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Semi-symmetric ∗-Ricci tensor on generalized Sasakian space forms
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Abstract. We study the ∗-Ricci tensor on generalized Sasakian space forms in both Riemannian and semi-
Riemannian settings. We investigate the ∗-Ricci semi-symmetric property of generalized Sasakian space
forms and its application: this provides a new approach to quantify how close a Sasakian space form is to
being a constant curvature space. At the end of this paper, we present an example of a Sasakian space form
with semi-symmetric ∗-Ricci tensor and provide its classification.

1. Introduction

In Riemannian geometry, a simple connected Riemannian manifold (M, 1) with constant sectional cur-
vature c is a real space form and the curvature tensor is

R(X,Y)Z = c(1(Y,Z)X − 1(X,Z)Y),

according to different values of c, there are three models of real space form: Euclidean space Rn(c = 0),
sphere Sn(c > 0) and hyperbolic space Hn(c < 0). In complex geometry, if a Kähler manifold (M, J, 1) has
constant holomorphic sectional curvature c then it ia a complex space form and the curvature is

R(X,Y)Z =
c
4

(1(Y,Z)X − 1(X,Z)Y + 1(X, JZ)JY − 1(Y, JZ)JX + 21(X, JY)JZ),

and the three models are Cn(c = 0), CPn(c > 0) and CHn(c < 0). In [32] (or [33]), F.Tricerri and L.Vanhecke
gave a generalization of complex space form. For an almost Hermitian manifold (M, J, 1), if the curvature
tensor R satisfies:

R(X,Y)Z = F1(1(Y,Z)X − 1(X,Z)Y) + F2(1(X, JZ)JY − 1(Y, JZ)JX + 21(X, JY)JZ),

where F1,F2 are differentiable functions on M, then M is a generalized complex space form. Moreover, they
showed that for a connected generalized complex space form of dimension at least six, if F2 is non-zero,
then it was necessarily a complex space form.
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Research funded by Science Research Project of Hebei Education Department Grant No. QN2026104.
* Corresponding author: Rongsheng Ma
Email addresses: zhujx318@ysu.edu.cn (Junxia Zhu), mars@ysu.edu.cn (Rongsheng Ma)
ORCID iDs: https://orcid.org/0000-0002-8787-6149 (Junxia Zhu), https://orcid.org/0000-0001-6380-4864 (Rongsheng

Ma)



J. Zhu, R. Ma / Filomat 40:1 (2026), 269–280 270

In contact geometry, the Sasakian space form corresponds to the complex space form. If the ϕ-sectional
curvature of a Sasakian manifold is constant c, then the curvature tensor of the manifold has the following
form:

R(X,W)Z =
c + 3

4
(1(W,Z)X − 1(X,Z)W) +

c − 1
4

(1(X, ϕZ)ϕW − 1(W, ϕZ)ϕX (1)

+ 21(X, ϕW)ϕZ)) +
c − 1

4
(η(X)η(Z)W − η(W)η(Z)X + 1(X,Z)η(W)ζ − 1(W,Z)η(X)ζ),

and M is called Sasakian-space-form. The notion of generalized Sasakian space form was introduced by
P.Alegre, D.E.Blair and A.Carriazo in [2]. The semi-Riemannian setting of generalized Sasakian space forms
was given in [4]. In [20] and [21], the authors studied the Ricci solitons on Lorentzian generalized Sasakian
space forms and get beautiful and significant results. For further key results in Riemannian geometry, see
the works [18, 19].

Although generalized Sasakian space form is inspired by Sasakian space form, it is not only a simple
generalization, but contains a large class of almost contact metric manifolds. For example, when trans-
Sasakian three-manifold satisfies some certain condition, it is a generalized Sasakian space form and contact
generalized Sasakian space form is a generalized (κ, µ)-space (see [3]). Generally speaking, the study of
generalized Sasakian space forms can be approached from three perspectives. One is the study of various
curvature tensors on the generalized Sasakian space form and their relationships. U.C.De and A.Sarkar
gave the the necessary and sufficient condition that the generalized Sasakian space form being projective
flat (see [8]), and they also studied the quasi-conformal curvature tensor (see [28]). U.K.Kim studied the
conformal flat and locally symmetric generalized Sasakian space form (see [17]). The corresponding author
of this paper also obtained some good results (see [22]). The second aspect is the study of various solitons
on generalized Sasakian space form. For example, people have studied the conformal Ricci soliton and
quasi-Yamabe soliton on generalized Sasakian space form (see [11]) and there are good results about Ricci
soliton on three-dimensional generalized Sasakian space form (see [14, 27]). The third is the study of
submanifolds of generalized Sasakian space form (see [1, 5, 16]).

