,X4 ∈ ⨿(D) and X1,X2 ∈ ⨿(Dθ).

Proof. Let X3,X4 ∈ ⨿(D) and X1,X2 ∈ ⨿(Dθ). Then, from (3) and (19), we obtain

1m(∇X3 X4,X1) = 1m(Ω∇X3 X4,ΩX1) − ∧(∇X3 X4) ∧ (X1)
= 1m(∇X3ΩX4 − (∇X3Ω)X4,ΩX1)
= 1m(∇X3ΩX4, ω1X1) + 1m(∇X3ΩX4, ω2X1) − 1m((∇X3Ω)X4,ΩX1)

= 1m(∇X3 X4, (ω1
2X1 + ω2ω1X1)) + 1m(∇X3ω1X4, ω2X1).
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From (32), (13) and (14), we infer

1m(∇X3 X4,X1) = 1m(∇X3 X4, cos2θX1) + 1m(∇X3 X4, ω2ω1X1) + 1m(∇X3ω1X4, ω2X1)

= cos2θ1m(∇X3 X4,X1) + 1m(TX3 X4, ω2ω1X1) + 1m(TX3ω1X4, ω2X1)

sin2θ1m(∇X3 X4,X1) = 1m(TX3 X4, ω2ω1X1) + 1m(TX3ω1X4, ω2X1),

We obtain our first result.

For the another result of theorem, we follow the similar pattern as in first part.
Let X1,X2 ∈ ⨿Dθ and X3 ∈ ⨿D. Then from (3) and (19) we get

1m(∇X1 X2,X3) = 1m(Ω∇X1 X2,ΩX3) − ∧(∇X1 X2) ∧ (X3)
= 1m(∇X1ΩX2 − 1m(X1,X2)ξ,ΩX3)
= 1m(∇X1ΩX2,ΩX3)
= 1m(∇X1Ωω1X2 − 1m(X1, ω1X2)ξ,X3) + 1m(∇X1ω2X2,ΩX3)

= 1m(∇X1 (ω1
2X2 + ω2ω1X2),X3) + 1m(∇X1ω2X2,ΩX3).

If we consider (32), (13) and (14), then we get

1m(∇X1 X2,X3) = 1m(∇X1 cos2θX2,X3) + 1m(∇X1ω2ω1X2,X3) + 1m(∇X1ω2X2,ΩX3)

= 1m((−sin2θ)(X1θ)X2,X3) + 1m(cos2θ∇X1 X2,X3)
+ 1m(TX1ω2ω1X2,X3) + 1m(TX1ω2X2,ΩX3)

sin2θ1m(∇X1 X2,X3) = 1m((−sin2θ)(X1θ)X2,X3) + 1m(TX1ω2ω1X2,X3) + 1m(TX1ω2X2, ω1X3).

Therefore, since 1m((−sin2θ)(X1θ)X2,X3) = 0.
The proof of Lemma is complete.

Theorem 3.12. LetΨ be a proper PSSSRM from LPS manifold (Σm,Ω, ξ,∧, 1m) into a semi-Riemannian manifold
(Σn, 1n). Then, the invariant distribution D is integrable iff

1m(TX3ω1X4 − TX4ω1X3, ω2X1) = 0,

for X3,X4 ∈ ⨿(D) and X1 ∈ ⨿(Dθ).

Proof. Let X3,X4 ∈ ⨿(D) and X1 ∈ ⨿(Dθ). Then, from Lemma 3.11 and equation (12), we get

1m([X3,X4],X1) = 1m(∇X3 X4 − ∇X4 X3,X1)

= cosec2θ{1m(TX3 X4, ω2ω1X1) + 1m(TX3ω1X4, ω2X1)}

− cosec2θ{1m(TX4 X3, ω2ω1X1) + 1m(TX4ω1X3, ω2X1)}

= cosec2θ1m(TX3ω1X4 − TX4ω1X3, ω2X1).

Therefore,D is integrable then 1(TX3ω1X4−TX4ω1X3, ω2X1) = 0 and if 1(TX3ω1X4−TX4ω1X3, ω2X1) = 0, then
D is integrable.

In the same pattern, we investigate an integrability of slant distribution Dθ.

