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Abstract. We study the hybrid (b, c)-inverse in a more general setting. The new concept of the right
(m,n)-hybrid (b, c)-inverse is defined and studied. In particular, if m = n = 1, then the right (m,n)-hybrid
(b, c)-inverse is precisely the general right hybrid (b, c)-inverse. Some examples and counter-examples to
illustrate the concepts and results are presented. Moreover, the relationship between right (m,n)-hybrid
(b, c)-inverses, right hybrid (b, c)-inverses and (b, c)-inverses is studied. Various properties of right (m,n)-
hybrid (b, c)-inverses are investigated. Some well-known results on right hybrid (b, c)-inverses are unified
and extended.

1. Introduction

Throughout this paper, R is an associative ring with 1 andN+ is the set of positive integers. An involution
∗ : R→ R is an anti-isomorphism which satisfies (a∗)∗ = a, (ab)∗ = b∗a∗, (a + b)∗ = a∗ + b∗ for all a, b ∈ R. For
any a ∈ R, we use lann(a) = {x ∈ R : xa = 0} and rann(a) = {x ∈ R : ax = 0} to denote the left annihilator and
right annihilator of a, respectively. For any element a ∈ R, the commutant and the double commutant of a,
respectively, are defined by comm(a) = {x ∈ R | xa = ax} and comm2(a) = {x ∈ R | xy = yx f or all y ∈ comm(a)}.
An element a ∈ R is called regular if there exists x ∈ R such that a = axa. Such an x = a− is called an inner
inverse of a. According to [1], a ∈ R is said to be strongly regular if a ∈ a2R ∩ Ra2, while a is said to be right
(resp., left) regular if there is x such that a2x = a (resp., xa2 = a). It is well known that an element a is group
invertible if and only if it is strongly regular. Further results related to the group inverse can be found in
[2] and [12]. If a, x ∈ R and k ∈ N+, as recalled from [9] that x is the pseudo core inverse of a if it satisfies
xak+1 = ak, ax2 = x and (ax)∗ = ax. According to [6], y is the Bott-Duffin (e, f )-inverse of a if y = ey = y f ,
yae = e and f ay = f , where e and f are idempotent elements.

In 2012, Drazin defined three new classes of outer generalized inverses over a ring with identity, which
are called (b, c)-inverses, hybrid (b, c)-inverses and annihilator (b, c)-inverses, respectively. Given any ring
R with identity and any a, b, c, y ∈ R, recall from [6] that y is the (b, c)-inverse of a if yay = y, yR = bR
and Ry = Rc. And y is the annihilator (b, c)-inverse of a if yay = y, lann(y) = lann(b) and rann(y) = rann(c).
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Moreover, y is the hybrid (b, c)-inverse of a if yay = y, yR = bR and rann(y) = rann(c). Some characterizations
of these generalized inverses were also given in [6]. The reverse order law for (b, c)-inverses and hybrid
(b, c)-inverses was investigated in [3] and [11], respectively.

More generally, Drazin introduced left and right (b, c)-inverses for a semigroup S. Recall that x is a left
(resp., right) (b, c)-inverse of a if it satisfies [5] xab = b, x ∈ Sc (resp., cax = c, x ∈ bS) with a, b, c, x ∈ S. One-
sided annihilator (b, c)-inverses for associative rings were studied in [13]. Let R be any associative ring with
a, b, c, x ∈ R. Then x is a left annihilator (b, c)-inverse of a, if x satisfies xab = b, rann(c) ⊆ rann(x). Dually, a is
called right annihilator (b, c)-invertible if there exists y ∈ R such that cay = c, lann(b) ⊆ lann(y). Furthermore,
right and left hybrid (b, c)-inverses for associative rings with identity were studied in [8]. An element a
is right hybrid (b, c)-invertible if there exists y ∈ R such that yay = y, yR = bR and rann(y) = rann(c).
Note that right hybrid (b, c)-inverses are precisely hybrid (b, c)-inverses defined in [6]. The left hybrid
(b, c)-invertibility can be defined dually.

In this paper, we investigate a more general case of right hybrid (b, c)-inverses in associative rings,
which is called the right (m,n)-hybrid (b, c)-inverse. In particular, if m = n = 1, then right and left
(m,n)-hybrid (b, c)-inverses are precisely the general right and left hybrid (b, c)-inverses, respectively. We
shall give an example to show that a right (m,n)-hybrid (b, c)-invertible element need not be right hybrid
(b, c)-invertible, and a right hybrid (b, c)-invertible element need not be right (m,n)-hybrid (b, c)-invertible.
The relationship between right (m,n)-hybrid (b, c)-inverses, right hybrid (b, c)-inverses and (b, c)-inverses
is discussed. Various properties of right (m,n)-hybrid (b, c)-inverses are investigated. As an application,
we study the properties of Bott-Duffin (e, f )-inverse by using the reverse order law of right (m,n)-hybrid
(b, c)-inverses. Some well-known results on right hybrid (b, c)-inverses are unified and extended.

