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Pointwise semi-slant semi-Riemannian maps
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Abstract. We use the first variational formula on the fibers to deduce the necessary and sufficient condi-
tions for the harmonicity of pointwise semi-slant semi Riemannian maps, which are defined on Lorentzian
para-Sasakian manifolds. We define the sets of Legendre, Hamiltonian and Harmonic variations for any
fibre of the map. Moreover, we address the characterization theorem for pointwise semi-slant semi Rieman-
nian maps from Lorentzian para Saskian manifold to a semi-Riemannian metric manifold by considering
the vertical Reeb vector field and investigate the properties of totally umbilical fibers. Beside from the
peculiarities of pointwise semi-slant semi Riemannian maps, geometry of the distributions associated with
the map such as integrability and totally geodesicness are also studied. In the end, we discuss a number of
examples illustrating the existence of such maps.

1. Introduction

Watson introduced the almost Hermitian submersion concept in 1958, which revealed that in most
cases, the base manifold and each fiber have the same structure as the total space [41]. The theory of
semi-Riemannian metric manifolds was subsequently developed in 1966 by O’Neill [26, 27] and Gray [13].
In [14], Garcia and Kupeli studied the more geometric properties related to semi-Riemannian maps and
their applications, which has since become a thriving research field in mathematics, mathematical physics
and physics in space science with applications in Kaluza-Klein theory [17, 19], Yang-Mills theory [3], su-
pergravity [24], and superstring theories [18]. Sahin later introduced several other submersions, such as
anti-invariant, semi-invariant, and slant Riemannian maps using the base manifold as Hermitian manifolds,
in [30, 35-37]. Further research on semi-Riemannian submersions has been conducted, including those with
para-contact para-complex manifolds [10-12, 26], real and complex pseudo-hyperbolic spaces [4], almost
para-cosymplectic manifolds [32], anti-invariant [7, 40], semi-invariant [1] semi-Riemannian submersions
studied, The integrability of distributions and geodesic properties on slant submersions in paracontact
geometry studied in [15]. The pointwise slant lightlike submersions investigated in [20]. Fischer developed
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the theory of Riemannian maps in [27], which extended the concepts of isometric immersions and course
of Riemannian submersions.

In the sequence of study on para geometry para-Kaehler manifolds were defined by Libermann [23] in
1952, and the properties of para-Kaehler manifolds were introduced by Rashevskij in [34]. There has been
a great deal of research in recent years into the geometry of Riemannian maps between various structures,
including slant [29], hemi-slant [31], semi-slant [22, 30] Riemannian maps. Some important properties
on harmonic maps between semi-Riemannian spheres have been obtained in [25], and with respect to
these studies nowadays authors extended the above study on point-wise concepts such as point-wise slant
Riemannian maps [2, 16]. For a deeper understanding and exploration of the concepts discussed, we
highly recommend to go through these articles [5-8, 10, 11, 20, 29, 37, 38], which offer valuable insights
and contribute significantly to the literature in this field. Our study in this paper is based on the notion
of pointwise semi-slant semi-Riemannian maps from Loretz para-Sasakian manifolds to semi-Riemannian
manifold which will extend the theory of point-wise slant submersions and pointwise slant Riemannian
maps.

The study uses the following abbreviations in its subsequent sections: PSSSRM for pointwise semi-slant
semi-Riemannian map and LPS manifold for Lorentzian para-Sasakian manifold.

2. Preliminaries

LPS manifold is a differentiable manifold of dimension (21 + 1) defined based on a set of geometric
structures. These structures include Q a (1, 1)-tensor field , £ a Reeb vector field, w a 1-form, and a Lorentzian
metric g,,. The conditions that classify a manifold as an LPS manifold involve specific relationships among
these structures.

AE) = -1, 1)
Q*=1+A®¢, 2)
In(QX1, QX5) = gu(X1, X2) + AX1) A (X2), 3)
gm(X1, &) = A(X1), Vx, & = QXy, (4)
Q(X1, X2) = gu(X1, QX2) = gu(QX1, X2) = Q(Xp, X3), (5)
(Vx, Q)(X2, X3) = g(X2, (Vx,)X3) = (Vx, Q)(X3, X2), (6)

The covariant differentiation with respect to g,, is denoted by V. The Reeb vector field & is timelike,
that is, g,,(&, &) = —1, and the triple (Q, &, A) defines an almost para contact structure on X,, according to
Sato’s definition. The Lorentzian metric defined in Equation (4) is analogous to the almost para contact
semi-Riemannian metric. The structure (Q, £, A, g,,) is a Lorentzian para contact manifold if

Q(Xq, Xp) = %((Vxlf\)xz + (Vx, A)X1).
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The structure (Q, &, A, g,,) is called LPS manifold if

(Vx, Q)Xa = g,(QX1, QX2)E + A(X2)Q2X;.
= gm(X1, X2)& + A(X2) X1 +2 A (X1) A (X2)E (7)

In a Lorentzian para-Sasakian (LPS) manifold, the 1-form A is closed. It has been demonstrated that if
there exists a timelike unit vector field £ in an odd-dimensional Lorentzian manifold (X, ,,) such that the
associated 1-form A is closed and fulfills the condition:

(Vx, Vx, A) X3 = gm(X1, X2) A (X3) + gm(Xa, X3) A (X2) +2 A (X1) A (X2) A (X3).

Then X,, admits an LPS structure.

Consider two semi-Riemannian metric manifolds (X, g,») and (X, g,) . Let W : (X, ) = (X0, gu) be a
C*-map. The map VW is called a semi-Riemannian submersion if it is surjective and (\V.)p has maximal rank
having length preserving properties for any p € Zm means, (\W.)p : ((ker(W*)p)*, (9m)p) = (Twip)Zn, (9n)w(p)
is a linear isometry for eachp € Y.m. Here, (ker(W.)p)* is the orthogonal to ker(W+)p in the tangent space T, X,
of L,, at p. Finally, ¥ is a semi-Riemannian map if (W.)p : ((ker(W*)p)*, (gm)p) — ((range¥=)¥(p), (7.)¥(p))
is a linear isometry for each p € Xm, where (rangeW.)¥(p) := (W*)p((ker(W+)p)*) for p € Z,,.