Theorem 3.13. LetΨ be a proper PSSSRM from LPS manifold (Σm,Ω, ξ,∧, 1m), into a semi-Riemannian manifold
(Σn, 1n), where 1m and 1n are Lorentzian metric and semi-Riemannian metric respectively. Then, the slant distribution
Dθ is integrable iff

1m(TX1ω2ω1X2 − TX2ω2ω1X1,X3) = 1m(TX2ω2X1 − TX1ω2X2, ω1X3),

for X1,X2 ∈ ⨿(Dθ) and X3 ∈ ⨿(D).
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Proof. Let X1,X2 ∈ ⨿(Dθ) and X3 ∈ ⨿(D) then on similar way according to Theorem 3.12 and using Lemma
3.11, we have-

1m([X1,X2],X3) = 1m(∇X1 X2 − ∇X2 X1,X3)

= cosec2θ{1m(TX1ω2ω1X2,X3) + 1m(TX1ω2X2, ω1X3)}

− cosec2θ{1m(TX2ω2ω1X1,X3) + 1m(TX2ω2X1, ω1X3)}

= cosec2θ{1m(TX1ω2ω1X2,X3) − 1m(TX2ω2ω1X1,X3)
+ 1m(TX1ω2X2, ω1X3) − 1m(TX2ω2X1, ω1X3)}.

Thus, slant distribution Dθ is integrable iff

1m(TX1ω2ω1X2 − TX2ω2ω1X1,X3) = 1m(TX2ω2X1 − TX1ω2X2, ω1X3).

Now, we study to obtain conditions for totally geodesic foliation of distributions involved in the defini-
tion ofPSSSRMs.

Proposition 3.14. LetΨ be a PSSSRM from LPS manifold (Σm,Ω, ξ,∧, 1m) into a semi-Riemannian metric manifold
(Σn, 1n). Then, kerΨ∗ defines a totally geodesic foliation iff

C(TX1ω1X2 +H∇X1ω2X2) + ω2(∇̂X1ω1X2 + TX1ω2X2) = 0, (38)

for, X1,X2 ∈ ⨿(kerπ∗).

Proof. For, X1,X2 ∈ ⨿(kerπ∗), from (13), (14) and (19), we get

∇X1 X2 = Ω
2
∇X1 X2 − ∧(∇X1 X2)ξ

= Ω2
∇X1 X2

= Ω∇X1ΩX2

= ΩTX1ω1X2 +Ω∇̂X1ω1X2 +Ω(TX1ω2X2) +Ω(H∇X1ω2X2)

= BTX1ω1X2 + CTX1ω1X2 + ω1∇̂X1ω1X2 + ω2∇̂X1ω1X2 + ω1TX1ω2X2

+ ω2TX1ω2X2 + BH∇X1ω2X2 + CH∇X1ω2X2.

Therefore kerπ∗ defines a totally geodesic foliation iff
C(TX1ω1X2 +H∇X1ω2X2) + ω2(∇̂X1ω1X2 + TX1ω2X2) = 0.

Proposition 3.15. Let Ψ be a PSSSRM from LPS manifold (Σm,Ω, ξ,∧, 1m) into a semi-Riemannian manifold
(Σn, 1n). Then, kerΨ⊥∗ defines a totally geodesic foliation iff

B(AY1 BY2 +H∇Y1 CY2) + ω1(V∇Y1 BY2 + AY1 CY2) = 0, (39)

for, Y1,Y2 ∈ ⨿(kerΨ⊥∗ ).

Proof. This proof is similar to Proposition 3.14.

We have new following results after combining Proposition 3.14 and Proposition 3.15.

Corollary 3.16. LetΨ be a PSSSRM from LPS manifold (Σm,Ω, ξ,∧, 1m) into a semi-Riemannian metric manifold
(Σn, 1n). Then, Σm is a locally product Σmkerπ∗ ×Σmkerπ⊥∗ iff (38) and (39) hold, where Σmkerπ∗ and Σmkerπ⊥∗ are defined
as integral manifolds of kerπ∗ and kerπ⊥∗ respectively.
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Proposition 3.17. LetΨ be a PSSSRM from LPS manifold (Σm,Ω, ξ,∧, 1m) into a semi-Riemannian metric manifold
(Σn, 1n). Then, the invariant distribution D defines a totally geodesic foliation on kerπ∗ iff for X,X3 ∈ ⨿(D),

Q(BTXω1X3 + ω1∇̂Xω2X3) = 0 and (CTXω1X3 + ω2∇̂Xω2X3) = 0. (40)

Proof. For X,X3 ∈ ⨿(D), from (13), (14), (19) and (20) we obtain

∇XX3 = Ω
2
∇XX3 − ∧(∇XX3)ξ

= Ω∇X(ω1X3 + ω2X3)
= Ω∇Xω1X3 +Ω∇Xω2X3

= Ω(TXω1X3 + ∇̂Xω2X3)

= BTXω1X3 + CTXω1X3 + ω1∇̂Xω2X3 + ω2∇̂Xω2X3.

Now, the proof is over.