This paper is organized as follows:
In Section 2, we define and study the concept of the right (m,n)-hybrid (b, c)-inverse. In particular,

we give a new characterization of Drazin inverses and pseudo core inverses from the point of view of
right (m,n)-hybrid (b, c)-inverses (Corollary 2.8). If R is a strongly regular ring, we prove that a is right
(m,n)-hybrid (b, c)-invertible if and only if a is right hybrid (b, c)-invertible if and only if a is (b, c)-invertible
(Proposition 2.14).

Section 3 is a study of the intertwining properties and Cline’s formula for right (m,n)-hybrid (b, c)-
inverses. Let a1, a2, b, c, x ∈ R and b, c ∈ comm(a2a1) for m,n ∈ N+. If x is the right (m,n)-hybrid (b, c)-inverse
of a2a1, then we show a1x2a2 is the right hybrid ((a1ba2)m, (a1ca2)n)-inverse of a1a2 (Theorem 3.4).

Section 4 is concerned with the reverse order law and the triple reverse order law of right (m,n)-hybrid
(b, c)-inverses. The relationship between Bott-Duffin (e, e)-inverses, Bott-Duffin ( f , f )-inverses and Bott-
Duffin (e, f )-inverses is investigated, which can be regarded as an application of the reverse order law of
right (m,n)-hybrid (b, c)-inverses (Proposition 4.3).

2. Right (m, n)-hybrid (b, c)-inverses

In this section, we define and study the concept of right (m,n)-hybrid (b, c)-inverses, which is a more
general case of hybrid (b, c)-inverses.

We begin with the following definition.

Definition 2.1. Let a, b, c ∈ R and m,n ∈ N+. We say that a is right (m,n)-hybrid (b, c)-invertible if there exists
y ∈ R such that

yay = y, yR = bmR and rann(y) = rann(cn).

If such y exists, then y is called the right (m,n)-hybrid (b, c)-inverse of a. Dually, we say that z ∈ R is the left
(m,n)-hybrid (b, c)-inverse of a if

zaz = z,Rz = Rcn and lann(z) = lann(bm).

Clearly, if m = n = 1, then right and left (m,n)-hybrid (b, c)-inverses are precisely the general right and
left hybrid (b, c)-inverses, respectively. In what follows, we just discuss the case of the right (m,n)-hybrid
(b, c)-inverse. The case of left (m,n)-hybrid (b, c)-inverses can be discussed dually.
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Theorem 2.2. Let a, b, c ∈ R and m,n ∈N+. Then a has at most one right (m,n)-hybrid (b, c)-inverse.

Proof. The proof is similar to that of [6, Theorem 6.4].

We give the following auxiliary proposition that will be used later.

Proposition 2.3. Let a, b, c, y ∈ R and m,n ∈N+. Then the following two statements are equivalent:
(1) y is the right (m,n)-hybrid (b, c)-inverse of a;
(2) yabm = bm, cnay = cn, yR ⊆ bmR and rann(cn) ⊆ rann(y).

Proof. (1)⇒ (2) Since y is the right (m,n)-hybrid (b, c)-inverse of a, we have yay = y and rann(y) = rann(cn).
It follows that 1 − ay ∈ rann(y) = rann(cn), thus cn = cnay. Since bm

∈ yR, there is t ∈ R such that bm = yt.
This implies that yabm = yayt = yt = bm.

(2)⇒ (1) It is straightforward.

It was shown in [8, Theorem 2.2] that an element a is right hybrid (b, c)-invertible if and only if c ∈ cabR
and rann(cab) ⊆ rann(b). Accordingly, we give the following characterization for a right (m,n)-hybrid
(b, c)-invertible element.

Proposition 2.4. Let a, b, c ∈ R and m,n ∈N+. Then the following statements are equivalent:
(1) a is right (m,n)-hybrid (b, c)-invertible;
(2) cn

∈ cnabmR, rann(cnabm) ⊆ rann(bm);
(3) R = abmR ⊕ rann(cn), bm

∈ Rabm;
(4) R = bmR ⊕ rann(cna), cn

∈ cnaR.

Proof. (1) ⇒ (2) If y ∈ R is the right (m,n)-hybrid (b, c)-inverse of a, then we have cnay = cn and yR ⊆ bmR
by Proposition 2.3. It follows that cn

∈ cnabmR. It suffices to show rann(cnabm) ⊆ rann(bm). Choose
s ∈ rann(cnabm), then cnabms = 0. Therefore, we get abms ∈ rann(cn) ⊆ rann(y), that is, yabms = bms = 0 since
yabm = bm. This shows that s ∈ rann(bm), as desired.

(2) ⇒ (3) Since cn
∈ cnabmR and rann(cnabm) ⊆ rann(bm), there is t ∈ R such that cn = cnabmt and

rann(cnabm) ⊆ rann(abm). It follows that cnabm = cnabmtabm and R = abmR ⊕ rann(cn) by [8, Corollary 6.4].
Consequently, we have (1 − tabm) ∈ rann(cnabm) ⊆ rann(bm), which implies bm = bmtabm

∈ Rabm.
(3) ⇒ (4) If R = abmR ⊕ rann(cn), then rann(cnabm) ⊆ rann(abm) and cn

∈ cnabmR ⊆ cnaR by [8, Corollary
6.4]. Then there is t ∈ R such that cna = cnabmta. This implies that cna(1 − bmta) = 0. Let u = 1 − bmta. Then
u ∈ rann(cna), and thus

1 = bmta + u ∈ bmR + rann(cna).