Let (X, QO, ) be an almost para Hermitian manifold, and (X,, g,) be a semi-Riemannian metric man-
ifold, where Q is an almost para complex structure on X,,. Consider V¥ is semi-Riemannian map between
two manifolds (X, Q, g,,) and (Z,, g,) such that W : (X, Q, g) — (X, gn). The map W is called a slant
semi-Riemannian map if the angle 6 = 6(X;) between QX; and the space ker(\.)p is invariant for nonzero
X € ker(W.)p and p € Z,,. The angle 0 is referred to as the slant angle of slant semi-Riemannian map.

The second fundamental form of W can be expressed as:
(VW.)(X1, X3) = Vy WX, — W.(Vx, X2) for X1, X; € LI(TE,,). (8)

Where X, Y € X(Z,,), V is the Levi-Civita connection, and T denotes projection onto the horizontal space.

Remind that W is said to be harmonic if we have the tension field (W) := trace(VW.) = 0 and we call
the map W a totally geodesic map if (VW.)(X1,Xz) = 0 for Xy, X, € LI(TZ,,). Denote the range of V. by
rangeW, as a subset of the pullback bundle F7!TY,. With its orthogonal complement (rangeW.)* we have
the following decomposition F'TL, = rangeW. @ (rangeW.)*. Moreover, we get TL,, = kerW, & (ker¥.)*.
Then we easily have

Lemma 2.1. Let ¥V : (X, ) — (X, gn) be a semi-Riemannian map from a semi-Riemannian metric mani-
fold (X, gm), where metric is g, into a semi-Riemannian metric manifold (L, g,), where metric is g, . Then
(VW.)(Y1,Y2) € L((rangeW.)*) for Y1,Y, € Li((kerW.)").

Lemma 2.2. Let V¥V : (L, g) — (Zn, gu) be a semi-Riemannian map from semi-Riemannian manifold (L, g),
where metric is gy, into a semi-Riemannian metric manifold (X, g,), where metric is g,. Then, the tension field T of
Wis

T = —ml\P*(H) + 11’l2H2, (9)

where my = dim(ker\V.), my = rankV, H and H, are the mean curvature vector fields of the distributions ker\V. and
rangeV., respectively.

Let W : (X, gm) — (X1, gn) be a semi-Riemannian map from a semi-Riemannian metric manifold (X, g),
where metric is g,, into a semi-Riemannian metric manifold (X,, g,,), where metric is g, . Then we define 7~
and A as

ApQ = HV3pVQ + VVypHQ, (10)
TrQ = HVypVQ + VVqpHQ, (1)
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for vector fields P,Q on X,, where V is the Levi-Civita connection of semi-Riemannian metric g,,. In
fact one can see that these tensor fields are O’Neill’s tensor fields which are defined for semi-Riemannian
submersions. For any P € LI(TZ,,), A is anti-symmetric on horizontal distribution and 7 is symmetric on
vertical distribution (LI(TZ,,), g). It is also easy to see that, 7p = Tp and A A = Agyp. We note that the
tensor field 7 satisfies

Tx, X2 = Tx, X1, (12)
1
Ax, Yo = -Ax, Yo = E(V[XLYZ]/

for X1,X5 € H(ker‘l&) and Y1,Y, € H(ker\lf*)l.
On the other hand, from (11) and (12), we obtain

VX1X2 = TX1X2 + Vxle, (13)
Vy, X1 = HVy, X1 + T, X1, (14)
Vx, Yo = Ax, Yo + Vo Vx, Yo, (15)
VX1 Y, = val Y, + ﬂxl Y,, (16)

for Y1, Y, € LI((ker'W,)*) and X1, X, € Ll(kerW,), where VX] X5 = VVx Xo.

3. Geometry of foliations of PSSSRM

This section introduces the PSSSRM and investigate the conditions under which PSSSRM is totally
geodesic map. A characterization theorem for PSSSRM with totally umbilical fibres is also given.

Definition 3.1. Let WV be a semi-Riemannian map from an almost para-contact manifold (Z,,,Q, &, A, gm) with
semi-Riemannian metric g,, into a semi-Riemannian metric manifold (L,, g,) with semi-Riemannian metric g,. VW is
a pointwise slant map defined as, for a given point x € L,,, the angle 0(X1) between X is independent of the choice
for Xq # 0 € (kerW.), — {&}). In this case, the angle O is treated as function then it is called the slant function of the
pointwise slant map V.

Definition 3.2. Let (X, Q, &, A, gm) be an almost para contact manifold and (L, g,) a semi-Riemannian metric
manifold. A semi-Riemannian map WV : (X, Q, &, A, gm) = (Zn, gn) is called a semi-slant semi-Riemannian map if
there is a distribution © C ker\V. such that kerV, = D ® Dp® < & >, (D) = D, and the angle 6 = 6(X;) between
QX and the space (Dg),, is independent of the choice for X1 # 0 € (Dg), and p € L, where © and Dg are orthogonal
in ker\W,.

The term ”semi-slant angle” refers to the angle 0. A point p in a PSSSRM is regarded as totally real if
its semi-slant is 6 = 7 at p. Conversely, if a point p in a PSSSRM has a semi-slant function of 6 = 0, it is
classified as a complex point. A PSSSRM is said to be proper if 6 = 0, 7.

If P-SS semi-Riemannian map is classified as semi-slant then function 6 is overall constant, indicating
that it is independent of the point on X,,. The constant 0 in this case is named as the semi-slant angle of the
semi-slant Riemannian map.

As a result, we define a new type of semi-Riemannian map as follows:

Definition 3.3. Consider (X,,,Q, &, A, g,) be LPS manifold and (L, g,)be a semi-Riemannian metric manifold. A
semi-Riemannian map \V : (£,Q, &, A, ) = (Zy, gu) is called a PSSSRM, if distribution © C kerm, such that

kerW,=D & Dgd < &> QD =D, 17)
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where Dy and D are orthogonal in ker'V, and the angle 6 = 0(X;) between QX; and the space (D), is
free of the choice of X; # 0 € LI(Dg), for p € Mi.e. 0 is a function on X, which is named as slant function
of thePSSSRM. We call W is proper if the slant functionis 6 # 0, 7.

