Filomat 40:1 (2026), 221-249

Published by Faculty of Sciences and Mathematics,
https://doi.org/10.2298/FIL2601221S

University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

A
Wy, @“‘
i axs

2,
%,
e,

¥
5
TIprpor®

Topological indices, spectra and energies of prime ideal sum graphs of
commutative rings

Mohammad Aslam Siddeeque®’, Mohd Anas®

*Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India

Abstract. Let R be a commutative ring with the nonzero identity. The prime ideal sum graph of R,
denoted by PIS(R), is a graph whose vertex-set is the set of all nonzero proper ideals of R, and two
distinct vertices I and | are adjacent if and only if I + ] is a prime ideal of R. In this study, our aim
is to find out the topological indices, spectra and energies of the prime ideal sum graphs of Z,, where

n = p%,pq, p°q, PP9%, par, p°q, p*qr, pqrs; p, 4, 1, s being distinct prime integers, a € Z* and Z, is the ring of
integers modulo 7.

1. Introduction

We briefly review the fundamental concepts, notations and findings of graph theory to facilitate subse-

quent discussions. As for the terms or concepts not explained in this article, readers can refer to “Introduc-
tion to Graph Theory” by D.B. West.
A graph G = (V,E), consists of a non-empty set V called the vertex set and a symmetric binary relation E
on V known as the edge set, which may be empty. Two elements u and v in V are said to be adjacent if
(u,v) € E. A graph H = (W, F) is termed as a subgraph of G if H itself is a graphand ¢ # WC Vand F C E.
If V is finite, then G is referred to as a finite graph, otherwise it is infinite. The order of G is defined as the
number of vertices in V, while the size of G is the number of edges in G. A graph is called complete if every
pair of distinct vertices is adjacent in G, and it is denoted by K,,, where n represents the number of vertices.
The degree of a vertex u € V denoted by d,, is the number of edges incident to u.

During the last few years, researchers have shown interest in graph indices such as the First Zagreb
index, the Second Zagreb index, the forgotten topological index, and the Sombor index. Therefore, many
research articles have been written on different graph indices. Chemical graph theory is a sub-discipline of
graph theory which embraces graph theory in solution of molecular problems. In this context, a graph is
a molecule in which vertices correspond to atoms, and edges correspond to chemical bonds. Topological
indices can be defined as mathematical functions that provide numerical characteristics of molecular graphs.

These indices are important in estimating the physicochemical and biological characteristics of molecules,
and therefore essential in the design of drugs.There are many topological indices in the literature. These
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indices are very useful tools for chemists and researchers that deal with chemical graph theory and other
related fields. They enable the visualization of molecular shapes, estimate physical and chemical properties
of a material, and help to design new material with desired properties, particularly in pharmaceutical and
material chemistry. At the same time, their mathematical beauty also makes them an object of emphasis in
pure researches in graph theory. Before we proceed, let us summarise some topological indices which will
be also studied in this manuscript.

o The Sombor index

SO(G) = Z &2+ &2

uveE(G)
o The Randic index
1
RI(G) = ;
LHJ;(‘G) ‘d”dv
o The first Zagreb index
MG = ) &
ueV(G)

o The second Zagreb index

MZ(G) = Z dydy;
uveE(G)
o The Harmonic index

2
H©= 2, 35a

uveE(G)

e The ABC index

ABCG) = Y ,/%;

uveE(G)

o The first Zagreb coindex

Mi(G)= Y, du+dy;

uv¢E(G)

o The second Zagreb coindex

MoG) = ) dudy;

wo¢E(G)

where d,, and d, represent the degrees of 1 and v respectively.
The concept of studying the graph-theoretical properties of a commutative ring associated with zero divisors
was introduced in [3] and [6]. Anwar et al. and Gursoy et al. [5, 15] discuss the Forgotten and Sombor
indices of zero-divisor graphs and co-zero divisor graphs of commutative rings. Rather et al. and Rehman
et al. [23, 25] are among the most recent contributors to this field.
The adjacency matrix of a graph G is the n X n matrix A(G) = [a;;], where

o 1, ifUiT)]'GE(G)
%ii =0 ,  otherwise.

In any case, the adjacency matrix is a symmetric # X n matrix, where every entry on the main diagonal is
0. The number of 1s in row i (or column i) is the degree of v;. Let A1, 7,,..., A, be the eigen values of the
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adjacency matrix A(G). The energy E(G) of the graph G is defined as the sum of the absolute values of its
eigenvalues i.e.,

EG) =Y i
i=1

The Sombor matrix of G is defined as: SO(G) = [a;;], where

4 = {\/d%,- +d2 , ifvp; € EG)

0 ,  otherwise.

The Sombor matrix is a real, symmetric matrix and the eigenvalues of SO(G), denoted by p1, p2, ..., pn are
said to form the Sombor spectrum of the graph G. The Sombor Energy Eso(G) is defined as

Eso(G) = Z |pil-
P

The Laplacian and signless Laplacian matrices of G are defined as L(G) = D(G) — A(G) and Q(G) = D(G) +
A(G), where D(G) is the diagonal matrix of vertex degrees of G. Their spectra are respectively the Laplacian
spectrum and signless Laplacian spectrum of the graph G. The eigenvalues of L(G) and Q(G) will be denoted
by u1, 4z, ..., 4n and g1, 9z, . .., gn, respectively. Then the Laplacian energy and signless Laplacian energy of
G are defined as:

LE(G) = Z

i=1

2m

==

and QE(G) = Zn:

i=1

_2m
==

The Randic matrix of G is defined as: R(G) = [4;;], where

1
, if ;v € E(G)
ﬂj]' = A ' dvidvj
0 , otherwise.

If &1, &5, ..., &, are the eigen values of R(G), then the Randic Energy RE(G) is defined as:
REG) = )il
i=1

These matrices are real symmetric and positive semi-definite having real eigenvalues.The Sombor spectrum
is an approach to envelope the structural information of graphs through vertex degrees to analyze the
stability and properties of molecules in chemistry. The Laplacian spectrum plays an important role in
analyzing connectivity, graph cut and network evolution. The signless Laplacian spectrum again contains
useful information for understanding graph characteristics such as bipartite and clustering. The Randic
spectrum is important for investigation of molecular branching and large complex objects, which has many
applications in chemistry, biology and social networks. Altogether, these spectra are useful instruments
in graph theory and in other branches of science as well. Details about Laplacian, signless Laplacian and
Randic matrices can be found in [4, 22] and the references therein.

Based on the findings mentioned above, this article examines some degree-based topological indices, spectra
and energies for the prime ideal sum graphs of Z,, a commutative ring with unity. The computation
of approximate eigenvalues of all the matrices discussed in our article has been facilitated through the
utilization of matlab software.
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Figure 1: Prime Ideal Sum Graph of Z«
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Figure 2: Prime Ideal Sum Graph of Z,

2. Main Results

Our first result deals with the estimation of Sombor indices of different prime ideal sum graphs of Z,,
which is stated as below:

Theorem 2.1. Let PIS(Z,) be the prime ideal sum graph of Z,. Then the followings hold:

(i) If n = p°, then the Sombor index of PIS(Z,) is (« — 2) Va? — 4ar + 5.
(if) If n = pq, then the Sombor index of PIS(Z,) is 0.
(iii) If n = p?q, then the Sombor index of PIS(Z.,) is 13.199.
(i) If n = p*q*, then the Sombor index of PIS(Z.,) is 59.796.
(v) If n = pqr, then the Sombor index of PIS(Z.,) is 43.8.
(vi) If n = pq, then the Sombor index of PIS(Z.,) is 35.316.
(vii) If n = p*qr, then the Sombor index of PIS(Z.,) is 171.64.
(viii) If n = pgrs, then the Sombor index of PIS(Z.,) is 491.692.