Therefore, R = bmR+ rann(cna). Since bm
∈ Rabm, we have rann(abm) ⊆ rann(bm). It follows that rann(cnabm) ⊆

rann(abm) ⊆ rann(bm). Therefore, rann(cna)∩bmR = {0} by [8, Lemma 6.3], which implies R = bmR⊕ rann(cna).
(4)⇒ (1) If R = bmR⊕rann(cna), then we have cnaR ⊆ cnabmR by [8, Lemma 6.3]. Since cn

∈ cnaR ⊆ cnabmR,
there is w ∈ R such that cn = cnabmw. Let x = bmw. Then xR ⊆ bmR, and cn = cnax. This implies that
rann(x) ⊆ rann(cn). Choose r ∈ rann(cn), then cnr = cnabmwr = 0. It follows that bmwr ∈ rann(cna)∩ bmR = {0},
and thus bmwr = xr = 0, which gives r ∈ rann(x). Therefore, we have rann(x) = rann(cn). Moreover, since
cnabm = cnabmwabm, we conclude that

(bm
− bmwabm) ∈ rann(cna) ∩ bmR = {0}.

Then bm = bmwabm = xabm. This implies that xR = bmR, x = bmw = (bmwabm)w = xax. Therefore, a is right
(m,n)-hybrid (b, c)-invertible with the right (m,n)-hybrid (b, c)-inverse x.

We next give an example to show the class of right (m,n)-hybrid (b, c)-inverses is quite different from
that of right hybrid (b, c)-inverses.

Example 2.5. Let R =M2(F) be the ring of all 2 by 2 matrices over a field F. On the one hand, let



J. Jiao, L. Zhao / Filomat 40:1 (2026), 211–220 214

a = I2, b = c =
(

0 0
1 0

)
∈ R.

It is clear bm = cn =
(

0 0
0 0

)
for integers m,n ≥ 2. This implies that a is right (m,n)-hybrid (b, c)-invertible. However,

we have

c < cabR, rann(cab) ⊈ rann(b)

since cab = cb = 0, that is, a is not right hybrid (b, c)-invertible.
On the other hand, let

a =
(

0 1
0 0

)
, b =

(
0 0
1 0

)
and c =

(
1 0
0 0

)
∈ R.

Then we have cab = c, b ∈ Rcab. This implies that c ∈ cabR, rann(cab) ⊆ rann(b). Therefore, a is right hybrid
(b, c)-invertible. However, it is easy to see that bm =

(
0 0
0 0

)
and cn =

(
1 0
0 0

)
for integers m,n ≥ 2, and it is clear

cn < cnabmR. Thus a is not right (m,n)-hybrid (b, c)-invertible by Proposition 2.4.

In particular, if m = n, then the following proposition shows the relationship between the right (m,m)-
hybrid (b, b)-inverse and the (bm, bm)-inverse.

Proposition 2.6. Let a, b ∈ R and m ∈ N+. Then a is right (m,m)-hybrid (b, b)-invertible if and only if a is
(bm, bm)-invertible.

Proof. Assume that a is right (m,m)-hybrid (b, b)-invertible. Then there exists y ∈ R such that yay = y,
yR = bmR. Let bm = ys, y = bmt for some s, t ∈ R. Then we have bmtabm = bm, that is, bm is regular. It follows
that [(bm)−bm

− 1] ∈ rann(bm) = rann(y), and thus y = y(bm)−bm
∈ Rbm. Moreover, since (1 − ay) ∈ rann(y) =

rann(bm), we have bm = bmay ∈ Ry. This implies that Ry = Rbm. Therefore, a is (bm, bm)-invertible. The
converse is clear.

If R is a ring with an involution, then we can get the similar result as follows.

Theorem 2.7. Let a, b ∈ R and m ∈ N+. Then a is right (m, m)-hybrid (b, b∗)-invertible if and only if a is
(bm, (b∗)m)-invertible.

Proof. Since a is right (m,m)-hybrid (b, b∗)-invertible, there exists y ∈ R such that yay = y, yR = bmR and
rann(y) = rann((b∗)m). To complete the proof, it suffices to show Ry = R(b∗)m. Because bm is regular, by the
proof of Proposition 2.6, we have bm = bm(bm)−bm. It follows that (bm)∗ = (b∗)m = (b∗)m[(bm)−]∗(b∗)m, that is,
(b∗)m is regular. Since [((bm)−)∗(b∗)m

− 1] ∈ rann((b∗)m) = rann(y), we have y = y[(bm)−]∗(b∗)m
∈ R(b∗)m. Also,

combining with (ay − 1) ∈ rann(y) = rann((b∗)m), we have (b∗)may = (b∗)m. Thus, Ry = R(b∗)m. The converse
is clear.

The next corollary gives a new characterization of Drazin inverses and pseudo core inverses from the
point of view of the right (m,n)-hybrid (b, c)-inverse.

