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Abstract. We study the hybrid (b, c)-inverse in a more general setting. The new concept of the right
(m,n)-hybrid (b, ¢)-inverse is defined and studied. In particular, if m = n = 1, then the right (m, n)-hybrid
(b, c)-inverse is precisely the general right hybrid (b, c)-inverse. Some examples and counter-examples to
illustrate the concepts and results are presented. Moreover, the relationship between right (m, n)-hybrid
(b, c)-inverses, right hybrid (b, c)-inverses and (b, ¢)-inverses is studied. Various properties of right (m, n)-
hybrid (b, c)-inverses are investigated. Some well-known results on right hybrid (b, c)-inverses are unified
and extended.

1. Introduction

Throughout this paper, R is an associative ring with 1 and IN* is the set of positive integers. Aninvolution
+: R — R is an anti-isomorphism which satisfies (a*)* = a, (ab)* = b*a*, (a + b)* = a* + b* for alla,b € R. For
any a € R, we use lann(a) = {x € R : xa = 0} and rann(a) = {x € R : ax = 0} to denote the left annihilator and
right annihilator of 4, respectively. For any element a € R, the commutant and the double commutant of 4,
respectively, are defined by comm(a) = {x € R | xa = ax} and comm?(a) = {x € R | xy = yx for all y € comm(a)}.
An element 4 € R is called regular if there exists x € R such that a = axa. Such an x = 4~ is called an inner
inverse of a. According to [1], a € R is said to be strongly regular if a € a°R N Ra?, while a is said to be right
(resp., left) regular if there is x such that a*x = a (resp., xa*> = a). It is well known that an element a is group
invertible if and only if it is strongly regular. Further results related to the group inverse can be found in
[2] and [12]. If a,x € R and k € IN¥, as recalled from [9] that x is the pseudo core inverse of a if it satisfies
xa*l = gk, ax? = x and (ax)* = ax. According to [6], y is the Bott-Duffin (e, f)-inverse of a if y = ey = yf,
yae = e and fay = f, where e and f are idempotent elements.

In 2012, Drazin defined three new classes of outer generalized inverses over a ring with identity, which
are called (b, c)-inverses, hybrid (b, c)-inverses and annihilator (b, c)-inverses, respectively. Given any ring
R with identity and any a,b,c,y € R, recall from [6] that y is the (b, c)-inverse of a if yay = y,yR = bR
and Ry = Rc. And y is the annihilator (b, c)-inverse of a if yay = y, lann(y) = lann(b) and rann(y) = rann(c).
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Moreover, y is the hybrid (b, c)-inverse of a if yay = y, yR = bR and rann(y) = rann(c). Some characterizations
of these generalized inverses were also given in [6]. The reverse order law for (b, c)-inverses and hybrid
(b, c)-inverses was investigated in [3] and [11], respectively.

More generally, Drazin introduced left and right (b, c)-inverses for a semigroup S. Recall that x is a left
(resp., right) (b, c)-inverse of a if it satisfies [5] xab = b, x € Sc (resp., cax = c,x € bS) with a,b,c,x € S. One-
sided annihilator (b, c)-inverses for associative rings were studied in [13]. Let R be any associative ring with
a,b,c,x € R. Then x is a left annihilator (b, c¢)-inverse of g, if x satisfies xab = b, rann(c) C rann(x). Dually, a is
called right annihilator (b, ¢)-invertible if there exists y € R such that cay = ¢, lann(b) C lann(y). Furthermore,
right and left hybrid (b, c)-inverses for associative rings with identity were studied in [8]. An element a
is right hybrid (b, c)-invertible if there exists y € R such that yay = y, yR = bR and rann(y) = rann(c).
Note that right hybrid (b, c)-inverses are precisely hybrid (b, c)-inverses defined in [6]. The left hybrid
(b, c)-invertibility can be defined dually.

In this paper, we investigate a more general case of right hybrid (b, c)-inverses in associative rings,
which is called the right (m,n)-hybrid (b,c)-inverse. In particular, if m = n = 1, then right and left
(m,n)-hybrid (b, c)-inverses are precisely the general right and left hybrid (b, c)-inverses, respectively. We
shall give an example to show that a right (m, n)-hybrid (b, c)-invertible element need not be right hybrid
(b, c)-invertible, and a right hybrid (b, ¢)-invertible element need not be right (m, n)-hybrid (b, ¢)-invertible.
The relationship between right (m, n)-hybrid (b, c)-inverses, right hybrid (b, c)-inverses and (b, c)-inverses
is discussed. Various properties of right (m, n)-hybrid (b, c)-inverses are investigated. As an application,
we study the properties of Bott-Duffin (e, f)-inverse by using the reverse order law of right (m, n)-hybrid
(b, c)-inverses. Some well-known results on right hybrid (b, c)-inverses are unified and extended.