Proposition 3.18. Let Ψ be a PSSSRM from LPS manifold (Σm,Ω, ξ,∧, 1m) into a semi-Riemannian manifold
(Σn, 1n). Then, Dθ is totally geodesic foliation on kerπ∗ iff for X1,X2 ∈ ⨿(Dθ),

P(B(TX1ω1X2 +H∇X1ω2X2) + ω1(∇̂X1ω1X2 + TX1ω2X2)) = 0, (41)

and

ω2(∇̂X1ω1X2 + TX1ω2X2) + C(TX1ω1X2 +H∇X1ω2X2) = 0. (42)

Proof. The proof of Proposition 3.18 is the same as Proposition 3.17.

From Proposition 3.17 and Proposition 3.18, we obtain the next result.

Corollary 3.19. LetΨ be a PSSSRM from LPS manifold (Σm,Ω, ξ,∧, 1m) into a semi-Riemannian manifold (Σn, 1n).
Then, the vertical distribution kerΨ∗ is a locally product ΣmD × ΣmDθ iff (40) and (41) true, where ΣmD and ΣmDθ
are integral manifolds of invariant distribution D and slant distribution Dθ.

Theorem 3.20. LetΨ be a PSSSRM from LPS manifold (Σm,Ω, ξ,∧, 1m) onto a semi-Riemannian manifold (Σn, 1n).
Then,Ψ is a totally geodesic map iff

ω2(∇̂X3ω1X4 + TX3ω2X4) + C(TX3ω1X4 +H∇X3ω2X4) = 0 (43)

and

ω2(∇̂X3 BY3 + TX3 CY3) + C(TX3 BY3 +H∇X3 CY3) = 0 (44)

for X3,X4 ∈ ⨿(kerπ∗) and Y3 ∈ ⨿(kerπ⊥∗ )

Proof. SinceΨ is a semi-Riemannian map, we have

(∇π∗)(Y3,Y4) = 0, f or Y3,Y4 ∈ ⨿(kerπ⊥∗ ).

For X3,X4 ∈ ⨿(kerπ∗), we obtain
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(∇π∗)(X3,X4) = ∇πX3
(π∗X4) − π∗∇X3 X4

= −π∗∇X3 X4 = −π∗(Ω2
∇X3 X4 − ∧(∇X3 X4)ξ)

= −π∗Ω
2
∇X3 X4 = −π∗(Ω(−(∇X3Ω)X4 + ∇X3ΩX4))

= −π∗Ω∇X3ΩX4) = −π∗(Ω(∇X3ω1X4 + ∇X3ω2X4)

= −π∗Ω(TX3ω1X4 + ∇̂X3ω1X4 + TX3ω2X4 +H∇X3ω2X4)

= −π∗(BTX3ω1X4 + CTX3ω1X4 + ω1∇̂X3ω1X4 + ω2∇̂X3ω1X4

+ ω1TX3ω2X4 + ω2TX3ω2X4 + BH∇X3ω2X4 + CH∇X3ω2X4)

= −π∗(CTX3ω1X4 + ω2∇̂X3ω1X4 + ω2TX3ω2X4 + CH∇X3ω2X4).

Thus,

(∇π∗)(X3,X4) = 0⇔ ω2(∇̂X3ω1X4 + TX3ω2X4) + C(TX3ω1X4 +H∇X3ω2X4) = 0. In same way as above, for
X3 ∈ ⨿(kerπ∗) and Y3 ∈ ⨿(kerπ⊥∗ ), we infer

(∇π∗)(X3,Y3) = 0⇔ ω2(∇̂X3 BY3 + TX3 CY3) + C(TX3 BY3 +H∇X3 CY3) = 0.

The fibers of a semi-Riemannian map π : (Σm, 1m)→ (Σn, 1n) is said to be a totally umbilical if

TXX3 = 1m(X,X3)H, (45)

for any X,X3 ∈ ⨿(kerπ∗), where H denotes the mean curvature vector field of the fiber.

Let Ψ be a PSSSRM from LPS manifold (Σm,Ω, ξ,∧, 1m) onto a semi-Riemannian manifold (Σn, 1n),
where 1m and 1n are Lorentzian metric and semi-Riemannian metric. Now, we are able to define some
useful equations needed for further study

(∇Xω1)X3 = ∇̂Xω1X3 − ω1∇̂XX3, (46)

(∇Xω2)X3 = H∇Xω2X3 − ω2∇̂XX3, (47)

(∇XB)Y3 = ∇̂XBY3 − BH∇XY3, (48)

(∇XC)Y3 = H∇XCY3 − CH∇XY3, (49)

where X,X3 ∈ ⨿(kerπ∗) and Y3 ∈ ⨿(kerπ⊥∗ ).