Corollary 2.8. (1) An element a ∈ R is Drazin invertible if and only if a is right (m,m)-hybrid (a, a)-invertible for
some positive integer m.

(2) An element a ∈ R is pseudo core invertible if and only if a is right (m,m)-hybrid (a, a∗)-invertible for some
positive integer m.

The next proposition shows the condition under which x being the right (m,n)-hybrid (b, c)-inverse of
an element a implies x ∈ comm(a) (resp., x ∈ comm2(a)).

Proposition 2.9. Let a, b, c, x ∈ R and m,n ∈N+. If x is the right (m,n)-hybrid (b, c)-inverse of a, then we have the
following implications:

(1) bm, cn
∈ comm(a) imply x ∈ comm(a);

(2) bm, cn
∈ comm2(a) imply x ∈ comm2(a).
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Proof. (1) Since bm, cn
∈ comm(a), we have abm = bma = xabma = xa2bm, cna = acn = acnax = cna2x. By Theorem

3.1, x ∈ comm(a).
(2) If bm, cn

∈ comm2(a), then bmk = kbm and cnk = kcn for any k ∈ comm(a). It suffices to show xk = kx.
Since ak = ka, we have cnkabm = cnakbm. Also, since kbm = bmk and cnk = kcn, we conclude that

kbm = bmk = xabmk = xakbm,
cnk = kcn = kcnax = cnkax.

This implies that xk = kx by Theorem 3.1, as desired.

Corollary 2.10. Let a, b, c, z ∈ R. If z is the right hybrid (b, c)-inverse of a, then
(1) b, c ∈ comm(a) imply that z ∈ comm(a);
(2) b, c ∈ comm2(a) imply that z ∈ comm2(a).

Based on Proposition 2.9, one may suspect that if x ∈ comm(a), then bm, cn
∈ comm(a). However, the

following example eliminates the possibility.

Example 2.11. Let R =M2(F) be the ring of all 2 by 2 matrices over a field F. Let

y = a = c =
(

1 0
0 0

)
, b =

(
1 1
0 0

)
∈ R.

It can be easily checked that bm = b, cn = c and ay = ya for some m,n ∈ N+. This implies that y is the right
(m,n)-hybrid (b, c)-inverse of a. However, we have abm , bma.

Note that if bm, cn
∈ comm(a) and x is the right (m,n)-hybrid (b, c)-inverse of a, then bmcn

∈ comm(x). In
fact, if bm, cn

∈ comm(a), then we get xbma = bm and acnx = cn by Proposition 2.3. Thus, bmcnx = xbmacnx =
xbm(acnx) = xbmcn. This implies that bmcn

∈ comm(x). However, the following example shows that in general
we can not conclude bm, cn

∈ comm(x) from bm and cn
∈ comm(a).

Example 2.12. Let R =M2(F) be the ring of all 2 by 2 matrices over a field F. Taking

a = I2, x =
(

1 0
0 0

)
, b =

(
1 1
0 0

)
and c =

(
1 0
1 0

)
∈ R.

Then we have

bm = b, cn = c and x =
(

0 1
1 −1

)
cn.

It is easy to see that xR = bmR,Rcn = Rx and xax = x for some m,n ∈ N+. Therefore, rann(cn) = rann(x). This
implies that x is the right (m,n)-hybrid (b, c)-inverse of a. However, we have xbm , bmx and cnx , xcn.

Lemma 2.13. Let R be a strongly regular ring. Then for any a ∈ R, aR = amR and Ra = Ram hold for any positive
integer m.

Proof. If R is a strongly regular ring, then a ∈ Ra2
∩ a2R for any element a ∈ R. This implies that a = sa2 = a2t

for some s, t ∈ R, and thus we have a = sa2 = s2a3 = . . . = s(m−1)am
∈ Ram for m ≥ 2. Since a ∈ Ra and

Ram
⊆ Ra, we deduce that Ra = Ram for any positive integer m. Similarly, we have aR = amR.

As shown by Example 2.5, a right (m,n)-hybrid (b, c)-invertible element need not be right hybrid (b, c)-
invertible, and a right hybrid (b, c)-invertible element need not be right (m,n)-hybrid (b, c)-invertible. How-
ever, for a strongly regular ring, the next proposition shows the equivalences of the right (m,n)-hybrid
(b, c)-invertibility, the right hybrid (b, c)-invertibility and the (b, c)-invertibility.
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Proposition 2.14. Let a, b, c ∈ R and m,n ∈ N+. If R is a strongly regular ring, then the following statements are
equivalent:

(1) a is right (m,n)-hybrid (b, c)-invertible;
(2) a is right hybrid (b, c)-invertible;
(3) a is (b, c)-invertible.

Proof. (1) ⇒ (2) If a is right (m,n)-hybrid (b, c)-invertible, then there is y ∈ R such that yay = y, yR = bmR
and rann(y) = rann(cn). By Lemma 2.13, we have yR = bmR = bR and Rcn = Rc. This implies that
rann(c) = rann(cn) = rann(y), and thus a is right hybrid (b, c)-invertible.

