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Graphic contraction and perimetric contractions

Marija Cvetkovié®

“Department of Mathematics, Faculty of Sciences and Mathematics, University of Ni$, Nis, Serbia

Abstract. We discuss the relation of graphic contraction and perimetric contractions: mappings contract-
ing perimeters of triangles, generalized Kannan-type mappings, generalized Chatterjea-type mappings,
and generalized CRR-type mappings. Generalized Kannan-type and CRR-type mappings are graphic con-
tractions, while mappings contracting perimeters of triangles and generalized Chatterjea-type mappings
mappings are graphic contractions under properly introduced remetrization that preserves completeness.

1. Introduction

The notion of a mapping contracting perimeters of triangles was introduced by E. Petrov [15] in 2023.
and further studied in [3, 10, 14, 16, 17, 27] among others. This concept represents a generalization of a
Banach contraction and differs from it due to the lack of uniqueness of a fixed point in the general case.
Hence, it belongs to the class of weakly Picard operators introduced by I. A. Rus [28] in 1993, which presents
an extension of the class of Picard operators. Numerous authors continued the research on the topic of
weakly Picard operators [1, 8, 13, 18, 30, 31]. A graphic contraction [23] is a weakly Picard operator that is
not necessarily a Picard operator. The saturated principle of graphic contraction [32] claims the existence
of a fixed point of a graphic contraction under some additional assumptions, such as orbital continuity.
There are numerous recent results related to graphic contraction [7, 19-22, 29]. In this paper, we intend to
establish some correlations between different modifications of mappings contracting perimeters of triangles
and graphic contractions.

In the sequel, we present some basic definitions and main results regarding the mentioned topics.

Research on perimetric contractions starts in [15], where a mapping contracting perimeters of triangles was
introduced.

Definition 1.1. [15] A mapping f : X +— X on a metric space (X, d) is a mapping contracting perimeters of triangles
if there exists some q € [0, 1) such that for all mutually distinct points x,y,z € X we have

d(fx, fy) +d(fy, fz) + d(fz, fx) < q@d(x,y) +d(y,z) + d(z,x)). (1)
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The main result of [15] is the existence of a fixed point of a mapping contracting perimeters of triangles
under the additional condition that the observed mapping has no periodic points of a prime period two.

Theorem 1.2. [15] Let (X, d) for |X| > 3 be a complete metric space and let the mapping f : X — X satisfy the
following two conditions:

(i) f*x = ximplies fx = x forall x € X;
(ii) f is a mapping contracting perimeters of triangles.
Then f has a fixed point, and the number of fixed points is at most two.

Recall that x € X is a periodic point of a mapping f : X +— X if there exists a natural number k € IN such
that f*x = x. The smallest number k fulfilling the observed equality is a prime period of x related to the
mapping f. Hence, a mapping has no periodic points of a prime period two if and only if f>x = x must
imply fx = x as originally stated in [15].

The further research driven by the idea of mappings contracting perimeters of triangles was related to the
Kannan-type and Chatterjea-type mappings in a setting of a complete metric space.

Kannan [9] modified the original Banach contractive condition in 1960. and obtained an existence and
uniqueness result for a class of mappings that does not require a continuity assumption. The class of
Kannan contractions also characterizes the completeness of a metric space, as can be seen in [33], which is
not the case for the class of Banach contractions [6].

Theorem 1.3. [9] If (X, d) is a complete metric space and f : X — X a mapping fulfilling
d(fx, fy) < qd(x, fx) +d(y, fy)) 2)

forall x,y € X and some q € [0, %), then f has a unique fixed point in X and the sequence (f"x) converges to the fixed
point of mapping f for any initial point x € X.

The concept of generalized Kannan-type mappings, inspired by the results of [15], was introduced in [16].

Definition 1.4. [16] A mapping f : X — X is a generalized Kannan-type mapping on a metric space (X, d) if there
exists some q € [O, %) such that the inequality

d(fx, fy) +d(fy, f2) + d(fz fx) < q (@d(x, fx) +d(y, fy) +d(z, f2)) 3)
holds for all pairwise distinct x,y,z € X.

Kannan contractions are generalized Kannan-type mappings only if g € [O, %) in (2). Reverse hold only if
the generalized Kannan-type mapping is continuous and X has no isolated points. However, the presented
example in [16] testifies that even though those two classes coincide on the subset of a class of continuous
mappings, there are discontinuous generalized Kannan-type mappings. A mapping contracting perimeters
of triangles on a set with more than three points for g € [O, i) is a generalized Kannan-type mapping.
Existence of a fixed point for a generalized Kannan-type mapping on a complete metric space is obtained
under the same presumption related to the periodic points of a prime period two.

