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Abstract. In this paper, we explore the geometric structure of LP-Sasakian manifolds in the context of
the Schouten-van Kampen connection. We investigate the interplay between this connection and various
curvature-related properties of the manifold. It is established that an LP-Sasakian manifold is locally
ϕ-symmetric with respect to the Schouten-van Kampen connection if and only if the same holds for the
Levi-Civita connection. Furthermore, we demonstrate that if an LP-Sasakian manifold is ϕ-recurrent under
the Schouten-van Kampen connection, then it necessarily satisfies the η-Einstein condition with respect to
the Levi-Civita connection. We also prove that quasi-conharmonically flat, conharmonically flat and ϕ-
conharmonically flat LP-Sasakian manifolds admitting the Schouten-van Kampen connection are likewise
η-Einstein manifolds.

1. Introduction

In differential geometry, the exploration of manifolds with distinct geometric structure is essential for
understanding complex spaces, particularly those that emerge in physics, such as general relativity and
cosmology. Among these structures, the para-Sasakian manifold stand out as a valuable framework-
much like the Sasakian manifold for examining geometries exhibiting certain symmetries. The concept
of LP-Sasakian manifolds was first introduced by K. Matsumoto in 1989 [10]. Independently, I. Mihai
and R. Rosca [12] also developed the notion and established several foundational results within this
framework. Subsequent investigations into LP-Sasakian manifolds have been carried out by various
researchers, including K. Mastumoto and I. Mihai [11], as well as U.C. De, K. Matsumoto and A.A. Shaikh
[6] and many others such as ([4], [7], [18]).

The Schouten-van Kampen connection, first introduced by Van Kampen in 1930 for the analyzing
non-holomorphic manifolds [17]. It is regarded as one of the most intrinsic connections on differentiable
manifolds endowed with an affine connection [1]. In 2006, Bejancu [2] examined various properties of
the Schouten-van Kampen connection of foliated manifolds. Subsequently, Olszak [13] focused on the
Schouten-van Kampen connection in the framework of almost contact metric structure and showed some
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significant results. Recently, Zeren et al. Characterize LP-Sasakian manifolds with respect to the Schouten-
van Kampen connection and showed some interesting results.

Schouten-van Kampen connection ∇̆ on Riemannian manifold (Mn, 1) is given by

∇̆X1 X2 = ∇X1 X2 + η(X2)∇X1ξ − (∇X1η)(X2)ξ, (1)

for all X1, X2 ∈ χ(M).
A function is termed harmonic if it satisfies the condition that its Laplacian vanishes. In general, applying

a transformation to a harmonic function does not guarantee that the resulting function remains harmonic.
The specific conditions under which harmonicity is preserved have been investigated by Ishii [9], who
introduced a specialized subclass of conformal transformations known as conharmonic transformations.
These transformations maintain the harmonic nature of functions and are defined by a conformal change
of the metric

1̄i j = e2σ1i j,

where σ is a smooth scalar field. For the transformation to be conharmonic, the conformal factor σmust
satisfy the following differential condition:

σi
,i + σ

,iσ,i = 0

in which commas denotes covariant derivatives with respect to the original metric 1. This condition
ensures that the Laplace operator transforms in a way that preserves its vanishing property, thereby
keeping harmonic functions invariant under the transformation.

Conharmonic curvature tensor of LP-Sasakian manifold is defined by [9]

K(X1,X2)X3 = R(X1,X2)X3 −
1

(2n − 1)
[S(X2,X3)X1 − S(X1,X3)X2 + 1(X2,X3)QX1 − 1(X1,X3)QX2], (2)

where X1, X2, X3 ∈ χ(M) R, S and Q are the Riemannian curvature tensor, Ricci tensor and Ricci operator
respectively.

Subsequent to Ishii’s work, several researchers have made substantial contributions to the theory and
applications of conharmonic geometry. Yano and Bochner studied various curvature invariants under
conformal and projective transformations, laying foundational concepts for understanding how curvature
tensors behave under different geometric mappings [22]. Building on these ideas, Ryszard explored mani-
folds admitting conharmonic transformations and investigated the properties that remain invariant under
such transformations [20]. Prvanovi′c analyzed manifolds with recurrent conharmonic curvature tensors,
contributing to the classification of special types of manifolds where the conharmonic tensor exhibits par-
ticular symmetries or recurrence relations [14]. Later, Chaki extended the study of conharmonic curvature
by introducing the notion of conharmonic flatness and its implications in the context of quasi-Einstein
and semi-symmetric manifolds [3]. In more recent developments, De and De [5] give various geometric
structures satisfying specific curvature conditions involving the conharmonic tensor, thereby broadening
the scope of its applicability.