This paper is organized as follows:

In Section 2, we define and study the concept of the right (m, n)-hybrid (b, c)-inverse. In particular,
we give a new characterization of Drazin inverses and pseudo core inverses from the point of view of
right (m, n)-hybrid (b, ¢)-inverses (Corollary 2.8). If R is a strongly regular ring, we prove that a is right
(m, n)-hybrid (b, c)-invertible if and only if a is right hybrid (b, c)-invertible if and only if a is (b, c)-invertible
(Proposition 2.14).

Section 3 is a study of the intertwining properties and Cline’s formula for right (m, n)-hybrid (b, c)-
inverses. Letaj, az,b,¢,x € Rand b, ¢ € comm(azay) for m,n € IN*. If x is the right (m, n)-hybrid (b, ¢)-inverse
of aya;, then we show a;x2a; is the right hybrid ((a10a2)", (a1ca2)")-inverse of a1a; (Theorem 3.4).

Section 4 is concerned with the reverse order law and the triple reverse order law of right (1, n)-hybrid
(b, c)-inverses. The relationship between Bott-Duffin (e, ¢)-inverses, Bott-Duffin (f, f)-inverses and Bott-
Duffin (e, f)-inverses is investigated, which can be regarded as an application of the reverse order law of
right (m, n)-hybrid (b, c)-inverses (Proposition 4.3).

2. Right (m, n)-hybrid (b, c)-inverses

In this section, we define and study the concept of right (m, n)-hybrid (b, ¢)-inverses, which is a more
general case of hybrid (b, c)-inverses.
We begin with the following definition.

Definition 2.1. Let a,b,c € R and m,n € IN*. We say that a is right (m,n)-hybrid (b, c)-invertible if there exists
y € R such that

yay =y, yR = b"R and rann(y) = rann(c").
If such y exists, then y is called the right (m,n)-hybrid (b, c)-inverse of a. Dually, we say that z € R is the left
(m, n)-hybrid (b, c)-inverse of a if
zaz = z, Rz = Rc" and lann(z) = lann(b™).
Clearly, if m = n = 1, then right and left (m, n)-hybrid (b, ¢)-inverses are precisely the general right and

left hybrid (b, c)-inverses, respectively. In what follows, we just discuss the case of the right (m, n)-hybrid
(b, c)-inverse. The case of left (i, n)-hybrid (b, c)-inverses can be discussed dually.
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Theorem 2.2. Leta,b,c € Rand m,n € N*. Then a has at most one right (m, n)-hybrid (b, c)-inverse.
Proof. The proof is similar to that of [6, Theorem 6.4]. [J
We give the following auxiliary proposition that will be used later.

Proposition 2.3. Leta,b,c,y € Rand m,n € N*. Then the following two statements are equivalent:
(1) y is the right (m, n)-hybrid (b, c)-inverse of a;
(2) yab™ = b™,c"ay = c", yR C b"R and rann(c") C rann(y).

Proof. (1) = (2) Since y is the right (m, n)-hybrid (b, c)-inverse of a, we have yay = y and rann(y) = rann(c").
It follows that 1 — ay € rann(y) = rann(c"), thus ¢ = c"ay. Since b™ € yR, there is t € R such that " = yt.
This implies that yab™ = yayt = yt = b™.

(2) = (1) It is straightforward. O

It was shown in [8, Theorem 2.2] that an element a is right hybrid (b, c)-invertible if and only if ¢ € cabR
and rann(cab) C rann(b). Accordingly, we give the following characterization for a right (m, n)-hybrid
(b, ¢)-invertible element.

Proposition 2.4. Let a,b,c € R and m,n € IN*. Then the following statements are equivalent:
(1) a is right (m, n)-hybrid (b, c)-invertible;
(2) ¢" € c"ab™R, rann(c"ab™) C rann(b™);
(3) R = ab™R & rann(c"), b™ € Rab™;
(4) R = b"R @ rann(c"a),c" € c"aR.

Proof. (1) = (2) If y € R is the right (m, n)-hybrid (b, c)-inverse of a, then we have c"ay = ¢" and yR € V"R
by Proposition 2.3. It follows that ¢ € c"ab™R. It suffices to show rann(c"ab™) C rann(b™). Choose
s € rann(c"ab™), then c"ab™s = 0. Therefore, we get ab™s € rann(c") C rann(y), that is, yab™s = b™s = 0 since
yab™ = b™. This shows that s € rann(b™), as desired.