Theorem 1.5. [16] Let (X, d) for |X| > 3 be a complete metric space and let a mapping f : X v X satisfy the following
conditions:

(i) f has no periodic points of a prime period two;
(ii) f is a generalized Kannan-type mapping.

Then f has a fixed point, and the number of fixed points is at most two.
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Chatterjea presented a modification of a Kannan contractive condition in [4] and proved the existence and
uniqueness of a fixed point of a Chatterjea contraction on a complete metric space. Chatterjea and Kannan
contractions are independent.

Theorem 1.6. [4] If (X, d) is a complete metric space and f : X — X is a mapping such that
d(fx, fy) < q(d(x, fy) +d(y, fx)

for some q € [0, 3) and for all x,y € X, then a mapping f has a unique fixed point x* € X and the sequence (f"x)
converges to the fixed point of mapping f for any initial point x € X.

In [14], a generalized Chatterjea-type mapping was presented in the sense of [15].

Definition 1.7. [14] A mapping f : X v X is a generalized Chatterjea-type mapping on a metric space (X, d) if
there exists some q € [0, %) such that the inequality

d(fx, fy) +d(fy, f2) + d(fz, fx) < q(d(x, fy) +d(x, fz) + d(y, fx)
+d(y, f2) +d(z, fx) + d(z, fy)) (4)
holds for all pairwise distinct x,y,z € X.

In this case, any Chatterjea contraction is a generalized Chatterjea-type mapping, while the converse does
not hold, as validated by Example 2.3 of [14]. The generalized Chatterjea-type mappings on a complete
metric space have at least one and at most two fixed points, assuming that the mapping has no periodic
points of a prime period two.

Theorem 1.8. [14] Let (X, d) for |X| > 3 be a complete metric space and let a mapping f : X — X satisfy the following
conditions:

(i) f has no periodic points of a prime period two;
(ii) f is a generalized Chatterjea-type mapping.
Then f has a fixed point, and the number of fixed points is at most two.

This idea is extended in a different direction by making some type of Ciri¢-Reich-Rus generalized mappings.
The contractive conditions related to mappings contracting perimeters of triangles and generalized Kannan
mappings are combined in [3].

Definition 1.9. [3] A mapping f : X + X is a generalized CRR-type mapping on a metric space (X, d) if there exists
some a, B > 0 such that 2o + 3p < 1 for which the inequality

d(fx, fy) + d(fy, f2) + d(fz, fx) < a(d(x, y) + d(y, 2) + d(z, %))
+B(d(x, fx) +d(y, fy) +d(z, f2)) )

holds for all pairwise distinct x,y,z € X.
The main result of [3] is the following:

Theorem 1.10. [3] Let (X, d) for |X| > 3 be a complete metric space and let a mapping f : X — X satisfy the following
conditions:

(i) f has no periodic points of a prime period two;
(i) f is a generalized CRR-type mapping.

Then f has a fixed point, and the number of fixed points is at most two.
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Remark 1.11. Observe that the concepts of perimetric contractions can be observed in the setting of a G-metric space
proposed by Mustafa and Sims [12]. Concretely, for a mapping contracting perimeters of triangles f : X — X on a
complete metric space (X, d), the contractive condition (1) can be transformed into a Banach-type contractive condition

G(fx, fy, fz) < qG(x,y,2)

whenever x,y,z € X are three mutually distinct points and G : X X X x X + [0, o) defined by G(x,y,z) =
dx,y) + d(y,z) + d(z,y) for x,y,z € X. (X,G) is a complete G-metric space. However, the existence of a fixed
point of a mapping contracting perimeters of triangles does not follow directly from the fixed point result because
of the mentioned restriction of x,y, and z being pairwise distinct. Still, we believe that the same technique can be
applied even in the case of the restriction. Similar considerations can be done for generalized Kannan-type, generalized
Chatterjea-type, and generalized CRR-type contractions in the context of an adequate G-metric space.

The class of weakly Picard operators (WPOs) was introduced in [28], and all presented perimetric contrac-
tions are types of weakly Picard operators.

Definition 1.12. [28] A mapping f : X — X is a weakly Picard operator (WPO) if for any x € X the sequence (f"x)
converges to a fixed point of a mapping f.

The class of weakly Picard operators contains the class of Picard operators.

Definition 1.13. A mapping f : X — X is a Picard operator (PO) if for any x € X the sequence (f"x) converges to
the unique fixed point of a mapping f.

Moreover, there are weakly Picard operators that are not Picard operators.

Example 1.14. Banach contraction [2], Kannan contraction [9], and Chatterjea contraction [4] are Picard operators
as well as weakly Picard operators. However, the mapping f : [0,1] + [0, 1] defined by

{0, xefo0,1)
fx_{l, x=1

is a weakly Picard operator on a complete metric space ([0, 1],d) assuming that d : X X X + [0, oo) is an Euclidean
metric on X defined by

d(x,y) = lx = yl, (6)
forall x,y € X, but it is not a Picard operator.