In contact geometry, ∗-Ricci tensor is a tensor similar to Ricci tensor but it has different geometric
properties. In 1959, S.Tachibana gave the notion of ∗-Ricci tensor in complex geometric (see [29, 30]).
In 2002, T.Hamada extended the notion of ∗-Ricci tensor to almost contact manifolds in [13]. Here we
introduce an intuitive way to understand ∗- Ricci tensor. Let (M, J, h) be a Kähler manifold, its Ricci tensor
has expression

Ric(X,Y) =
1
2

trace{J ◦ R(X, JY)}.

In contact geometry, the almost contact structure includes a (1, 1)-tensor field ϕ, which corresponds to the
almost complex structure J. However, replacing J by ϕ in above formula is not the Ricci tensor of the almost
contact manifold. It is ∗-Ricci tensor in contact geometry:

Ric∗(X,Y) =
1
2

trace{ϕ ◦ R(X, ϕY)}.

After the ∗-Ricci tensor of contact manifold being proposed, it attracts great interest of mathematicians.
The corresponding author of this paper investigated the ∗-Ricci tensor on trans-Sasakian three-manifolds
(see [23]). After G.Kaimakamis and K.Panagiotidou defined ∗-Ricci solitons on real hypersurfaces in
complex space form (see [15]), many mathematicians had studied ∗-Ricci solitons on different almost contact
manifolds in many aspects, and obtained important and meaningful results. For example, Venkatesha,
D.M.Naik and H.A.Kumara proved that if a three-dimensional Kenmotsu manifold was a ∗-Ricci soliton,
then it was of constant curvature−1 (see [34]). P.Majhi, U.C.De and Y.J.Suh proved that if a three-dimensional
Sasakian manifold was a ∗-Ricci soliton, then it was a manifold with constant curvature and the potential
vector field was a Killing vector field (see [26]). A.Ghosh and D.S.Patra gave a complete classification of
∗-Ricci soliton of non-Sasakian (κ, µ)-contact manifolds (see [12]). The corresponding author of this paper
investigated the ∗-Ricci tensor on (κ, µ)-contact manifolds and the Hopf real hypersurfaces in the complex
quadric (see [24, 25]).
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In the present paper, we study ∗-Ricci tensor and ∗-Ricci operator on generalized Sasakian space forms.
The ∗-Ricci semi-symmetric property provides a deeper insight than the projective curvature tensor P. While
P might only determine if a Sasakian space form has constant curvature, the ∗-Ricci property quantifies
its degree of resemblance to such a space. We derive necessary and sufficient conditions for the ∗-Ricci
tensor to be semi-symmetric on both generalized and generalized indefinite Sasakian space forms. We also
determine when the ∗-Ricci operator is Reeb flow invariant and Reeb-parallel, and explore the relationship
between ∗-Ricci and Ricci semi-symmetry.

We use U,W,V,X,Y, and Z to denote the smooth tangent vector fields on the manifold, and all manifolds
and functions mentioned in our paper are smooth.

2. Generalized Sasakian space forms

If a Riemannian manifold M admits a vector field ζ(we call it Reeb vector field or characteristic vector
field), a 1-form η and a (1, 1)-tensor field ϕ that satisfy:

ϕζ = 0, η ◦ ϕ = 0,

ϕ2 = −I + η ⊗ ζ, η(ζ) = 1,

η(X) = 1(ζ,X),

1(X,W) = 1(ϕX, ϕW) + η(X)η(W),

then the manifold is almost contact metric manifold and the triple (ϕ, ζ, η) is almost contact structure on the
manifold. If the 2-form dη and the metric 1 satisfy:

dη(X,W) = 1(X, ϕW),

then M is a contact metric manifold and the triple (ϕ, ζ, η) is a contact structure on the manifold.
We can define a vector field on the productR×M2n+1 by (h d

dx ,W), in which x is the coordinate onR, and
h is a C∞ function on R ×M2n+1. Define an almost complex structure J on R ×M2n+1 by

J(h
d

dx
,W) = (η(W)

d
dx
, ϕW − hζ),

and it is easy to check J2 = −I. If J is integrable then the almost contact structure (ϕ, ζ, η) is normal. A
normal contact metric manifold is a Sasakian manifold.

For a vector field W orthogonal to ζ, the plane spanned by W and ϕW is called a ϕ-section. The
curvature K(W, ϕW) of this plane is known as the ϕ-sectional curvature. The curvature of a Sasakian
manifold is determined by ϕ-sectional curvatures entirely (see [6]).

A Sasakian manifold with constant ϕ-sectional curvature c is a Sasakian space form and the curvature
tensor is given by Equation (1). In [2], the author replaced the constants in Equation (1) by three smooth
functions defining on the manifold. For an almost contact metric manifold M, if the curvature tensor is
given by

R(X,W)Z = f1(1(W,Z)X − 1(X,Z)W) + f2(1(X, ϕZ)ϕW − 1(W, ϕZ)ϕX + 21(X, ϕW)ϕZ) (2)
+ f3(η(X)η(Z)W − η(W)η(Z)X + 1(X,Z)η(W)ζ − 1(W,Z)η(X)ζ),

where f1, f2, f3 ∈ C∞(M), then M is generalized Sasakian space form. The ϕ-sectional curvature of a
generalized Sasakian space form is f1 + 3 f2.