(2) = (3) Since " € c"ab™R and rann(c"ab™) C rann(b™), there is t € R such that ¢" = c"ab™t and
rann(c"ab™) C rann(ab™). It follows that c"ab™ = c"ab™tab™ and R = ab™R & rann(c") by [8, Corollary 6.4].
Consequently, we have (1 — tab™) € rann(c"ab™) C rann(b™), which implies 0" = b"tab™ € Rab™.

(3) = (4) If R = ab™R & rann(c"), then rann(c"ab™) C rann(ab™) and ¢" € c"ab™R C c"aR by [8, Corollary
6.4]. Then there is t € R such that ¢"a = c"ab™ta. This implies that ¢"a(1 — b"ta) = 0. Let u = 1 — b™ta. Then
u € rann(c"a), and thus

1=0"ta+u € b"™R + rann(c"a).

Therefore, R = b"R + rann(c"a). Since b™ € Rab™, we have rann(ab™) C rann(b™). It follows that rann(c"ab™) C
rann(ab™) C rann(b™). Therefore, rann(c"a) Nb"R = {0} by [8, Lemma 6.3], which implies R = b"R@®rann(c"a).

(4) = (1) If R = b"R®rann(c"a), then we have c"aR C c"ab™R by [8, Lemma 6.3]. Since c" € ¢"aR C c"ab"R,
there is w € R such that ¢ = c"ab"w. Let x = b"w. Then xR C V"R, and ¢" = c"ax. This implies that
rann(x) C rann(c"). Choose r € rann(c"), then c¢"r = c"ab™wr = 0. It follows that b™wr € rann(c"a) N b"R = {0},
and thus b"wr = xr = 0, which gives r € rann(x). Therefore, we have rann(x) = rann(c"). Moreover, since
c"ab™ = c"ab™wab™, we conclude that

(b — b"wab™) € rann(c*a) N "R = {0}.

Then b™ = b"wab™ = xab™. This implies that xR = "R, x = b"w = (b"wab™)w = xax. Therefore, a is right
(m, n)-hybrid (b, c)-invertible with the right (m, n)-hybrid (b, c)-inverse x. O

We next give an example to show the class of right (m, n)-hybrid (b, c)-inverses is quite different from
that of right hybrid (b, c)-inverses.

Example 2.5. Let R = M,(IF) be the ring of all 2 by 2 matrices over a field IF. On the one hand, let
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00
a:IZ,b:c=( 1 0 )eR.

It is clear b™ = ¢" = (8 8) for integers m,n > 2. This implies that a is right (m, n)-hybrid (b, c)-invertible. Howeuver,
we have

¢ ¢ cabR, rann(cab) ¢ rann(b)
since cab = cb = 0, that is, a is not right hybrid (b, c)-invertible.

On the other hand, let
0 1 0 0 10
a—(o 0),b—(1 O)andc—(o O)GR.

Then we have cab = c, b € Rcab. This implies that ¢ € cabR, rann(cab) C rann(b). Therefore, a is right hybrid

(b, c)-invertible. However, it is easy to see that b™ = (8 8) and c" = ((1) 8) for integers m,n > 2, and it is clear

c" ¢ c"ab™R. Thus a is not right (m, n)-hybrid (b, c)-invertible by Proposition 2.4.

In particular, if m = n, then the following proposition shows the relationship between the right (m, m)-
hybrid (b, b)-inverse and the (b™, b™)-inverse.

Proposition 2.6. Let a,b € R and m € IN*. Then a is right (m, m)-hybrid (b, b)-invertible if and only if a is
(b™, b™)-invertible.

Proof. Assume that a is right (m, m)-hybrid (b, b)-invertible. Then there exists y € R such that yay = y,
yR =b0"R. Let 0" = ys,y = b™t for some s,t € R. Then we have b™tab™ = b™, that is, b™ is regular. It follows
that [(b™)"b"™ — 1] € rann(b™) = rann(y), and thus y = y(b"™)"b"™ € Rb™. Moreover, since (1 — ay) € rann(y) =
rann(b™), we have b" = b"ay € Ry. This implies that Ry = Rb™. Therefore, a is (b™,b™)-invertible. The
converse is clear. [

If R is a ring with an involution, then we can get the similar result as follows.

Theorem 2.7. Let a,b € R and m € IN*. Then a is right (m, m)-hybrid (b, b*)-invertible if and only if a is
o™, (b*)™)-invertible.

