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Explore the study of the fractional differential equation containing the
right Hilfer derivative
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Abstract. Motivated by the Hilfer fractional derivative, we introduced a new problem involving the right
Hilfer fractional operator. We present some important results through the use of lemmas. In this context, we
discuss the existence and uniqueness of the solution using the Krasnoselskii fixed point theorem. Finally,
we also demonstrate the application of the obtained results with the aid of an example.

1. Introduction

In recent years, the scientific community has focused more attention on fractional differential equations,
as they are effective tools in modeling many phenomena in applied sciences and engineering applications
such as acoustic control, rheology, polymer physics, porous media, medicine, electrochemistry, proteins,
electromagnetics, economics, astrophysics, chemical engineering, signal processing, optics, chaotic dy-
namics, statistical physics, etc. (For details and examples, one may refer to papers [13, 14, 17, 19, 21]
and references cited therein). Over the years, many researchers have been interested in discussing the
qualitative analysis of fractional differential equations, including existence and uniqueness, as seen in
[1, 6,10, 11, 15]. Some authors have dedicated their efforts to further qualitative analysis of these kinds of
equations. