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Abstract. In this paper, we explore the geometric structure of LP-Sasakian manifolds in the context of
the Schouten-van Kampen connection. We investigate the interplay between this connection and various
curvature-related properties of the manifold. It is established that an LP-Sasakian manifold is locally
¢-symmetric with respect to the Schouten-van Kampen connection if and only if the same holds for the
Levi-Civita connection. Furthermore, we demonstrate that if an LP-Sasakian manifold is ¢-recurrent under
the Schouten-van Kampen connection, then it necessarily satisfies the 7-Einstein condition with respect to
the Levi-Civita connection. We also prove that quasi-conharmonically flat, conharmonically flat and ¢-
conharmonically flat LP-Sasakian manifolds admitting the Schouten-van Kampen connection are likewise
n-Einstein manifolds.

1. Introduction

In differential geometry, the exploration of manifolds with distinct geometric structure is essential for
understanding complex spaces, particularly those that emerge in physics, such as general relativity and
cosmology. Among these structures, the para-Sasakian manifold stand out as a valuable framework-
much like the Sasakian manifold for examining geometries exhibiting certain symmetries. The concept
of LP-Sasakian manifolds was first introduced by K. Matsumoto in 1989 [10]. Independently, I. Mihai
and R. Rosca [12] also developed the notion and established several foundational results within this
framework. Subsequent investigations into LP-Sasakian manifolds have been carried out by various
researchers, including K. Mastumoto and I. Mihai [11], as well as U.C. De, K. Matsumoto and A.A. Shaikh
[6] and many others such as ([4], [7], [18]).

The Schouten-van Kampen connection, first introduced by Van Kampen in 1930 for the analyzing
non-holomorphic manifolds [17]. It is regarded as one of the most intrinsic connections on differentiable
manifolds endowed with an affine connection [1]. In 2006, Bejancu [2] examined various properties of
the Schouten-van Kampen connection of foliated manifolds. Subsequently, Olszak [13] focused on the
Schouten-van Kampen connection in the framework of almost contact metric structure and showed some
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significant results. Recently, Zeren et al. Characterize LP-Sasakian manifolds with respect to the Schouten-
van Kampen connection and showed some interesting results.
Schouten-van Kampen connection V on Riemannian manifold (M", g) is given by

Vi, Xo = Vi, Xa + 1(X2)Vx, & = (Vi 1)(X2)E, (1)

for all X1, X5 € x(M).

A functionis termed harmonic if it satisfies the condition that its Laplacian vanishes. In general, applying
a transformation to a harmonic function does not guarantee that the resulting function remains harmonic.
The specific conditions under which harmonicity is preserved have been investigated by Ishii [9], who
introduced a specialized subclass of conformal transformations known as conharmonic transformations.
These transformations maintain the harmonic nature of functions and are defined by a conformal change
of the metric

gij = €°gij,
where o is a smooth scalar field. For the transformation to be conharmonic, the conformal factor 0 must
satisfy the following differential condition:

di+0d'o;=0

in which commas denotes covariant derivatives with respect to the original metric g. This condition
ensures that the Laplace operator transforms in a way that preserves its vanishing property, thereby
keeping harmonic functions invariant under the transformation.

Conharmonic curvature tensor of LP-Sasakian manifold is defined by [9]

K(X1, X2)X5 = R(X1, X2)X3 — (2;11——1)[S(X2’X3)X1 — 5(X1, X3) Xz + (X2, X3)QX1 — (X1, X3)QXz],  (2)
where X1, X5, X3 € x(M) R, S and Q are the Riemannian curvature tensor, Ricci tensor and Ricci operator
respectively.