Let (M2n+1, f1, f2, f3) be a contact generalized Sasakian space form, then f1− f3 is constant on M. Moreover
if the dimension of M2n+1 is greater than three, that is n > 1, then M2n+1 is Sasakian (see [3, Theorem 3.5])
and it is a Sasakian space form (see [2, Corollary 3.16]).
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For a generalized Sasakian space form (M2n+1, f1, f2, f3), we have the following useful equations from
Equation (2):

Ric(X,W) =(2n f1 + 3 f2 − f3)1(X,W) − (3 f2 + (2n − 1) f3)η(X)η(W), (3)
QX =(2n f1 + 3 f2 − f3)X − (3 f2 + (2n − 1) f3)η(X)ζ, (4)

r =2n(2n + 1) f1 + 6n f2 − 4n f3, (5)

where Ric is the Ricci tensor, Q is the Ricci operator and r is the scalar curvature.
For an almost contact metric manifold, the ∗-Ricci tensor Ric∗ is (see [13]):

Ric∗(X,Y) =
1
2

trace{Z→ R(X, ϕY)ϕZ},

Let {e1, . . . , e2n+1} be the local orthonormal basis of an almost contact metric manifold, then we have

Ric∗(X,Y) =
1
2

2n+1∑
i=1

1(R(X, ϕY)ϕei, ei) = −
1
2

2n+1∑
i=1

1(R(X, ϕY)ei, ϕei) =
1
2

2n+1∑
i=1

1(ϕR(X, ϕY)ei, ei),

Thus we know that ∗-Ricci tensor is also half of the trace of ϕ ◦ R(X, ϕY) :

Ric∗(X,Y) =
1
2

trace{ϕ ◦ R(X, ϕY)}.

Theorem 2.1. Let (M2n+1, ϕ, ζ, η, 1, f1, f2, f3) be a generalized Sasakian space form. Then the ∗-Ricci tensor of M2n+1

is

Ric∗(W,Z) = ( f1 + (2n + 1) f2)1(ϕW, ϕZ), (6)

thus the ∗-Ricci operator Q∗ and the ∗-scale curvature r∗ are:

Q∗W = − ( f1 + (2n + 1) f2)ϕ2W, (7)
r∗ =2n( f1 + (2n + 1) f2). (8)

Proof. Let {e1, . . . , e2n+1} be the local orthonormal basis of M. From the definition of ∗-Ricci tensor, we have:

Ric∗(W,Z) =
1
2

2n+1∑
i=1

1(R(W, ϕZ)ϕei, ei)

=
1
2

( f1(−1(ϕ2Z,W) + 1(ϕW, ϕZ)) + f2(1(ϕ2W, ϕ2Z) + 1(ϕW, ϕZ) − 4n1(W, ϕ2Z)))

=( f1 + (2n + 1) f2)1(ϕW, ϕZ).

From the above equation and Ric∗(W,Z) = 1(Q∗W,Z), we have

Q∗W = −( f1 + (2n + 1) f2)ϕ2W,

and

r∗ =
2n+1∑
i=1

Ric∗(ei, ei) = ( f1 + (2n + 1) f2)
2n+1∑
i=1

1(ϕei, ϕei) = 2n( f1 + (2n + 1) f2).
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If a semi-Riemannian manifold M admits a vector field ζ, a 1-form η and a (1, 1) tensor field ϕ satisfying:

ϕζ = 0, η ◦ ϕ = 0,

ϕ2 = −I + η ⊗ ζ, η(ζ) = 1,

η(X) = ε1(ζ,X),

1(X,W) = 1(ϕX, ϕW) + εη(X)η(W),

where ε = 1(ζ, ζ) = ±1 is the significant of ζ, then such manifold is ε-almost contact metric manifold (see
[9]) or almost contact pseudo-metric manifold (see [7]).

For a ε-almost contact metric manifold M, if the curvature tensor is given by

R(U,W)X = f1(1(W,X)U − 1(U,X)W) + f2(1(U, ϕX)ϕW − 1(W, ϕX)ϕU + 21(U, ϕW)ϕX)
+ f3(η(U)η(X)W − η(W)η(X)U + ε1(U,X)η(W)ζ − ε1(W,X)η(U)ζ), (9)

where f1, f2, f3 ∈ C∞(M), then M is a generalized indefinite Sasakian space form (see [4]). It is the corre-
spondence of generalized Sasakian space form in semi-Riemannian settings.