(2) ⇒ (3) Since a is right hybrid (b, c)-invertible, there is x ∈ R such that xax = x, xR = bR and rann(x) =
rann(c). Then x(1 − ax) = 0, and thus (1 − ax) ∈ rann(x) = rann(c). Therefore, cax = c and hence Rc ⊆ Rx.
Since R is strongly regular, c is group invertible. Suppose that c′ ∈ R is the group inverse of c, then we have
(c′c − 1) ∈ rann(c) = rann(x). Then xc′c = x, and so we have Rx ⊆ Rc. Therefore, we obtain Rx = Rc.

(3)⇒ (1) If a is (b, c)-invertible, then b ∈ Rcab and c ∈ cabR. By Lemma 2.13, we have cn
∈ cnabR = cnabmR,

and bm
∈ Rcabm = Rcnabm. This implies that rann(cnabm) ⊆ rann(bm). Therefore, a is right (m,n)-hybrid

(b, c)-invertible by Proposition 2.4.

Corollary 2.15. Let a, b ∈ R and m,n ∈ N+. If b is left regular and m ≤ n, then a is right (m,n)-hybrid (b, b)-
invertible if and only if a is (bm, bn)-invertible.

Proof. Since b is left regular, there is x ∈ R such that b = xb2 = x2b3 = · · · = xn−1bn
∈ Rbn. This shows

that bm = xn−1bm−1bn
∈ Rbn. If a is right (m,n)-hybrid (b, b)-invertible, then there is y ∈ R such that

yay = y, yR = bmR and rann(bn) = rann(y). Moreover, it is clear that bm is regular and bn = bnay. Therefore,
we have

(1 − (bm)−bm) ∈ rann(bm) ⊆ rann(bn) = rann(y).

Then y = y(bm)−bm. This implies that Rbn
⊆ Ry ⊆ Rbm

⊆ Rbn, and hence Ry = Rbn. The converse is
obvious.

3. Intertwining property and Cline’s formula for right (m, n)-hybrid (b, c)-inverses

It was proved in [4] that if ab is Drazin invertible, then so is ba, and we have (ba)D = b[(ab)D]2a. This
equality is called Cline’s formula. It plays an important role in connecting the Drazin inverse of a sum of two
elements with the Drazin inverse of a matrix (see [10]). Moreover, Drazin studied the intertwining property
for (b, c)-inverse in [7]. It was shown in [7, Theorem 2.3] that if S is a semigroup and ai, bi, ci, yi ∈ S (i = 1, 2)
such that each ai is (bi, ci)-invertible with (bi, ci)-inverse yi, then for any d ∈ S, da1 = a2d, db1 = b2d and
dc1 = c2d imply dy1 = y2d. Motivated by these results, in this section we further study the intertwining
property and Cline’s formula for right (m,n)-hybrid (b, c)-inverses.

Theorem 3.1. Let ai, bi, ci, xi, y ∈ R (i = 1, 2) and m,n ∈ N+. If each ai is right (m,n)-hybrid (bi, ci)-invertible
with the right (m,n)-hybrid (bi, ci)-inverse xi, then x2y = yx1 if and only if cn

2 ya1bm
1 = cn

2a2ybm
1 , ybm

1 = x2a2ybm
1 and

cn
2 y = cn

2 ya1x1.

Proof. Assume that for any y ∈ R, the implication x2y = yx1 holds. Since xi is the right (m,n)-hybrid
(bi, ci)-inverse of ai, we have

x1a1bm
1 = bm

1 , c
n
2a2x2 = cn

2 , x2a2x2 = x2 and x1a1x1 = x1.

Then we have the following implications:

cn
2a2ybm

1 = cn
2a2yx1a1bm

1 = cn
2a2x2ya1bm

1 = cn
2 ya1bm

1 ,
ybm

1 = yx1a1bm
1 = x2ya1bm

1 = x2a2x2ya1bm
1 = x2a2yx1a1bm

1 = x2a2ybm
1 ,

cn
2 y = cn

2a2x2y = cn
2a2yx1 = cn

2a2yx1a1x1 = cn
2a2x2ya1x1 = cn

2 ya1x1.
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Conversely, if cn
2 y = cn

2 ya1x1, then cn
2(y − ya1x1) = 0. Since xi is the right (m,n)-hybrid (bi, ci)-inverse of ai,

we have xiR = bm
i R. Combining with (y − ya1x1) ∈ rann(cn

2) = rann(x2), we get x2y = x2ya1x1. Let x1 = bm
1 t

with t ∈ R. Then we have

yx1 = ybm
1 t = x2a2ybm

1 t = x2a2yx1.

Since cn
2 ya1bm

1 = cn
2a2ybm

1 , we also have

(ya1bm
1 − a2ybm

1 ) ∈ rann(cn
2) = rann(x2).

Thus, x2ya1bm
1 = x2a2ybm

1 . It follows that x2ya1bm
1 t = x2a2ybm

1 t, that is, x2ya1x1 = x2a2yx1. Therefore,
x2y = yx1.