The conharmonic curvature tensor C̆ of LP-Sasakian manifold with respect to Schouten-van Kampen
connection ∇̆ is given by

K̆(X1,X2)X3 = R̆(X1,X2)X3 −
1

(2n − 1)
[S̆(X2,X3)X1 − S̆(X1,X3)X2 + 1(X2,X3)Q̆X1 − 1(X1,X3)Q̆X2], (3)

where R̆, S̆ and S̆ are Riemannian curvature tensor, Ricci tensor and scalar curvature tensor with respect to
Schouten-van Kampen connection ∇̃ respectively.

Definition 1.1. An n-dimensional LP-Sasakian manifold Mn is said to be η-Einstein manifold if the Ricci tensor S
is of the form S(X1,X2) = a1(X1,X2) + bη(X1)η(X2), for all X1, X2 ∈ χ(M), where a and b are scalars.
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2. Lorentzian Para-Sasakian Manifolds

Let Mn be an n-dimensional differentiable manifolds equipped with the structure (ϕ, ξ, η), where ϕ is a
(1, 1)-tensor field, ξ is a vector field, η is a 1-form on Mn such that

η(ξ) = −1, (4)

ϕ2 = I + η ⊗ ξ, (5)

which implies

ϕξ = 0, (6)

η(ϕ) = 0, (7)

rank(ϕ) = n − 1. (8)

Then the manifold Mn admit a Lorentzian metric 1, such that

1(ϕX1, ϕX2) = 1(X1,X2) + η(X1)η(X2), (9)

and Mn is said to admit a Lorentzian almost paracontact structure (ϕ, ξ, η, 1). In this case, we have

1(X1, ξ) = η(X1), ∇X1ξ = ϕX1, (10)

Ω(X1,X2) = 1(X1, ϕX2) = 1(ϕX1,X2) = Ω(X2,X1), (11)

where Ω is another 2-form on Mn.
If we replace ξ by −ξ in equations (4) and (5), the the structure (ϕ, ξ, η) becomes an almost paracontact

structure on Mn defined by Sato ([15], [16] ). The Lorentzian metric given by equation (10) stands analogues
to the almost paracontact Riemannian metric for any almost paracontact manifold [10].

A Lorentzian almost paracontact manifold Mn equipped with the structure (ϕ, ξ, η, 1) is called Lorentzian
paracontact manifold [10] if

Ω(X1,X2) =
1
2

((∇X1η)X2 + (∇X2η)X1). (12)

A Lorentzian almost paracontact manifold Mn equipped with the structure (ϕ, ξ, η, 1) is called Lorentzian
para-Sasakian manifold [10] if

(∇X1ϕ)X2 = 1(ϕX1, ϕX2)ξ + η(X2)ϕ2X1. (13)

In Lorentzian para-Sasakian manifolds the 1-form η is closed. Also in [10], it is provided that if an
n-dimensional Lorentzian para-Sasakian manifold (Mn, 1) admits a timelike unit vector field ξ such that the
1-form η associated to ξ is closed and satisfies

(∇X1∇X2 )X3 = 1(X1,X2)η(X3) + 1(X1,X3)η(X2) + 2η(X1)η(X2)η(X3), (14)

then Mn admits a Lorentzian para-Sasakian structure. Also n-dimensional Lorentzian para-Sasakian mani-
fold Mn satisfies the following conditions:

(∇X1η)X2 = −1(X1,X2) − η(X1)η(X2), (15)

R(X1,X2)ξ = η(X2)X1 − η(X1)X2, (16)

R(ξ,X1)X2 = 1(X1,X2)ξ − η(X2)X1, (17)
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η(R(X1,X2)X3) = 1(X2,X3)η(X1) − 1(X1,X3)η(X2), (18)

for all X1, X2, X3 ∈ χ(M).
On using equations (1), (10) and (15) Schouten-van Kampen connection of LP-Sasakian manifold is

given by

∇̆X1 X2 = ∇X1 X2 + η(X2)ϕX1 − 1(ϕX1,X2)ξ. (19)

Example: Consider a 3-dimensional Lorentzian manifold M3 with the coordinate system (x, y, t) and the
Lorentzian metric

1 = dx2 + e2xdy2
− dt2.