Proof. (i) First, we need all the non-zero proper ideals of Z,« and they are: i1 = pZye, iy = p*Zpe,
Us = P°Lye, ... Ug—y = P* 2L, g1 = P Zpe. Now, as pZ,. is a prime ideal of Z« and pZye +p'Zpe =
P, V)2 = P2y, 2 <r < a-1,whichis a prime ideal. So, pZ,. is adjacent to every other vertex.
Next, consider the following graph of Z,.: Now we get,

\/df,1 +d2 + \/dﬁ1 + A2 4+ A+
V@=22+1+ (@=22+1+--+(@a-22+1
(a=2) Va2 —4a +5.

(it) As Z,; has only two proper ideals namely, pZ,,, and qZ,,,. From the graph given in Fig.2, we observe
that both pZ,,; and gZ,, are isolated vertices. So the vertices pZ,,; and gZ,,; have degree zero. Thus,

SO(PIS(Z,))

SO(PIS(Z,,)) = 0.

(iii) The ideals of Z,.; are: uy = pZ,zg, s = 2y, Uz = paLyzg, s = p2szq, where the vertices 1, and u;
are the prime ideals. The graph of PIS(Z,,) is represented in Fig.3. It can be seen from the graph that



M. A. Siddeeque, M. Anas / Filomat 40:1 (2026), 221-249 225

Uy
U,
Us
Uy

Figure 3: Prime Ideal Sum Graph of Z,»,

Figure 4: Prime Ideal Sum Graph of Z, »

dl‘] =2= dlt.u dl{g = 3/ duz =1. SO,

SOWPISZyy) = Y, A+
uwoeE(PIS(Z,5,)
S A R A N R N
13.199.
(iv) Consider the ideals, u1 = pZyp2, Uy = Zypgp, Us = pZypp, Us = P qLypg, s = pPZypg, Us = P*Zyg,
Uy = qZZquz of Z,»p. The graph can be seen in Fig.4. Number of vertices of degree 4 = 3(u1, 2, u3)
and number of vertices of degree 3 = 4(us, ug, t7, us). So, we get

N N R I N R N )

N N N R RN A RN Y N )

59.796.

(v) The proper ideals of Zy, are: pZygr, GZpge, Zpgr, P92Zpgrr G Lpgr, PrLpgr- Let uy = pZpgr, Uz = G2y,
uz = 1Zpgr, Uy = pqLpgr, Us = prépg, s = qrZyr, where the ideals generated by w1, u, and u3 are the
prime ideals. The graph of PIS(Z,,;) can be seen in Fig.5. Number of vertices of degree 2 = 3(u1, 12, u3)
and number of vertices of degree 4 = 3(u4, us, ). So,

SOWPIS(Zyy)) = i+, + B, + 2+ B+ B+ B+ B+ B+ 8+ [+,

SO(PIS(Z,z,2))

+
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Figure 5: Prime Ideal Sum Graph of Z,,
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Figure 6: Prime Ideal Sum Graph of Z,5,

N I N R N
= 438.
(vi) The proper ideals of Z,, are: pZ,yg, GZyg, P*Zyg, PAipg, P> Lysg, PG L. Let uy = pZysg, uy = GZy,
Uz = p* Ly, s = palyg, Us = pP°Zysg, s = p*qZy,. The graph of PIS(Z,,) can be seen in Fig.6.
Number of vertices of degree 2 = 4 and number of vertices of degree 4 = 2. So,

N N R N R N )
N R A N R N

35.316.

(vii) Consider the proper ideals of Zzg,: 1 = pZyy,, Uz = qZg, Uz = 1Zy2g, Us = pZszqr, Uus = pqZyg,
Ug = pi’szqr, Uy = pqupzqr, ug = perpzqy, Ug = q?’szqr, Uy = qu’szqr, where u1, 4, and u3 are prime
ideals. The graph of PIS(Z,,;) can be seen in Fig.7. Number of vertices of degree 4 = 6 and number
of vertices of degree 6 = 4. We have,

SO(PIS(Zypg)) = A2, +d2 4 2 +d2 4 i+ 2+ 2+ 2+ 2, + 2,

SO(PIS(Z,,))

+
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Figure 7: Prime Ideal Sum Graph of Z,,,

T A N A R I T N
N N Y R R R T
N Y T I R R RN )
N N A N

171.64.

(viii) The proper ideals of Zygs are: wy = pZyys, U2 = qZpgs, Us = Lipgrs, Us = PGLpgrs, Us = SLpgrs,
Ug = prépgrs, Uy = PSZLpgrs, Us = qrLpgrs, Uo = qSZLpgrs, W10 = PGrLpgrs, W11 = 15Lpgrs, 12 = PasLpgrs,
u13 = prsZpgs, wia = qrsZygs. The graph of PIS(Z,s) is as follows : Number of vertices of degree
eight = 6 and number of vertices of degree six = 8. So we get,

SO(PISZygs)) = A2, +d2, + \Jd2 +d2 + \Jd2 +d2 + \Jd2 +d2 + &+,
+ \/dﬁ1 +d5 .+ \/dﬁ2 +d2 + \/dfl2 +d5 + \/df,z +d2 + \/all%2 +di,
T N T IR N R N S
+ \/d§3 +d2 + \/dﬁ3 +d3 + \/dl%3 +d2 + \/dﬁ4 +da + \/d§,4 +d2
+ \/d§4 +d2 + \/d3,4 +d2, + \/d§4 +d2 + \/d§4 +d2 + \/ulﬁ5 +d2
+ \/d§5 +do + \/dl%S +d% + \/dﬁ5 +d2 )+ \/alﬁ5 +do + \/df,E +d2
+ \/d§6 +d2 + \/d§6 +d2 + \/d,%6 +d2 + \/dﬁ6 +d2 + \/d,%6 +d2
+ \/d§7 +d2 + \/dlz,7 +d2 + \/dﬁ7 +d2 + \/d$,7 +d2 + \/df,s +d2,
+ \/dﬁ8 +d2 + \/d,%8 +d2 + \/dﬁ8 +d2 + \/alﬁ9 +d2 + \/d,%9 +d2
+ \/dﬁ9 +d2 .+ \/dﬁm +d2 + \/dﬁn +d2
= 491.692.
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Figure 8: Prime Ideal Sum Graph of Zs

The following result deals with the evaluation of Randic indices of different prime ideal sum graphs of Z,,.
Theorem 2.2. Let PIS(Z,) be the prime ideal sum graph of Z,,. Then the followings hold:

(i) If n = p“, then the Randic index of PIS(Z,) is Va — 2.
(ii) If n = pq, then the Randic index of PIS(Z,) is 0.
(iii) If n = p?q, then the Randic index of PIS(Z.,) is 1.893.
(iv) If n = p?q?, then the Randic index of PIS(Z.,) is 3.809.
(v) If n = pqr, then the Randic index of PIS(Z,) is 2.871.
(vi) If n = pq, then the Randic index of PIS(Z,) is 2.724.
(vii) If n = p*qr, then the Randic index of PIS(Z.,) is 4.485.
(viit) Ifn = pqrs, then the Randic index of PIS(Z,) is 6.964.