Corollary 3.2. Let ai, bi, ci, xi ∈ R (i = 1, 2) and m,n ∈N+. If xi is the right (m,n)-hybrid (bi, ci)-inverse of ai, then
for any y ∈ R, ya1 = a2y, ybm

1 = bm
2 y and ycn

1 = cn
2 y imply x2y = yx1.

Proof. Since ya1 = a2y, ybm
1 = bm

2 y and ycn
1 = cn

2 y, we conclude that

cn
2 ya1bm

1 = cn
2a2ybm

1 , ybm
1 = bm

2 y = x2a2bm
2 y = x2a2ybm

1 ,
cn

2 y = ycn
1 = ycn

1a1x1 = cn
2 ya1x1.

By Theorem 3.1, we have yx1 = x2y.

More generally, we can get the following theorem.

Theorem 3.3. Let ai, bi, ci, xi, d ∈ R (i = 1, 2) and m,n ∈ N+. If xi is the right (m,n)-hybrid (bi, ci)-inverse of ai,
then x2d = dx1 if and only if x2da1x1 = x2a2dx1, lann(bm

2 ) ⊆ lann(dbm
1 ) and rann(cn

1) ⊆ rann(cn
2d).

Proof. If xi is the right (m,n)-hybrid (bi, ci)-inverse of ai and x2d = dx1, then we have

x2a2dx1 = x2a2x2d = x2d = dx1 = dx1a1x1 = x2da1x1.

Let k ∈ lann(bm
2 ) = lann(x2). Then kx2 = 0. This shows that

kx2a2dx1a1bm
1 = kx2a2x2da1bm

1 = kx2da1bm
1 = kdx1a1bm

1 = kdbm
1 = 0.

Combining with k ∈ lann(bm
2 ), we get lann(bm

2 ) ⊆ lann(dbm
1 ). Let l ∈ rann(cn

1) = rann(x1). Then x1l = 0, and
thus dx1l = 0. Since dx1l = dx1a1x1l = x2da1x1l = 0, we have cn

2a2x2da1x1l = 0. It follows that

cn
2a2x2da1x1l = cn

2a2dx1a1x1l = cn
2a2dx1l = cn

2dl = 0.

Therefore, rann(cn
1) ⊆ rann(cn

2d).
Conversely, since xi is the right (m,n)-hybrid (bi, ci)-inverse of ai, we have

rann(cn
i ) = rann(xi), xiR = bm

i R and xiaibm
i = bm

i .

Then lann(bm
i ) = lann(xi), and thus (x2a2 − 1)bm

2 = 0. Also because (x2a2 − 1) ∈ lann(bm
2 ) ⊆ lann(dbm

1 ), we get
x2a2dbm

1 = dbm
1 . Since cn

1 = cn
1a1x1, it follows that

(1 − a1x1) ∈ rann(cn
1) ⊆ rann(cn

2d).

Hence, cn
2d = cn

2da1x1. Next since x2da1x1 = x2a2dx1, we have x2(da1 − a2d)x1 = 0. Combining with
(da1 − a2d)x1 ∈ rann(x2) = rann(cn

2), we get cn
2(da1 − a2d)x1 = 0. Since cn

2(da1 − a2d) ∈ lann(x1) = lann(bm
1 ), we

have cn
2da1bm

1 = cn
2a2dbm

1 . This shows that x2d = dx1 by Theorem 3.1.

We next consider Cline’s formula for the right (m,n)-hybrid (b, c)-inverse.

Theorem 3.4. Let a1, a2, b, c, x ∈ R and b, c ∈ comm(a2a1) for m,n ∈N+. If x is the right (m,n)-hybrid (b, c)-inverse
of a2a1, then a1x2a2 is the right hybrid ((a1ba2)m, (a1ca2)n)-inverse of a1a2.
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Proof. If b, c ∈ comm(a2a1), then bm, cn
∈ comm(a2a1). Thus, xa2a1 = a2a1x by Proposition 2.9. Since x is the

right (m,n)-hybrid (b, c)-inverse of a2a1, we deduce that

(a1x2a2)a1a2(a1x2a2) = a1xa2a1xa2a1x2a2 = a1x2a2,
(a1x2a2)a1a2(a1ba2)m = a1xa2a1bm(a2a1)m−1a2 = a1bm(a2a1)m−1a2 = (a1ba2)m,

(a1ca2)na1a2(a1x2a2) = a1(a2a1)n−1cna2a1xa2 = a1(a2a1)n−1cna2 = (a1ca2)n.

Let x = bms for some s ∈ R since xR = bmR. It follows that

a1x2a2 = a1a2a1x3a2 = · · · = a1(a2a1)mxm+2a2 = a1(a2a1)mbmsxm+1a2
= (a1ba2)ma1sxm+1a2 ∈ (a1ba2)mR.

Therefore, we have a1x2a2R = (a1ba2)mR. If t ∈ rann[(a1ca2)n], then (a1ca2)nt = 0, and thus a2(a1ca2)nt =
cn(a2a1)na2t = 0. It follows that

(a2a1)na2t ∈ rann(cn) ⊆ rann(x) ⊆ · · · ⊆ rann(xn+1).