This metric has Lorentzian signature (+,+,−). Define LP-Sasakian structure as almost contact structure

ϕ(∂x) = ex∂y, ϕ(∂y) = −e−x∂x, ϕ(∂t) = 0,

characteristic vector field ξ = ∂t and 1-form η = dt. Ricci tensor S(X1,X2) is given by:

S(X1,X2) =
3∑

i=1

1(R(X1,Ei)X2,Ei),

where E1, E2, E3 = ∂x, ∂y, ∂t is an orthogonal basis.
Computing the Christoffel symbols using the Koszul formula

21(∇X1 X2,X3) = X11(X2,X3)+X21(X3,X1)−X31(X1,X2)+1([X1,X2],X3)+1([X3,X1],X2)−1([X2,X3],X1),

we get

∇∂x∂x = 0, ∇∂x∂y = ex∂y, ∇∂x∂t = 0,
∇∂y∂y = −e−x∂x, ∇∂y∂t = 0, ∇∂t∂t = 0.

The components of the Riemann curvature tensor are as follows:
R(∂x, ∂y)∂x = ∂y, R(∂x, ∂y)∂y = −2e−x∂x, R(∂x, ∂y)∂t = 0,
R(∂x, ∂t)∂x = 0, R(∂x, ∂t)∂y = 0, R(∂x, ∂t)∂t = 0,
R(∂y, ∂t)∂x = 0, R(∂y, ∂t)∂y = 0, R(∂y, ∂t)∂t = 0.
The Ricci curvature components as

S(∂x, ∂x) = −1, S(∂y, ∂y) = e−2x, S(∂t, ∂t) = 0,

for off-diagonal terms
S(∂x, ∂y) = S(∂x, ∂t) = S(∂y, ∂t) = 0.

Thus, the Ricci curvature matrix is

S =

−1 0 0
0 e−2x 0
0 0 0

 .
A manifold is an Einstein manifold if S = λ1, but we have matrix

1 =

1 0 0
0 e2x 0
0 0 −1


comparing S with 1, we see that no constant λ satisfies S = λ1, hence the manifold is not Einstein.
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A manifold is η-Einstein if
S = α1 + βη ⊗ η.

Now,

η ⊗ η =

0 0 0
0 0 0
0 0 1

 ,
substituting 1 and η ⊗ η, and matching the Ricci tensor, we get−1 0 0

0 e−2x 0
0 0 0

 = α
1 0 0
0 e2x 0
0 0 −1

 + β
0 0 0
0 0 0
0 0 1

 .
Solving for α, β, we get α = −1 and β = 1.

Thus, the manifold is an η-Einstein manifold with S = −1 + η ⊗ η.

3. Curvature Tensor of LP-Sasakian Manifolds with respect to Schouten-van Kampen Connection

Riemannian curvature tensor R̆ of LP-Sasakian manifold Mn with respect to Schouten-van Kampen
connection is given by

R̆(X1,X2)X3 = ∇̆X1∇̆X2 X3 − ∇̆X2∇̆X1 X3 − ∇̆[X1,X2]X3, (20)

which on using equation (19), above equation reduces to

R̆(X1,X2)X3 = R(X1,X2)X3 + 1(X1, ϕX3)ϕX2 − 1(X2, ϕX3)ϕX1

+ 1(X2,X3)η(X1)ξ − 1(X1,X3)η(X2)ξ + η(X2)η(X3)X1 − η(X1)η(X3)X2.
(21)

which is relation between curvature tensor of connections ∇ and ∇̃,where

R(X1,X2)X3 = ∇X1∇X2 X3 − ∇X2∇X1 X3 − ∇[X1,X2]X3.

From equation (21), we have

′R̆(X1,X2,X3,X4) = R(X1,X2,X3,X4) + 1(X3, ϕX1)1(ϕX2,X4) − 1(X3, ϕX2)1(ϕX1,X4)
+ 1(X2,X3)η(X1)η(X4) − 1(X1,X3)η(X2)η(X4) + 1(X1,X4)η(X2)η(X3) − 1(X2,X4)η(X1)η(X3).

(22)

where

′R̆(X1,X2,X3,X4) = 1(R̆(X1,X2)X3,X4)

and

′R(X1,X2,X3,X4) = 1(R(X1,X2)X3,X4).