We say that ω1 (resp. ω2, B or C) is parallel if ∇ω1 = 0 (resp. ∇ω2 = 0, ∇B = 0 or ∇C = 0).

Lemma 3.21. Let Ψ be a PSSSRM with canonical parallel structures from LPS manifold (Σm,Ω, ξ,∧, 1m) onto a
semi-Riemannian metric manifold (Σn, 1n), where 1m and 1n are Lorentzian metric and semi-Riemannian metric
respectively. Then for any X,X3 ∈ ⨿(kerπ∗) and Y3 ∈ ⨿(kerπ⊥∗ ), we infer



T. Fatima et al. / Filomat 40:1 (2026), 179–197 190

(∇Xω1)X3 = BTXX3 − TXω2X3, (50)

(∇Xω2)X3 = CTXX3 − TXω1X3, (51)

(∇XB)Y3 = ω1TXY3 − TXCY3, (52)

(∇XC)Y3 = ω2TXY3 − TXBY3, (53)

Proof. All the equations follow from Lemma 3.11 and (46) to (49) .

Theorem 3.22. Suppose Ψ be a PSSSRM with totally umbilical fibers from LPS manifold (Σm,Ω, ξ,∧, 1m) into a
semi-Riemannian metric manifold (Σn, 1n). If dimension of slant distributionDθ is greater than 2 and ω1 holds same
direction condition, then we obtain fibers ofΨ are totally geodesic or the mean curvature H is a member of µ.

Proof. If the fibers of Ψ are totally geodesic then it is stateforward. Now, we consider the second state.
Since dim(Dθ) ≥ 2, then we can suppose X1,X2 ∈ ⨿(Dθ) such that the set {X1,X2} is orthonormal. From (3),
(7), (19), (20), (13) and (14), we observe

∇X1ΩX2 = (∇X1Ω)X2 +Ω∇X1 X2

= 1m(X1,X2)ξ +Ω∇X1 X2

∇X1 (ω1X2 + ω2X2) = Ω∇X1 X2 + 1m(X1,X2)ξ

= Ω(TX1 X2 + ∇̂X1 X2) + 1m(X1,X2)ξ

TX1ω1X2 + ∇̂X1ω1X2 + TX1ω2X2 +H∇X1ω2X2 = BTX1 X2 + CTX1 X2 + ω1∇̂X1 X2

+ ω2∇̂X1 X2 + 1m(X1,X2)ξ.

Taking inner product with X1

1m(∇̂X1ω1X2,X1) + 1m(TX1ω2X2,X1) = 1m(BTX1 X2,X1) + 1m(ω1∇̂X1 X2,X1)

1m(∇̂X1ω1X2 − ω1∇̂X1 X2,X1) = 1m(TX1ω2X2 − BTX1 X2,X1)

1m((∇̂X1ω1)X2,X1) = 1m(TX1ω2X2 − BTX1 X2,X1).

Since, ∇X1ω1 = 0, we get

1m(TX1ω2X2 − BTX1 X2,X1) = 0,
1m(ΩTX1 X2 − TX1ΩX2,X1) = 0,

1m(ΩTX1 X2,X1) = 1m(TX1ΩX2,X1). (54)

Thus using (45) and (54), we have

1m(H,ΩX2) = 1m(TX1 X1,ΩX2) = 1m(TX1ΩX2,X) = 1m(ΩTX1 X2,X1) = 1m(TX1 X2,ΩX1)
= 1m(TX1 X1,ΩX1) = 1m(X1,X1)1m(H,ΩX1) = 0.

Since, 1(X1,X1) , 0 so 1m(H,ΩX1) = 0. So, we see H ⊥ ω2Dθ. Therefore, it follows H is a member of µ
from (23).
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Corollary 3.23. Suppose Ψ be a PSSSRM with totally umbilical fibers from LPS manifold (Σm,Ω, ξ,∧, 1m) into a
semi-Riemannian metric manifold (Σn, 1n). If (kerΨ∗)⊥ = ω2Dθ, i.e, µ = {0} and ω1 is in same direction, then it is
sure that fibers ofΨ are totally geodesic.

Assume Ψ be a PSSSRM from LPS manifold (Σm,Ω, ξ,∧, 1m) into a semi-Riemannian metric manifold
(Σn, 1n). Then, the fibers ofΨ are said to be mixed geodesic, if TXX4 = 0, for all X ∈ ⨿(Dθ), X4 ∈ ⨿(D).