Proof. (i) Using Fig.1, we have

1 1 1
+ +et

‘/dul duz \/dm dua dul dua_l

= a—2.

R(PIS(Z.,))

(i) Using Fig.2, we get
R(PIS(Z,)) = 0.
(iif) Using Fig.3, we obtain

1 1 1 1
+

+ +
\/dul du3 '\/dl,ﬂ du4 '\/duz du3 \/du3 du4
1.893.

R(PIS(Z.))
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(iv) Using Fig.4, we find that

229

R(PIS(Z,)) = ! + ! + ! + ! + ! + ! + !
\/dllldu3 \/duldu4 \/duldus \/dulduﬁ \/duzdu;; \/dllzdu4 \/dllzdu5
1 N 1 N 1 N 1 N 1
\/duz dll7 \/du3 dué \/du3 du7 \/du4 dll7 \/du5 dLl6
= 3.809.
(v) Using Fig.5, we have
R(PIS(Z,)) = ! + ! + ! + ! + ! + ! + !
\/dm du4 \/du1 dlls \/duz dl{4 \/duz dlle \/du3 dll5 \/du3 dllé \/du4 dll5
1 1
+ +
N N
= 2871
(vi) Using Fig.6, we find that
R(PIS(Z,)) = ! + ! + ! + ! + ! + ! + !
\/dul dl{3 \/dl/h du4 \/du1 dlls \/dm dlle \/duz du4 \/duz dllé '\/dug dll5
1
+
N
= 2724
(vii) Using Fig.7, we get
R(PIS(Z,)) = ! + ! + ! + ! + ! + ! + !
\/dm du4 \/dm dl£5 \/dm dllé \/dLh du7 \/dm dllg \/dm dll]o \/dllz dus
+ ! + ! + ! + ! + ! + ! + !
\/duz d \/duz d”e \/duz d”lo \/dus d“s \/dus dus \/dus dw) \/dus dulo
1 1 1 1 1 1 1
+ + + + + + +
\/dll4 du5 \/dll4 du6 \/dll4 dulo \/du5 dll(, \/du5 dus \/dus dug \/du6 du7
1 1 1
+ + +
Vi Ay Ay
= 4.485.
(viii) Using Fig.8, we obtain
R(PIS(Z,)) = ! + ! + ! + ! + ! + ! + !
\/dul du4 \/dlll dué \/dul du7 \/dlll dulo \/dul dlllz \/dul d”lS \/duz du4
+ ! + ! + ! + ! + ! + ! + !
\/duz dug \/duz dug \/duz dul() '\/dllz dulz \/duz du14 \/du3 dl{é \/du3 dl{g
+ ! + ! + ! + ! + ! + ! + !
\/dus dum \/dlls dun \/dua duw \/du3 dum \/dm dub \/du4 du7 \/du4 dug
+ ! + ! + ! + ! + ! + ! + !
\/dll4 dug \/dll4 du13 \/du4 dM14 \/du5du7 \/du5 dltg \/du5 dltll \/du5 dulz
+ ! + ! + ! + ! + ! + ! + !
\/dllsduls \/dus dll14 \/dusdw \/dusdus \/dusdun \/dlfedulz \/due dM14
+ ! + ! + ! + ! + ! + ! + !
\/dw dug \/dw d”lo \/du7 dun \/dwduu \/dus dblg \/dus dbln \/dus dlllz
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1 1 1 1 1 1
+ + + + +
\/dus d”lS \/duq dllw \/dll‘a dun \/dw dM13 \/dulo dull \/dun dulz
= 6.964.

O

Following theorem, is confined to the evaluation of Zagreb indices of different prime ideal sum graphs of
Z,.
Theorem 2.3. Let PIS(Z,) be the prime ideal sum graph of Z,,. Then the followings hold:

(i) Ifn = p®, then both the First and Second Zagreb indices of PIS(Z.,) are a* —3a + 2 and a® — 3a + 2 respectively.
(if) If n = pq, then both the First and Second Zagreb indices of PIS(Z,) are 0.
(iii) If n = p?q, then the First and Second Zagreb indices of PIS(Z.,) are 18 and 19 respectively.
(iv) Ifn = p?q?, then the First and Second Zagreb indices of PIS(Z.,) are 84 and 146 respectively.

(v) If n = pqr, then the First and Second Zagreb indices of PIS(Z,) are 60 and 96 respectively.

(vi) Ifn = pq, then the First and Second Zagreb indices of PIS(Z.,) are 48 and 68 respectively.
(vii) If n = p*qr, then the First and Second Zagreb indices of PIS(Z.,) are 240 and 588 respectively.
(viii) If n = pgrs, then the First and Second Zagreb indices of PIS(Z,,) are 672 and 2352 respectively.

pa 8 p Yy
Proof. (i) With the help of Fig.1, we get
Mi(PIS(Z,) = &5 +d5 +---+d5
= P+1%+--+(a-2)7?
= a’-3a+2,
MZ(PIS(Zn)) = du1duz + du1dug +oee T+ duldua,l
= (@a-1-1+(@-1)-1+---+(a—-1)-1
= a’-3a+2.
(if) With the help of Fig.2, we have
Mi(PIS(Z,)) = 0,

M(PIS(Z,)) = O.
(ii1) With the help of Fig.3, we obtain
4
M(PIS(Zy) = Y. d?
i=1
= 18,

My(PIS(Z,)) = dudy, +dydy, + diydy, + diydy,
= 19
(iv) With the help of Fig.4, we get

7
M(PIS@Z,) = Y d
i=1

= 3.42+4.3?
= 84,
MZ(PIS(ZH)) = dul du3 + dl/ll dll4 + dul dlls + dl/ll du(, + dllzdu3 + duzdu4 + dllzdus + dllzdu7 + dugdué

+ dusdu7 + dll4du7 + dllSdub
146.
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(v) With the help of Fig.5, we arrived at

M1 (PIS(Z.))

M (PIS(Z.))

6
2.4

i=1

3-2243-4%

60,

dy,dy, +dydy, +dy,dy, + dy,dy, + dydys + dysdy, + dy,dy,

dy,dy, + dysdyg
96.

(vi) With the help of Fig.6, we get

Mi(PIS(Z,))

M (PIS(Z.))

6
Y
i=1
2.4%24+4.22

48,

dy,dy, +dydy, +dy,dys + dyydy, + dy,dy, +dydy, +dydy, +dy,dyg
68.

(vii) With the help of Fig.7, we have

M1 (PIS(Z.))

M,(PIS(Z.))

+ + I

10
2.4

i=1
4-6>+6-42
240,

dy,dy, +dydy, +dy,dy, +dydy, +dy, dyg + dydiy, + dy,dy +diydy, + dy,dyg
Ay, dyyy + dyydy, + Ay dyg + dyydyyy + dyydyy, + dyydyg + dy,dy, + dyydiy, + dysdg
Ay + dysdyy + dy dy, + dydyy + dy,dyy + dygdy,

588.

(viii) With the help of Fig.8, we obtain

My (PIS(Z.))

M (PIS(Z.))