A mapping contracting perimeters of triangles is always a weakly Picard operator, as established in the
proof of Theorem 1.2, but not necessarily a Picard operator.

Example 1.15. [15] Let X = {a, b, ¢} be a set equipped with the discrete metricd : X X X + [0, oo) defined by

1, x#
d(x’y)z{o x=i

for x,y € X and a mapping f : X v X defined by fa = fb = aand fc = c. Then f is a mapping contracting
perimeters of triangles, which is a weakly Picard operator, but not a Picard operator.

As expected, not every weakly Picard operator is a mapping contracting perimeters of triangles, as can be
seen in the Example 1.14.

The orbit of a mapping f : X + X at the point x € X is a set O(x) = {f"x | n € Np} where f’x = x assuming
that f° is an identity mapping on X. The notion of orbital continuity was introduced by Ciri¢ in [5] as the
self-mapping being continuous on the orbit of each point of an underlying metric space.
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Definition 1.16. [5] A mapping f : X — X is orbitally continuous if lim,_,. f™x exists, then f(lim,_ f™x) =
limy 0 f(f™x) for any (m,) C N and x € X.

A graphic contraction is an example of a weakly Picard operator that was introduced in [23]. In [32], the
fixed point results for a graphic contraction of [23] were modified by the assumption of orbital continuity.

Definition 1.17. [23] A mapping f : X — X is a graphic contraction on a metric space (X, d) if the inequality

d(fx, f*x) < qd(x, fx) 7)
holds for some q € [0,1) and all x € X.

For a weakly Picard operator f : X — X we may define f* : X + X as
f*(x) = lim f"x
n—oo

for all x € X. For a fixed point x* of a mapping f let X, = {x € X | lim,, f"x = x7}.
The saturated principle of a graphic contraction presented below in Theorem 1.18 claims the existence of a
fixed point of an orbitally continuous graphic contraction on a complete metric space.

Theorem 1.18. [32] Let (X, d) be a complete metric space and f : X +— X a mapping. If f is an orbitally continuous
graphic contraction on X for some q € [0, 1), then

(i) f is a weakly Picard operator on X;
(ii) d(x, f<x) < ﬁd(x,fx)for allx € X;
(iii) If (x,) € X is a sequence such that lim,_,c d(xy,, fx,) = 0, then lim,, o X, = X*;

(iv) Ifg < % and (x,) C X is a sequence such that limy, o d(Xp11, fXn) = 0, then lim, e X, = X",

2. Main results

We will discuss the relation of mappings contracting perimeters of triangles and graphic contraction
in two different aspects. We will show for what values of contractive constant a mapping contracting
perimeters of triangles is always a graphic contraction, and also provide a remetrization approach that will
prove that any mapping contracting perimeters of triangles may be observed as a graphic contraction in a
remetrized metric space.

If g € [0, 1) in (1), then a mapping contracting perimeters of triangles without periodic points of a prime
period two is a graphic contraction.

Theorem 2.1. If f : X — X is a mapping contracting perimeters of triangles on a complete metric space (X, d) such
that |X| > 3 for q € [0, %) and the mapping f has no periodic points of a prime period two, then it is a continuous
graphic contraction on (X, d).

Proof. Let x € X be arbitrary. If x is a fixed point of the mapping f, then (7) evidently holds. Otherwise,
fx # x and as f has no periodic points of prime period two, we additionally obtain f?x # x. If fx = f2x,
again (7) easily follows, while otherwise (1) may be applied on these three points. Hence,

d(fx, f2) +d(f2x, fx) +d(fx, fx) < q(d(x, fx) + d(fx, f2) +d(fx, %))
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and

d(fx, f2x) <

<

(d(fx, £22) + d(fx, £x) + d(fx, fx))
(A, fx) +d(fx, f2x) +d(f2x, 2))

- 1 -, ).

q

Since 1—; € [0,1) for g € [0, %), we conclude that the mapping f is a graphic contraction on a metric space

NI N+~

<

1—
(X,d) forq < 1.
The mapping contracting perimeters of triangles is continuous as noted in [15]. Indeed, if (x,) € X is a
non-stationary sequence converging to x € X with respect to the metric d, then, without loss of generality,
we may assume that {x,, x,,, x} are three distinct points whenever n # m. Consequently, (1) holds and

24(fx, fxn) < d(fx, fx,) +d(fxn, fxm) + d(fXm, fx)
<q (d(x, x) + d(xp, Xm) + d(Xpy, X))

whenever n # m. As n,m — oo, we conclude that (fx,) is a convergent sequence with the limit fx, further
implying that f is a continuous mapping as being a sequentially continuous mapping on a metric space. [J

Remark 2.2. Since a metric space is Hausdorff, any continuous mapping has a closed graph.
Hence, for g € [0, %) the main result of [15] is a direct corollary of Theorem 1.18.