From Equation (9), the Ricci tensor of generalized indefinite Sasakian space form M2n+1
ε is:

Ric(X,W) = (2n f1 + 3 f2 − ε f3)1(X,W) − (3ε f2 + (2n − 1) f3)η(X)η(W). (10)

Suppose {e1, . . . , e2n, e2n+1 = ζ} is the local orthonormal basis of generalized indefinite Sasakian space
form M2n+1

ε and {ε1, . . . , ε2n, ε2n+1} is its signature. Then the ∗-Ricci tensor Ric∗ of M2n+1
ε is

Ric∗(X,Y) =
1
2

trace{Z→ R(X, ϕY)ϕZ} =
1
2

2n+1∑
i=1

εi1(R(X, ϕY)ϕei, ei).

Theorem 2.2. Let (M2n+1
ε , ϕ, ζ, η, 1, f1, f2, f3) be a generalized indefinite Sasakian space form. Then the ∗-Ricci tensor

of M2n+1
ε is

Ric∗(W,Z) = ( f1 + (2n + 1) f2)1(ϕW, ϕZ).

Proof. The proof is similar to Theorem 2.1, we omit it here.

3. Semi-symmetric ∗-Ricci tensor

In this section we study the semi-symmetric ∗-Ricci tensor on generalized Sasakian space form.

Theorem 3.1. Let (M2n+1, ϕ, ζ, η, 1, f1, f2, f3) be a generalized Sasakian space form. Then M2n+1 is ∗-Ricci semi-
symmetric if and only if f1 = f3 or f1 + (2n + 1) f2 = 0.When f1 + (2n + 1) f2 = 0, it is ∗-Ricci flat.

Proof. Firstly let us calculate (R(X,Y)Ric∗)(Z,W):

(R(X,Y)Ric∗)(Z,W)
= − Ric∗(R(X,Y)Z,W) − Ric∗(Z,R(X,Y)W)
= − ( f1 + (2n + 1) f2)(1(ϕR(X,Y)Z, ϕW) + 1(ϕZ, ϕR(X,Y)W))
= − ( f1 + (2n + 1) f2)( f1(−1(Y,Z)η(X)η(W) + 1(X,Z)η(Y)η(W) − 1(Y,W)η(X)η(Z) + 1(X,W)η(Y)η(Z))
+ f3(1(Y,W)η(X)η(Z) − 1(X,W)η(Y)η(Z) + 1(Y,Z)η(X)η(W) − 1(X,Z)η(Y)η(W)))
= − ( f1 + (2n + 1) f2)( f3 − f1)(1(Y,Z)η(X)η(W) − 1(X,Z)η(Y)η(W) + 1(Y,W)η(X)η(Z) − 1(X,W)η(Y)η(Z)).
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If M is ∗-Ricci semi-symmetric, that is (R(X,Y)Ric∗)(Z,W) = 0, putting X = Z = ζ, we have

0 =(R(ζ,Y)Ric∗)(ζ,W)
= − Ric∗(R(ζ,Y)ζ,W) − Ric∗(ζ,R(ζ,Y)W)
= − ( f1 + (2n + 1) f2)( f3 − f1)(1(Y,W) − η(Y)η(W))
= − ( f1 + (2n + 1) f2)( f3 − f1)1(ϕY, ϕW),

from the arbitrariness of vector field Y,W, we have ( f1 + (2n + 1) f2)( f3 − f1) = 0. Thus f1 + (2n + 1) f2 = 0 or
f3 − f1 = 0.

Conversely, if f1 + (2n + 1) f2 = 0 or f3 − f1 = 0, then

(R(X,Y)Ric∗)(Z,W)
= − Ric∗(R(X,Y)Z,W) − Ric∗(Z,R(X,Y)W)
= − ( f1 + (2n + 1) f2)( f3 − f1)(1(Y,Z)η(X)η(W) − 1(X,Z)η(Y)η(W) + 1(Y,W)η(X)η(Z) − 1(X,W)η(Y)η(Z))
=0,

so M is ∗-Ricci semi-symmetric, thus we complete the proof.

Remark 3.2. In [10], it has been proved that if a generalized Sasakian space form is ∗-Ricci semi-symmetric, then it
is ∗-Ricci flat or f3 − f1 = 0. We prove that this condition is both necessary and sufficient.

In [28, Theorem 6.1], it has been proved that a (2n + 1)-dimensional (n > 1) generalized Sasakian space
form (M2n+1, f1, f2, f3) is Ricci semi-symmetric if and only if f1 = f3 or 3 f2 + (2n − 1) f3 = 0. Actually, this
condition is also true in dimension 3. We give a new proof here.

Theorem 3.3. Let (M2n+1, ϕ, ζ, η, 1, f1, f2, f3) be a generalized Sasakian space form. Then M2n+1 is Ricci semi-
symmetric if and only if f1 = f3 or 3 f2 + (2n − 1) f3 = 0.