Let ¥V : (X,Q,& A, 9m) = (X4,94) be @ PSSSRM from LPS manifold into a semi-Riemannian metric
manifold.

The angle 0 is a P-wise SS angle of semi-Riemannian map. Then distribution © C ker'V, such that
kerW, =D ® Dg® < & >, QD) = D, and the angle 6 = O(X;) between QAX; and the space (Dg), is constant
for nonzero X; € (Dg)r and x € L,,, where Dg and D are orthogonal in ker'\V..

Then for X; € Li(kerW,), we infer

X1 =PXy + QX1 — AMX1)E, (18)
where PX; € LI(D) and QX; € LI(Dy),
for X € Li(ker\V.). We put

QX1 = w1 X1+ wr Xy, (19)
where w1 X; € L(kerW,) and w,X; € L(kerW,)*,
for Yy € Ll(kerW,)*, we infer

QY, = BY, + CY;, (20)
where BY; € Ll(ker'W.) and CY; € Li(kerW.)",
for X € II(TX,,), we get

X = VX + HX, 1)
where VX € L(kerW,) and HX € Li(kerW.)+,
for Y € LI(W~'TL,), we write

Y =PY +QY, (22)
where PY € L(rangeW.) and QY € LI((rangeW.)*).
Then

(kerW,)*" = w2 D @ U, (23)

where p is the orthogonal complement of w,Dg in (kerW,)* and is invariant under Q.

Lemma 3.4. Let W be a PSSSRM from LPS (X, Q), &, A, gm) into a semi-Riemannian manifold (L., g,). Then, we
obtain

(1) w%+Bw2:I+/\®5,
(2) wrwqy + Cwyp =0,

(3) 1B+ BC =0,

(4) w,B+C?=1,
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Lemma 3.5. Let W be a PSSSRM from LPS manifold (Z,,, €, &, A, gn) into a semi-Riemannian manifold (L, g,).
Then, we get

(1) a)lb = D,

(2) w1Dg C Dy,

(3) w,® = {0}.

Lemma 3.6. Let W be a PSSSRM from LPS manifold (Z,,,€Q, &, A, gm) into a semi-Riemannian metric manifold
(X4, gu). Then, we have

(a) B(QDg) = Do,

(b) Bu = {0},
(C) C(Qb@) = a)szg,
(d) Cu = p.

Now, we obtain the effect of Q2 on the tensors 7 and A of a PSSSRM WV : (£,Q, &, A, ) = (Zn, 9n)-

Lemma 3.7. Let W be a PSSSRM from LPS manifold (Z,,,Q, A, &, gm) into a semi-Riemannian metric manifold
(X4, gn). Then, we have

Vx, 01X + Tx,2Xo = w1V, Xa + BTx, Xa, (24)
Tx, 01X + HVx,@2Xs = WV, Xp + CTx, Xa, (25)
VVy,BY; + Ay,CY, = 1Ay, Y2 + BHVy, Y, (26)
Ay,BYs + HVy,CYy = w Ay, Yo + CHVy, Y, 27)
Vx,BY1 + Tx,CY1 = anTx, Y1 + BHVy, Yy, (28)
Tx,BY1 + HVx,CY1 = w,Tx, Y1 + CHVx, Y1, (29)
VVy, 1 X1 + Ay, w2X1 = BAy, X1 + 1 X1Vy, X1, (30)
Ay, 01X + HVy, X1 = CAy, X1 + X1 Vy, X1, (31)

where X1, X, € U(kern.,), and Y1,Y, € L(kerntt).

Proposition 3.8. Let \V be a PSSSRM from LPS manifold (X,,, €, &, A, gi) into a semi-Riemannian metric manifold
(X4, gu). Then, we obtain

wiX = cos*0Xj, (32)

for Xy € LI(Dg), where O denotes the slant function.
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Proof. If X; € 11(Dp) is vanishing, then done. For any nonzero X; € L1(Dy), we obtain

In(01X1,QX1) |l Xql|
lorXa QX3 QX4

cos@ = (33)

so that g, (w1X1, 01X1) = gm(@?X1, X1) = c0s*0g,,(QX1, QX1). Substituting X; by X; + X3, X; € Dy, at the
above equation, we induce

In((@] = cos”O(I + A ® £))(X1), X2) + gn(X1, (@] = c0s*0(I + A ® £))(X2)) = 0 (34)

w? — cos?0(I + A ® &) is symmetric so that g,,((w? — cos?0(I + A ® &))(X1), (X2)) = 0, we obtain
w%Xl = C0529X1 X1€Dy O

Easily, we observe that Proposition 3.8 is also true in its converse.

Theorem 3.9. Let W be a PSSSRM from LPS manifold (L,,,€3, &, A, gn) into a semi-Riemannian metric manifold
(X1, gn). The invariant distribution D is integrable iff

wl(VX3X4 — VX4X3) € b, (35)
fOT’ Xg, X4 € H(@)
Proof. X3,X4 € D and X; € Dg we know [X3, X4] € D iff Q[X3, Xy] € D, from (19), we infer,
gm(Q[XS/ X4]/ Xl) = gHI(Q(VX3X4 - V}(4}(3)/ Xl)/
= gn(Q(Tx,Xs + Vi, Xy = Tx, X5 = Vi, X3), X1),
= gm(@1(Vx, Xa — 1 (Vx, X3), X1), -
Thus, [X3, X4] € Diff 0 (Vx, Xy — 01(Vx, X3) € D. O
The proof of the next theorem is similar to the above theorem.