Proof. Since a is right (m, m)-hybrid (b, b*)-invertible, there exists y € R such that yay = y, yR = b"R and
rann(y) = rann((b*)"). To complete the proof, it suffices to show Ry = R(b*)". Because 0" is regular, by the
proof of Proposition 2.6, we have b = b™(b™)"b™. It follows that (b™)* = (b*)" = (b*)"[(0™)"]"(b*)", that is,
(b*)™ is regular. Since [((b™)7)*(b*)" — 1] € rann((b*)") = rann(y), we have y = y[(b™)"]*(b*)" € R(b*)". Also,
combining with (ay — 1) € rann(y) = rann((b*)"), we have (b*)"ay = (b*)". Thus, Ry = R(b*)". The converse
isclear. O

The next corollary gives a new characterization of Drazin inverses and pseudo core inverses from the
point of view of the right (m, n)-hybrid (b, c)-inverse.

Corollary 2.8. (1) An element a € R is Drazin invertible if and only if a is right (m, m)-hybrid (a, a)-invertible for
some positive integer m.

(2) An element a € R is pseudo core invertible if and only if a is right (m, m)-hybrid (a,a*)-invertible for some
positive integer m.

The next proposition shows the condition under which x being the right (m, n)-hybrid (b, c)-inverse of
an element a implies x € comm(a) (resp., x € comm?(a)).

Proposition 2.9. Leta,b,c,x € Rand m,n € IN*. If x is the right (m, n)-hybrid (b, c)-inverse of a, then we have the
following implications:

(1) b, c" € comm(a) imply x € comm(a);

(2) b™,c" € comm?(a) imply x € comm?(a).
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Proof. (1) Since b™,c" € comm(a), we have ab™ = b"a = xab™a = xa®b™, c"a = ac" = ac"ax = c"a*x. By Theorem
3.1, x € comm(a).

(2) If b™,c" € comm?(a), then bk = kb™ and c"k = kc" for any k € comm(a). It suffices to show xk = kx.
Since ak = ka, we have c"kab™ = c"akb™. Also, since kb™ = bk and c"k = kc", we conclude that

kb™ = b"k = xab"k = xakb™,
"k = kc" = kc"ax = c"kax.

This implies that xk = kx by Theorem 3.1, as desired. [J
Corollary 2.10. Leta,b,c,z € R. If z is the right hybrid (b, c)-inverse of a, then

(1) b, ¢ € comm(a) imply that z € comm(a);
(2) b, c € comm?(a) imply that z € comm?(a).

Based on Proposition 2.9, one may suspect that if x € comm(a), then b",c" € comm(a). However, the
following example eliminates the possibility.

Example 2.11. Let R = M,(IF) be the ring of all 2 by 2 matrices over a field F. Let

10 11
y—a—c—(o 0),b—(0 O)ER.

It can be easily checked that b™ = b,c" = c and ay = ya for some m,n € IN*. This implies that y is the right
(m, n)-hybrid (b, c)-inverse of a. However, we have ab™ # b™a.

Note that if b",c" € comm(a) and x is the right (m, n)-hybrid (b, c¢)-inverse of a, then b"'c" € comm(x). In
fact, if b™,c" € comm(a), then we get xb™a = b™ and ac"x = " by Proposition 2.3. Thus, b"c"x = xb™ac"x =
xb™(ac"x) = xb™c". This implies that b"'c" € comm(x). However, the following example shows that in general
we can not conclude b"™, " € comm(x) from b™ and c" € comm(a).

Example 2.12. Let R = M,(IF) be the ring of all 2 by 2 matrices over a field F. Taking

10 11 1 0
a—Iz,x—(O 0),17—(0 O)andc—(l O)GR.

Then we have

0 1
m n _ — n
" =b,c —candx—(1 1 )c.
It is easy to see that xR = ™R, Rc" = Rx and xax = x for some m,n € IN*. Therefore, rann(c") = rann(x). This
implies that x is the right (m, n)-hybrid (b, c)-inverse of a. However, we have xb™ # b™x and c"x # xc".

Lemma 2.13. Let R be a strongly regular ring. Then for any a € R, aR = a™R and Ra = Ra™ hold for any positive
integer m.

Proof. If Ris a strongly regular ring, then a € Ra? Na’R for any element a € R. This implies thata = sa® = 4t
for some s,t € R, and thus we have a = sa? = s22° = ... = s Dg" € Ra"™ for m > 2. Since a € Ra and
Ra™ C Ra, we deduce that Ra = Ra™ for any positive integer m. Similarly, we have aR = a"R. O

As shown by Example 2.5, a right (m, n)-hybrid (b, c)-invertible element need not be right hybrid (b, c)-
invertible, and a right hybrid (b, ¢)-invertible element need not be right (1, n)-hybrid (b, c)-invertible. How-
ever, for a strongly regular ring, the next proposition shows the equivalences of the right (m, n)-hybrid
(b, o)-invertibility, the right hybrid (b, ¢)-invertibility and the (b, ¢)-invertibility.
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Proposition 2.14. Let a,b,c € Rand m,n € IN*. If R is a strongly reqular ring, then the following statements are
equivalent:

(1) a is right (m, n)-hybrid (b, c)-invertible;

(2) a is right hybrid (b, c)-invertible;

(3) a is (b, c)-invertible.