Theorem 3.24. LetΨ be a PSSSRM from LPS manifold (Σm,Ω, ξ,∧, 1m) into a semi-Riemannian metric manifold
(Σn, 1n). If ω2 is in same direction , i.e, ∇ω2 = 0, then the fibers ofΨ must be mixed geodesic.

Proof. Assume ω2 is in same direction, then for any X,X3 ∈ ⨿(kerΨ∗) from (51), we observe

CTXX3 = TXω1X3. (55)

Using (55), we obtain

C2TXX3 = TXω
2
1X3. (56)

If we put X = X4 ∈ ⨿(D) and X3 = X ∈ ⨿(Dθ) in (56) and using (32), we get

C2TX4 X = cos2θTX4 X. (57)

Since T is symmetric on ⨿(kerΨ∗) and from (55), we infer

C2TX4 X = C2TXX4 = TXω
2
1X4 = TXX4, (58)

C2TX4 X = TXX4. (59)

From (57) and (59), we obtain

TXX4 = 0. (60)

4. The first variational form of PSSSRM

The purpose of this section is to present an alternative method for verifying the harmonicity of a map,
and to define the first variational form of a PSSSRM from a Lorentzian para-Sasakian manifold into a
semi-Riemannian metric manifold.

LetΨ be a PSSSRM from LPS manifold (Σm,Ω, ξ,∧, 1m) into a semi-Riemannian metric manifold (Σn, 1n).
We define the 1-form dual to the vector field FY3, for Y3 ∈ ⨿(kerΨ⊥∗ ), such that σY3 : ⨿(kerΨ∗) → F(Ψq−1),
where q ∈ N and X3 → σY3(X3) = 1m(ΩY3,X3), for all X3 ∈ ⨿(kerΨ⊥∗). We define the sets of Legen-
dre, Hamiltonian, and harmonic variations of any fiber of Ψ as Γ3 = Y3 ∈ ⨿(kerΨ⊥∗) : dσY3 = 0, Γ1 =
Y3 ∈ ⨿(kerΨ⊥∗) : ∃ f ∈ Ω(Ψ−1q)⇒ σY3 = d f , and Γ2 = Y3 ∈ ⨿(kerΨ⊥∗ ) : ∆σY3 = 0, respectively. It should be
noted that Γ1 ⊂ Γ3, Γ2 ⊂ Γ3, and Γ1 ∩ Γ2 = 0 by the definitions of differential and co-differential operators.

The study is focused on identifying the conditions under which the 1-form σY3 defined in the previous
content can be considered as a Legendre variation.
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Lemma 4.1. Let Ψ be a PSSSRM from LPS manifold (Σm,Ω, ξ,∧, 1m) onto a semi-Riemannian metric manifold
(Σn, 1n). The 1-form σY3 is a Legendre variation iff

1m(TXY2, ω1X2) − 1m(TX2 Y2, ω1X) = 1m(AY2 X2, ω2X) − 1m(AY2 X, ω2X2), (61)

for all X,X2 ∈ ⨿(kerΨ∗).

Proof. Let X,X2 ∈ ⨿(kerΨ∗). Then, by the definition of differential, (14) and (3), we obtain

(dσY2 )(X,X2) = X1m(ΩY2,X2) − X21m(ΩY2,X) − 1m(ΩY2, [X,X2])
= ∇X1m(Y2,ΩX2) + 1m(∇XY2,ΩX2) + 1m(Y2,∇XΩX2) − ∇X21m(Y2,ΩX)
− 1m(∇X2 Y2,ΩX) − 1m(Y2,∇X2ΩX) − 1m(Y2,Ω∇XX2 −Ω∇X2 X)
= 1m(∇XY2,ΩX2) − 1m(∇X2 Y2,ΩX)
= 1m(TXY2 +H∇XY2, ω1X2) + 1m(TXY2 +H∇XY2, ω2X2)
− 1m(TX2 Y2 +H∇X2 Y2, ω1X)
− 1m(TX2 Y2 +H∇X2 Y2, ω2X)
= 1m(TXY2, ω1X2) + 1m(H∇XY2, ω2X2) − 1m(TX2 Y2, ω1X) − 1m(H∇X2 Y2, ω2X).

Since, we suppose Y2 is basic, we get

(dσY2 )(X,X2) = 1m(TXY2, ω1X2) + 1m(AY2 X, ω2X2) − 1m(TX2 Y2, ω1X) − 1m(AY2X2, ω2X).

Since (dσY2 )(X,X2) = 0. Therefore,

1m(TXY2, ω1X2) − 1m(TX2 Y2, ω1X) = 1m(AY2 X2, ω2X) − 1m(AY2 X, ω2X2).

Lemma 4.2. For Y2 ∈ ⨿(µ), σY2 ≡ 0.