+ + + + o+

14
2.4
i=1
6-8 +8-6°
672,

dy,dy, +dydy, +dy,d,, +d,dy, +dydyy, +dydy,, + dy,dy, +dy,dy, + dy,dyg
i, Ay + Ay Ay, + Ay Ay, + duydyy, + dyydug + dudyyy + dugdyy, + diugdyy, + diday,
dy,dy, + dy,dy, +dy,dyg + dy,dyy + dy,dyy, +dy,dyy, + dydy, +didyy + dydy,
ys@uyy + Ay iy + +dygdyyy, + dy dy, + dydyg + dyduyy + dudiy, + duyduy, + A, dyg

dwdulo + dmduu + du7du14 + dusdl¢9 + dusdull + dusdulz + dusd“lS * d“9d“10 + d"gd””
du9d1113 + dllwdun + d“lldulz
2352.
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Now we determine the Harmonic indices of different prime ideal sum graph of Z,.The findings have been

confined in Theorem 2.4.

Theorem 2.4. Let PIS(Z,) be the prime ideal sum graph of Z,. Then the followings hold:

() If n = p®, then the Harmonic index of PIS(Z.,) is 2((:‘__ 12)).
(if) If n = pq, then the Harmonic index of PIS(Z,) is 0.
(iii) If n = p*q, then the Harmonic index of PIS(Z.,) is 1.8.
(iv) Ifn = p*q?, then the Harmonic index of PIS(Z.,) is 3.451.
(v) If n = pqr, then the Harmonic index of PIS(Z,) is 2.75.
(vi) Ifn = pq, then the Harmonic index of PIS(Z,) is 2.75.
(vii) If n = p*qr, then the Harmonic index of PIS(Z,) is 4.933.
(viit) If n = pqrs, then the Harmonic index of PIS(Z.,) is 6.928.

Proof. (i) From Fig.1, we get

2

2 2 2
HI(PIS(Z,)) = + +o
( ( )) du1 + duz dul + du3 dlﬁ + dlla-l
. 2(a-2)
- (a-1)
(if) From Fig.2, we have
HI(PIS(Z,)) = 0.
(iii) From Fig.3, we obtain
2 2 2 2
HIPISZ) = et o, T dn < d, < dy,
= 1.8.
(iv) From Fig.4, we get
2 2 2 2 2 2
P " =
HIPISZ)) = gt o T de v e v dy, | du v dn Ay dy T du +dn,
+ 2 + 2 + 2 + 2 + 2
dy, +dy, dy,+dy, dy,+d, dy, +d,, du +dy
= 3.451.

(v) From Fig.5, we conclude that

2

2 2 2 2 2 2
HIPISZ)) = et G T do d  dn v e, Gy, A vy, T Ay
+ 2 _,_2
dy, +dy,  dy, + 4y,
= 275

(vi) From Fig.6, we observe that

2

2 2 2 2 2 2
HI(PIS(Z. = + + + + + +
(PIS(Z.1)) dy, +dy, dy, +dy, dy+d, dy+dy, dy,+dy, d,+d, d,+d,
2
+
dy, +dy,

2.75.
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(vii) From Fig.7, it is obvious that

233

2 2 2 2 2 2 2
HI(PIS(Z = + + + + + +
(PIS(Z.0)) dy, +d,, dy+dy, d,+d, d,+d, dy+dy, dy+dy, dy,+dy
+ 2 + 2 + 2 + 2 + 2 + 2 + 2
dy, +dy,  dy, +dyy,  dy, +dyy  dy, +dy,  dy+dy, Ay, +dy, dy, iy,
+ 2 + 2 + 2 + 2 + 2 + 2 + 2
dy, +dy,  dy, +dy,  dy, +dy, du+dy, dy+dy,  dy+dy,  dy +dy,
+ 2 + 2 + 2
dyg +dy,  dy, +dy,  dyg +dyg
= 4.933.
(vii) From Fig.8, we get
2 2 2 2 2 2 2
HI(PIS(Z. = + + + + + 4
(PIS(Z.)) dy +dy,  dy +dy,  dy +dy,  dy +dy,  dy +dy, Ay +du,  du +du,
N 2 N 2 N 2 N 2 N 2 N 2 N 2
dyp +dyy Ay, +dyy  dy, +dyyy Ay, +dyy, Ay +dy,  du+dy, dy, +dyg
+ 2 + 2 + 2 + 2 + 2 + 2 + 2
dy, +dyy Ay +dy,  dy+dy,  dy+dy, dy+dy, dy, +dy,  dy +dy
N 2 N 2 N 2 N 2 N 2 N 2 N 2
dy, +dy,  dy, +dy, dy, +dy, dy+dy, dy+dy  dy +dy,  dy +du,
+ 2 + 2 + 2 + 2 + 2 + 2 + 2
dys +dyyy,  dys +dy,  dy +dy,  dy +dy,  dy +dy,  dy +dy, dy +du,
N 2 N 2 N 2 N 2 N 2 N 2 N 2
dy, +dyy Ay, +dyy Ay, +dy, Ay, +dy,  duyg+dy dyg +dyy,  dyg +dyy,
N 2 2 2 2 2 2

O

+ + +
dl{g + du13 dug + dllm dllg + dl{n dl{g + du13

6.928.

+ +
d”l(} + dun dun + dulz

The next theorem deals with the estimation of ABC indices of different prime ideal sum graphs of Z,,.

Theorem 2.5. Let PIS(Z,) be the prime ideal sum graph of Z,,. Then the followings hold:

(i) If n = p®, then the ABC index of PIS(Z.,) is

(i) If n = pq, then the ABC index of PIS(Z,) is 0.

(@ -2)(Va-2)

a-1

(iii) If n = p*q, then the ABC index of PIS(Z.,) is 2.937.
(iv) If n = p*q?, then the ABC index of PIS(Z,) is 7.72.
(v) If n = pqr, then the ABC index of PIS(Z.,) is 4.855.
(vi) Ifn = pq, then the ABC index of PIS(Z.,) is 5.562.
(vii) If n = p*qr, then the ABC index of PIS(Z.,) is 13.779.
(viit) Ifn = pqrs, then the ABC index of PIS(Z,) is 17.935.

Proof. (i) Observing Fig.1, we obtain
Ay +dy, —2
+
dy,dy,

dy, +dy, -2 N
dy,dy,
(@ —2)(Va—-2)

a—-1

ABC(PIS(Z.,))
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(if) Observing Fig.2, we get
ABC(PIS(Z,)) = 0.
(iii) Fig.3, gives us

dy, +dy, —2
dy, dy,

ABC(PIS(Z,,)) = \/
= 2.937.

(iv) From Fig.4, it is obvious that

Ay +dy, —2
+
dul du3
Ay, +dyy =2 N
dllzdug

e
VR
Ve B

R e e e e
e
e

ABC(PIS(Z.,))

+

7.72.

(v) Observing Fig.5, we obtain

ABC(PIS(Z,,))

dy, +d,, —2 N
dy,dy,

N dy, +dy, —2 dy, +dy, —2 N dy, +dy, =2 dy, +dy, —2
duzdu5 du3d1¢6 dl¢4du5 du4du6

N dys +dy, —2
du5du6

= 4.855.

(vi) From Fig.6, we conclude that

dy, +dy, -2 N
Ay dy,

N dy, +d,, —2 N
duzdll4

5.562.