Subsequent to Ishii’s work, several researchers have made substantial contributions to the theory and
applications of conharmonic geometry. Yano and Bochner studied various curvature invariants under
conformal and projective transformations, laying foundational concepts for understanding how curvature
tensors behave under different geometric mappings [22]. Building on these ideas, Ryszard explored mani-
folds admitting conharmonic transformations and investigated the properties that remain invariant under
such transformations [20]. Prvanovi’c analyzed manifolds with recurrent conharmonic curvature tensors,
contributing to the classification of special types of manifolds where the conharmonic tensor exhibits par-
ticular symmetries or recurrence relations [14]. Later, Chaki extended the study of conharmonic curvature
by introducing the notion of conharmonic flatness and its implications in the context of quasi-Einstein
and semi-symmetric manifolds [3]. In more recent developments, De and De [5] give various geometric
structures satisfying specific curvature conditions involving the conharmonic tensor, thereby broadening
the scope of its applicability.

The conharmonic curvature tensor C of LP-Sasakian manifold with respect to Schouten-van Kampen
connection V is given by

. o 1 o o o o
K(X1, X2)X3 = R(X1, X2)X3 — m[s(xz,x3)x1 = 5(X1, X3) X5 + 9(X2, X3)QX1 — g9(X1, X3)QX2],  (3)

where R, S and S are Riemannian curvature tensor, Ricci tensor and scalar curvature tensor with respect to
Schouten-van Kampen connection V respectively.

Definition 1.1. An n-dimensional LP-Sasakian manifold M" is said to be n-Einstein manifold if the Ricci tensor S
is of the form S(X1, X2) = ag(X1, X2) + bn(X1)n(Xa), for all X1, X» € x(M), where a and b are scalars.
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2. Lorentzian Para-Sasakian Manifolds

Let M" be an n-dimensional differentiable manifolds equipped with the structure (¢, &, 1), where ¢ is a
(1,1)-tensor field, ¢ is a vector field, 17 is a 1-form on M" such that

ne) =-1, (4)

q52:1+r]®£, (5)

which implies

P& =0, (6)

n(¢) =0, )

rank(¢p) =n —1. (8)
Then the manifold M" admit a Lorentzian metric g, such that

9(PX1,9X3) = 9(X1, X2) + n(X1)n(X2), ©)
and M" is said to admit a Lorentzian almost paracontact structure (¢, &, 1, g). In this case, we have

9(X1, &) =n(X1), Vx,& =X, (10)

Q(Xy, X3) = g(X1, pX3) = g(p Xy, X3) = Q(X2, X1), (11)

where Q is another 2-form on M".

If we replace & by —& in equations (4) and (5), the the structure (¢, &, 17) becomes an almost paracontact
structure on M" defined by Sato ([15], [16] ). The Lorentzian metric given by equation (10) stands analogues
to the almost paracontact Riemannian metric for any almost paracontact manifold [10].

A Lorentzian almost paracontact manifold M" equipped with the structure (¢, &, 11, g) is called Lorentzian
paracontact manifold [10] if

X, %) = 5 (T, 1% + (T, )Xa). (12)

A Lorentzian almost paracontact manifold M" equipped with the structure (¢, &, 11, g) is called Lorentzian
para-Sasakian manifold [10] if

(Vx,0)X2 = g(pX1, pX2)& + n(X2)p? X (13)

In Lorentzian para-Sasakian manifolds the 1-form 7 is closed. Also in [10], it is provided that if an
n-dimensional Lorentzian para-Sasakian manifold (M", g) admits a timelike unit vector field £ such that the
1-form n associated to £ is closed and satisfies

(Vx, Vx,) X3 = g(X1, Xo)n(X3) + g(X1, X3)n(X2) + 2n(X1)n(X2)1n(X3), (14)

then M" admits a Lorentzian para-Sasakian structure. Also n-dimensional Lorentzian para-Sasakian mani-
fold M" satisfies the following conditions:

(VX2 = —g(X1, X2) — n(X1)n(X2), (15)

R(X1, X2)€ = n(X2) X1 — n(X1) Xz, (16)
R(&, X1)Xo = g(X1, X0)& — n(X2) X1, (17)
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NR(X1, X2)X3) = 9(Xo, X3)n(X1) — 9(X1, X3)n(X2), (18)

for all X7, X5, X3 € x(M).
On using equations (1), (10) and (15) Schouten-van Kampen connection of LP-Sasakian manifold is
given by

Vi, X2 = Vi, Xo + n(X2)p X1 — g X1, X2)&. (19)