Remark 2.3. Graphic contractions do not have periodic points of prime period two. Indeed, if fx # x and f>x = x
for some self-mapping f of a metric space (X, d), then

d(fx,x) = d(fx, f*x) < qd(x, fx)
which is impossible.

It can be discussed on the types of weakly Picard operators that are not Picard operators and that do have
periodic points of a prime period two. As noted, a mapping contracting perimeters of triangles for g € [0, 1)
is a graphic contraction with a closed graph, but the reverse does not hold.

Example 2.4. Let X = |, X, where X,, = {n,n - % | meN\ {1}}forn € N and let a metricd : X X X + [0, 00)
be determined in (6) for all x,y € X. A metric space (X, d) is complete.

Define a mapping f : X + X such that for x € X, we have fx =nifx € {n,n — L | m € N\ {1}} for all n € N.
Since {n,n — % |meN\({1}} € (n—1,n] for n € N, a mapping is well-defined.

Since fx = f?x for all x € X, f is a graphic contraction on X and, additionally, it is a continuous mapping.
Nevertheless, for any three mutually distinct natural numbers n, m and k (|{n, m, k}|=3), we observe that

d(fn, fm) +d(fm, fk) + d(fk, fn) = d(n,m) + d(m, k) + d(k, n)

and f is not a mapping contracting perimeters of triangles. The same conclusion can be derived from the cardinality
of a set of fixed points of a mapping f.

Note that a mapping contracting perimeters of triangles satisfies more restrictive conditions than (1)
of a Banach contraction, d(fx, fy) < qd(x,y), if x or y are accumulation points. Hence, the discrepancy
between the concept of graphic contraction and the mapping contracting perimeters of triangles lies in the
set of isolated points. Indeed, if x € X" and y € X are arbitrary and (x,) € X is a non-stationary sequence
converging to x, then

d(fx, fy) +d(fy, fxn) +d(fxu, fy) < q(dx,y) +d(y, xn) + d(xn, y))

implies, as n — oo, that d(fx, fy) < qd(x, y).
There exist mappings contracting perimeters of triangles with a unique fixed point that are not graphic
contractions.
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Example 2.5. Let X = {x,, | n € INo} where n # m implies x, # x,, be equipped with the metric d : X X X + [0, o0)
such that

0/ n=m

nl_l, m=n+1,n>0
NES

T n=m+1m>0
o[ ]

d(xn/ xm) = Z:inl (xl’le) m>n+1

Z? m (xan—l) n>m+1
4 Zi:l d(xl/ xl+1)/ m = 0,71 > 0
4-Yl dxi, xip1), n=0,m>0

Observe a mapping f : X — X such that

fx z{xo, n=0

As observed in [15], (X, d) is a complete metric space and f is a mapping contracting perimeters of triangles for q = Z,
and it has a unique fixed point x.
Howewver, it is not a graphic contraction since d(fxl,fle) =d(x2,x3) = Land d(x1, fx1) = d(x1,x2) = 1.

We will present a remetrization under which any mapping contracting perimeters of triangles may be
observed as a graphic contraction.

Theorem 2.6. If f : X — X is a mapping on a complete metric space (X, d), and a mapping d* : X X X + [0, o0) is
defined by

Py = {§<x, PO+ )+ o f) + £, 3% ];j .

then (X, d*) is a complete metric space.

Proof. The mapping d*: X X X i [0, o) defined by (8) is a well-defined mapping since d : X X X + [0, 00).
If x = y, then d*(x, y) = 0 by (8). If d"(x, y) = 0 and x # y, then

d(x, fx) +d(y, fy) + d(x, fy) +d(y, fx) =

implies x = y, which is a contradiction. Thus, d*(x, y) = O if and only if x = v.

The mapping d* is symmetric due to its definition and the symmetry of a metric 4, so d*(x, y) = d*(y, x) for
all x,y € X.

Let x, y,z € X be arbitrary, then the triangle inequality easily follows, and as a conclusion, (X, d*) is a metric
space.

Assume that (x,) C X is a Cauchy sequence in a metric space (X, d*). Then, for any n,m € IN such that m > n
we have

A, Xm) < d(Xy, f30) +A(fX0, Xm) < A" (X, X)),

so (x,) is a Cauchy sequence in a metric space (X, d). Let x* = lim, . Xy, then d(x,, fx,) < d*(x,, x,) leads to
limy oo fxn = fx* = x*. Accordingly,

A" (xn, X°) = d(xy, fx,) +d(X5, fX7) + d(x,, fX7) + A, fx,).