This implies that xn+1(a2a1)na2t = 0. Then xa2t = 0, and hence a1x2a2t = 0. Therefore, rann[(a1ca2)n] ⊆
rann(a1x2a2).

By Theorem 3.4, we have the following corollary immediately.

Corollary 3.5. Let a, b, c, x ∈ R such that bm, cn
∈ comm(a) for some m,n ∈ N+. If x is the right (m,n)-hybrid

(b, c)-inverse of a, then
(1) a2x is the right hybrid (bma, cna)-inverse of x;
(2) x is the right hybrid (bma, cna)-inverse of a2x.

Proof. (1) Since bm, cn
∈ comm(a), we have xa = ax by Proposition 2.9. Since x is the right (m,n)-hybrid

(b, c)-inverse of a, it follows that

(a2x)x(a2x) = a2x2a2x = a2x,
(a2x)xbma = a(xax)abm = bma,

(cna)xa2x = cna2x = cnaxa = cna.

Since x = bmt for some t ∈ R, we get a2x = a2bmt = bmaat ∈ bmaR. Let k ∈ rann(cna). Then ak ∈ rann(cn) =
rann(x). This implies that k ∈ rann(a2x) since a2xk = axak = 0. Therefore, we have rann(cna) ⊆ rann(a2x).

(2) Since x is the right (m,n)-hybrid (b, c)-inverse of a and bm, cn
∈ comm(a), it can be easily checked that

x(a2x)x = x, xa2xbma = bma and (cna)a2xx = cna. Let x = bm1 for some 1 ∈ R. Then we have

x = xax = ax2 = abm1x ∈ bmaR.

Let h ∈ rann(cna). Then we get ah ∈ rann(cn) = rann(x), and thus xh = x2ah = 0. This implies that h ∈ rann(x),
and hence rann(cna) ⊆ rann(x).

The following theorem can be regarded as a generalization of Cline’s formula for right hybrid (b, c)-
inverses, which is closely related to right (m,n)-hybrid (b, c)-inverses.

Theorem 3.6. Let a1, a2, b, c, x ∈ R and m,n ∈ N+. If x is the right (m,n)-hybrid (b, c)-inverse of a2a1 such that
a2a1bm

∈ bmsR, rann(tcn) ⊆ rann(cna2a1) for some s, t ∈ R, then a1x2a2 is the right hybrid (a1bms, tcna2)-inverse of
a1a2.

Proof. If a2a1bm
∈ bmsR, then lann(bm) ⊆ lann(bms) ⊆ lann(a2a1bm). Since rann(cn) ⊆ rann(tcn) ⊆ rann(cna2a1)

and xa2a1a2a1x = xa2a1a2a1x, it follows from Theorem 3.3 that xa2a1 = a2a1x. Since x is the right (m,n)-hybrid
(b, c)-inverse of a2a1, we deduce that (a1x2a2)a1a2(a1x2a2) = a1x2a2. Moreover, since (xa2a1 − 1) ∈ lann(bm) ⊆
lann(a2a1bm), we get xa2a1a2a1bm = a2a1bm. This implies that

(a1x2a2)a1a2(a1bms) = a1xa2a1bms = a1bms.
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Also since (1 − a2a1x) ∈ rann(cn) ⊆ rann(cna2a1), we get cna2a1 = cna2a1a2a1x. Then (tcna2)a1a2(a1x2a2) =
tcna2a1xa2 = tcna2.

To complete the proof, it remains to show a1x2a2 ∈ a1bmsR, rann(tcna2) ⊆ rann(a1x2a2). In fact, since
a2a1bm

∈ bmsR, there is k ∈ R such that a2a1bm = bmsk. Let x ∈ bm1 for some 1 ∈ R. Then we get

a1x2a2 = a1xa2a1x2a2 = a1a2a1xx2a2 = a1(a2a1bm)1x2a2
= a1bmsk1x2a2 ∈ a1bmsR.

If e ∈ rann(tcna2), then tcna2e = 0. Thus a2e ∈ rann(tcn) ⊆ rann(cna2a1). This shows that cna2a1a2e = 0. As
a2a1a2e ∈ rann(cn) = rann(x), we deduce that xa2a1a2e = 0. Therefore, x2a2a1a2e = xa2e = 0. It follows that
e ∈ rann(a1x2a2) since a1x2a2e = 0.

4. The reverse order law for right (m, n)-hybrid (b, c)-inverses

In this section, we discuss the reverse order law for right (m,n)-hybrid (b, c)-inverses. As an ap-
plication, the relationships between Bott-Duffin (e, e)-inverses, Bott-Duffin ( f , f )-inverses and Bott-Duffin
(e, f )-inverses are studied.

Theorem 4.1. Let ai, bi, ci, xi ∈ R and let xi be the right (m,n)-hybrid (bi, ci)-inverse of ai for each i (i = 1, 2). If
lann(bm

1 ) ⊆ lann(a2) and rann(cn
2) ⊆ rann(a1) for some m,n ∈N+, then x2x1 is the right (m,n)-hybrid (b2, c1)-inverse

of a1a2.