Proof. From Equation (3), we have:

(R(X,Y)Ric)(Z,W)
= − Ric(R(X,Y)Z,W) − Ric(Z,R(X,Y)W)
= − (2n f1 + 3 f2 − f3)1(R(X,Y)Z,W) + (3 f2 + (2n − 1) f3)η(R(X,Y)Z)η(W)
− (2n f1 + 3 f2 − f3)1(R(X,Y)W,Z) + (3 f2 + (2n − 1) f3)η(R(X,Y)W)η(Z)
=(3 f2 + (2n − 1) f3)( f1 − f3)(1(Y,Z)η(X)η(W) − 1(X,Z)η(Y)η(W) + 1(Y,W)η(X)η(Z) − 1(X,W)η(Y)η(Z)).

If M is Ricci semi-symmetric, that is (R(X,Y)Ric)(Z,W) = 0, putting X =W = ζ in above equation, we have

0 =(R(ζ,Y)Ric∗)(Z, ζ)
= − Ric(R(ζ,Y)Z, ζ) − Ric(Z,R(ζ,Y)ζ)
=(3 f2 + (2n − 1) f3)( f1 − f3)(1(Y,W) − η(Y)η(W))
=(3 f2 + (2n − 1) f3)( f1 − f3)1(ϕY, ϕW),

from the arbitrariness of vector field Y,W, we have (3 f2+(2n−1) f3)( f1− f3) = 0. Thus we have 3 f2+(2n−1) f3 =
0 or f3 − f1 = 0.

Conversely, if 3 f2 + (2n − 1) f3 = 0 or f3 − f1 = 0, then

(R(X,Y)Ric)(Z,W)
= − Ric(R(X,Y)Z,W) − Ric(Z,R(X,Y)W)
=(3 f2 + (2n − 1) f3)( f1 − f3)(1(Y,Z)η(X)η(W) − 1(X,Z)η(Y)η(W) + 1(Y,W)η(X)η(Z) − 1(X,W)η(Y)η(Z))
=0,

so M is Ricci semi-symmetric, thus we complete the proof.
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For generalized indefinite Sasakian space form (M2n+1
ε , f1, f2, f3), we have the following two theorems

and we omit the proof of these two theorems because they are basically the same as the proof of Theorem
3.1 and Theorem 3.3.

Theorem 3.4. Let (M2n+1
ε , f1, f2, f3) be a generalized indefinite Sasakian space form. Then M2n+1

ε is ∗-Ricci semi-
symmetric if and only if f1 = f3 or f1 + (2n + 1) f2 = 0.

Theorem 3.5. Let (M2n+1
ε , f1, f2, f3) be a generalized indefinite Sasakian space form. Then M2n+1

ε is Ricci semi-
symmetric if and only if f1 = ε f3 or 3ε f2 + (2n − 1) f3 = 0.

From Equation (3), Equation (10), Theorem 2.1,Theorem 2.2,Theorem 3.1,Theorem 3.3,Theorem 3.4 and
Theorem 3.5, we have the following table in which M2n+1 is generalized Sasakian space form and M2n+1

ε is
generalized indefinite Sasakian space form.

Table 1: Difference between ∗-Ricci tensor and Ricci tensor

M2n+1 M2n+1
ε

Ricci tensor
(2n f1 + 3 f2 − f3)1(X,W)
−(3 f2 + (2n − 1) f3)η(X)η(W)

(2n f1 + 3 f2 − ε f3)1(X,W)
−(3ε f2 + (2n − 1) f3)η(X)η(W)

∗-Ricci tensor ( f1 + (2n + 1) f2)1(ϕX, ϕW)

Ricci semi-symmetric
f1 = f3 or

3 f2 + (2n − 1) f3 = 0
f1 = ε f3 or

3ε f2 + (2n − 1) f3 = 0

∗-Ricci semi-symmetric f1 = f3 or f1 + (2n + 1) f2 = 0

As evidenced by the table above, the generalized indefinite Sasakian space form and the generalized
Sasakian space form exhibit distinct properties with respect to the Ricci tensor, while sharing identical
characteristics in terms of the ∗-Ricci tensor. More specifically, the signature of the Reeb vector field has
no influence on the properties of the ∗-Ricci tensor, yet it significantly affects those of the Ricci tensor. This
indicates that the ∗-Ricci tensor is primarily associated with the structure of the tangent directions in the
almost contact manifold other than that of the Reeb vector field.

Lemma 3.6. Let (M3, f1, f2, f3) be a three-dimensional non-Sasakian contact generalized Sasakian space form. Then
f1 = f3 if and only if f1 + 3 f2 = 0.

Proof. In [3, Proposition 3.7], it has been proved that for three-dimensional non-Sasakian contact generalized
Sasakian space form, there exists 2 f1 + 3 f2 − f3 = 0. So f1 = f3 if and only if f1 + 3 f2 = 0.

From above lemma, we have the following corollary:

Corollary 3.7. Let (M3, f1, f2, f3) be a three-dimensional non-Sasakian contact generalized Sasakian space form, then
the following conditions are equivalent:

(1) M is ∗-Ricci semi-symmetric;
(2) f1 = f3;
(3) f1 + 3 f2 = 0.