Putting X1 = X4 = ei in equation 21 and taking summation over i, 1 ≤ i ≤ n,we get

S̆(X2,X3) = S(X2,X3) + (n − 1)η(X2)η(X3), (23)

where, S̃ and S are the Ricci tensor of the connections ∇̆ and ∇ respectively. Again putting X2 = X3 = ei in
equation (23) and taking summation over i, 1 ≤ i ≤ n,we get

r̆ = r − (n − 1), (24)
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where, r̆ and r are the scalar curvature tensor of the connections ∇̆ and ∇ respectively.
From equation (21), we have

R̆(X1, ξ)X3 = R̆(ξ,X2)X3 = R̆(X1,X3)ξ = 0. (25)

Again from equation (23), we have

S̆(X2, ξ) = S̆(ξ,X2) = 0 (26)

and

Q̆X1 = QX1 + (n − 1)X1, (27)

where Q̆ and Q are the Ricci operators with respect to the connection ∇̆ and ∇ respectively.

4. Locally ϕ-Symmetric LP-Sasakian Manifolds with respect to Schouten-van Kampen Connection

An LP-Sasakian manifold Mn is said to be locally ϕ-symmetric if

ϕ2((∇X5 R)(X1,X2)X3) = 0 (28)

for all vector fields X1, X2, X3, X5 orthogonal to ξ. This notion was introduced by Takahashi for Sasakian
manifolds [21]. An LP-Sasakian manifold Mn is said to be ϕ-symmetric if

ϕ2((∇X5 R)(X1,X2)X3) = 0 (29)

for arbitrary vector fields X1, X2, X3, X5.
Analogous to the definition of locally ϕ-symmetric LP-Sasakian manifold with respect to Levi-Civita

connection, we define a locally ϕ-symmetric LP-Sasakian manifold with respect to the Schouten-van Kam-
pen connection by

ϕ2((∇̆X5 R̆)(X1,X2)X3) = 0, (30)

for all vector fields X1, X2, X3, X5 orthogonal to ξ. In the view of equation (19), we have

(∇̆X5 R̆)(X1,X2)X3 = (∇X5 R̆)(X1,X2)X3 + η(R̆(X1,X2)X3)ϕX5 + 1(ϕX5, R̆(X1,X2)X3)ξ. (31)

Now differentiating equation (21) covariantly with respect to X5, we get

(∇X5 R̆)(X1,X2)X3 = (∇X5 R)(X1,X2)X3 + 1(X1, (∇X5ϕ)X3)ϕX2 + 1(X1, ϕX3)(∇X5ϕ)X2 + 1(X2,X3)(∇X5η)(X1)ξ
+ 1(X2,X3)η(X1)∇X5ξ − 1(X1,X3)(∇X5η)(X2)ξ − 1(X1,X3)η(X2)∇X5ξ − {(∇X5η)(X2)X1 − (∇X5η)(X1)X2}η(X3)
+ {η(X2)X1 − η(X1)X2}(∇X5η)(X3).

(32)

Using equations (10), (13) and (15) in equation (32), we have

(∇X5 R̆)(X1,X2)X3 = (∇X5 R)(X1,X2)X3 + {1(X5,X3)η(X1) + 1(X1,X5)η(X3) + 2η(X1)η(X3)η(X5)}ϕX2

+ {1(X1, ϕX3)1(X2,X5) + 21(X1, ϕX3)η(X2)η(X5) + 1(X2,X3)1(ϕX5,X1) − 1(X1,X3)1(ϕX5,X2)}ξ
+ {1(X2,X3)η(X1) − 1(X1,X3)η(X2)}ϕX5{1(ϕX5,X2)X1 − 1(ϕX5,X1)X2}η(X3) + {η(X2)X1 − η(X1)X2}1(ϕX5,X3).

(33)

Now taking the inner product of the equation (21) with ξ, we get

η(R̆(X1,X2)X3) = 0. (34)



G. Pandey et al. / Filomat 40:1 (2026), 199–210 205

Also from equation (21), we have

1(X5, ϕ(R̆(X1,X2)X3))ξ = 1(X5, ϕX1)1(X2,X3) + 1(X1,X3)1(X5, ϕX2)ξ − 1(X1,X3)1(X5, ϕX2)ξ
+ 1(X1, ϕX3)1(X5,X2)ξ + 1(X1, ϕX3)η(X2)η(X5)ξ − 1(X2, ϕX3)1(X1,X5)ξ − 1(X2, ϕX3)η(X1)η(X5)ξ
+ 1(X5, ϕX1)η(X2)η(X3)ξ − 1(X5, ϕX2)η(X1)η(X3)ξ.