ABC(PIS(Z.,))

(vii) Observing Fig.7, we arrive at

B dy, +d,, -2 dy, +dy, -2 dy, +dy, -2 dy, +dy, =2
ABC(PIS(Zy)) = \/ ot + \/ Tt + ot + dudh,
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dy, +dy, —2 N dy, +dy, —2
du3 dllQ dlls d”l(}

13.779.

(viii) Fig.8, gives us

ABC(PIS(Z. _ d“1+du4_2+ du1+du6_2+ du1+du7—2+ du1+dum_2
( ( n)) - duldu4 duldu6 du du d“l

QU

dllé dun
17.935.

O

Now we determine the Zagreb coindices of different prime ideal sum graphs of Z,. Before, stating our
main result, it is necessary to mention following facts, which are proved in [20].
Fact 1. M1(G) = 2m(n — 1) — My(G).

Fact 2. My(G) = 2m? — Mlz(G) — My (G).

Theorem 2.6. Let PIS(Z,) be the prime ideal sum graph of Z,,. Then the followings hold:

(i) Ifn = p®, then the First and Second Zagreb coindices of PIS(Z.,) are a* —3a+2 and w

(ii) If n = pq, then both the First and Second Zagreb coindices of PIS(Z,) are 0.
(iii) If n = p*q, then the First and Second Zagreb coindices of PIS(Z.,) are 6 and 4 respectively.
(iv) Ifn = p?q?, then the First and Second Zagreb coindices of PIS(Z.,) are 60 and 100 respectively.
(v) If n = pqr, then the First and Second Zagreb coindices of PIS(Z.,) are 30 and 36 respectively.
(vi) Ifn = p3q, then the First and Second Zagreb coindices of PIS(Z.,) are 32 and 36 respectively.
(vii) If n = p*qr, then the First and Second Zagreb coindices of PIS(Z.,) are 192 and 444 respectively.
(viit) If n = pqrs, then the First and Second Zagreb coindices of PIS(Z,) are 576 and 2352 respectively.

respectively.
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Proof. Follows from Fact 1, Fact 2 and Theorem 2.3. [

Following theorem is confined to the estimation of Sombor spectra and energies of different prime ideal
sum graphs of Z,,.

Theorem 2.7. Let PIS(Z,) be the prime ideal sum graph of Z.,. Then the followings hold:

(i) If n = p®, then the Sombor spectrum of PIS(Z,) is {01472, \/(a — 1)(a2 = 2a + 2), — \/(a = 1)(a? - 2a + 2)}
and the Sombor Energy is 2 \/(a —1)(a? - 2a + 2).
(i) Ifn = pq, then the Sombor spectrum of PIS(Z,) is {011} and the Sombor Energy is 0.

(iii) If n = p*q, then the Sombor spectrum of PIS(Z,) is {—5.178,-2.828,0.752,7.253} and the Sombor Energy is
16.011.

(iv) If n = p?q?, then the Sombor spectrum of PIS(Z,) is {-13.2,-6.557,-5.446,0,1.07,6.557,17.577} and the
Sombor Energy is 50.407.

(v) Ifn = pqr, then the Sombor spectrum of PIS(Z.,,) is {—8.1182], -4.924,2.46221,16.236} and the Sombor Energy
is 42.32.

(vi) If n = pq, then the Sombor spectrum of PIS(Z.,) is {—8.932,-7.291,0,0.448,2.303,13.473} and the Sombor
Energy is 32.447.

(vii) Ifn = pzqr, then the Sombor spectrum of PIS(Z.,) is {—17.427,-17.366, —13.844, —11.385, 0.894, 3.224, 4.535,
5.656,10.193, 35.519} and the Sombor Energy is 120.103.
(viii) Ifn = pqrs, then the Sombor spectrum of PIS(Z.,) is {—25.455, —24.687%1, —22.627121, —0.627, 8.485!31,16.20213],
71.383} and the Sombor Energy is 290.841.

Proof. (i) Since the PIS graph of Z,, for n = p® is a star graph on « vertices and from [12, Theorem 2.6], the
Sombor characteristic polynomial of the star graph S,, = K ;-1 is ¢(A) = A" 2(A% = (n—1)(n*>—2n+2)), so
the characteristic polynomial in our case is ¢(A) = A%2(A? — (a — 1)(a* — 2a + 2)). Thus the eigen values
are 0, (@ — 2) times and the rest two eigen values are \/ (@ —1)(a? —2a +2)and — \/ (@ —1)(a? —2a +2).
From [12, Theorem 2.6], it follows that Eso(PIS(Z,)) = 2 \/(a —1)(a? - 2a +2).

(i1) Itis obvious.

(7ii) The Sombor matrix is

0 0 N \/dfh +d2 |
0 0 @2+, 0
NN 0 N
|\ + 0 a2, +d2 0

ui us

SO(G) =

V13 V10
V8 0

The eigen values are {—5.178, —2.828, 0.752,7.253} and Eso(PIS)(Z,) = 16.011.

0 0
0 0 V10
8

S’Or—\ﬁ‘
W ol w
o,_\o<|
H° s
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(iv) The Sombor matrix is

0 0 N N N \/dﬁl +d2,
0 \/dz vl B+, \/azz,z +d2,
\/d§3 rE, B+, 0 \/d§3 + 2,
SO@)=| i, +&, |2, +&, 0 0 0
N \/d,ts &, 0 0 0 \ /d§5 + 2,
0 \/d57 + 2, \/dz + dﬁs N 0 0
(0 0 V3 5 5 5 0]
0 0 V32 5 5 0 5
V32 V32 0 0 0 5 5
=| 5 5 0 0 0 0 Vi8|.
5 5 0 0 0 V18 0
5 0 5 0 V18 0 0
|0 5 5 V18 0 0 0 |

The eigen values are {-13.2, —6.557, -5.446,0, 1.07, 6.557,17.577} and Eso(PIS)(Z,) =

(v) The Sombor matrix is

SO(G) =
+d2

sz
a2+ d>

us uy

0

o o o o

0

N2, A2

\/dz + 2,

VB, + &,
NEAR A
0
0
0

50.407.

0

N2, + 2,

\/d2 +d3,

\/all%3 +d2,

The eigen values are {—8.1182, -4.924,2.462[21,16.236} and Eso(PIS)(

\/d%,4 +d2, \/d2 +ds,
0 \/df,s +d2, \/dz + a2,

B+ 8, Bl B+, \/d$,6 + &,
[0 0 0 V20 V20 0 ]

0 0 0 20 0 20

0 0 0 0 20 v20
V20 V20 0 0 V32 V32f
V20 0 V20 V32 0 V32
| 0 V20 V20 V32 V32 0 |

Z,) = 42.32.

\/d%,4 +d2,
A /dﬁs +d5,

0
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(vi) The Sombor matrix is

0 0 N R RN R RN R N )

0 0 0 N2+ B, 0 N2+ d2,

B+ &2, 0 0 B2, + &2, 0 0
SO(G) = *
N R N RN I R JB+E 0
B+ &, 0 0 B, + 2, 0 0
»\/df,ﬁ +d2 \/d§,6 +d2, 0 0 0 0
[0 0 V20 32 V20 +20]
0 0 0 ~20 0 8
V20 0 0 20 0 0
T1V32 V20 V200 0 V20 o |
V20 0 0 20 0 0
v20 V8 0 0 0 0 |

The eigen values are {—8.932,-7.291, 0,0.448, 2.303, 13.473} and Eso(PIS)(Z,) = 32.447.