Thus, the sequence (x,) converges to x* with respect to the metric d*. Therefore, (X, d*) is a complete metric
space. [
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Additionally, a mapping contracting perimeters of triangles without periodic points of a prime period two
in (X, d) will be a graphic contraction in (X, d*).

Theorem 2.7. If f : X v X is a mapping contracting perimeters of triangles without periodic points of a prime
period two on a complete metric space (X, d) such that |X| > 3, and a mapping d* : X X X + [0, 00) defined by (8),
then f is an orbitally continuous graphic contraction on a complete metric space (X, d*).

Proof. Theorem 2.6 claims the completeness of an induced metric space (X, d") determined by (8). For an
arbitrary x € X, if fx = x or f>x = fx, the inequality (7) is evidently true. Otherwise, x, fx and f?x are three
distinct points. Observe

4 (fx, £23) = d(fx, 22 + d(f2x, £ + d(fx, £3)
d(x, fx) = d(x, fx) + d(fx, f2x) + d(x, f*x)

which further implies that d*(fx, f2x) < qd*(x, fx) holds for all x € X.
To prove orbital continuity of f with respect to 4, suppose that (f""x) converges to some y in (X, d") for
some x, y € X and a sequence (im,) € IN. Since

d*(f™x, y) = d(f™x, f"x) +d(y, fy) + d(f™x, fy) +d(y, f™*'x),
it follows that fy = y and f is an orbitally continuous on (X,d*). O

Now, we can claim that the main result of [15] can be derived from Theorem 1.18 except for the part of the
maximal number of fixed points that is easily derived from the condition (1).

Corollary 2.8. Let (X, d) for |X| > 3 be a complete metric space and let the mapping f : X v X satisfy the following
two conditions:

(i) f*x = ximplies fx = x forall x € X;
(ii) f is a mapping contracting perimeters of triangles.
Then f has a fixed point, and the number of fixed points is at most two.

Proof. Theorems 2.6 and 2.7 claim that f is an orbitally continuous graphic contraction on a complete metric
space (X, d*), so the existence of a fixed point, as well as the convergence of iterative sequence (f"x) to a fixed
point for any x € X, directly follow from Theorem 1.18. Recall that the contractive condition (1) implies
that the number of fixed points is at most two due to the fact that for fx = x, fy = y, and fz = z for three
mutually distinct points, we deduce

d(x, y) +d(y,z) +d(z,y) < q(dx, y) +d(y, z) + d(z,y))
which leads to the contradiction. [

Continuous generalized Kannan contraction on a metric space without isolated points is a Kannan
contraction. However, talking about Kannan contraction, we intend to avoid the continuity presumption.
Hence, it is an open question whether a generalized Kannan contraction can be observed as a Kannan
contraction, assuming it is discontinuous. Examples 2.5 and 2.6 of [16] testify to the independence of these
two classes of mappings. The main result of [16] is the existence of a fixed point of the generalized Kannan
contraction on a complete metric space, assuming that the mapping does not have periodic points of a
prime period two. We will prove that, under these presumptions, a generalized Kannan-type mapping is
an orbitally continuous graphic contraction. Moreover, the number of fixed points is at most two, which
follows from (3).

Theorem 2.9. If f : X — X is a generalized Kannan-type mapping in the sense of (3) on a complete metric space
(X, d) with |X| > 3 such that it has no periodic points of prime period two, then the mapping f is an orbitally
continuous graphic contraction on X.
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Proof. If x = fx or fx = f2x, then the inequality (7) trivially holds. Otherwise, suppose that (x, fx) and
(fx, f%x) are pairs of distinct points, and taking into account that f has no periodic points of prime period
2, x and f2x are also mutually distinct. Therefore, (3) is applicable on {x, fx, f2x}, so

d(fx, f2x) + d(Fx, £2) +d(fx, £x) < q (d(x, f2) + d(fx, 22 +d(fx, )
further implies

(1 - d(fx, f2x) < gd(x, fx) — (1 — Pd(f*x, f>x) — d(f>x, fx)
< qd(x, fx) = (1 = d(fx, f*x).

Hence,

q
A 2 < 55
9 9

and f is graphic 57—-contraction since 57— € [0,1) for g € [0, 2.
It remains to prove that the mapping f fulfilling (7) is orbitally continuous. Assume that lim, ., f™x =y
for some x, y € X and (m,,) € IN. Taking into account the proven fact that f is also a graphic contraction, by

a principle of mathematical induction, easily follows that

d(x, fx)

q
2(1-9)

d(fm, fi) < ( )m d(x, f).