(35)

By the virtue of equations (30), (31), (32) and (33), we get

ϕ2((∇̆X5 R̆)(X1,X2)X3) = ϕ2(∇X5 R)(X1,X2)X3) + {1(X3,X5)η(X1) + 1(X1,X5)η(X3) + 2η(X1)η(X3)η(X5)}ϕ2(ϕX2)

+ {1(X1, ϕX3)1(X2,X5) + 21(X1, ϕX3)η(X2)η(X5) + 1(X2,X3)1(X1, ϕX5) − 1(X1,X3)1(X2, ϕX5)}ϕ2ξ

+ {1(X2,X3)η(X1) − 1(X1,X3)η(X2)}ϕ2(ϕX5) + {1(ϕX5,X2)ϕ2X1 − 1(ϕX5,X1)ϕ2X2}η(X3) + {η(X2)ϕ2(X1)

− η(X1)ϕ2(X2)}1(ϕX5,X3).
(36)

Consider X1, X2, X3 and X5 are the orthogonal to ξ, then equation (35) yields

ϕ2((∇̆X5 R̆)(X1,X2)X3) = ϕ2((∇X5 R)(X1,X2)X3). (37)

Thus, we can state as follows:

Theorem 4.1. In an LP-Sasakian manifolds the Schouten-van Kampen connection ∇̆ is locally ϕ-symmetric iff the
Levi-Civita is so.

5. ϕ-Recurrent LP-Sasakian Manifolds with respect to Schouten-van Kampen Connection

An n-dimensional LP-Sasakian manifold Mn is said to be ϕ-recurrent if there exist a non-zero 1-form A
such that

ϕ2((∇X5 R)(X1,X2)X3) = A(X5)R(X1,X2)X3. (38)

If X1, X2, X3, X5 are orthogonal to ξ then the manifold is called locally ϕ-recurrent manifold.
If the 1-form A vanishes, then the manifold is reduced to ϕ-symmetric manifold ([8], [19]).
An n-dimensional LP-Sasakian manifold Mn is said to be ϕ-recurrent with respect to Schouten-van Kampen
connection if there exist a non-zero 1-form A such that

ϕ2((∇̆X5 R̆)(X1,X2)X3) = A(X5)R̆(X1,X2)X3, (39)

for arbitrary vector fields X1, X2, X3 and X5.
Suppose Mn is ϕ-recurrent with respect to Schouten-van Kampen connection, then in view of equations

(5) and (39), we can write

1((∇̆X5 R̆)(X1,X2)X3,X4) − η((∇̆X5 R̆)(X1,X2)X3)η(X4) = A(X5)1(R̆(X1,X2)X3,X4). (40)

By the virtue of equations (31) and (34) above equation reduced to

1((∇X5 R̆)(X1,X2)X3,X4)+η(R̆(X1,X2)X3)1(X4, ϕX5)+η((∇X5 R̆)(X1,X2)X3)η(X4) = A(X5)1(R̆(X1,X2)X3,X4),
(41)

which on using equations (21) and (33), above equation takes the form

1((∇X5 R)(X1,X2)X3,X4) + {1(X5,X3)η(X1) + 1(X1,X5)η(X3) + 2η(X1)η(X3)η(X5)}1(ϕX2,X4)
+ {1(X1, ϕX3)1(X2,X5) + 21(X1, ϕX3)η(X2)η(X5)}η(X4) + {1(X2,X3)η(X1) − 1(X1,X3)η(X2)}1(ϕX5,X4)
+ η(∇X5 R)(X1,X2)X3η(X4) + {1(X1,X4)η(X2) − 1(X2,X4)η(X1)}1(ϕX5,X3) − {1(X2,X3)η(X1)
+ 1(X1,X3)η(X2)}1(X4, ϕX5) + 1(X4, ϕX5)η(R((X1,X2)X3) − {1(X2,X5) + 2η(X3)η(X5)}1(X1, ϕX3)η(X4)
+ {1(X2, ϕX5)η(X1) − 1(X1, ϕX5)η(X2)}η(X3)η(X4) = A(X5)1(R((X1,X2)X3,X4) + A(X5)1(X1, ϕX3)1(X2, ϕX4)
− A(X5)1(X2, ϕX3)1(X1, ϕX4) + A(X5)1(X2,X3)η(X1)η(X4) − A(X5)1(X1,X3)η(X2)η(X4)
+ A(X5)1(X1,X4)η(X2)η(X3) − A(X5)1(X2,X4)η(X1)η(X3).