(vii) The Sombor matrix is

0 0 0 Jeovd, e va o va, B a2 ea o N
0 0 0 0 Jev& o Je a2 o RN )
0 0 0 0 0 J& e o NN [N T
N+ d2 0 0 0 A2 A JdE A2 0 0 0 B+
N A (JdE 0 N 0 N 0 B+ de A+ 0
0O ra o N N N e N S NN A S
N2, 2 (JdE 4+, 0 0 0 A%, + d2, 0 0 B, +d2 0
2+ d2 0 N 0 N A 0 0 0 N 0
0 F RN 0 N R N RN R AN 0 0
N T N RN R RN ) 0 0 0 0 0 0
[0 0 0 VB2 6 6 V52 VB2 0 VB2
0 0 0 0 V52 0 V32 0 V52 V32
0 0 0 0 0 V52 0 V3 V52 Va2
V2 0 0 0 V52 ¥52 0 0 0 V32
6 V52 0 V52 0 V72 0 V52 V72 0
16 0 VR2 VB2 V72 0 VB2 0 V72 0 |
V2 V32 0 0 0 V5% 0 0 V52 o0
V52 0 V32 0 V52 0 0 0 V52 0
0 V52 V52 0 V72 V72 V52 VB2 0 0
V52 6 V32 32 o0 0 0 0 0 0|

The eigen values are {-17.427,-17.366, —13.844, —11.385,0.894, 3.224,4.535, 5.656, 10.193, 35.519} and
Eso(PIS)(Z.,,) = 120.103.
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(viii) The Sombor matrix is

0 0 0 d +d, 0 N+ dE - d 0 0 B+ 0 VB +d, B+ 0

0 0 0 N 0 0 0 N N N 0 B, + &2, 0 Ny

0 0 0 0 0 &+ &2, 0 2, + &, 0 JB B, R d 0 B+ d B+
NN 0 0 0 NN I RN I N 0 0 0 N

0 0 0 0 0 0 N 0 J& v & 0 ek, s, s, o ea,
N 0 N RN 0 NI 0 0 N RN S 0 Ny

0
0 N N N 0 e e, e va, e e, 0

| e 0 0 i+ d,
1 o N RN RN ) 0 N 0 0 N 0 N RN R RN 0 )
N N N R 0 0 JE v o N 0 Ny 0 0 0
0 0 N 0 R N A RN R N RN AN 0 Ny 0 0
N 0 N N N R S 0 NN 0 0 0 0 0
0 N R N R N R RN AR Y 0 0 0 0 0 0 0
0 0 0 10 0 10 10 0 0 V72 0 V72 V72 0
0 0 0 10 0 0 0 10 10 V72 0 V72 0 V72
0 0 0 0 0 10 0 10 0 V72 10 0 V72 V72
10 10 0 0 0 V128 V128 V128 128 0 0 0 10 10
0 0 0 0 0 0 10 0 10 0 10 V72 V72 V72
0 0 10 V128 0 0 V128 V128 0 0 V128 10 0 10
| 10 0 0 V128 10 V128 0 0 128 10 V128 0 0 10
| o 10 10 Vi28 0 V128 0 0 V128 0 V128 10 10 0
0 10 0 V128 10 0 V128 V128 0 10 V128 0 10 0
N72 V72 N72 0 0 0 10 0 10 0 10 0 0 0
0 0 10 0 10 V128 128 V128 V128 10 0 10 0 0
N72 N72 0 0 V72 10 0 10 0 0 10 0 0 0
N2 0 V72 10 V72 0 0 10 10 0 0 0 0 0
0 V72 V72 10 V72 10 10 0 0 0 0 0 0 0
The eigen values are {—25.455, —24.687131, —22.6271?], —0.627, 8.485131,16.2021%!, 71.383} and Eso(PIS)(Z,) =
290.841.
[

Following theorem deals with the evaluation of Laplacian spectra and energies of different prime ideal sum
graphs of Z,,.

Theorem 2.8. Let PIS(Z,) be the prime ideal sum graph of Z,. Then the followings hold:

(i) Ifn = p®, then the Laplacian spectrum of PIS(Z,) is {0, 11431, & — 1} and the Laplacian Energy is %.
(i) If n = pq, then the Laplacian spectrum of PIS(Z,) is {012} and the Laplacian Energy is 0.
(iii) If n = p*q, then the Laplacian spectrum of PIS(Z.,) is {0,1,3,4} and the Laplacian Energy is 6.
(iv) If n = p*q?, then the Laplacian spectrum of PIS(Z,) is {0,1.753,3.198,3.445,4.554,4.801,6.246} and the
Laplacian Energy is 10.667.
(v) Ifn = pqr, then the Laplacian spectrum of PIS(Z.,) is {0, 1.69712, 4,5.30212!} and the Laplacian Energy is 8.002.
(vi) Ifn = p3q, then the Laplacian spectrum of PIS(Z.,) is {0, 1.268,2,2.586,4.732, 5.414} and the Laplacian Energy
is 9.624.
(vii) If n = pzqr, then the Laplacian spectrum of PIS(Z,) is {0, 3121 3.586,4.268,5,6.414,7,7.732,8} and the
Laplacian Energy is 20.292.
(viii) If n = pqrs, then the Laplacian spectrum of PIS(Z.,) is {0,5°1,7,9,9.56131, 1012} and the Laplacian Energy is
34.683.
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Proof. (i) The Laplacian matrix L(G) = D(G) — A(G), where D(G) is the diagonal matrix of degrees of the
vertices and A(G) is the adjacency matrix, so

a-2 0 0 0 o011 - 1
o 10 -+ 0 100 -+ 0
LG =| . S N
0 00 1 1 00 0
a-2 -1 -1 -1
-1 1 0 0
-1 0 O 1
4(a—2)

The eigen values are {0, 1081 ¢ — 1} and LE(G) =

(i) Follows trivially.

-1

(iii) The Laplacian matrix is
2 0 -1 -1

0 1 -1 0
Lo=14 1 3 2
10 -1 2

The eigen values are {0, 1, 3,4} and LE(G) = 6.