Proof. (1) = (2) If a is right (m, n)-hybrid (b, c)-invertible, then there is ¥ € R such that yay = y,yR = b"R
and rann(y) = rann(c"). By Lemma 2.13, we have yR = b™R = bR and Rc" = Rc. This implies that
rann(c) = rann(c") = rann(y), and thus a is right hybrid (b, ¢)-invertible.

(2) = (3) Since a is right hybrid (b, c)-invertible, there is x € R such that xax = x,xR = bR and rann(x) =
rann(c). Then x(1 —ax) = 0, and thus (1 — ax) € rann(x) = rann(c). Therefore, cax = ¢ and hence Rc C Rx.
Since R is strongly regular, c is group invertible. Suppose that ¢’ € R is the group inverse of c, then we have
(c’c = 1) € rann(c) = rann(x). Then xc’c = x, and so we have Rx C Rc. Therefore, we obtain Rx = Rc.

(3) = (1) Ifais (b, c)-invertible, then b € Reab and ¢ € cabR. By Lemma 2.13, we have ¢ € ¢"abR = c"ab"R,
and b™ € Rcab™ = Rc"ab™. This implies that rann(c"ab™) C rann(b™). Therefore, a is right (m, n)-hybrid
(b, c)-invertible by Proposition 2.4. [J

Corollary 2.15. Let a,b € R and m,n € IN*. If b is left reqular and m < n, then a is right (m, n)-hybrid (b, b)-
invertible if and only if a is (b™, b")-invertible.

Proof. Since b is left regular, there is x € R such that b = xb* = x?b®> = --- = x"71b" € Rb". This shows
that b = x"1p"1p" € Rb". If a is right (m,n)-hybrid (b, b)-invertible, then there is y € R such that
yay = y,yR = V"R and rann(b") = rann(y). Moreover, it is clear that ™ is regular and b" = b"ay. Therefore,
we have

(1—-@™)b™) € rann(d™) C rann(b"™) = rann(y).

Then y = y(™)"b™. This implies that Rb" C Ry € Rb™ C Rb", and hence Ry = Rb". The converse is
obvious. []

3. Intertwining property and Cline’s formula for right (m, n)-hybrid (b, c)-inverses

It was proved in [4] that if ab is Drazin invertible, then so is ba, and we have (ba)? = b[(ab)P]?a. This
equality is called Cline’s formula. It plays an important role in connecting the Drazin inverse of a sum of two
elements with the Drazin inverse of a matrix (see [10]). Moreover, Drazin studied the intertwining property
for (b, ¢)-inverse in [7]. It was shown in [7, Theorem 2.3] that if S is a semigroup and a;, b;, ¢c;, y; € S (i = 1,2)
such that each a; is (b;, ¢;)-invertible with (b;, ¢;)-inverse y;, then for any d € S, da; = a,d,db; = byd and
dcy = cod imply dy; = yod. Motivated by these results, in this section we further study the intertwining
property and Cline’s formula for right (m, n)-hybrid (b, c)-inverses.

Theorem 3.1. Let a;,b;,¢;,xi,y € R (i = 1,2) and m,n € IN*. If each a; is right (m,n)-hybrid (b;, c;)-invertible
with the right (m, n)-hybrid (b;, c;)-inverse x;, then x,y = yx1 if and only if cyym bt = claybY, ybi' = xoa2yb}" and
ChY = Cyya1xy.
Proof. Assume that for any y € R, the implication x,y = yx; holds. Since x; is the right (m, n)-hybrid
(bj, c;)-inverse of a;, we have
xia by’ = by, claoxa = cf, xaa2x2 = x2 and x141x1 = x7.
Then we have the following implications:
cryaryby' = charyx1a1 b = charxoyar by’ = chya by,
yb;" = yx1a1b;” = xzya1b;” = xzazxzyalb’l” = xzagyxlalb;” = xzazybg”,
cgy = C;(IlzXzy = cgazyxl = cg’azyxlalxl = cgazxzyalxl = cg‘yalxl.
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Conversely, if cJy = cJyaix1, then ¢} (y — yaix1) = 0. Since x; is the right (m, n)-hybrid (b;, ¢;)-inverse of a;,
we have x;R = b!"R. Combining with (y — ya1x1) € rann(cy) = rann(xz), we get xoy = xpya1x1. Let x; = bt
with t € R. Then we have

yx1 = ybi't = x0apyb't = x2a2yx7.
Since cjya1 b = chaybY’, we also have
(yarby" — axyby") € rann(c}) = rann(xz).