G. Pandey et al. / Filomat 40:1 (2026), 199–210 206

(42)

Putting X3 = ξ in above equation and using equations (4), (6) and (10), we get

1((∇X5 R)(X1,X2)ξ,X4) − {1(X1,X5) + η(X1)η(X5)}1(ϕX2,X4) + {η(X2)X1 − η(X1)X2}1(X1, ϕX5)
+ η((∇X5 R)(X1,X2)ξ)η(X4) − {1(X2, ϕX5)η(X1) − 1(X1, ϕX5)η(X2)}η(X4)
= A(X5)1(R(X1,X2)ξ,X4) − 1(ϕX1,X4)η(X2)A(X5) − 1(X2,X4)η(X1)A(X5).

(43)

Now, putting X1 = X4 = ei in above equation and taking summation over i, 1 ≤ i ≤ n, we get

(∇X5 S)(X2, ξ) − 1(X2, ϕX5) −
n∑

i=1

η((∇X5 R)(ei,X2)ξ)1(ei, ξ) = A(X5)S(X2, ξ) + (n − 1)η(X2)η(X4). (44)

Let us denote the third term of left hand side of equation (44) by E. In this case E vanishes Namely, we have

1((∇X5 R)(ei,X2)ξ, ξ) = 1((∇X5 R)(ei,X2)ξ, ξ)−1(R(∇X5 ei,X2)ξ, ξ)−1(R(ei,∇X5 X2)ξ, ξ)−1(R(ei,X2)∇X5ξ, ξ) (45)

at p ∈ Mn. In local coordinates ∇X5 ei = X j
5Γ

h
jieh, where Γh

ji are the Christoffel symbols. Since {ei} is an
orthonormal basis, the metric tensor 1i j = δi j, δi j is the Kronecker delta and hence the Christoffel symbols
are zero. Therefore ∇X5 ei = 0. Since R is skew-symmetric, we have

1(R(ei,∇X5 X2)ξ, ξ) = 0. (46)

Using equation (46) in equation (45), we get

1((∇X5 R)(ei,X2)ξ, ξ) = 1((∇X5 R)(ei,X2)ξ, ξ) − 1(R(ei,X2)∇X5ξ, ξ). (47)

In view of 1(R(ei,X2)ξ, ξ) = −1(R(ξ, ξ)ei,X2) = 0 and (∇X51) = 0, we have

1((∇X5 R)(ei,X2)ξ, ξ) − 1(R(ei,X2)ξ,∇X5ξ) = 0, (48)

which implies

1((∇X5 R)(ei,X2)ξ, ξ) = −1(R(ei,X2)ξ,∇X5ξ) − 1(R(ei,X2)∇X5ξ, ξ).

Since R is skew-symmetric, we have

1((∇X5 R)(ei,X2)ξ, ξ) = 0. (49)

Using equation (49) in equation (44), we have

(∇X5 S)(X2, ξ) − 1(ϕX5,X2) = A(X5)S(X2, ξ) + (n − 1)η(X2)η(X5). (50)

Now, we have

(∇X5 S)(X2, ξ) = ∇X5 S(X2, ξ) − S(∇X5 X2, ξ) − S(X2,∇X5ξ). (51)

Using equations (10) and (15) in above equation, we have

(∇X5 S)(X2, ξ) = −(n − 1)1(X2, ϕX5) − S(X2, ϕX5). (52)

Using equation (52) in equation (50), we get

S(X2, ϕX5) = −n1(X2ϕX5) − 2(n − 1)η(X2)A(X5). (53)

Now replacing X5 by ϕX5 in above equation, we get

S(X2,X5) = −n1(X2,X5) − (2n − 1)η(X2)η(X5). (54)

Theorem 5.1. If a LP-Sasakian manifold is ϕ-recurrent with respect to the Schouten-van Kampen connection, then
the manifold is an η-Einstein manifold with respect to the Levi-Civita connection.
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6. Quasi-Conharmonically flat LP-Sasakian Manifolds with respect to Schouten-van Kampen Connec-
tion

An LP-Sasakian manifold Mn is said to be quasi-conharmonically flat with respect to Schouten-van
Kampen connection if

1(K̆(ϕX1,X2)X3, ϕX4) = 0, (55)

where K̆ is the conharmonic curvature tensor with respect to Schouten-van Kampen connection ∇̆. In the
view of equation (3), we have

1(K̆(X1,X2)X3,X4) = 1(R̆(X1,X2)X3,X4) −
1

(2n − 1)
{S̆(X2,X3)1(X1,X4)

− S̆(X1,X3)1(X2,X4) + 1(X2,X3)S̆(X1,X4) − 1(X1,X3)S̆(X2,X4)}.
(56)