Example: Consider a 3-dimensional Lorentzian manifold M?® with the coordinate system (x, y,t) and the
Lorentzian metric

g = dx* + e dy? — dr*.
This metric has Lorentzian signature (+, +, —). Define LP-Sasakian structure as almost contact structure
P(dx) = €'dy, P(dy) = -0y, P(d) =0,

characteristic vector field £ = d; and 1-form n = dt. Ricci tensor S(X1, X») is given by:

3
5(X1,X5) = Z g(R(X1, E)X, Ei),
im1

where E1, E;, E3 = dy, dy,d; is an orthogonal basis.
Computing the Christoffel symbols using the Koszul formula

29(Vx, X2, X3) = X19(Xa, X3) + Xo9(X3, X1) — X39(X1, Xo) + 9([ X1, Xo], X3) + 9([ X3, X11, Xo) — 9([ X2, X3], X1),
we get
Vaxax = O, V()xay = e"ay, Vaxat = 0,
Vayay = -0y, V,;yat =0, Vaﬂt =0.

The components of the Riemann curvature tensor are as follows:
R(0x,0,)dx =0y, R(dx,dy)dy = —2¢7d,, R(dx,dy)d; =0,
R(&x, 8t)8x = 0, R(Bx, 8t)8y = O, R(&x, &t)gt = O,

R(8y, Bt)3x = O, R(&y, 8t)8y = 0, R(gy, Bt)at =0.

The Ricci curvature components as
S(0x,dx) = =1, S(dy,dy) =€, S0, ) =0,

for off-diagonal terms
5(0x, dy) = 5(0x, ) = 5(dy, 9) = 0.

Thus, the Ricci curvature matrix is

-1 0 0
S={0 e* 0].
0 0 0

A manifold is an Einstein manifold if S = Ag, but we have matrix
1 0 0
g=10 ¢ 0
0 0 -1

comparing S with g, we see that no constant A satisfies S = Ag, hence the manifold is not Einstein.
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A manifold is n-Einstein if
S=ag+pnen.
Now,

000
nen=0 0 0f,
00 1

substituting g and 1 ® 17, and matching the Ricci tensor, we get

-1 0 0 1 0 0 0 0O
0 e 0[=al0 e 0[+p/0 0 0.
0 0 0 0 0 -1 0 01

Solving for a, B, wegeta =-1land f =1.
Thus, the manifold is an n-Einstein manifold with S = —g+ n®n.

3. Curvature Tensor of LP-Sasakian Manifolds with respect to Schouten-van Kampen Connection

203

Riemannian curvature tensor R of LP-Sasakian manifold M" with respect to Schouten-van Kampen

connection is given by
R(X1,X2)X3 = Vx, Vi, X3 — Vi, Vi, X3 — Vix, %1 X3,
which on using equation (19), above equation reduces to

R(X1, X2)X5 = R(X1, X2) X3 + 9(X1, $X3)0 X2 — 9(Xa, pX3)p X1
+ (X2, X3)n(X1)€ — 9(X1, X3)n(X2)E + n(X2)n(X3) X1 — n(X1)n(X3)Xo.

which is relation between curvature tensor of connections V and V, where
R(X1,X2)X3 = Vx, Vx, X3 = Vx,Vx, X3 = V[x;,x,1X3-
From equation (21), we have

"R(X1, X2, X3, Xs) = R(X4, X2, X3, Xa) + 9(Xz, 0X1)9( X2, Xa) — 9(Xz, $X2) (X1, Xa)
+ 9(Xa, X3)n(X1)n(Xy) — 9(X1, Xa)n(X2)n(Xy) + 9(X1, Xa)n(Xo)n(X3) — g(X2, Xa)n(X1)n(Xs).

where
"R(X1, X2, X3, Xs) = g(R(X1, X2) X3, X4)
and
'R(X1, X2, X3, Xs) = g(R(X1, X2) X3, X4).
Putting X; = X4 = ¢; in equation 21 and taking summation overi, 1 <i < n, we get

S(X2, X3) = S(X2, X3) + (n — H)n(Xo)n(Xs),

(20)