Thus, xoya1b]' = xayb}'. It follows that xoyaib't = xayb't, that is, xoya1x1 = xpayx1. Therefore,
Xy =yx;. O

Corollary 3.2. Leta;, bi,ci,x; € R(i=1,2)and m,n € IN*. If x; is the right (m, n)-hybrid (b;, ¢;)-inverse of a;, then
foranyy € R, yay = axy, yby' = b’y and yc = ciy imply xoy = yxi.

Proof. Since ya1 = axy, yby' = bj'y and yc| = cJy, we conclude that
cg‘yalb’l” = cyaoyby’, yb’lﬂ = by = xoamby'y = xzazyb’lﬂ,
c;ly =yc = yc’falxl = cyya1xy.

By Theorem 3.1, we have yx; = xoy. O

More generally, we can get the following theorem.

Theorem 3.3. Let a;,b;,¢i,xi,d € R (i =1,2) and m,n € N*. If x; is the right (m, n)-hybrid (b;, c;)-inverse of a;,
then xod = dx1 if and only if xpdayx1 = x2a2dx1, lann(bl') C lann(db}') and rann(c}) C rann(cd).

Proof. If x; is the right (m, n)-hybrid (b;, ¢;)-inverse of 4; and x,d = dx;, then we have
Xoaadx1 = XoarXod = xod = dx1 = dx1a1x1 = Xpdaixy.
Let k € lann(b}') = lann(xz). Then kx; = 0. This shows that
kxaazdxia:b}" = kxparxodar by = kxpdar b} = kdxqa1b7' = kdb]' = 0.

Combining with k € lann(b}'), we get lann(by') C lann(db'). Let | € rann(c]) = rann(x1). Then x;/ = 0, and

thus dx;! = 0. Since dx;l = dxja1x1] = xpdayx11 = 0, we have charxadayx1l = 0. It follows that
charxodarx1l = chardxia1x11 = chardx,l = chdl = 0.

Therefore, rann(cy) C rann(cyd).
Conversely, since x; is the right (m, n)-hybrid (b;, ¢;)-inverse of a;, we have

mnn(c?) = rann(x;), xiR = blf"R and xiaibz.’f = b;”.

Then lann(b}") = lann(x;), and thus (x2a2 — 1)b' = 0. Also because (xaa; — 1) € lann(by') C lann(db]'), we get
Xoapdbl' = db}'. Since ¢ = c[ayxy, it follows that

(1 —a1x1) € rann(cy) C rann(cyd).

Hence, cfd = cjda;x;. Next since xpdaix; = xoa2dx1, we have xp(da; — apd)x; = 0. Combining with
(day — axd)x € rann(xz) = rann(cy), we get c5(dar — axd)x; = 0. Since cy(day — axd) € lann(x;) = lann(b]'), we
have cfda b = chapdb]'. This shows that xod = dx; by Theorem 3.1. [J

We next consider Cline’s formula for the right (m, n)-hybrid (b, c)-inverse.

Theorem 3.4. Letay,az,b,c,x € Rand b, c € comm(aza) for m,n € N*. If x is the right (m, n)-hybrid (b, c)-inverse
of axay, then a1x%ay is the right hybrid ((a1bay)™, (a1cax)")-inverse of aia;.
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Proof. 1f b,c € comm(ayay), then b™,c" € comm(aza;). Thus, xaa; = a,aix by Proposition 2.9. Since x is the
right (m, n)-hybrid (b, c)-inverse of a,a;, we deduce that

(mx%a2)a102(a1X°a2) = a1Xa,01X0201X%0, = A1X%0,,
(a1x%ax)a1az(a1bay)™ = ayxarab™(ayar)™ ‘ay = a1b™(axar)" ay = (a1bay)",
(a1ca2)" a1 (a1X%a2) = a1 (A1) c"apa1 xa = a1(azar)" ' c"ay = (arcaz)".

Let x = b™s for some s € R since xR = b"R. It follows that

m+2 m+1

mxX2ay = aamx3ay = - -+ = a1(axa1)"x"2a, = a1(axa)"b"sx
= (a1bay)"aysx™*'a,y € (ajbay)"R.

az

Therefore, we have a;x?a,R = (a;bay)"R. If t € rann[(aicay)"], then (ajcay)"t = 0, and thus ay(ajcay)’t
c"(axar)"axt = 0. It follows that

(aza1)"ast € rann(c") C rann(x) C - -- C rann(x"*1).