Theorem 3.10. Let W be a PSSSRM from LPS manifold (£,,,Q, &, A, g) into a semi-Riemannian metric manifold
(X4, gn)- Then, the slant distribution Dy is integrable iff

01(Vx, Xa = Vx, X1) € Dy,
fOT X1,X5 € H(D@)

Lemma 3.11. Let W be a proper PSSSRM from LPS manifold (X,,,<Q, &, A, g) into a semi-Riemannian metric
manifold (X, g,). Then, we obtain

Iin(Vx, Xs, X1) = cosec®0{gi(Tx, Xa, 0201X1) + gn(Tx 01 Xs, 02 X1)}, (36)
In(Vx, X2, X3) = cosec® 0{g,(Tx, w201X2, X3) + gu(Tx, 02 X2, 01X3)}, (37)
where O is so call slant fuction, X3, X4 € LI(D) and X3, X, € LI(Dy).
Proof. Let X3, X4 € II(D) and Xj, X» € LI(Dp). Then, from (3) and (19), we obtain

In(Vx; X4, X1) = gm(QVx, Xy, QX1) = A(Vx, Xg) A (X7)
= gn(Vx, QX4 — (Vx, Q) Xy, QX7)
= gn(Vx,QXy, 01X1) + gn(Vx, QXy, 02X1) = gm((Vx, Q) Xy, QX4)
= gn(V, Xa, (@012 X1 + 0201X1)) + gu(Viy 01X, 02X1).
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From (32), (13) and (14), we infer

In(Vx, Xa, X1) = gin(Vx, X, c0520X1) + g (Vs Xa, w201 X1) + (Vs a1 Xa, 02X1)
= 05?09, (Vx, X4, X1) + gu(Txs Xa, 0201 X1) + Gin(Txy 01X, 02X1)
sin*0g,(Vx, Xa, X1) = gn(Tx, Xa, 0201 X1) + gu(Tx, 01 Xa, 02X1),
We obtain our first result.

For the another result of theorem, we follow the similar pattern as in first part.
Let Xi, X, € LIDg and X3 € LID. Then from (3) and (19) we get

gm(VX1X2/ X3) =0m
= gm

QVx, X5, QX3) = A(Vx, X2) A (X3)

Vx, QX5 = gm(X1, X2)&, QX3)
= gu(Vx, QX;, QX3)
= gu(Vx, Q1 Xo = (X1, 01X2)E, X3) + gm(Vx, w2 X5, QX3)
= gn(Vx, (01°X2 + 0201X2), X3) + gn(Vx, 02Xz, QX3).

If we consider (32), (13) and (14), then we get

Py

In(Vx, Xa, X3) = gm(VxlcoszeXz,X3) + g (Vx, 0201 X2, X3) + g (Vx, 02X2, QX3)
= gu((=sin20)(X10)Xa, X3) + gu(cos?0Vyx, X2, X3)
+ gn(Tx, w201 X2, X3) + gu(Tx, 02 X2, QX3)
sin*0g,u(Vx, X2, X3) = gn((=sin20)(X10)Xa, X3) + gun(Tx, 0201X2, X3) + gun(Tx, 02 X2, w1 X3).
Therefore, since g,,((—sin20)(X10)X;, X3) = 0.
The proof of Lemma is complete. [

Theorem 3.12. Let WV be a proper PSSSRM from LPS manifold (Z,,,Q, &, A, gm) into a semi-Riemannian manifold
(X1, gn). Then, the invariant distribution ® is integrable iff

In(Tx,1 Xy — Tx,w1X3,02X1) =0,
for X3, Xy € LI(D) and X; € LI(Dy).
Proof. Let X3, X4 € LI(D) and X; € LI(Dg). Then, from Lemma 3.11 and equation (12), we get
In([X3, X4], X1) = gu(Vx; Xs = Vx, X3, X1)
= cosec*O{gm(Tx, Xa, w201 X1) + gon(Tx,01Xs, 02 X1))
— cosec®0{gu(Tx, X3, w201X1) + gn(Tx, @1 X3, w2 X1)}
= COSECZng(TX3w1X4 - TX4a)1X3, CL)2X1).

Therefore, D is integrable then g(Tx, w1 X4 — Tx,w1X3, w2 X1) = 0 and if g(Tx,w1 X4 — Tx,w1X3, @2 X1) = 0, then
Dis integrable. [J

In the same pattern, we investigate an integrability of slant distribution Dg.

Theorem 3.13. Let W be a proper PSSSRM from LPS manifold (X, Q, &, A, gm), into a semi-Riemannian manifold
(X4, gn), where gy, and g, are Lorentzian metric and semi-Riemannian metric respectively. Then, the slant distribution
Dy is integrable iff

In(Tx, w201 Xo = Tx,wr01X1, X3) = gu(Tx,02X1 — Tx, 02Xp, 01X3),
fOT’ X1,X5 € H(@@) and X3 S H(D)
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Proof. Let X1, X, € LI(Dg) and X3 € LI(D) then on similar way according to Theorem 3.12 and using Lemma
3.11, we have-

In([X1, X2], X3) = 9u(Vx, Xo — Vx, X1, X3)
= cosec®O{gu(Tx, w201 X2, X3) + gun(Tx, @2X2, 01X3))
— cosec®0{gu(Tx,w2w1X1, X3) + gun(Tx,02X1, 01X3)}
= cosec*O{gu(Tx, w21 X2, X3) — gm(Tx, w2001 X1, X3)
+ gm(Tx,02Xo, 01X3) = gm(Tx, w2 X1, 01X3)}.

Thus, slant distribution Dy is integrable iff
In(Tx, w201 X0 — Tx, w2001 X1, X3) = gu(Tx,w2 X1 — Tx,w2Xo, 01X3).
O

Now, we study to obtain conditions for totally geodesic foliation of distributions involved in the defini-
tion of PSSSRMs.