(21)

(22)

(23)

where, S and S are the Ricci tensor of the connections V and V respectively. Again putting X, = X5 = ¢; in

equation (23) and taking summation over i, 1 <i < n, we get

F=r—-m-1),

(24)
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where, 7 and r are the scalar curvature tensor of the connections V and V respectively.
From equation (21), we have

R(X1,8)X3 = R(E, X2) X3 = R(X1, X3)& = 0. (25)
Again from equation (23), we have

5(X2,8) = 5(¢,X2) =0 (26)
and

QX = QX1 + (n - 1)Xy, (27)

where Q and Q are the Ricci operators with respect to the connection V and V respectively.

4. Locally ¢-Symmetric LP-Sasakian Manifolds with respect to Schouten-van Kampen Connection
An LP-Sasakian manifold M" is said to be locally ¢-symmetric if
*((Vx,R)(X1, X2)X3) = 0 (28)

for all vector fields Xj, X5, X3, X5 orthogonal to £. This notion was introduced by Takahashi for Sasakian
manifolds [21]. An LP-Sasakian manifold M" is said to be ¢-symmetric if

P*((VxsR)(X1, X2)X3) = 0 (29)

for arbitrary vector fields X, X5, X3, Xs.

Analogous to the definition of locally ¢-symmetric LP-Sasakian manifold with respect to Levi-Civita
connection, we define a locally ¢-symmetric LP-Sasakian manifold with respect to the Schouten-van Kam-
pen connection by

d*(Vx,R)(X1, X2)X3) = 0, (30)
for all vector fields X;, X5, X3, X5 orthogonal to &. In the view of equation (19), we have
(Vi R) (X1, X2) X5 = (Vx, R)(X1, X2) X3 + n(R(X1, X2) X3)p X5 + g(p X5, R(X1, X2)X3)E. (31)

Now differentiating equation (21) covariantly with respect to X5, we get

(Vx,R)(X1, X2)X3 = (V. R)(X1, X2) X5 + (X1, (Vs §)X3)p Xz + 9(X1, pX3)(Vx,0) X2 + (X2, X3)(Vx;)(X1)&
+ (X2, Xa)n(X1)Vx:€ — 9(X1, X3)(VxsmM(X2)E — (X1, X3)n(X2)Vx, € = {(Vxs)(X2) X1 — (Vi )(X1) X2}1(X5)
+ {n(X2) X1 — n(X1) X2} (Vxs1)(X3).

(32)

Using equations (10), (13) and (15) in equation (32), we have
(VxsR) (X1, X2) X3 = (Vx, R)(X1, X2) X3 + {9(X5, X3)1(X1) + 9(X1, X5)1(X3) + 2n(X1)n(X3)1(Xs5)}p X2
+1{g9(X1, 0X5)9(X2, X5) + 29(X1, 9X3)n(X2)n(X5) + g(Xa, X3)g9(p X5, X1) — 9(Xa, X3)9(pXs, X2)}E

+{9(X2, X3)n(X1) — (X1, X3)n(X2)}pXs5{g(p X5, X2) X1 — (X5, X1)X2}n(X3) + {n(X2) X1 — n(X1)X2}g(p X5, X3).
(33)

Now taking the inner product of the equation (21) with &, we get

N(R(X1, X2)X3) = 0. (34)
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Also from equation (21), we have
9(Xs, p(R(X1, X2)X3))E = (X5, 9X1)g(Xo, X3) + 9(X1, X3)9(X5, $X2)& — 9(X1, X3)9(Xs5, pX2)&
+ 9(X1, $X3)9(X5, X2)& + g(X1, pXa)n(Xo)n(Xs)E — g(X2, pX3)9(X1, X5)& — 9(X2, X3)n(X1)n(Xs5)E  (35)
+ 9(Xs5, pX)N(X)n(X3)E — g(Xs, pXo)n(X1)n(Xs)€E.