Replacing X1 by ϕX1 and X4 by ϕX4 in above equation, we get

1(K̆(ϕX1,X2)X3, ϕX4) = 1(R̆(ϕX1,X2)X3, ϕX4) −
1

(2n − 1)
{S̆(X2,X3)1(ϕX1, ϕX4)

− S̆(ϕX1,X3)1(ϕX2, ϕX4) + 1(X2,X3)S̆(ϕX1, ϕX4) − 1(ϕX1,X3)S̆(X2, ϕX4)}.
(57)

Now, suppose that Mn is quasi-conharmonically flat with respect to Schouten-van Kampen connection.
Then from equations (55) and (56), we have

1(R̆(ϕX1,X2)X3, ϕX4) =
1

(2n − 1)
{S̆(X2,X3)1(ϕX1, ϕX4) − S̆(ϕX1,X3)1(ϕX2, ϕX4)

+ 1(X2,X3)S̆(ϕX1, ϕX4) − 1(ϕX1,X3)S̆(X2, ϕX4)}.
(58)

Using equations (21) and (23) in above equation, we have

1(R(ϕX1,X2)X3, ϕX4) = −1(ϕX1, ϕX3)1(ϕX2,X4) − 1(X2, ϕX3)1(ϕX1,X4) + 1(ϕX1, ϕX4)η(X2)η(X3)

+
1

(2n − 1)
{(n − 1)1(ϕX1, ϕX4)η(X2)η(X3) + S(X2,X3)1(ϕX1, ϕX4) − S(ϕX1,X3)1(X2, ϕX4)

+ S(ϕX1, ϕX4)1(X2,X3) − S(X2, ϕX4)1(ϕX1,X3)}.

(59)

Let {e1, e2, .....en−1, ξ} be a local orthonormal basis of vector fields in Mn. Then {ϕe1, ϕe2, .....ϕen−1, ξ} is
also local orthonormal basis of Mn. Putting X1 = X4 = ei in equation (59) and taking summation over i,
1 ≤ i ≤ n − 1 and using the fact that

n−1∑
i=1

1(R(ϕei,X2)X3, ϕei) = S(X2,X3) + (n − 2)1(X2,X3), (60)

we get

S(X2,X3) = a1(X2,X3) + bη(X2)η(X3), (61)

where a = −2n2

(n+2) and b = (3n2
−5n)

(n+2) .
Thus, we can state as follows:

Theorem 6.1. If an LP-Sasakian manifold Mn is quasi-conharmonically flat with respect to Schouten-van Kampen
connection then the manifold is an η-Einstein manifold with respect to Levi-Civita connection.
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7. Conharmonically flat LP-Sasakian Manifolds with respect to Schouten-van Kampen Connection ∇̆

An n-dimensional LP-Sasakian manifold Mn is said to be conharmonically flat if the conharmonic
curvature tensor vanishes.

In this section, we assume that K̆(X1,X2)X3 = 0, where K̆ denotes the conharmonic curvature tensor
with respect to the Schouten-van Kampen connection ∇̆.

Let Mn be an n-dimensional conharmonically flat LP-Sasakian manifold with respect to the Schouten-van
Kampen connection, i.e. K̆ = 0, then from equation (3), we have

R̆(X1,X2)X3 =
1

(2n − 1)
[S̆(X2,X3)X1 − S̆(X1,X3)X2 + 1(X2,X3)Q̆X1 − 1(X1,X3)Q̆X2]. (62)

Transvection of X4 in equation (62), gives

1(R̆(X1,X2)X3,X4) =
1

(2n − 1)
[S̆(X2,X3)1(X1,X4)−S̆(X1,X3)1(X2,X4)+1(X2,X3)S̆(X1,X4)−1(X1,X3)S̆(X2,X4)].

(63)

Let ei, (1 ≤ i ≤ n) be an orthonormal basis. Taking summation over X1 = X4 = ei (1 ≤ i ≤ n) in above
equation, we get

S̆(X2,X3) =
r̆

(n + 1)
1(X2,X3). (64)

Using equations (23) and (24) in equation (64), we get

S(X2,X3) = a1(X2,X3) + bη(X2)η(X3), (65)

where a = r−(n−1)
(n+1)) and b = −(n − 1).

Thus, we can state as follows:

Theorem 7.1. A conharmonically flat LP-Sasakian manifold Mn admitting Schouten-van Kampen connection ∇̆ is
an η-Einstein manifold.