Proposition 3.14. Let VW bea PSSSRM from LPS manifold (X,,, Q, &, A, g) into a semi-Riemannian metric manifold
(X1, gn). Then, ker\V. defines a totally geodesic foliation iff

C(Txla)1X2 + 7’{VX1 a)ng) + a)z(leaan + TXla)2X2) = 0, (38)
for, X1, X, € LU(kerm.).
Proof. For, X1, X, € L(kerm.), from (13), (14) and (19), we get

Vx, X2 = Q°Vx, X5 — A(Vx, X2)&
= %V, X,
= QVy, QX,
= QTx, w1 X2 + QVx, 01Xz + QTx, 02X2) + QHVx, w2 X2)
= BTx,w1Xs + CTx,an Xo + @1V, w1 X2 + @, Vx, a1 Xo + w1 Tx, 02 X2
+ Wy Tx, w2 X + BHVx, w2 X + CHVx, w0, X;.
Therefore kermt. defines a totally geodesic foliation iff

C(TxlcUle + valszz) + wz(@xllez + Txla)QXz) =0. O

Proposition 3.15. Let W be a PSSSRM from LPS manifold (L,,,Q,&, A, gy) into a semi-Riemannian manifold
(X4, gn). Then, kerW defines a totally geodesic foliation iff

B(Ay,BY; + HVy,CY3) + w1(VVy,BY, + Ay,CY5) =0, (39)
for, Y1,Y, € L(ker V).
Proof. This proof is similar to Proposition 3.14. [J
We have new following results after combining Proposition 3.14 and Proposition 3.15.
Corollary 3.16. Let WV be a PSSSRM from LPS manifold (X,,,Q, &, A, gi) into a semi-Riemannian metric manifold

(X1, gn). Then, L, is a locally product Lojern, X LZkerns iff (38) and (39) hold, where Ly, and Lyyjernr are defined
as integral manifolds of kermt, and kerrt;- respectively.
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Proposition 3.17. Let VW bea PSSSRM from LPS manifold (X,,, Q), &, A, ) into a semi-Riemannian metric manifold
(X1, gn). Then, the invariant distribution D defines a totally geodesic foliation on kerm. iff for X, X5 € LI(D),

Q(BTXw1X3 + a)lﬁxszg,) =0 and (CTXw1X3 + a)z@x&)zX::,) =0. (40)
Proof. For X, X3 € LI(D), from (13), (14), (19) and (20) we obtain

VxXs = Q*Vx X5 — A(VxX3)E
= QVx(w1X3 + w2 X3)
= QVxw1 X3 + QVxw;r X3
= Q(Txw1 X3 + Vxwr X3)
= BTxw1 X5 + CTxw1 X3 + w1 Vxw2 X3 + 02 Vxws Xs.

Now, the proof is over. [

Proposition 3.18. Let W be a PSSSRM from LPS manifold (L, Q,&, A, g) into a semi-Riemannian manifold
(X1, gn). Then, Dy is totally geodesic foliation on kerm. iff for X1, X, € LI(Dy),

P(B(Tx,an Xz + HVx,w2X3) + w1 (Vx, a1 Xz + Tx,@2X3)) = 0, (41)
and
wz(@xllez + Txlw2X2) + C(Txla)1X2 + (}‘{VXlaQXz) =0. (42)

Proof. The proof of Proposition 3.18 is the same as Proposition 3.17. [

From Proposition 3.17 and Proposition 3.18, we obtain the next result.

Corollary 3.19. Let W bea PSSSRM from LPS manifold (Z,,, Q, &, A, gm) into a semi-Riemannian manifold (X, gn).
Then, the vertical distribution ker\V, is a locally product L,n X Ly, iff (40) and (41) true, where Ly» and Ly,
are integral manifolds of invariant distribution © and slant distribution Dg.

Theorem 3.20. Let W bea PSSSRM from LPS manifold (X,,,Q, &, A, g,,) onto a semi-Riemannian manifold (L, g,).
Then, WV is a totally geodesic map iff

a)z(vx3w1X4 + TX30)2X4) + C(TX3CL)1X4 + ?{VXSQ)2X4) =0 (43)
and
a)z(vstY(g + TX3CY3) + C(TXSBY3 + WVX3CY3) =0 (44)

for X3, X4 € LU(kerm.) and Y3 € U(kerny)
Proof. Since W is a semi-Riemannian map, we have
(Vr)(Y3, Ya) =0, for Y3, Yy € L(kerry).

For X3, X4 € I(kerm.), we obtain



T. Fatima et al. / Filomat 40:1 (2026), 179-197 189

(Vr)(X5, Xg) = Vi, (.Xy) — 1. Vx, X4
=-mVx,Xy = —m(QZVX3X4 - A(Vx,X4)&)
= 1. Q%Vx, Xy = —m(Q(—=(Vx, Q) Xy + Vi, QXy))
= —1,QVx,QXy) = —1.(Q(Vx, 01Xy + V02 X4)
= 1. Q(Tx,w1Xq + Vx,01Xy + Tx,2 Xy + HVx,02Xyg)
= —T.(BTx,w1Xs + CTx,w1 X4 + wlvx,jle;; + a)Z@XSa)lel
+ w1 Tx, w2 X4 + 02 Tx,w2Xs + BHVx,w2 Xy + CHVx,w2X4)
= —T0.(CTx,w1 X4 + 02V, 01Xy + w2 Tx, 02Xy + CHV w2 Xy).
Thus,

(VT[*)(Xg,, X4) =0 a)z(@X3w1X4 + TX3a)2X4) + C(TX3a)1X4 + 7‘(VX30)2X4) = 0. In same way as above, for
X3 € L(kerm.,) and Y3 € Li(kerntt), we infer

(Vr.)(X3,Y3) = 0 © wy(Vx,BY3 + Tx,CY3) + C(Tx,BY3 + HVx,CY3) = 0.
O

The fibers of a semi-Riemannian map 7 : (X, g) — (X, gn) is said to be a totally umbilical if

TxX3 = gu(X, X3)H, (45)
for any X, X3 € Ll(kermt.), where H denotes the mean curvature vector field of the fiber.

Let W be a PSSSRM from LPS manifold (X,,€, &, A, g,) onto a semi-Riemannian manifold (X, g,),
where g, and g, are Lorentzian metric and semi-Riemannian metric. Now, we are able to define some
useful equations needed for further study

(Vxw1)Xs = Vxan Xs — 01VxXs, (46)
(Vx@2)X3 = HVxw2 X3 — w0VxXs, (47)
(VxB)Y3 = VxBY3 — BHVxY3, (48)
(VxC)Y3 = HVxCY3 — CHVxY3, (49)

where X, X3 € Ll(kern,) and Y3 € L(kernt).
We say that w; (resp. wy, B or C) is parallel if Vw; = 0 (resp. Vw, =0, VB = 00r VC = 0).
Lemma 3.21. Let WV be a PSSSRM with canonical parallel structures from LPS manifold (L,,,€, &, A, gn) onto a

semi-Riemannian metric manifold (L, g,), where g,, and g, are Lorentzian metric and semi-Riemannian metric
respectively. Then for any X, X5 € L(kern.) and Y5 € L(kerm;), we infer
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(Vxw1)Xs = BTxX3 — Txw2 X3, (50)
(Vxw2)X3 = CTx X3 — Txan X3, (51)
(VxB)Y3 = anTxY3 — TxCYs, (52)
(VxCO)Ys3 = wTxYs — TxBY3, (53)

Proof. All the equations follow from Lemma 3.11 and (46) to (49). O

Theorem 3.22. Suppose W be a PSSSRM with totally umbilical fibers from LPS manifold (L,,,€3, &, A, gn) into a
semi-Riemannian metric manifold (X, g,). If dimension of slant distribution Dg is greater than 2 and wy holds same
direction condition, then we obtain fibers of \V are totally geodesic or the mean curvature H is a member of u.