Proof. Let Y3 ∈ ⨿(µ) then ΩY3 ∈ ⨿(µ) for any X2 ∈ ⨿(kerΨ∗), we get

σY3 (X2) = 1(ΩY3,X2) = 0,

so, σY3 ≡ 0 for all X2 ∈ ⨿(kerΨ∗).

Remark 4.3. By virtue of Lemma (4.2), the assumption thatH belongs to ⨿(ω2Dθ) is made throughout this paper.

Proposition 4.4. Let Ψ be a PSSSRM that maps LPS manifold (Σm,Ω, ξ,∧, 1m) onto a semi-Riemannian metric
manifold (Σn, 1n), and let f be a smooth function on a fiber. We then assert that Ω(1rad( f )|ω2Dθ) ∈ Γ1.

Proof. On fibers suppose f is a smooth function, then for Y3 = Ω(1rad( f )|ω2Dθ) and any X2 ∈ ⨿(kerΨ∗). We
obtain σY3 (X2) = 1m(ΩY3,X2) = 1m(1rad( f ),X2) = X2[ f ] = d f (X2). Hence, σY3 = d f , implying Y3 ∈ Γ1.

Moreover, for Y3 ∈ ⨿(kerΨ⊥∗ ), the first variation of the volume of a fiberΨ−1
q , for q ∈ Σn is defined from

[22].

φ′(Y3) = −k
∫
Ψ−1

q

1m(Y3,Γ2) ∗ 1. (62)

In this equation k = dim(Ψ−1
q ). In this context, we define the fibers as follows:

• If φ′(Y3) = 0 for all Y3 ∈ Γ3, thenΨ−1
q is Γ3-minimal.
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• If φ′(Y3) = 0 for all Y3 ∈ Γ1, thenΨ−1
q is Γ1-minimal.

• If φ′(Y3) = 0 for all Y3 ∈ Γ2, thenΨ−1
q is Γ2-minimal.

Remark 4.5. It is worth noting that if the fiber is minimal, then the fiber is Γ3, Γ1, and Γ2 minimal. In addition, if
the fiber is Γ3-minimal, then it is also Γ1-minimal and Γ2-minimal, as Γ1 ⊂ Γ3 and Γ2 ⊂ Γ3.

Now, we are ready to state our next Theorem.

Theorem 4.6. If Ψ is a PSSSRM from LPS manifold (Σm,Ω, ξ,∧, 1m) to a semi-Riemannian metric manifold
(Σn, 1n), then

(a) The fiberΨ−1
q is Γ3-minimal iff the Legendre variation of σY3 is zero for all Y3 in Γ3.

(b) The fiberΨ−1q is Γ1-minimal iff the Hamiltonian variation of σY3 is zero for all Y3 in Γ1.
(c) The fiber Ψ−1q is Γ2-minimal iff σΓ2 can be expressed as the sum of an exact and a co-exact 1-form, where σΓ2

denotes the harmonic variation of σY3 for all Y3 in Γ2.

Proof. (a)⇒: Let Ψ be a PSSSRM that maps LPS manifold (Σm,Ω, ξ,∧, 1m) onto a semi-Riemannian metric
manifold (Σn, 1n) and letΨ−1q be Γ3-minimal. Then, for any Y3 ∈ Γ3, we have 1m(Γ2,Y3) = 0 from (??). From
the definition of the Hodge star operator, we have for V1,V2, ...,Vk ∈ ⨿(kerΨ∗). From the definition of the
global scalar product (.|.) on the module of all forms on the fiber, we get

(σY3 |σΓ2 ) =
∫
Ψ−1q

σY3Λ ∗ σΓ2 = 0. (63)

Denote by δ the co-differential operator on the fiberΨ−1q. Since σY3 is closed, for any 2-form β onΨ−1q, we
have

0 = (dσY3|β) = (dσY3 |δβ). (64)

SinceΨ−1
q is compact, by (63) and (64) we conclude that σΓ2 is co-exact.

⇐: Suppose that σΓ2 is co-exact. We have σΓ2 = δψ for some 2-form ψ. Then, for any Y3 ∈ Γ3, (

(σY3 |σΓ2 ) = (σY3 |δψ) = (dσY3 |ψ) = 0

and then

φ′(Y3) = −k
∫
Ψ−1

q

1m(Γ2,Y3) ∗ 1 = −k
∫
Ψ−1

q

(σY3Λ ∗ σΓ2 ) = −k(σY3 |σΓ2 ) = 0,

i.e. Ψ−1
q is Γ3-minimal.