(iv) The Laplacian matrix is
4 0 -1 -1 -1 -1 0]

o 4 -1 -1 -1 0 -1
-1 -1 4 0 0 -1 -1
LG=(-1 -1 0 3 0 0 -1j.
-1 -1 0 0 3 -1 0
-1 0 -1 0 -1 3 o0
|10 -1 -1 -1 0 0 3]

The eigen values are {0, 1.753,3.198, 3.445,4.554, 4.801, 6.246} and LE(G) = 10.667.
(v) The Laplacian matrix is

2 0 0 -1 -1 0
0 2 0 -1 0 -1
0 0 2 0 -1 -1
LO=11 o1 0 4 a1 4

-1 0 -1 -1 4 -1
o -1 -1 -1 -1 4

The eigen values are {0, 1.69712, 4,5.302[?} and LE(G) = 8.002.
(vi) The Laplacian matrix is
4 o -1 -1 -1 -1
o 2 0 -1 0 -1
-1 0 2 -1 0 0
LO=11 40 1 4 -1 o0
-1 0 0 -1 2 0
-1 -1 0 0 0 2

The eigen values are {0, 1.268,2,2.586,4.732,5.414} and LE(G) = 9.624.
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(vii) The Laplacian matrix is

6 0 0 -1 -1 -1 -1 -1 0 -1j
o 4 0 0 -1 0 -1 0 -1 -1
o o0 4 0 0 -1 0 -1 -1 -1
-1 0 0 4 -1 -1 0 0 0 -1
-1 -1 0 -1 6 -1 0 -1 -1

L&O=1_1 0 -1 1 11 6 -1 0 -1

0
0
-1 -1 0 0 0 -1 4 0 -1 0
-1 0 -1 0 -1 0 0 4 -1 0
0 -1 -1 0 -1 -1 -1 -1 6 0
-1 -1 -1 -1 0 0 0 0 0 4

The eigen values are {0, 3121,3.586,4.268,5,6.414,7,7.732,8} and LE(G) = 20.292.
(viii) The Laplacian matrix is

6 0 0 -1 0 -1 -1 0 0 -1 0 -1 -1 0]
o 6 0 -1 0 0 0 -1 -1 -1 0 -1 0 -1
o o0 6 0 O -1 0 -1 0 -1 -1 0 -1 -1
-1 -1 0 8 0 -1 -1 -1 -1 0 0 0 -1 -1
o o o o0 6 0 -1 0 -1 0 -1 -1 -1 -1
-1 0 -1 -1 0 8 -1 -1 0 0 -1 -1 0 -1

0 -1 0 -1 -1 0 -1 -1 8 -1 -1 0 -1
-1 -1 -1 0 0 0 -1 0 -1 6 -1 0
00 -1 0 -1 -1 -1 -1 -1 -1 8 -1
-1 -1 0 0 -1 -1 0 -1 0 0 6
-1 0 -1 -1 -1 0 0 -1 -1 0 0 0
|0 -1 -1 -1 -1 -1 -1 0 0 0 0

NOD OO O oo

The eigen values are {0,5!°!,7,9,9.5611%1, 1012} and LE(G) = 34.683.
O

The next theorem is related with the study of signless Laplacian spectra and energies of different prime
ideal sum graphs of Z,,.

Theorem 2.9. Let PIS(Z,) be the prime ideal sum graph of Z,,. Then the followings hold:

(i) Ifn = p®, then the signless Laplacian spectrum of PIS(Z,) is {0, 11731, a — 1} and the signless Laplacian Energy

s 4(a—-2)

a-1"
(i) If n = pq, then the signless Laplacian spectrum of PIS(Z.,) is {02!} and the signless Laplacian Energy is 0.
(iii) If n = p*q, then the signless Laplacian spectrum of PIS(Z.,) is {0.438,1,2,4.561} and the signless Laplacian
Energy is 5.123.
(iv) If n = pzqz, then the signless Laplacian spectrum of PIS(Z,) is {0.950,1.753,2.213,3.445,3.761,4.01,7.076}
and the signless Laplacian Energy is 10.739.
(v) Ifn = pqr, then the signless Laplacian spectrum of PIS(Z.,) is {1.171,1.382!21,3.618!2!, 6.828} and the signless
Laplacian Energy is 10.129.
(vi) If n = pq, then the signless Laplacian spectrum of PIS(Z.,) is {0.586,0.897,2,2.854,3.414,6.249} and the
signless Laplacian Energy is 9.034.
(vii) Ifn = pzqr, then the signless Laplacian spectrum of P1S(Z.,) is {1.711,2.268, 2.645, 3.452,4.803, 5, 5.374,5.732,
6.710, 10.305} and the signless Laplacian Energy is 18.248.
(viii) If n = pqrs, then the signless Laplacian spectrum of PIS(Z.,) is {3.143,3.882,4121, 6121, 6.844121 7121 8.976,92],
14.312} and the signless Laplacian Energy is 28.315.
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Proof. (i) Thesignless Laplacian matrix Q(G) = D(G)+A(G), where D(G) is the diagonal matrix of degrees
of the vertices and A(G) is the adjacency matrix, so

a-2 0 0 - 0 011 -1
0 10 -~ 0 100 --- 0
QG =1 . SRR I
0 00 1 1 00 0
a-2 1 1 - 1
1 10 - 0
Q) = o
1 00 --- 1
Ha-2
The eigen values are {0,11%7%], o — 1} and QE(G) = (a_ 1 ).
(i1) Itis obvious.
(iif) The signless Laplacian matrix is
2 011
0110
Q) = 11 3 1y
101 2
The eigen values are {0.438,1,2,4.561} and QE(G) = 5.123.
(iv) The signless Laplacian matrix is
4 0 1 1 1 1 0]
0411101
1140011
QG=111 0 3 0 0 1.
1100310
1010130
0111 0 0 3

The eigen values are {0.586,0.897, 2,2.854, 3.414, 6.249} and QE(G) = 9.034.
(v) The signless Laplacian matrix is

QG) =

ORrRPrOON
_ O, ONO
— = ONOO
_ o= O =
— == O =
I e = =)

The eigen values are {1.171,1.382[?],3.618[?], 6.828} and QE(G) = 10.129.
(vi) The signless Laplacian matrix is

4 01111
0 20101
1 02100
QG) = 1114 1 0
1 00120
11000 2

The eigen values are {0, 1.268,2,2.586,4.732,5.414} and QE(G) = 9.624.
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(vii) The signless Laplacian matrix is

6 00 1 11110 1
04001071011
0040010111
1004110001
1101610110

Q=11 01116101 0
1100014010
1010100410
0110111160
11110000 0 4

The eigen values are {1.711,2.268, 2.645, 3.452,4.803, 5,5.374, 5.732,6.710,10.305} and QE(G) = 18.248.
(viii) The signless Laplacian matrix is

QG) =

P ORORRPRPPRPROODOROOO
P R, O R P ORFRPRORFROOO0NOO
—m R, OO R R PP OWO R
_ _mm R, O RRORFR OO OO
R OR P OOR R OCORRFERORF
R OO R R P OORFR R EFEOOR
OR P R OFRWOWORFRORRFRREFEO
OFRORFRFPRORFRRFRORFRRFEORFRO
OO R OR R R EFPEREPL,ORFRLOO

OO RO RPOROOOR R
SO R P ORFROFRPRPROOFE
OCOODOO R P OO R RFPRRFPO
AN OO OO OO R R RERREREREO

OFR P OFROORFPORFROOO

The eigen values are {3.143,3.882,412], 6121, 6.844121, 7121 8 976,912] 14.312} and QE(G) = 28.315.
[

Finally, we estimate Randic spectra and energies of different prime ideal sum graphs of Z,,. This estimation
is discussed in Theorem 2.10.

Theorem 2.10. Let PIS(Z,) be the prime ideal sum graph of Z,,. Then the followings hold:

(i) If n = pq, then the Randic spectrum of PIS(Z.,) is {0} and the Randic Energy is 0.
(i) Ifn= pzq, then the Randic spectrum of PIS(Z,) is {—0.728,—0.5,0.228, 1} and the Randic Energy is 2.456.

(iii) Ifn = pzqz, then the Randic spectrum of PIS(Z,) is {—0.724,—-0.441,-0.333, 0, 0.057, 0.441, 1} and the Randic
Energy is 2.996.