Now, from equations (2), (3), (21), (23), and (24), we have

K̆(X1,X2)X3 = K(X1,X2)X3 + 1(X1, ϕX3)ϕX2 − 1(X2, ϕX3)ϕX1 + 1(X2,X3)η(X1)ξ − 1(X1,X3)η(X2)ξ

+ η(X2)η(X3)X1 − η(X1)η(X3)X2 −
1

(2n − 1)
[(n − 1)η(X2)η(X3)X1 − (n − 1)η(X1)η(X3)X2].

(66)

Substitute X3 = ξ in above equation (66), we get

K̆(X1,X2)ξ = K(X1,X2)ξ −
(3n − 2)
(2n − 1)

[η(X2)X1 − η(X1)X2]. (67)

If X1 and X2 are horizontal vector fields then from equation (67), it follows that

K̆(X1,X2)ξ = K(X1,X2)ξ.

Thus, we can state as follows:

Theorem 7.2. On an n-dimensional LP-Sasakian manifold Mn, ξ-conharmonic curvature tensor of Schouten-van
Kampen connection and Levi-Civita connection are identical provided that the vector fields on Mn are horizontal
vector fields.
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8. ϕ-Conharmonically flat LP-Sasakian Manifolds with respect to Schouten-van Kampen Connection

An n-dimensional differentiable manifold (Mn, 1) satisfying the equation

ϕ2(K(ϕX1, ϕX2)ϕX3) = 0, (68)

is called ϕ-conharmonically flat. Analogous to the equation (68) an n-dimensional LP-Sasakian manifold is
said to be ϕ-conharmonically flat with respect to Schouten-van Kampen connection if it satisfies

ϕ2(K̆(ϕX1, ϕX2)ϕX3) = 0, (69)

where K̆ is the conharmonic curvature tensor of the manifold with respect to Schouten-van Kampen
connection.

Suppose Mn is ϕ-conharmonically flat LP-Sasakian manifold with respect to Schouten-van Kampen
connection. It is easy to see that

ϕ2(K̆(ϕX1, ϕX2)ϕX3) = 0

holds if and only if

1(ϕ(K̆(ϕX1, ϕX2)ϕX3), ϕX4) = 0, (70)

for X1, X2 X3, X4 ∈ χ(M). So by the virtue of equation (58) ϕ-concircularly flat means

1(R̆(ϕX1, ϕX2)ϕX3, ϕX4) =
1

(2n − 1)
{S̆(ϕX2, ϕX3)1(ϕX1, ϕX4) − S̆(ϕX1, ϕX3)1(ϕX2, ϕX4)

+ S̆(ϕX1, ϕX4)1(ϕX2, ϕX3) − S̆(ϕX2, ϕX4)1(ϕX1, ϕX3)},
(71)

which on using equation (21) and (23), the above equation reduced to

1(R(ϕX1, ϕX2)ϕX3, ϕX4) = −1(ϕX3,X1)1(X2, ϕX4) + 1(ϕX3,X2)1(X1, ϕX4)

+
1

(2n − 1)
{−(n − 1)S(X1,X3)η(X2)η(X4) + (n − 1)S(X2,X3)η(X2)η(X4) + (n − 1)1(X1,X4)η(X2)η(X3)

− S(X1,X3)1(X2,X4) + S(X2,X3)1(X1,X4) − (n − 1)1(X2,X4)η(X1)η(X3) + S(X1,X4)1(X2,X3)
− S(X2,X4)1(X1,X3) + (n − 1)S(X1,X4)η(X2)η(X3) + (n − 1)1(X2,X3)η(X1)η(X4)
− (n − 1)S(X2,X4)η(X1)η(X3) − (n − 1)1(X1,X3)η(X2)η(X4).

(72)

Let {e1, e2, ..., en−1, ξ} are the local orthonormal basis of the vector field in Mn. Using the fact that {ϕe1, ϕe2, ..., ϕen−1, ξ}
is also local orthonormal basis. Putting X1 = X4 = ei in equation (72) and summing over i; 1 ≤ i ≤ n and
using the fact that

n−1∑
i=1

1(R(ϕei, ϕX2)ϕX3, ϕei) = S(X2,X3) + (n − 1)η(X2)η(X4), (73)

we get

S(X2,X3) = a1(X2,X3) + bη(X2)η(X3), (74)

where a = (r−n+2)
(2n+1) and b = −(3n2+4n−rn+r)

(2n+1) , which shows that Mn is an η-Einstein manifold.
Thus, we can state the following:

Theorem 8.1. An n-dimensional ϕ-conharmonically flat LP-Sasakian manifold admitting Schouten-van Kampen
connection is an η-Einstein manifold with respect to Levi-Civita connection.
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