Corollary 3.8. Let (M3, f1, f2, f3) be a three-dimensional contact generalized Sasakian space form. If M is Sasakian
manifold, then it is ∗-Ricci semi-symmetric if and only if f1 = 3

4 , f2 = f3 = − 1
4 .

Proof. Since M3 is Sasakian manifold, from [2, Theorem 3.15], we have f2 = f3 = f1 − 1. If M3 is ∗-Ricci
semi-symmetric, from Theorem 3.1, there must be f1 + 3 f2 = 0. Thus we can get f1 = 3

4 , f2 = f3 = − 1
4 .

Conversely, if f1 = 3
4 , f2 = f3 = − 1

4 , then f1 + 3 f2 = 0, from Theorem 3.1, M3 is ∗-Ricci semi-symmetric.

Corollary 3.9. Let (M3, f1, f2, f3) be a three-dimensional contact generalized Sasakian space form. If M is Sasakian,
then it is ∗-Ricci semi-symmetric if and only if it is a Sasakian space form with constant ϕ-sectional curvature c = 0.
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Proof. Since M is Sasakian and ∗-Ricci semi-symmetric, from Corollary 3.8, we have f1 = 3
4 , f2 = f3 = − 1

4 .
From [2, Proposition 3.11], the ϕ-sectional curvature of M3 is c = f1 + 3 f2 = 0.

Lemma 3.10. Let (M2n+1, f1, f2, f3) be a contact generalized Sasakian space form and n > 1. Then M is ∗-Ricci
semi-symmetric if and only if f1 = 2n+1

2n+2 , f2 = f3 = − 1
2n+2 .

Proof. From [3, Theorem 3.5] and [2, Theorem 3.15], we know that M is Sasakian and f2 = f3 = f1 − 1. So
f1 , f3.

If M is ∗-Ricci semi-symmetric, from Theorem 3.1, there must be f1 + (2n + 1) f2 = 0. We can get
f1 = 2n+1

2n+2 , f2 = f3 = − 1
2n+2 .

Conversely, if f1 = 2n+1
2n+2 , f2 = f3 = − 1

2n+2 , then f1 and f2 satisfies f1 + (2n + 1) f2 = 0, from Theorem 3.1, M
is ∗-Ricci semi-symmetric. We complete the proof.

From Corollary 3.8, we find that a Sasakian three-dimensional generalized Sasakian space form also
satisfies above lemma, so we have:

Theorem 3.11. Let (M2n+1, f1, f2, f3) be a contact generalized Sasakian space form. If M is Sasakian, then M is
∗-Ricci semi-symmetric if and only if f1 = 2n+1

2n+2 and f2 = f3 = − 1
2n+2 .

When (M2n+1, f1, f2, f3) is a contact generalized Sasakian space form such that f1 = 2n+1
2n+2 , f2 = f3 = − 1

2n+2 ,
from [2, Corollary 3.16], we know the ϕ-sectional curvature of M is c = f1 + 3 f2 = n−1

n+1 , thus we have

Theorem 3.12. Let (M2n+1, f1, f2, f3) be a contact generalized Sasakian space form. If M is Sasakian, then M is
∗-Ricci semi-symmetric if and only if it is Sasakian space form with constant ϕ-sectional curvature c = f1+3 f2 = n−1

n+1 .

An equivalent statement of the theorem is as follows:

Theorem 3.13. Let M2n+1 be a Sasakian space form with constant ϕ-sectional curvature c. Then M is ∗-Ricci
semi-symmetric if and only if c = n−1

n+1 .

Remark 3.14. For a Sasakian space form, we can use the property of ∗-Ricci semi-symmetric to know how closed it
is to be a constant curvature space. We know that if the projective curvature tensor P of a manifold is equal to zero,
then the manifold has constant curvature. So the projective curvature tensor P is the measure of whether a manifold
to be a constant curvature space. But we can not know that how close the manifold to be the constant curvature space
from projective curvature tensor P. We can denote the curvature of Sasakian space form by

R(X,W)Z =
c + 3

4
R1(X,W)Z +

c − 1
4

R2(X,W)Z +
c − 1

4
R3(X,W)Z.

If the ϕ-sectional curvature c = 1, then the curvature is

R(X,W)Z = R1(X,W)Z = 1(W,Z)X − 1(X,Z)W,

it is a constant curvature space. So we know for the three components R1,R2,R3 of R, the less of R2,R3, the more
the Sasakian space form close to the constant curvature space. That is the more the ϕ-sectional curvature c close to
one, the more the Sasakian space form close to the constant curvature space. When the Sasakian space form M2n+1

is ∗-Ricci semi-symmetric, we know that it is not a constant curvature space and the ϕ-sectional curvature of M is
0 ≤ c = n−1

n+1 < 1, so with the increasing of the dimension of M, it is more and more close to a manifold with constant
curvature since c is more close to one.