As n — oo, we deduce that lim,_,. d(f™x, f™*!x) = 0 and, moreover, lim,_ f™*1x = y. If (f™x) is a
stationary sequence, then f™»x = y and f"™*!x = fy starting from some n > ng, but having in mind that the
sequence (f"*1x) converges to y, we get fy = y. If that is not the case, f™x, f"1x and y are three mutually
distinct points for infinitely many n € IN. Thus,

d(f”‘””x, fm”“HX) + d(fmn+1+1x, fy) + d(f]// f’”"”x)
< q(d(fmx, frtx) + d(f £ x) + d(y, fy)

leads to the conclusion that fy = y since the inequality

2d(y, fy) < qd(y, fy)

holds after letting n — co.
Hence, a generalized Kannan-type mapping without periodic points of prime period two is an orbitally
continuous graphic contraction. [

This result will imply that the main result of [16] given in the Introduction as Theorem 1.5 is a direct
corollary of the Saturated principle of graphic contraction, with the exception that the part that the maximal
number of fixed points is two must be proved additionally, which is a trivial consequence of the contractive
condition.

Corollary 2.10. Let (X,d) for |X| > 3 be a complete metric space and let the mapping f : X — X be a generalized
Kannan-type mapping without periodic points of a prime period two. The mapping f has a fixed point, and the number
of fixed points is at most two.

Proof. Theorem 2.9 asserts that a generalized Kannan-type mapping without periodic points of a prime
period two is an orbitally complete graphic contraction on a complete metric space, so Theorem 1.18 asserts
existence of a fixed point as well as the convergence of the iterative sequence (f"x) to a fixed point of a
mapping for arbitrary initial point x € X.
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As mentioned, uniqueness is easily obtained from (3). Suppose, contrary to what we intend to prove, that
fx=x, fy =y, and fz = z hold for pairwise distinct points x, y,z € X. Then,
d(x, y) +d(y,z) +d(z,x) = d(fx, fy) + d(fy, f2) + d(fz, fx)
<q(d(x, fx) +d(y, fy) + d(z, fz))
leads to the contradiction.

Therefore, a generalized Kannan-type mapping without periodic points of a prime period two on a complete
metric space has one or two fixed points. [J

Another type of perimetric contractions are generalized Chatterjea-type mappings [14]. Chatterjea con-
tractions are generalized Chatterjea-type mappings, which was not the case for generalized Kannan-type
mappings and Kannan contractions. Examples 2.2 and 2.3 of [14] present generalized Chatterjea-type
mappings that are not Kannan or Chatterjea mappings, and also not mappings contracting perimeteres of
triangles or generalized Kannan-type mappings.

Theorem 2.11. If f : X > X is a generalized Chatterjea-type mapping in a sense of (4) fora q € [0, 1) on a complete
metric space (X, d) with |X| > 3 such that it has no periodic points of prime period two, then the mapping f is an
orbitally continuous graphic contraction on X.

Proof. If x = fx or fx = f?x, the inequality (7) trivially holds. Otherwise, as f has no periodic points of
prime period two, x and f2x are also distinct. Thus, we may apply (4) on {x, fx, fx}, leading to

d(fx,fzx) + d(fzx, f3x) + d(f3x,fx) < q(d(x,f2x) +d(x, f3x) +d(fx, fx)
+ d(fx, fx) + d(f2x, fx) +d(f*x, f2x)).
Consequently,
(1= d(fx, f2x) < 2qd(x, fx) = (1 = 9)d(f>x, fx) = (1 = 29)d(fx, fx)

and

A(fx, ) < 7

d(x, fx).

Thus, f is a graphic 15 -contraction since 5. € [0,1) for g € [0, 7).
It remains to prove that the mapping f fulfilling (4) for ¢ < 1 is orbitally continuous. Assume that
lim, . f"x = y for some x € X. Taking into account the proven fact that f is also a graphic contraction, by

a principle of mathematical induction, it follows that

d(f™x, Frlx) < ( : a 2q) d(x, fx).

As n — oo, we deduce that lim,_ d(f"x, f™*1x) = 0 and moreover lim,_, f™*lx = y. If (f™x) is a
stationary sequence, then ™ x = y and f"™*!x = fy starting from some n > ng, but having in mind that the
sequence (f™*1x) converges to y, we get fy = y. If that is not the case, f™x, f"x and y are three mutually
distinct points for infinitely many n € IN. Thus,

d(frn,,+1xl fmy,+1+1x) + d(f"1n+]+1x, f]/) + d(f]// f’”"”x)
< q(d(Fmex, el + d(f, fy) +d(fm, )
+ d(f"x, fy) +d(y, f 1)+ d(y, £ 1))
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leads to the conclusion that fy = y since the inequality

2d4(y, fy) < 2qd(y, fy)

holds after letting n — oo. Hence, fy = y.
Hence, a generalized Chatterjea-type mapping without periodic points of a prime period two is an orbitally
continuous graphic contraction. [

This result will imply that for g € [0, 1), the main result of [14] given in the Introduction as Theorem 1.8 is a
direct corollary of the Saturated principle of graphic contraction, except for the upper bound of the number
of fixed points.