(b)⇒: Let the fiberΨ−1
q be Γ1 -minimal. Then, we have

0 = φ′(Y3) = −k
∫
Ψ−1

q

1m(Y3,Γ2) ∗ 1 = −k
∫
Ψ−1

q

(σY3Λ ∗ σΓ2 ) = −k(σY3 |σΓ2 ),

that is, (σY3 |σΓ2 ) = 0. Since Y3 ∈ Γ1, σY3 = d f for some function f on the fiberΨ−1
q . Thus,

(d f |σΓ2 ) = ( f |δσΓ2 ) = 0.

Hence it follows that δσΓ2 = 0, i.e. σΓ2 is co-closed.
⇐: Suppose that σΓ2 is co-closed. Let Y3 ∈ Γ1, then there exist a function f ∈ F (Ψ−1

q ) such that σY3 = d f .
Hence, we have

(σY3 |σΓ2 ) = (d f |σΓ2 ) = ( f |δσΓ2 ) = 0.

Therefore,

φ′(Y3) = −k
∫
Ψ−1

q

1m(Γ2,Y3) ∗ 1 = −k
∫
Ψ−1

q

(σY3Λ ∗ σΓ2 ) = −k(σY3 |σΓ2 ) = 0,
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that is φ′(Y3) = 0 for Y3 ∈ Γ1, i.e. Ψ−1
q is Γ1-minimal.

(c)⇒: If the fiberΨ−1
q is Γ2-minimal, then for Y3 ∈ Γ2, we have

0 = φ′(Y3) = −k
∫
Ψ−1

q

1m(Y3,Γ2) ∗ 1 = −k
∫
Ψ−1

q

(σY3Λ ∗ σΓ2 ) = −k(σY3 |σΓ2 ).

It means that, σΓ2 is orthogonal to harmonic 1-forms on the fiber Ψ−1
q . Thus, by the Hodge decomposition

theorem, we conclude that σΓ2 is the sum of an exact and a co-exact 1-form.
⇐: Let σΓ2 be the sum of an exact 1-form ω1 = d f and a co-exact 1-form ω2 = δψ. For Y3 ∈ Γ2, we have

(σY3 |σΓ2 ) = (σY3 |d f + δψ) = (σY3 |d f ) + (σY3 |δψ) = (δσY3 | f ) + (dσY3 |ψ) = 0,

since dσY3 = δσY3 = 0. Thus,

φ′(Y3) = −k
∫
Ψ−1

q

1m(Y3,Γ2) ∗ 1 = −k
∫
Ψ−1

q

(σY3Λ ∗ σΓ2 ) = −k(σY3 |σΓ2 ),

that is, the fiber is Γ2-minimal.

Theorem 4.7. Let Ψ be a PSSSRM from LPS manifold (Σm,Ω, ξ,∧, 1m) onto a semi-Riemannian metric manifold
(Σn, 1n). If Γ2 ∈ Γ3 Then,

(a)Ψ−1
q is Γ3-minimal iffΨ−1

q is minimal.
(b)Ψ−1

q is Γ1-minimal iff σΓ2 is a harmonic variation.
(c)Ψ−1

q is Γ2-minimal iff σΓ2 is an exact 1-form.

Proof. (a) If the fiber Ψ−1
q is Γ3-minimal, then by Theorem ??-(a) we have, σΓ2 is co-exact. Hence σΓ2 is co-

closed. Taking into account the fact that dσΓ2 = 0, we deduce that σΓ2 is harmonic. But this is a contradiction
because of Hodge decomposition theorem. So, σΓ2 must be zero. Hence we conclude that Γ2 = 0. The
converse is clear.
(b)⇒: If the fiberΨ−1

q is Γ1-minimal, then we have δσΓ2 = 0 from Theorem ??-(b). Since dσΓ2 = 0, σΓ2 is also
harmonic, i.e. ∆σΓ2 = 0.
⇐: If σΓ2 is harmonic, then σΓ2 is co-closed. By Theorem ??-(b), the fiberΨ−1

q is Γ1-minimal.
(c)⇒: Assume that Ψ−1

q is Γ2-minimal. then, from Theorem ??-(c), σΓ2 is the sum of an exact 1-form and a
co-exact 1-form. On the other hand, the condition Γ2 ∈ Γ3 implies that σΓ2 is orthogonal to every co-exact
1-form onΨ−1

q . Thus, σΓ2 must be exact.
⇐: Let σΓ2 be an exact 1-form. For Y3 ∈ Γ2, we obtain

φ′(Y3) = −k
∫
Ψ−1

q

1m(Y3,Γ2) ∗ 1 = −k
∫
Ψ−1

q

(σY3Λ ∗ σΓ2 )

= −k(σY3 |σΓ2 ) = (σY3 |d f ) = (δσY3 | f ) = 0,

that is,Ψ−1
q is Γ2-minimal.