Generally speaking, the ∗-Ricci flatness (Ric∗ = 0) of a generalized Sasakian space form is the sufficient
condition for ∗-Ricci semi-symmetry, not a necessary condition. But if the generalized Sasakian space form
is contact, then the ∗-Ricci flatness is the necessary and sufficient condition of ∗-Ricci semi-symmetry.

Theorem 3.15. Let (M2n+1, f1, f2, f3) be a contact generalized Sasakian space form, then it is ∗-Ricci semi-symmetric
if and only if it is ∗-Ricci flat.
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Proof. Firstly we assume (M2n+1, f1, f2, f3) is ∗-Ricci semi-symmetric.
Case I: If M2n+1 is three-dimensional non-Sasakian, then from Corollary 3.7, we have f1 + 3 f2 = 0. It is

∗-Ricci flat from Theorem 2.1.
Case II: If M2n+1 is three-dimensional Sasakian, then from Corollary 3.8, we have f1 = 3

4 , f2 = f3 = − 1
4 .

Thus f1 + 3 f2 = 0 and M2n+1 is ∗-Ricci flat from Theorem 2.1.
Case III: If the dimension of M2n+1 is greater than three, then from Lemma 3.10, we have f1 = 2n+1

2n+2 , f2 =
f3 = − 1

2n+2 . Thus f1 + (2n + 1) f2 = 0 and M2n+1 is ∗-Ricci flat from Theorem 2.1.
Conversely if (M2n+1, f1, f2, f3) is ∗-Ricci flat, then from Theorem 2.1, we have f1 + (2n + 1) f2 = 0. Thus

M2n+1 is ∗-Ricci semi-symmetric from Theorem 3.1.

Theorem 3.16. Let (M2n+1, f1, f2, f3) be a contact generalized Sasakian space form. If M is Sasakian, then M is Ricci
semi-symmetric if and only if f1 = 1, f2 = f3 = 0.

Proof. Since M is Sasakian, from [2, Theorem 3.15], we have f2 = f3 = f1 − 1, thus f1 , f3. Firstly we assume
that M is Ricci semi-symmetric, from Theorem 3.3, there must be f2 + (2n − 1) f3 = 0, so f1 = 1, f2 = f3 = 0.

Conversely if f1 = 1, f2 = f3 = 0, they satisfy f2 + (2n − 1) f3 = 0, from Theorem 3.3, M is Ricci semi-
symmetric.

Remark 3.17. From Theorem 3.11 and Theorem 3.16 we know that, there is no generalized Sasakian space form
which is Sasakian and both ∗-Ricci semi-symmetric and Ricci semi-symmetric.

Actually, if a generalized Sasakian space form is Sasakian, then it is a Sasakian space form. So we have

Corollary 3.18. There is no Sasakian space form that both ∗-Ricci semi-symmetric and Ricci semi-symmetric.

4. Reeb flow invariant ∗-Ricci operator

In this section we study Reeb flow invariant ∗-Ricci operator on generalized Sasakian space form.

Theorem 4.1. Let (M2n+1, ϕ, ζ, η, 1, f1, f2, f3) be a contact generalized Sasakian space form. Then

LζQ∗ = ∇ζQ∗.

The ∗-Ricci operator Q∗ of M is Reeb flow invariant (Reeb parallel) if and only if the ∗-scale curvature r∗ is invariant
along Reeb vector field, that is ζr∗ = 0.

Proof. From Theorem 2.1, we know Q∗W = −( f1 + (2n + 1) f2)ϕ2W, then

Lζ(Q∗W) =(LζQ∗)W +Q∗(LζW)

= − ( f1 + (2n + 1) f2)((Lζϕ)(ϕW) + ϕ(Lζϕ)W) − ζ( f1 + (2n + 1) f2)ϕ2W − ( f1 + (2n + 1) f2)ϕ2(LζW).

From [6, Lemma 6.2], we know hϕ + ϕh = 0, that is (Lζϕ)(ϕW) + ϕ(Lζϕ)W = 0. Put it in above equation,
we have:

(LζQ∗)W = −ζ( f1 + (2n + 1) f2)ϕ2W. (11)

Since

∇ζ(Q∗W) =(∇ζQ∗)X +Q∗(∇ζW)

= − ζ( f1 + (2n + 1) f2)ϕ2W − ( f1 + (2n + 1) f2)ϕ2(∇ζW) − ( f1 + (2n + 1) f2)((∇ζϕ)(ϕW) + ϕ(∇ζϕ)W),

and M is contact, ∇ζϕ = 0, the above equation is:

(∇ξQ∗)W = −ζ( f1 + (2n + 1) f2)ϕ2W. (12)
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From Equation (11) and (12), we have

(LζQ∗)W = (∇ζQ∗)W = −ζ( f1 + (2n + 1) f2)ϕ2W.