This implies that x"(axa1)"ayt = 0. Then xat = 0, and hence ayx?ayt = 0. Therefore, rann[(a;caz)"]
rann(ax’ax). 0O

N

By Theorem 3.4, we have the following corollary immediately.

Corollary 3.5. Let a,b,c,x € R such that b™,c" € comm(a) for some m,n € IN*. If x is the right (m,n)-hybrid
(b, c)-inverse of a, then

(1) a*x is the right hybrid (b™a, c"a)-inverse of x;

(2) x is the right hybrid (b™a, c"a)-inverse of a*x.

Proof. (1) Since b™,c" € comm(a), we have xa = ax by Proposition 2.9. Since x is the right (m, n)-hybrid
(b, ¢)-inverse of g, it follows that

(@%x)x(a’x) = a*x*a’x = a’x,

(@%x)xb™a = a(xax)ab™ = b"a,
(c"a)xa’x = c"a*x = c"axa = c"a.

Since x = b™t for some t € R, we get a*x = a’b"t = b"aat € b"aR. Let k € rann(c"a). Then ak € rann(c") =
rann(x). This implies that k € rann(a®x) since a®xk = axak = 0. Therefore, we have rann(c"a) C rann(ax).

(2) Since x is the right (m, n)-hybrid (b, c¢)-inverse of a and b™, ¢" € comm(a), it can be easily checked that
x(a*x)x = x, xa’xb™a = b"a and (c"a)a’xx = c"a. Let x = b™g for some g € R. Then we have

x = xax = ax* = ab™gx € b"aR.
Let h € rann(c"a). Then we get ah € rann(c") = rann(x), and thus xh = x?ah = 0. This implies that h € rann(x),

and hence rann(c"a) C rann(x). O

The following theorem can be regarded as a generalization of Cline’s formula for right hybrid (b, c)-
inverses, which is closely related to right (m, n)-hybrid (b, c)-inverses.

Theorem 3.6. Let a1,a5,b,¢c,x € R and m,n € N*. If x is the right (m, n)-hybrid (b, c)-inverse of a,ay such that
aa1b™ € b"sR, rann(tc") C rann(c"ayay) for some s, t € R, then a1 x2a, is the right hybrid (a1b™s, tc"ay)-inverse of
aiap.

Proof. If aya1b™ € b™sR, then lann(b™) C lann(b™s) C lann(a,a,b™). Since rann(c") C rann(tc") C rann(c"aa,)
and xa>a1a,a1x = xaa1a,a,x, it follows from Theorem 3.3 that xaa; = aa1x. Since x is the right (m, n)-hybrid
(b, c)-inverse of a,a;, we deduce that (a1x%a2)a1a2(a1x%a,) = a1x%a,. Moreover, since (xa,a; — 1) € lann(b™) C
lann(a,a b™), we get xaxa1a,a1b™ = axa;b™. This implies that

(a1x%ax)a1ay(a b"s) = ayxarab™s = aib™s.
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Also since (1 — axa1x) € rann(c") C rann(c"axa1), we get c"aa; = c"axaiaa1x. Then (tc"ap)aar(a1x%ar) =
tcara1xa; = tc"a,.

To complete the proof, it remains to show mx%ay € a1b"sR, rann(tc"ay) C rann(ax’ay). In fact, since
aa1b™ € b"sR, there is k € R such that a,a1b™ = b"sk. Let x € b™g for some g € R. Then we get

a1x2ay = @ xXa01x%ay = a1a2a1 X% = a1 (axa,b™)gx*as
= mb"skgx*a; € a1b™sR.

If e € rann(tc"ay), then tc"aze = 0. Thus aze € rann(tc") C rann(c"aa;). This shows that c¢"aaia,e = 0. As
axayaze € rann(c") = rann(x), we deduce that xayaia,e = 0. Therefore, x*ayajaze = xaze = 0. It follows that
e € rann(ayx2ay) since a1 x’are = 0. [

4. The reverse order law for right (m, n)-hybrid (b, c)-inverses

In this section, we discuss the reverse order law for right (m,n)-hybrid (b, c)-inverses. As an ap-
plication, the relationships between Bott-Duffin (e, e)-inverses, Bott-Duffin (f, f)-inverses and Bott-Duffin
(e, f)-inverses are studied.

Theorem 4.1. Let a;, b;, c;, x; € R and let x; be the right (m, n)-hybrid (b;, c;)-inverse of a; for each i (i = 1,2). If
lann(b") C lann(az) and rann(cy) C rann(ay) for some m,n € IN¥, then xpx1 is the right (m, n)-hybrid (ba, c1)-inverse
of ma;.