By the virtue of equations (30), (31), (32) and (33), we get

P (VxRN (X1, X2)X3) = P*(Vx.R)(X1, X2)X3) + {9(Xz, X5)n(X1) + 9(X1, X5)n(Xz) + 2n(X1)n(Xa)n(Xs)}p* (0 X2)
+{9(X1, §X3)9(X2, Xs) + 29(X1, pX3)1(X2)1(Xs) + 9(X2, X3)9(X1, $X5) — 9(X1, X3)9(X2, $X5)}¢*E
+{g(X2, X3)n(X1) — 9(X1, Xa)n(X2)}p*(9Xs5) + {g(pXs, X2)p* X1 — g(pXs, X1)p* Xo}n(Xz) + {n(X2)p*(X1)
— (X1)p*(X2)}g(¢Xs5, X3).
(36)
Consider X;, X,, X3 and X5 are the orthogonal to &, then equation (35) yields
*((Vx, R)(X1, X2)X3) = *((Vx; R)(X1, X2) X3). (37)
Thus, we can state as follows:

Theorem 4.1. In an LP-Sasakian manifolds the Schouten-van Kampen connection V is locally ¢-symmetric iff the
Levi-Civita is so.

5. ¢-Recurrent LP-Sasakian Manifolds with respect to Schouten-van Kampen Connection

An n-dimensional LP-Sasakian manifold M" is said to be ¢-recurrent if there exist a non-zero 1-form A
such that

P*((Vx,R)(X1, X2)X3) = A(X5)R(X1, X2)X;. (38)

If X4, X5, X3, X5 are orthogonal to & then the manifold is called locally ¢-recurrent manifold.

If the 1-form A vanishes, then the manifold is reduced to ¢-symmetric manifold ([8], [19]).

An n-dimensional LP-Sasakian manifold M" is said to be ¢-recurrent with respect to Schouten-van Kampen
connection if there exist a non-zero 1-form A such that

P*(Vx,R)(X1, X2)X3) = A(X5)R(X1, X2) X3, (39)

for arbitrary vector fields X;, X,, X3 and Xs.
Suppose M" is ¢-recurrent with respect to Schouten-van Kampen connection, then in view of equations
(5) and (39), we can write

9(VxR)(X1, X2)X3, Xa) — n((Vx, R)(X1, X2)X3)n(Xs) = AXs5)g(R(X1, X2) X3, Xa). (40)

By the virtue of equations (31) and (34) above equation reduced to

9(VxsR)(X1, X2) X3, Xa) + n(R(X1, X2)X5)9(Xa, $X5) + (Vi R) (X1, X2) Xa)n(Xs) = A(X5)g(R(X41, X2) X3, Xa),
(41)

which on using equations (21) and (33), above equation takes the form

g(VxsR)(X1, X2) X3, Xy) + {9(Xs5, X3)n(X1) + g(X1, X5)n(X3) + 2n(X1)n(X3)n(Xs)lg(pXa, Xy)

+{g(X1, $X3)9(Xa, X5) + 29(X1, pX3)n(X2)n(Xs)In(Xs) + {g(X2, X3)n(X1) — 9(X1, X3)n(X2)}g(¢p X5, X4)

+ N(Vxs R)(X1, X2)Xan(Xs) + {g(X1, Xo)n(X2) — 9(Xo, Xa)n(Xi)1g(dXs, X5) — {9(X2, X3)n(X1)

+ 9(X1, X3)n(X2)}9(Xs, 9X5) + (X4, 9X5)N(R((X1, X2)X3) — {g9(X2, X5) + 2n(X3)n(X5)}9(X1, pX3)n(Xs)
+{g(X2, pX5)n(X1) — 9(X1, pX5)n(X2)In(X3)n(Xe) = A(X5)g(R((X1, X2) X3, Xa) + A(X5)9(X1, $X5)9(X2, ¢ X4)
= A(X5)9(X2, pX3)g9(X1, 9X4) + A(X5)g(X2, Xa)n(X1)n(Xye) — A(X5)g(X1, X3)n(X2)n(Xy)

+ A(X5)9(X1, Xo)n(X2)n(Xs) — A(Xs)g(Xa, Xa)n(X1)n(Xs).
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(42)
Putting X3 = £ in above equation and using equations (4), (6) and (10), we get
9(Vx,R)(X1, X2)&, X4) — {9(X1, X5) + n(X)n(Xs)}g(pX2, Xa) + {n(X2) X1 — n(X1)X2}g(X1, $X5)

+ (Vs R) (X1, X2)En(Xs) = {g(X2, pX5)n(X1) — 9(X1, pX5)n(X2)1n(Xs) (43)
= A(X5)g(R(X1, X2)&, X4) — 9(p X1, Xa)n(X2)A(Xs) — 9(Xo, Xa)n(X1)A(X5).