Put r∗ = 2n( f1 + (2n + 1) f2) in above equation,

(LζQ∗)W = (∇ζQ∗)W = −
1

2n
ζr∗ϕ2W,

so we know (LζQ∗)W = 0 (or (∇ζQ∗)W = 0) if and only if ζr∗ = 0. So Q∗ is Reeb flow invariant (or Reeb
parallel) if and only if the ∗-scale curvature r∗ is invariant along Reeb vector field.

Lemma 4.2. Let (M3, f1, f2, f3) be a three-dimensional non-Sasakian contact generalized Sasakian space form. If M
is ∗-Ricci semi-symmetric, then it is Ricci semi-symmetric and the ∗-Ricci operator on M is Reeb flow invariant and
Reeb parallel.

Proof. If M is ∗-Ricci semi-symmetric, from Corollary 3.7, f1+3 f2 = 0 and f1 = f3. M is Ricci semi-symmetric
from Theorem 3.3. From Lemma 3.6, the ∗-scale curvature r∗ = 2( f1+3 f2) = 0. From Theorem 3.1, the ∗-Ricci
operator on M is Reeb flow invariant and Reeb parallel.

Lemma 4.3. Let (M3, f1, f2, f3) be a three-dimensional contact generalized Sasakian space form. If M is Sasakian
and ∗-Ricci semi-symmetric, then the ∗-Ricci operator on M is Reeb flow invariant and Reeb parallel.

Proof. Since M is Sasakian and ∗-Ricci semi-symmetric, from Corollary 3.8, we have f1 = 3
4 , f2 = f3 = − 1

4 .
From Throrem 2.1, the ∗-scale curvature r∗ = 2( f1 + 3 f2) = 0, it is invariant along Reeb vector field. From
Theorem 4.1, the ∗-Ricci operator on M is Reeb flow invariant and Reeb parallel.

From Lemma 4.2 and Lemma 4.3, we can conclude that:

Theorem 4.4. Let (M3, f1, f2, f3) be a three-dimensional contact generalized Sasakian space form. If M is ∗-Ricci
semi-symmetric, then the ∗-Ricci operator on M is Reeb flow invariant and Reeb parallel.

Since the ∗-scale curvature r∗ of a Sasakian space form is constant, so ζr∗ = 0, thus we have the following
corollary:

Corollary 4.5. The ∗-Ricci operator of a Sasakian space form is Reeb flow invariant and Reeb parallel.

Let (M2n+1, f1, f2, f3) be a contact generalized Sasakian space form, if n > 1, from [3, Theorem 3.5], M is a
Sasakian manifold, then from [2, Corollary 3.16], M is a Sasakian space form. Thus we have the following
corollary:

Corollary 4.6. Let (M2n+1, f1, f2, f3) be a contact generalized Sasakian space form. If n > 1, then the ∗-Ricci operator
of M is Reeb flow invariant and Reeb parallel.

Actually, from Theorem 4.4 and Corollary 4.6, we have proved:

Theorem 4.7. The ∗-Ricci operator on a ∗-Ricci semi-symmetric contact generalized Sasakian space form is Reeb flow
invariant and Reeb parallel.
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5. Example

First we recall the notion of D-homothetic deformation of a contact metric structure. Suppose (ϕ0, ζ0, η0, 10)
is a contact metric structure on a manifold M2n+1, then

ϕ′ = ϕ0, ζ
′ =

1
a
ζ0, η

′ = aη0, 1
′ = a10 + a(a − 1)η0 ⊗ η0,

is also a contact metric structure on M2n+1 in which a is a positive constant. Moreover if (ϕ0, ζ0, η0, 10)
is a Sasakian structure with constant ϕ-sectional curvature c0, then (ϕ′, ζ′, η′, 1′) is also a Sasakian structure
but the constant ϕ-sectional curvature changes to c′ = c0+3

a − 3 (see [6]).
We know there is a standard Sasakian structure (ϕ0, ζ0, η0, 10) on the sphere S2n+1 and (S2n+1, ϕ0, ζ0, η0, 10)

is a Sasakian space form with constant ϕ-sectional curvature c0 = 1. Setting a = 2n+2
2n+1 , the D-homothetic

deformation of standard Sasakian structure (ϕ0, ζ0, η0, 10) is

ϕ′ = ϕ0, ζ
′ =

2n + 1
2n + 2

ζ0, η
′ =

2n + 2
2n + 1

η0, 1
′ =

2n + 2
2n + 1

10 +
2n + 2

(2n + 1)2 η0 ⊗ η0.

Thus (S2n+1, ϕ′, ζ′, η′, 1′) is a Sasakian space form with constant ϕ-sectional curvature c′ = 4
a − 3 = n−1

n+1

and we denote it by S̃2n+1( n−1
n+1 ). From Theorem 3.13, we know S̃2n+1( n−1

n+1 ) is ∗-Ricci semi-symmetric.
Actually, from the classification of complete and simply connected Sasakian space form in [31], we can

get

Theorem 5.1. Complete and simply connected ∗-Ricci semi-symmetric Sasakian space form is isomorphic to S̃2n+1( n−1
n+1 ).
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