Remark 4.8. It is well known that, the fibers of a submersion is minimal iff the submersion is harmonic.

5. Examples

Now, we present some examples for PSSSRMs.

Example 5.1. Every almost para-contact submersion from an almost para-contact manifold into a semi-Riemannian
metric manifold is a P-wise SS Riemannian map with θ = 0 and (ran1eΨ∗)⊥ = 0.
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Example 5.2. Every anti-invariant Riemannian submersion from an almost para-contact manifold into a semi-
Riemannian manifold is a P-wise SS Riemannian map with θ = π

2 and (ran1eΨ∗)⊥ = 0.

Example 5.3. Every proper P-wise SS Riemannian submersion with the slant function θ is a P-wise SS Riemannian
map with (ran1eΨ∗)⊥ = 0.

Example 5.4. Every proper slant Riemannian submersion with the slant angle θ is a P-wise SS Riemannian map
with (ran1eΨ∗)⊥ = 0.

Example 5.5. Every proper semi-slant Riemannian map is a P-wise SS Riemannian map with a constant slant
function.

Example 5.6. Let R2m+1 = {(x1, x2, ..., xm, y1, y2, ..., ym, z : xi, yi, z ∈ R, i = 1, 2, ...,m)}. Consider R2m+1 with the
following structure:

Ω

 m∑
i=1

(Xi
∂
∂xi
+ Yi

∂
∂yi

) + Z
∂
∂z

 = m∑
i=1

Yi
∂
∂xi
+

m∑
i=1

Xi
∂
∂yi
+

m∑
i=1

Xiyi
∂
∂z
,

1m = − ∧ ⊗ ∧ +
1
4

m∑
i=1

(dxi ⊗ dxi + dyi ⊗ dyi),

∧ = −
1
2

(dz −
m∑

i=1

yidxi), ξ = 2
∂
∂z
.

Then, (R2m+1,Ω, ξ,∧, 1m) is LPS manifold. The vector fields Ei = 2 ∂
∂yi
, Em+i = 2( ∂

∂xi
+yi

∂
∂z ) and ξ form aΩ-basis

for the contact metric structure.

Example 5.7. Considering Example 6, we define a map

Ψ : R9
→ R7

by

Ψ(x1, .., x4, y1, .., y4, z) = (cos y1x1 − sin y1x3, sin y2x2 − cos y2y3, 0, 0, 0, 0, 0).

Then it follows that

(kerΨ∗) = span{E4,E8,E9, sin y1E5 + cos y1E7, cos y2E6 + sin y1E3},

where

D = span{E4,E8},

Dθ = span{sin y1E5 + cos y1E7, cos y2E6 + sin y2E3},

ξ = E9,

and

(kerΨ∗)⊥ = span{E1,E2, cos y1E5 − sin y1E7, sin y2E6 − cos y2E3},

where θ = cos−1 sin 2y2

2
√

sin2 y1+cos2 y2−y2
2 cos2 y2

; where sin2 y1 + cos2 y2 − y2
2 cos2 y2 > 0 is a point wise slant angle andΨ

is a PSSSRM from LPS manifold into semi-Riemannian metric manifold.
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6. Conclusion

The first variational formula is fundamental to differential geometry and is essential to understanding
the complexities of geometric objects, especially those that fall under the domain of surfaces. Its importance
extends to various applications, with a primary focus on the study of minimal surfaces and the calculus of
variations in a geometric context. In addition, the first variational formula serves a substantial part in the
analysis of geodesics in Riemannian geometry contributing to deduce geodesic equations and expanding
comprehension of curved spaces. Furthermore, it is used in the derivation of the Jacobi equation, which
provides insights into the curvature of a manifold along geodesics. As a result, variational problems
pertaining to minimal surfaces, geodesics, and variational principles can be systematically investigated
through the use of the first variational formula, which malleable tool in differential geometry that improves
our understanding of the geometry of spaces and the behavior of curves and surfaces within them.

However, Harmonic maps are necessary for the study of geometric structures on manifolds. They
have intimate relationships, for instance, with minimal surfaces, isometric embeddings, and conformal
mappings. The harmonicity condition provides insights into the interplay of geometry and analysis by
establishing the equilibrium between curvature and deformation.

Thus, we have extended the understanding of Pointwise semi-slant maps which are defined on LP-
sasakian manifold to a semi-Riemannian manifold and studied its behavior and significance through using
the first variational formula on the fibers to derive necessary and sufficient conditions for their harmonicity.
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