Now, putting X; = X4 = ¢; in above equation and taking summation over i, 1 <i < n, we get

(VxsS) (X2, &) — 9(X2, pX5) — Z N((Vx;R)(ei, X2)&)g(ei, &) = A(X5)S5(Xp, &) + (n — D)n(X2)n(X4). (44)

i=1
Let us denote the third term of left hand side of equation (44) by E. In this case E vanishes Namely, we have
g((vX5R)(ei/ Xz)gr (S) = g((VX5R)(€i/ XZ)E/ E) _g(R(VX5€i/ XZ)é/ é) _g(R(ei/ VX5 Xz)é/ é) - !](R(ei/ XZ)VX5 é/ E) (45)

at p € M". In local coordinates Vx,e; = XéF’]?ieh, where F’]?l. are the Christoffel symbols. Since {e;} is an

orthonormal basis, the metric tensor g;; = 6;;, 6;; is the Kronecker delta and hence the Christoffel symbols
are zero. Therefore Vx,e; = 0. Since R is skew-symmetric, we have

g(R(ei, Vx; X2)<E, &) = 0. (46)
Using equation (46) in equation (45), we get

9((Vx,R)(ei, X2)E, &) = g((Vx;R)(ei, X2)E, &) — g(R(ei, X2)Vx,€, £). (47)
In view of g(R(e;, X2)¢&, &) = —g(R(E, &)ei, X2) = 0 and (Vx,9) = 0, we have

9((Vx;R)(ei, X2)<, &) — g(R(ei, X2)E, Vx;€) = 0, (48)

which implies
g((VX5R)(ei/ XZ)E; 5) = _g(R(ei/ XZ)S! vX5 5) - g(R(ei/ XZ)VX5 5/ é)

Since R is skew-symmetric, we have

9((Vx;R)(ei, X2)E, &) = 0. (49)
Using equation (49) in equation (44), we have

(Vx:5)(X2, &) = 9(9X5, Xa) = A(X5)S(X2, &) + (n = Dn(X2)n(Xs). (50)
Now, we have

(Vx;S)(X2, &) = VX, 5(Xp, &) = S(Vx, X2, &) — 5(X2, Vx;€). (51)
Using equations (10) and (15) in above equation, we have

(Vx;5)(X2, &) = =(n = 1)g(X2, 9X5) = 5(X2, 9 X5). (52)
Using equation (52) in equation (50), we get

5(X2, §Xs5) = —ng(XapXs) — 2(n — 1)1(X2)A(Xs). (53)
Now replacing X5 by ¢X5 in above equation, we get

5(Xz, X5) = —ng(Xz, X5) — (2n = Hn(X2)n(Xs). (54)

Theorem 5.1. If a LP-Sasakian manifold is ¢p-recurrent with respect to the Schouten-van Kampen connection, then
the manifold is an n-Einstein manifold with respect to the Levi-Civita connection.
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6. Quasi-Conharmonically flat LP-Sasakian Manifolds with respect to Schouten-van Kampen Connec-
tion

An LP-Sasakian manifold M" is said to be quasi-conharmonically flat with respect to Schouten-van
Kampen connection if

g(K(pX1, X2)X3,pXs) =0, (55)

where K is the conharmonic curvature tensor with respect to Schouten-van Kampen connection V. In the
view of equation (3), we have

9(K(X1, X2) X3, Xs) = g(R(X1, X2) X3, X4) — {5(X2, X3)9(X1, Xa)

(2n-1) (56)
= 5(X1, X3)9(X2, Xa) + 9(X2, X3)5(X1, Xa) — 9(X1, X3)S(X2, Xa)}-

Replacing X; by ¢X; and X4 by ¢ X, in above equation, we get

9(K(PpX1, X2) X3, 9X4) = g(R(PX1, X2) X3, pX4) — m{g(X2/X3)!](¢X1/¢X4) (57)
= S(pX1, X3)g(pX2, pXa) + 9(X2, X3)S(pX1, pXa) — (X1, X3)5(X2, pXa)}.