Corollary 2.12. Let (X, d) for |X| > 3 be a complete metric space and let the mapping f : X v X satisfy the following
two conditions:

(i) f has no periodic points of a prime period two;

(ii) f is a generalized Chatterjea-type mapping for q € [0, 3).
Then f has a fixed point, and the number of fixed points is at most two.
Proof. Theorem 2.11 asserts that assumptions (/) and (if) imply that f is an orbitally complete graphic
contraction on a complete metric space, so Theorem 1.18 gives existence of a fixed point as well as the
convergence of the iterative sequence (f"x) to a fixed point of a mapping for arbitrary initial point x € X.

The maximal number of fixed points is easily obtained from (3). Suppose, contrary to what we intend to
prove, that fx = x, fy = y, and fz = z hold for pairwise distinct points x, v,z € X. Then,

dx,y) +d(y,z) + d(z,x) < d(fx, fy) + d(fy, fz) +d(fz, fx)
<q(dx, fy)+d(x, fz) + d(y, fx)+d(y, fz)
+d(z, fx) + d(z, fy))
=2q (d(x, y) + d(y,z) + d(z, x))

leads to the contradiction.

Therefore, a generalized Chatterjea-type mapping for g € [0, 1) without periodic points of a prime period
two on a complete metric space has one or two fixed points. [J

Similarly to the mapping contracting perimeters of triangles, we will prove that a generalized Chatterjea-
type mapping without periodic points of a prime period two on a complete metric space (X, d) will be a
graphic contraction in (X, d).

Theorem 2.13. If f : X + X is a generalized Chatterjea-type mapping without periodic points of a prime period two
on a complete metric space (X, d) such that |X| > 3, and a mapping d* : X X X + [0, co) is defined by (8), then f is an
orbitally continuous graphic contraction on a complete metric space (X, d*).

Proof. According to Theorem 2.6, the induced metric space (X, d*) is complete, where the metric is deter-
mined by (8). Let x € X be arbitrary. If fx = x or f>x = fx, the inequality (7) holds, while for distinct x, fx
and f?x we obtain

d(fx, ) = d(fx, £22) + d(fx, £2) + d(fx, £)
d*(x, fx) =d(x, fx) + d(fx,fzx) + d(x,fzx).

The contractive condition (3) implies

d(fx,fzx) + d(fzx, f3x) + d(fx,f3x) < q(d(x,fzx) +d(x, f3x)
+d(fx, £x) +d(f*x, fx))
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and
(1= ) (d(fx, f2x) + d(f2x, fx) + d(fx, f°x))
<gq (d(x, fzx) + d(x,f3x) —d(fx, f3x) + d(fx,f3x) - d(fzx,f3x))
< q(d(x, £22) +d(x, fx) +d(fx, f2)).
Consequently, d"(fx, f2x) < 7%-d"(x, fx) holds for all x € X and 1Z € [0,1) for 4 € [0, }).

To prove orbital continuity of f with respect to d*, suppose that (f""x) converges to some y in (X, d") for
some x, y € X and a sequence (m,) C X. Since

d'(f"x,y) = d(f™x, f" ) +d(y, fy) +d(fx, fy) +d(y, ),
it follows that fy = y and f is an orbitally continuous on (X,d*). O

Thus, the main result of [14] can be derived from Theorem 1.18 except for the part of the maximal number
of fixed points that is easily derived from the condition (4).

Corollary 2.14. Let (X, d) for |X| > 3 be a complete metric space and let the mapping f : X v X satisfy the following
two conditions:

(i) f*x = ximplies fx = x forall x € X;
(ii) f is a generalized Chatterjea-type mapping.
Then f has a fixed point, and the number of fixed points is at most two.

Proof. Theorems 2.6 and 2.13 imply that f is an orbitally continuous graphic contraction on a complete
metric space (X, d*). Therefore, from Theorem 1.18, f has a fixed point. Recall that the contractive condition
(4) implies that the number of fixed points is at most two due to the fact that for fx =x, fy =y, and fz =z
for three mutually distinct points, we deduce

dix,y) +d(y,z) +d(z,y) <2q(d(x, y) + d(y,z) +d(z,y))
further implying the contradiction. Thus, f has at least one and at most two fixed points in X. [

Based on the results of Ciri¢, Reich and Rus and inspired by the perimetric contractive condition, the
generalized Ciri¢-Reich-Rus type mapping was introduced.

Theorem 2.15. If f : X + X is a generalized CRR-type mapping in a sense of (5) on a complete metric space (X, d)
with |X| > 3 such that it has no periodic points of prime period two, then the mapping f is an orbitally continuous
graphic contraction on X.