Proof. If the fibers of W are totally geodesic then it is stateforward. Now, we consider the second state.
Since dim(Dg) > 2, then we can suppose X1, X, € LI(Dg) such that the set {X;, X5} is orthonormal. From (3),
(7), (19), (20), (13) and (14), we observe
Vx, QX; = (Vx, Q)Xo + QVx, Xo
= gn(X1, X2)& + QVx, Xo
Vx, (01 X3 + 02X5) = QVx, X5 + (X1, X2)&
= O(Tx, X2 + Y, X2) + (X1, X2)&
Tx,anXa + Vx, a1 Xy + Tx,2Xz + HVx, 02Xy = BTx, Xa + CTx, Xo + @1V, Xa
+@0Vx, Xo + gu(X1, X2)E.

Taking inner product with X;
In(Vx,01X2, X1) + gu(Tx,@2X2, X1) = §u(BTx, X2, X1) + g1V, X2, X1)
In(Vx,01X2 — nVx, X2, X1) = gu(Tx, 02Xz — BTx, X2, X1)
In(Vx,01)X2, X1) = gu(Tx, 02 X2 — BTx, Xo, X1).
Since, Vx, w1 = 0, we get

gn(Tx, w2 X5 — BTx, X5, X1) =0,
gm(QTx, Xo — Tx,QX5, X1) =0,

gn(QTx, X2, X1) = gu(Tx, QX3, X1). (54)
Thus using (45) and (54), we have

Im(H, QX5) = g,u(Tx, X1, QX0) = gu(Tx,QX0, X) = 9,u(QTx, X2, X1) = gin(Tx, X2, QX71)
= gn(Tx, X1, QX1) = (X1, X1)gm(H, QX;) = 0.

Since, g(X1, X1) # 050 gn(H,QX;1) = 0. So, we see H L w,Dg. Therefore, it follows H is a member of u
from (23). O
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Corollary 3.23. Suppose W be a PSSSRM with totally umbilical fibers from LPS manifold (L,,,Q, &, A, gn) into a
semi-Riemannian metric manifold (Z,,, g,.). If (kerW.,)" = 0, Dy, i.e, p = {0} and wy is in same direction, then it is
sure that fibers of W are totally geodesic.

Assume W be a PSSSRM from LPS manifold (X,,, Q, &, A, 9,) into a semi-Riemannian metric manifold
(X4, gn). Then, the fibers of W are said to be mixed geodesic, if Tx Xy = 0, for all X € LI(Dg), X4 € LI(D).

Theorem 3.24. Let W be a PSSSRM from LPS manifold (£,,,Q, &, A, g) into a semi-Riemannian metric manifold
(X, gn). If w, is in same direction , i.e, Vw, = 0, then the fibers of W must be mixed geodesic.

Proof. Assume w is in same direction, then for any X, X3 € L(ker\V.) from (51), we observe

CTXX3 = wang,. (55)
Using (55), we obtain
CZTXX3 = Txa)%X3. (56)

If we put X = X4 € II(D) and X3 = X € LI(Dyp) in (56) and using (32), we get

C?Tx, X = cos*0Ty, X. (57)

Since T is symmetric on Ll(ker'V,) and from (55), we infer

C*Tx, X = C*TxXy = Txw? Xy = TxXa, (58)

C2Tx, X = TxXs. 9
4

From (57) and (59), we obtain

TxXy = 0. (60)

O

4. The first variational form of PSSSRM

The purpose of this section is to present an alternative method for verifying the harmonicity of a map,
and to define the first variational form of a PSSSRM from a Lorentzian para-Sasakian manifold into a
semi-Riemannian metric manifold.

Let W bea PSSSRM from LPS manifold (X, (), &, A, gn,) into a semi-Riemannian metric manifold (X, g,).
We define the 1-form dual to the vector field FY3, for Y3 € L(kerW}), such that 03 : Li(kerWs) — F(Wg™!),
where g € N and X3 — 0Y3(X3) = g,(QY3,X3), for all X3 € L(ker'W++). We define the sets of Legen-
dre, Hamiltonian, and harmonic variations of any fiber of W as I's = Y3 € Ll(kerW'+) : doY3 =0, I =
Y5 € L(kerWt+) : Af € QW) = 0Y3 = df, and > = Y3 € L(kerW}) : AcY; = 0, respectively. It should be
noted thatI'y ¢ I';, I'; € I's, and I't NI, = 0 by the definitions of differential and co-differential operators.

The study is focused on identifying the conditions under which the 1-form oy, defined in the previous
content can be considered as a Legendre variation.
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Lemma 4.1. Let WV be a PSSSRM from LPS manifold (Z,,,Q, &, A, gm) onto a semi-Riemannian metric manifold
(X1, gn). The 1-form oY3 is a Legendre variation iff

In(TxY2, 01X3) = gn(Tx, Y2, 01X) = gu(Ay, X2, 02X) — gu(Ay, X, 02X2), (61)
forall X, X, € L(kerW.).
Proof. Let X, X, € Ll(kerW.). Then, by the definition of differential, (14) and (3), we obtain

(doy,)(X, X2) = Xgm(QY2, X3) = X29m(QY2, X) = gm(QY2, [X, X2])
= Vxgm(Y2, QX5) + u(Vx Y2, QXo) + g,(Y2, VxQX5) — Vx, g (Y2, QX)
— gn(Vx, Y2, QX) = gn(Y2, Vx,QX) — (Y2, QVx X, — QVx, X)
= gn(VxY2,QX5) — gu(Vx, Y2, QX)
= gu(TxY2 + HVxY2, 01X2) + gu(Tx Y2 + HVxY2, 02 X5)
— gn(Tx, Y2 + HVx, Y2, w1 X)
— gu(Tx, Yo + HVx, Y2, 02 X)
= gu(TxY2, 1 X2) + gu(HVxY2, 02X2) = gin(Tx, Y2, 01X) = gun(HVx, Y2, 02X).