(iv) Ifn = pqr, then the Randic spectrum of PIS(Z.,) is {—0.51%1,0.25121, 1} and the Randic Energy is 3.
(v) Ifn = p°q, then the Randic spectrum of PIS(Z,) is {-0.75,-0.64,0121,0.390, 1} and the Randic Energy is 2.78.

(vi) Ifn = pzqr, then the Randic spectrum of P1S(Z.,) is {—0.628,—0.5, —0.403, —0.283, —0.099, 0.083, 0.203, 0.250,
0.320, 1.058} and the Randic Energy is 3.827.

(vii) Ifn = pqrs, then the Randic spectrum of PIS(Z,) is {—0.5,-0.392, —0.383, —0.377, —0.270, —0.243, 0.006, 0.16681,
0.204,0.217,0.231,1.007} and the Randic Energy is 4.328.

Proof. (i) Follows trivially.
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(i1) The Randic matrix is

1 1
0 0
dbi1dllz duldu4
0 0 — 0
R(G) = 1 1 ‘(‘)2 13 1
du3du1 du3duz dusdu4
1 1
0 0
du4du1 du4d143
_ 1 1 1
0 R R
\1/6 V4
0 0 — 0
_ V3
Sl o, Ay
«{6 V3 ) Ve
= 0 — O
| 2 V6 )
The eigen values are {—0.728,-0.5,0.228, 1} and RE(G) = 2.456.
(iii) The Randic Matrix is
0 0 1 1 1 1 0
\/dLﬂ dll3 \/dul du4 \/dul dus \/dbq dllf,
1 1 1 1
0 0
1 1 \/duz du3 \/duz du4 \/duz d”5 1 biz dl¢7
0 0 0
ddy  \ddy, iy usu;
1 1 1
R(G) = 0 0 0 0
dlfclu1 dlludu2 ) sy
0 0 0 0
du5du1 dll5duz du5du6
! 0 ! ! 0 0
dydy, dyedu, Ay
0 ! ! ! 0 0 0
\/du7d142 \/du7dll3 \/dll7du4
r 0 0 1 1 1 1 0 1
e Vo Vi
0 0 0 —r—
Vie iz V12 Vi2
R N T T
=|l— — 0 0 0 0 — 1.
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— 0 — 0 — 0 0
0 —_— = — 0 0 0
L Viz Viz Vo !
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The eigen values are {—0.724, —0.441, —0.333,0,0.057, 0.441, 1} and RE(G) = 2.996.

(iv) The Randic matrix is

0 0 0 ! ! 0
dbilalu4 dy,dys )
0 0 0 0
duzdu4 \/m
0 0 0 0 dld dld
RG =] 1 T T
0 0
du4dl¢1 du4du2 du4du5 du4du6
0 1 1 0 1
dysdy, . \/dbisdu3 \/dlfdu4 . dysdy,
0 0
\/dll(, duz \/duﬁ dl/l3 \/dué dll4 \/dll(, du5
1 1 1
0 0 0 — — 0
P
0 0 0 — 0 —
wo,f
0 0 0 0 — —
_ V8 B
[ P e S R
V8 V8 Vie V16
1, r r 4 L
V3 V8 V16 Vie
o L Lt 1
[ V8 V8 V16 V16 ]
The eigen values are {—0.58%1,0.25], 1} and RE(G) = 3.
(v) The Randic Matrix is
1 1 1 1
0 0
NC \/dbfdu4 NC \/dlildu6
0 0 0 0
1 dlizduz; dbizdue
dy,d 0 0 dy,d 0 dy,d
R(G) - lis ul 1 1 :;3 Uy 1 b(l)x Ug
\/dbfd,,1 N N . dy,dus
0 0 0 0
dysdy, dysdy,
! ! 0 0 0 0
du(,dul dubdm
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o o L 1L 1 1]
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— — 0 0 0 0
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The eigen values are {—0.75,-0.64,0[2,0.390, 1} and RE(G) = 2.78.
(vi) The Randic Matrix is

0 0 0 1 1 1 1 1 0 1
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The eigen values are {—0.628, -0.5, —0.403, —0.283, —0.099, 0.083, 0.203, 0.250, 0.320, 1.058} and RE(G) =

3.827.
(vii) The Randic Matrix is
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4.328.

The eigen values are {—0.5, -0.392, —0.383, —0.377, —0.270, —0.243, 0.006, 0.166!*!,0.204, 0.217,0.231, 1.007}

and RE(G)
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3. CONCLUSION

A more thorough examination of the fundamental characteristics of commutative rings is made possible
by the prime ideal sum graph PIS(R), which offers a strong foundation for connecting their abstract algebraic
structure to concrete, real-world systems. Based on their ideal lattice structure, invariants like the graph
energy and a variety of topological indices obtained from PIS(R) may be used as distinctive fingerprints to
categorize and identify commutative rings.

Sombor indices for prime ideal sum graphs have been discussed in Theorem 2.1. Redzepovic has shown that
the Sombor index can be effectively utilized to predict the thermodynamic characteristics of compounds[24].
Alikhani et al. examine the Sombor index of polymer graphs and demonstrate that Sombor index of some
graphs is calculated using their monomer units[2]. The Sombor indices may also be used to compute the
Backbone DNA networks[21]. We have derived Randic indices of prime ideal sum graphs in Theorem 2.2,
which are used to calculate the overall power of a networked graphical transmission system. Moreover
the Zagreb indices for prime ideal sum graph have been obtained in Theorem 2.3, which determines the
overall -electron energy of molecules with high accuracy[18, 28]. ABC indices for prime ideal sum graphs
have been studied in Theorem 2.5. The link between linear and branched alkane stability is ascertained by
computing strain energy for cyclic alkanes using these indices[11].

Energies of prime ideal sum graphs are evaluated in Theorem 2.7 and 2.10. Graph energies are used in
network analysis to quantify the robustness and stability of intricate networks, which help direct security
and network design initiatives. Analysis and investigation of the graph’s characteristics are made possible
by the adjacency matrix, which offers a succinct depiction of its structure. Additionally, the spectrum of the
adjacency matrix is used in network analysis to examine a number of characteristics of networked systems,
including resilience, synchronization behavior, and centrality measurements.

We have calculated Laplacian spectrum of prime ideal sum graphs in Theorem 2.8. Applications for the
Laplacian spectrum may be found in a variety of fields, such as machine learning, network analysis, and the
study of graph properties such as connectivity, community structure and graph partitioning. Moreover, it
is used in network research to examine a number of topics, including synchronization behavior, resilience,
and network centrality. The eigenvalues of the Laplacian matrix shed light on the network’s resilience
and stability, making it easier to spot important nodes and comprehend how networked systems function.
Furthermore, the Laplacian spectrum has been extensively utilized in machine learning methods for or-
ganizing and analyzing high-dimensional data in a graph-based form, including spectral clustering and
dimensionality reduction approaches[7, 26]. The signless Laplacian matrix, is a key tool in algebraic graph
theory for describing the connectivity and structure of graphs. The literature mentions several findings and
applications|1, 8, 9].

Therefore, prime ideal sum graphs offer a rigorous algebraic framework for understanding chemical com-
pound stability and designing reliable and effective communication and computing networks. Their
promise as a flexible tool across several disciplines is highlighted by their capacity to reconcile the practical
requirements of physical and virtual systems with the abstract qualities of ideals.
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