Proof. Assume that (X, d) is a complete metric space and f : X + X is a generalized CRR-type mapping on
X. Let x € X be arbitrary. Then if fx = x or f2x = fx, f has a fixed point in X. Otherwise, fx # x additionally
implies that f2x # x and x, fx, f2x are mutually distinct points, so (5) may be applied for y = fxand z = f2x.
Accordingly,
d(fx,fzx) + d(fzx,f3x) + d(f3x,fx) <a (d(x, fx)+ d(fx,fzx) + d(fzx, x))
+B(dx, fx) +d(fx, f2) + d(fx, £°x))
implies
(1-a = B(fx, f22) < (a + B)d(x, f2) + ad(Fx, %)
= (1= p)d(f*x, fox) — d(f*x, fx)
< (a + pyd(x, fx) + ad(fx, f2x) - (1 = pd(fx, fx).
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Consequently,

200+ f

d(fx, fZX) < md(x, fx)

2a+f

and as 57,5 < 1due to 2a + 28 < 1, f is a graphic contraction on X.

To prove orbital continuity of f suppose that (f"x) converges in X for some x € X and (m,) C IN and denote
the limit point with y. Then, from the fact that f is a graphic contraction, by the principle of mathematical
induction, we obtain

2 o
d(f™x, Fix) < (%) d(x, )

and by letting n — oo, it follows that lim,,—,. f™*1x = y. We assume that (f"x) is a non-stationary sequence
since otherwise y = fy easily follows, so we can observe, for infinitely many 7 € IN, three mutually distinct
points f"x, f™+1x and y. The inequality (5) implies
d(fm,,+1xl fm,,ﬂ-%—lx) + d(fm,,+1+1x, fy) + d(fy, fm"+1JC)
<a(d(f™x, fx) + d(f"x, y) + d(y, f7x))

+ ﬁ (d(fm”x, fm,,+lx) + d(fmnﬂx, fm,,ﬂ-#lx) + d(y, f]/))

and by letting n — oo, we acquire

2d(y, fy) < pd(y, fy).

Hence, fy = y and f is an orbitally continuous graphic contraction. [

Consequently, the main result of [3] presented in Theorem 1.10 of the Introduction follows from the Saturated
graphic contraction principle while the upper bound of the number of fixed points must be derived directly
from the contractive condition.

Corollary 2.16. Let (X, d) for |X| > 3 be a complete metric space and let the mapping f : X v X satisfy the following
two conditions:

(i) f has no periodic points of a prime period two;
(ii) f is a generalized CRR-type mapping.
Then f has a fixed point, and the number of fixed points is at most two.

Proof. Theorem 2.15 claims that a generalized CRR-type mapping without periodic points of prime period
two is an orbitally continuous graphic contraction. The underlying metric space is supposed to be complete,
so from Theorem 1.18 it follows that f has a fixed point in X and that the iterative sequence (f"x) converges
to the fixed point for arbitrary x € X.

To claim that the number of fixed points is at most two, suppose that fx = x, fy = y, and fz = z while
x, 1,z € X are three mutually distinct points. Then, from (5) follows

d(x, y) + d(y, z) + d(z,x) = d(fx, fy) + d(fy, fz) + d(fz, fx)
< a(dx, y) +d(y,z) +d(z, x))
+ B (d(x, fx) +d(y, fy) +d(z, fz))
=a(d(x,y) +d(y,z) +d(z,x))

which is possible if and only if x = y = z.
Note that if some of the sequences (f"x) is stationary, so it is (f"*!x) and fy = y.

Thus, the number of fixed points of a generalized CRR-type mapping without periodic points of prime
period two on a complete metric space is one or two. [
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3. Conclusion

In this paper, we present a detailed analysis of the relation of four types of perimetric contractions-

mapping contracting perimeters of triangles, generalized Kannan-type mappings, generalized Chattrjea-
type mappings, and generalized CRR-type mappings. It is proven that generalized Kannan and CRR-type
mappings are graphic contractions, while additional constraints for contractive constants are required in
the case of mappings contracting perimeters of triangles and generalized Chatterjea-type mappings. How-
ever, we propose a remetrization under which completeness is preserved, and both mappings contracting
perimeters of triangles and generalized Chatterjea-type mappings are orbitally continuous graphic contrac-
tions on the induced metric space. Consequently, we conclude that the existence of a fixed point for these
perimetric contractions can be derived from results concerning graphic contractions, specifically from the
Saturated graphic contraction principle.
Several questions remain open, such as whether a generalized Kannan-type contractive condition can be
modified to indeed generalize the Kannan contraction, how the relationship among perimetric contractions
might change under a remetrization, and whether these mappings can be classified under one category of
weakly Picard operators.
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