Since, we suppose Y is basic, we get
(doy,)(X, X2) = gn(TxY2, 01X2) + gu(Ay, X, 02X2) = gin(Tx, Y2, 01X) = gu(AY2 X5, w2 X).
Since (doy,)(X, Xz) = 0. Therefore,
In(Tx Y2, 01X2) = gin(Tx, Y2, 01X) = gun(Av, X2, 02X) = gin(Av, X, 02 X3).
0
Lemma 4.2. ForY; € Ll(u), oy, =0.
Proof. Let Y3 € LI(u) then QY3 € LI(y) for any X, € Li(ker'\.), we get
oy,(X2) = 9(QY3,X5) =0,

so, oy, = 0 for all X, € Ll(ker'V,). O

Remark 4.3. By virtue of Lemma (4.2), the assumption that H belongs to 11(w,D6) is made throughout this paper.

Proposition 4.4. Let Y be a PSSSRM that maps LPS manifold (Xm,Q, &, A, gm) onto a semi-Riemannian metric
manifold (X, gn), and let f be a smooth function on a fiber. We then assert that Q(grad(f)lw2Dg) € I'1.

Proof. On fibers suppose f is a smooth function, then for Y3 = Q(grad(f)|lw, D) and any X, € Li(ker\V.). We
obtain oy, (X2) = gm(QY3, X2) = gm(grad(f), Xo) = Xo[f] = df(X2). Hence, oy, = df, implying Y3 € I1. O

Moreover, for Y3 € Li(ker W), the first variation of the volume of a fiber \Ifgl, for g € L, is defined from
[22].

P00 =k [ gl o1 G

In this equation k = dim(‘lfq‘l). In this context, we define the fibers as follows:

e If ¢’(Y3) = 0 forall Y; € '3, then \111;1 is I's-minimal.
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e If ¢’(Y3) = 0 for all Y5 € Ty, then \Ifgl is T1-minimal.
e If ¢’(Y3) =0 forall Y; € I, then ‘111;1 is I'>-minimal.

Remark 4.5. It is worth noting that if the fiber is minimal, then the fiber is I's, I'1, and T'y minimal. In addition, if
the fiber is I's-minimal, then it is also I'1-minimal and T'r-minimal, as T4 C I's and I C T'.

Now, we are ready to state our next Theorem.

Theorem 4.6. If W is a PSSSRM from LPS manifold (L,,Q,&, A, gn) to a semi-Riemannian metric manifold
(Zu,g), then

(a) The fiber ‘I’;l is I's-minimal iff the Legendre variation of Y3 is zero for all Y3 in I's.

(b) The fiber W~'q is T'y-minimal iff the Hamiltonian variation of oY is zero for all Y5 in Ty.

(c) The fiber W='q is To-minimal iff or, can be expressed as the sum of an exact and a co-exact 1-form, where or,
denotes the harmonic variation of 05 for all Y5 in I's.

Proof. (a)=: Let W be a PSSSRM that maps LPS manifold (X, Q, &, A, g,,) onto a semi-Riemannian metric
manifold (X,, g,) and let \If‘lq be I's-minimal. Then, for any Y3 € I's, we have g,,(I'2, Y3) = 0 from (??). From
the definition of the Hodge star operator, we have for Vi, V5, ..., Vi € Ll(ker W+). From the definition of the
global scalar product (.|.) on the module of all forms on the fiber, we get

(O'y3|0r2) = f O'Y3A *0r, = 0. (63)
w-lg

Denote by 6 the co-differential operator on the fiber W~g. Since oY3 is closed, for any 2-form § on W~lg, we
have

0 = (doY3|) = (doy,|6p). (64)

Since \Ifgl is compact, by (63) and (64) we conclude that or, is co-exact.
&: Suppose that or, is co-exact. We have or, = 61 for some 2-form 1. Then, for any Y3 € I';, (

(0v,lor,) = (0v,10¢) = (doy,¢) =0

and then
(P,(Y?)) = _kfl gm(FZ/ YS) * 1 = _kfl(GY3A * Grz) = _k(UY3|C71“2) = O/

Wy vy
ie. \I’gl is T's-minimal.
(b) =: Let the fiber \I/q’l be I'y -minimal. Then, we have

0=¢'(Y3) = —kf gm(Y3,I2)»1=—k (oy,A *or,) = —k(oy,lor,),
vl vl

that is, (0y,lor,) = 0. Since Y3 € I'1, oy, = df for some function f on the fiber \Pgl. Thus,

(@dflor,) = (floor,) = 0.

Hence it follows that dor, = 0, i.e. or, is co-closed.
«&: Suppose that or, is co-closed. Let Y3 € I'y, then there exist a function f € ¥ (\If,;l) such that oy, = df.
Hence, we have

(GY3|GTZ) = (df|0rz) = (f|60r2) =0.
Therefore,
(p,(Yg,) = —kfl gm(Fz, Y3) +1=—k

q

1(GY3A * Urz) = —k(0y3|(7r2) =0,
vy
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thatis ¢’(Y3) = 0 for Y3 € Iy, i.e. \Ifq’1 is Ty-minimal.