Now, suppose that M" is quasi-conharmonically flat with respect to Schouten-van Kampen connection.
Then from equations (55) and (56), we have

g(R(PX1, X2)X3, pX4) = m{g(xzf X3)g(X1, §Xa) = S(PX1, X3)g($Xa, pXa) 58)
+ (X2, X3)S(¢X1, 9X4) — 9(pX1, X5)5(X2, 9X4)}.
Using equations (21) and (23) in above equation, we have
JR(PX1, X2) X3, pX4) = —g(pX1, X3)g(PX2, Xa) — 9(X2, $X3)g(pX1, Xa) + 9(p X1, Xa)(X2)1(X3)
oD {(n = 1)g(pX1, pXa)n(X2)n(Xs) + S(X2, X3)g(pX1, pXs) — S(pX1, X3)9(X2, $X4) (59)

+ S5(pX1, 9X4)9(Xa, X3) — S(Xa, pX4)g(p X1, X3)}-

+

Let {e1, e, .....e4-1, &} be a local orthonormal basis of vector fields in M". Then {¢e1, ey, .....pe,—1, &} is
also local orthonormal basis of M". Putting X; = X4 = ¢; in equation (59) and taking summation over i,
1 <i < n-1and using the fact that

[y

n—

g(R(pe;, X2)X3, pe;) = S(Xa, X3) + (n — 2)9(X2, X3), (60)

1l
—_

i
we get

S5(X2, X3) = ag9(Xz, X3) + bn(Xo)n(Xs), (61)

_ o _ (3n?=5n)
where a = @ +”2) and b = AR

Thus, we can state as follows:

Theorem 6.1. If an LP-Sasakian manifold M" is quasi-conharmonically flat with respect to Schouten-van Kampen
connection then the manifold is an n-Einstein manifold with respect to Levi-Civita connection.
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7. Conharmonically flat LP-Sasakian Manifolds with respect to Schouten-van Kampen Connection V

An n-dimensional LP-Sasakian manifold M" is said to be conharmonically flat if the conharmonic
curvature tensor vanishes.

In this section, we assume that K(X;, X2)X3 = 0, where K denotes the conharmonic curvature tensor
with respect to the Schouten-van Kampen connection V.

Let M" be an n-dimensional conharmonically flat LP-Sasakian manifold with respect to the Schouten-van
Kampen connection, i.e. K =0, then from equation (3), we have

R(X1,X2)X5 = [S(X2, X3)X1 — 5(X1, X3)Xa + 9(Xa, X3)QXi1 — g(X1, X3)QXo]. (62)

_1
2n-1)

Transvection of X4 in equation (62), gives

g(R(X1,X2)X3, Xa) = [S(X2, X3)g(X1, Xa)—5(X1, X3)9(Xa, Xa)+9(X2, X3)5(X1, X4)—g(X1, X3)5(X2, X4)].

(63)

2n-1)

Let ¢, (1 < i < n) be an orthonormal basis. Taking summation over X; = X4 = ¢; (1 < i < n) in above
equation, we get

9

S(Xa, X3) = ﬁg(xz, X3). (64)

Using equations (23) and (24) in equation (64), we get
5(X2, X3) = ag(Xa, X3) + bn(X2)n(Xs), (65)

where a = r(_n(fl_)? and b = —(n —1).

Thus, we can state as follows:

Theorem 7.1. A conharmonically flat LP-Sasakian manifold M" admitting Schouten-van Kampen connection V is
an n-Einstein manifold.