Proof. Since xi is the right (m,n)-hybrid (bi, ci)-inverse of ai and lann(bm
1 ) ⊆ lann(a2), we have (x1a1 − 1) ∈

lann(bm
1 ) ⊆ lann(a2), and hence x1a1a2 = a2. This implies that

x2x1a1a2x2x1 = x2a2x2x1 = x2x1,
(x2x1)a1a2bm

2 = x2a2bm
2 = bm

2 .

Since x2 ∈ bm
2 R, we get x2x1 ∈ bm

2 R. As rann(cn
2) ⊆ rann(a1), we get (1 − a2x2) ∈ rann(cn

2) ⊆ rann(a1). It
yields that cn

1a1a2x2x1 = cn
1a1x1 = cn

1 since a1 = a1a2x2. Combining with rann(cn
1) ⊆ rann(x1) ⊆ rann(x2x1), we

conclude that x2x1 is the right (m,n)-hybrid (b2, c1)-inverse of a1a2.

We have the following corollary for right hybrid (bi, ci)-inverses immediately.

Corollary 4.2. Let ai, bi, ci, xi ∈ R (i = 1, 2). If xi is the right hybrid (bi, ci)-inverse of ai such that lann(b1) ⊆ lann(a2)
and rann(c2) ⊆ rann(a1), then x2x1 is the right hybrid (b2, c1)-inverse of a1a2.

Next, we explore the relationship between Bott-Duffin (e, e)-inverses, Bott-Duffin ( f , f )-inverses and
Bott-Duffin (e, f )-inverses, which can be regarded as an application of the reverse order law of right (m,n)-
hybrid (b, c)-inverses.

Proposition 4.3. Let ai, e, f , xi ∈ R (i = 1, 2) and let e, f be two idempotent elements of R. If the following three
conditions are satisfied:

(1) x1 is the Bott-Duffin ( f , f )-inverse of a1,
(2) x2 is the Bott-Duffin (e, e)-inverse of a2,
(3) lann( f ) ⊆ lann(a2), rann(e) ⊆ rann(a1),

then x2x1 is the Bott-Duffin (e, f )-inverse of a1a2.

Proof. If x1 is the Bott-Duffin ( f , f )-inverse of a1, then x1a1 f m = x1a1 f = f = f m and f na1x1 = f a1x1 = f = f n.
Since x1 = f mx1 = x1 f n, we have x1R ⊆ f mR and rann( f n) ⊆ rann(x1). Then x1 is the right (m,n)-hybrid
( f , f )-inverse of a1 by Proposition 2.3. Similarly, we can show that x2 is the right (m,n)-hybrid (e, e)-inverse
of a2. Since f , e are idempotent elements with lann( f ) ⊆ lann(a2) and rann(e) ⊆ rann(a1), it follows that x2x1
is the right (m,n)-hybrid (e, f )-inverse of a1a2 by Theorem 4.1, that is, x2x1 is the right hybrid (e, f )-inverse
of a1a2. Therefore, x2x1 is the Bott-Duffin (e, f )-inverse of a1a2 by [14, Corollary 3.7].
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We conclude this section by giving the triple reverse order law of the right (m,n)-hybrid (b, c)-inverse.

Theorem 4.4. Let ai, bi, ci, xi ∈ R and m,n ∈N+ (i = 1, 2, 3). If xi is the right (m,n)-hybrid (bi, ci)-inverse of ai such
that

lann(bm
1 ) ⊆ lann(a2), lann(bm

2 ) ⊆ lann(a3),
rann(cn

2) ⊆ rann(a1), rann(cn
3) ⊆ rann(a2),

then x3x2x1 is the right (m,n)-hybrid (b3, c1)-inverse of a1a2a3.

Proof. By the assumption, it is clear that (x1a1 − 1) ∈ lann(bm
1 ) ⊆ lann(a2) and (x2a2 − 1) ∈ lann(bm

2 ) ⊆ lann(a3),
thus we have x1a1a2 = a2 and x2a2a3 = a3. Similarly, since (1 − a2x2) ∈ rann(cn

2) ⊆ rann(a1) and (1 − a3x3) ∈
rann(cn

3) ⊆ rann(a2), we also get a1 = a1a2x2 and a2 = a2a3x3. This implies that

(x3x2x1)(a1a2a3)(x3x2x1) = x3x2(x1a1a2)a3x3x2x1 = x3x2(a2a3x3)x2x1
= x3x2a2x2x1 = x3x2x1.

Since x3 ∈ bm
3 R, we have x3x2x1 ∈ bm

3 R. Also because rann(cn
1) = rann(x1) ⊆ rann(x3x2x1), we have rann(cn

1) ⊆
rann(x3x2x1). Since x3a3bm

3 = bm
3 and cn

1a1x1 = cn
1 , we deduce that

x3x2(x1a1a2)a3bm
3 = x3(x2a2a3)bm

3 = x3a3bm
3 = bm

3 ,
cn

1a1(a2a3x3)x2x1 = cn
1(a1a2x2)x1 = cn

1a1x1 = cn
1 .

Therefore, x3x2x1 is the right (m,n)-hybrid (b3, c1)-inverse of a1a2a3.
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