Proof. Since x; is the right (m, n)-hybrid (b;, ¢;)-inverse of a; and lann(b}') C lann(az), we have (x1a1 — 1) €
lann(b}") C lann(az), and hence x1a1a; = a;. This implies that

X2X1a102X2X1 = X22X2X1 = X2X1,
(.'szl)ﬂlﬂzbgl = xZﬂzbgl = b;n

Since x; € by'R, we get xox1 € UJ'R. As rann(cy) C rann(a1), we get (1 — axxa) € rann(cy) C rann(ar). It
yields that c{a1a2x0x1 = cfa1x1 = cf since a1 = a1a2x. Combining with rann(c}) C rann(x;) C rann(xax1), we
conclude that x,x7 is the right (m, n)-hybrid (by, c1)-inverse of a1a,. 0O

We have the following corollary for right hybrid (b;, ¢;)-inverses immediately.

Corollary 4.2. Leta;, b;,ci,x; € R (i = 1,2). If x; is the right hybrid (b;, c;)-inverse of a; such that lann(by) C lann(ay)
and rann(cy) C rann(ay), then xox1 is the right hybrid (by, c1)-inverse of a1a;.

Next, we explore the relationship between Bott-Duffin (e, e)-inverses, Bott-Duffin (f, f)-inverses and
Bott-Duffin (e, f)-inverses, which can be regarded as an application of the reverse order law of right (m, n)-
hybrid (b, c)-inverses.

Proposition 4.3. Let a;,e, f,x; € R (i = 1,2) and let e, f be two idempotent elements of R. If the following three
conditions are satisfied:

(1) x1 is the Bott-Duffin (f, f)-inverse of ay,

(2) xy is the Bott-Duffin (e, e)-inverse of ay,

(3) lann(f) C lann(ay), rann(e) C rann(ay),
then x,x1 is the Bott-Duffin (e, f)-inverse of a1a,.

Proof. If x1 is the Bott-Duffin (f, f)-inverse of a1, then x1a1 f™ = xya1f = f = f™ and f"a1x1 = fayx1 = f = f™.
Since x; = f™x; = x1f", we have x;R € f"R and rann(f") C rann(x;). Then x; is the right (m, n)-hybrid
(f, f)-inverse of a; by Proposition 2.3. Similarly, we can show that x; is the right (1, n)-hybrid (e, e)-inverse
of a,. Since f, e are idempotent elements with lann(f) C lann(ay) and rann(e) C rann(ay), it follows that xpx;
is the right (m, n)-hybrid (e, f)-inverse of a1a, by Theorem 4.1, that is, x;x; is the right hybrid (e, f)-inverse
of a1a;. Therefore, x;x; is the Bott-Duffin (e, f)-inverse of a4, by [14, Corollary 3.7]. O
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We conclude this section by giving the triple reverse order law of the right (m, n)-hybrid (b, c)-inverse.

Theorem 4.4. Let a;, b;, c;,x; € Randm,n € N* (i = 1,2,3). If x; is the right (m, n)-hybrid (b;, c;)-inverse of a; such
that

lann(b') C lann(ay), lann(by') C lann(as),
rann(cy) C rann(ay), rann(cy) C rann(az),

then x3xpx1 1s the right (m, n)-hybrid (bs, c1)-inverse of a1a,a3.

Proof. By the assumption, it is clear that (x;a1 — 1) € lann(b') C lann(a) and (x2a2 — 1) € lann(b)') C lann(as),
thus we have x14142 = a; and xpa2a3 = a;. Similarly, since (1 — ayx2) € rann(cy) C rann(a;) and (1 — a3x3) €
rann(cl) C rann(az), we also get a1 = a1axx; and a; = axa3x;. This implies that

(x3x2x1)(a1283) (X3X2X1) = X3X2(X14142)A3X3X2X1 = X3X2(A2a3X3)X2X1
= X3Xp03X2X1 = X3X2X1.

Since x3 € bg"R, we have x3xx1 € bg"R. Also because rann(c}) = rann(xy) C rann(xsxax1), we have rann(c}) C
rann(x3xax1). Since x3a3by = by and cfaix; = |, we deduce that

x3X2(X14142)a305 = x3(x2a203)b7 = x3a3b5 = by,
cia1(axa3x3)x2x1 = cf(a1a2x2)x1 = cjarxy = cy.

Therefore, x3x,x1 is the right (m, n)-hybrid (b3, ¢1)-inverse of a1a,a3. O
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