Now, from equations (2), (3), (21), (23), and (24), we have

R(X1, X2)X5 = K(X1, X2)X3 + 9(X1, pX3)pXo — 9(Xa2, $X3)0X1 + 9(Xo, Xa)(X1)E — 9(X1, Xa)n(X2)E

66

+1(X2)n(X3) X1 - n(X)n(X3) X - (an—_l)[(” - Dn(X2)n(X3)X1 — (n = Dn(X1)n(X3)Xz]. (66)
Substitute X3 = £ in above equation (66), we get

R(X1,X2)& = K(X1, Xo)& — gz — i; [N(X2)X1 = n(X1)Xz]. (67)

If X; and X, are horizontal vector fields then from equation (67), it follows that
K(X1, X2)& = K(X1, X2)E.
Thus, we can state as follows:

Theorem 7.2. On an n-dimensional LP-Sasakian manifold M", &-conharmonic curvature tensor of Schouten-van
Kampen connection and Levi-Civita connection are identical provided that the vector fields on M" are horizontal
vector fields.
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8. ¢-Conharmonically flat LP-Sasakian Manifolds with respect to Schouten-van Kampen Connection
An n-dimensional differentiable manifold (M", g) satisfying the equation
P*(K(@X1, 9Xo)pX5) = 0, (68)

is called ¢-conharmonically flat. Analogous to the equation (68) an n-dimensional LP-Sasakian manifold is
said to be ¢-conharmonically flat with respect to Schouten-van Kampen connection if it satisfies

P*(RK(§X1, pX2)$pX3) = 0, (69)

where K is the conharmonic curvature tensor of the manifold with respect to Schouten-van Kampen
connection.

Suppose M" is ¢-conharmonically flat LP-Sasakian manifold with respect to Schouten-van Kampen
connection. It is easy to see that

P*(R($X1, pX2)pX3) = 0
holds if and only if
J(PR(PX1, pX2)pX3), pX4) = 0, 0

for X3, Xp X3, X4 € x(M). So by the virtue of equation (58) ¢-concircularly flat means

gR(GX1, pX2)pXz, $Xs) = (an_ D (5(¢X2, §X3)g(pX1, §Xa) = S(HX1, pX3)g(9X2, PXa) 1)
+ 5(@X1, pXa)g(PXa, 9X3) = (X2, pXa)g(PpX1, $X3)),

which on using equation (21) and (23), the above equation reduced to
gR(PX1, pX2)pX3, 9X4) = —g(PpX3, X1)g9(Xo, pX4) + g(P X3, X2)g9(X1, X4)
=D {=(n = 1)S(X1, X3)n(X2)n(Xs) + (n — 1)S(X2, X3)n(X2)n(Xs) + (n — 1)g(Xq, Xa)n(X2)n(X3)

= 5(X1, X3)9(X2, Xg) + 5(X2, X3)9(X1, Xy) — (n — 1)g(Xa, Xe)n(X1)n(X3) + S(X1, X4)g(X2, X3)
= 5(X2, X4)g9(X1, X3) + (n — 1)S(X1, Xa)n(Xo)n(X3) + (n — 1)g(Xa, X3)n(X1)1n(X4)
= (n = 1)S(Xa, Xy )n(X1)n(Xz) — (n — 1)g(X1, X3)n(X2)n(Xs).

Let{ey, e, ..., e,-1, £} are the local orthonormal basis of the vector field in M". Using the fact that {¢e1, ey, ..., pen-1, £}

is also local orthonormal basis. Putting X; = X3 = ¢; in equation (72) and summing over 7; 1 < i < n and
using the fact that

+

(72)

n-1
g(R(Pei, pX2)pXs, pei) = S(Xa, X3) + (1 — Hn(X2)n(Xa), (73)
im1
we get
S5(X2, X3) = ag(Xz, X3) + bn(Xo)n(X3), (74)

— —(3n2 —
where a = % and b = (3n(+nl)m+r)’ which shows that M" is an 7-Einstein manifold.

Thus, we can state the following;:

Theorem 8.1. An n-dimensional ¢-conharmonically flat LP-Sasakian manifold admitting Schouten-van Kampen
connection is an n-Einstein manifold with respect to Levi-Civita connection.
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