(c) =: If the fiber ‘I’;l is I';-minimal, then for Y3 € I',, we have
0=¢'(Y3) = —kf ) gm(Y3, T2)*1 =~k 1(01/3/\ *0r,) = —k(0y,lor,).
vy vy

It means that, or, is orthogonal to harmonic 1-forms on the fiber \Ifgl. Thus, by the Hodge decomposition
theorem, we conclude that or, is the sum of an exact and a co-exact 1-form.
«&: Let o, be the sum of an exact 1-form w; = df and a co-exact 1-form w, = 0. For Y3 € I';, we have

(ov;lor,) = (ov,ldf + 0Y) = (av,ldf) + (ov,16¢) = (6o, |f) + (doy,|¢) =0,

since doy, = 60y, = 0. Thus,

¢'(Ys) = -k f gn(Ya T) 1 = -k f (0v, A+ ar,) = —Kovalors),
-1 \I_] 1

¥ q

that is, the fiber is I';-minimal. [J

Theorem 4.7. Let W be a PSSSRM from LPS manifold (L, €, &, A, ) onto a semi-Riemannian metric manifold
(X, gn). If T2 € T3 Then,

(a) W, is Ty-minimal iff W is minimal.

(b) \Ifgl is I'1-minimal iff or, is a harmonic variation.

(c) \I/q‘1 is I'y-minimal iff or, is an exact 1-form.
Proof. (a) If the fiber ‘I’;l is I';-minimal, then by Theorem ??-(a) we have, or, is co-exact. Hence or, is co-
closed. Taking into account the fact that dor, = 0, we deduce that or, is harmonic. But this is a contradiction
because of Hodge decomposition theorem. So, or, must be zero. Hence we conclude that I, = 0. The
converse is clear.
(b) =: If the fiber \I’Lf is I'1-minimal, then we have éor, = 0 from Theorem ??-(b). Since dor, = 0, or, is also
harmonic, i.e. Aor, = 0.
&: If or, is harmonic, then or, is co-closed. By Theorem ??-(b), the fiber \Pgl is I'-minimal.
(c) =: Assume that W;! is I';-minimal. then, from Theorem ??-(c), or, is the sum of an exact 1-form and a
co-exact 1-form. On the other hand, the condition I', € I'; implies that or, is orthogonal to every co-exact
1-form on \I/,;l. Thus, or, must be exact.
«&: Let or, be an exact 1-form. For Y3 € I';, we obtain

¢'(Ys3) = —kf gm(Y3, I2)x1 = —kf (0v;A*or,)
-l 07}

-1
q q

= —k(ov,lor,) = (ov,ldf) = (6oy,|f) =0,

that is, ‘I’;l is [,-minimal. O

Remark 4.8. It is well known that, the fibers of a submersion is minimal iff the submersion is harmonic.

5. Examples
Now, we present some examples for PSSSRMs.

Example 5.1. Every almost para-contact submersion from an almost para-contact manifold into a semi-Riemannian
metric manifold is a P-wise SS Riemannian map with 6 = 0 and (range\V.)* = 0.
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Example 5.2. Every anti-invariant Riemannian submersion from an almost para-contact manifold into a semi-
Riemannian manifold is a P-wise SS Riemannian map with 6 = 5 and (rangeW.)* = 0.

Example 5.3. Every proper P-wise SS Riemannian submersion with the slant function 0 is a P-wise SS Riemannian
map with (rangeW,)* = 0.

Example 5.4. Every proper slant Riemannian submersion with the slant angle 0 is a P-wise SS Riemannian map
with (rangeW,)* = 0.

Example 5.5. Every proper semi-slant Riemannian map is a P-wise SS Riemannian map with a constant slant
function.

Example 5.6. Let R = {(x1,X2, ., X, Y1, Y2, s Y, Z = Xi, Yi, 2 € R,i = 1,2,...,m)}. Consider R¥™*! with the
following structure:

m J 0 0 m 9 m 9 m P
Q ;(Xza—xl + Yia—yi) +Z£ = Z Yié?_x,- + ina_y, + ZXiyig’

In=—NQN+

N

Z(dx,- Qdx; + dy; ® dy;),
i=1

1 - J
A= —E(dz - §y,~dxi), &= 25.

Then, (R*™*1,Q, &, A, gi) is LPS manifold. The vector fields E; = 2&%,-' Ensi = 2(3%_ + yi%) and & form a Q-basis
for the contact metric structure.

Example 5.7. Considering Example 6, we define a map

W:R’— R’

by

W(x1,.., X4, Y1, .., Y4,2) = (cOs y1x1 — sin y1x3, sin yoxp — cos 3,0, 0,0, 0, 0).
Then it follows that

(ker W.) = span{Ey, Eg, Eg,sin y1Es + cos y1E7, cos y2E¢ + sin y1 Es},
where

D = span{Ey, Eg},

Dg = span{sin y1E5 + cos y1E7, cos y2E¢ + sin y,E3},

&=Ey,
and

(ker W,)" = span{Eq, E, cos y1Es — sin y; E7, sin y2E — cos y2E3},

1 sin 21

where 0 = cos~ ; where sin® y; + cos? i, — y3 cos? yp > 0 is a point wise slant angle and W

24/sin y1+cos? ya—y2 cos? i
is a PSSSRM from LPS manifold into semi-Riemannian metric manifold.
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6. Conclusion

The first variational formula is fundamental to differential geometry and is essential to understanding
the complexities of geometric objects, especially those that fall under the domain of surfaces. Its importance
extends to various applications, with a primary focus on the study of minimal surfaces and the calculus of
variations in a geometric context. In addition, the first variational formula serves a substantial part in the
analysis of geodesics in Riemannian geometry contributing to deduce geodesic equations and expanding
comprehension of curved spaces. Furthermore, it is used in the derivation of the Jacobi equation, which
provides insights into the curvature of a manifold along geodesics. As a result, variational problems
pertaining to minimal surfaces, geodesics, and variational principles can be systematically investigated
through the use of the first variational formula, which malleable tool in differential geometry that improves
our understanding of the geometry of spaces and the behavior of curves and surfaces within them.

However, Harmonic maps are necessary for the study of geometric structures on manifolds. They
have intimate relationships, for instance, with minimal surfaces, isometric embeddings, and conformal
mappings. The harmonicity condition provides insights into the interplay of geometry and analysis by
establishing the equilibrium between curvature and deformation.

Thus, we have extended the understanding of Pointwise semi-slant maps which are defined on LP-
sasakian manifold to a semi-Riemannian manifold and studied its behavior and significance through using
the first variational formula on the fibers to derive necessary and sufficient conditions for their harmonicity.
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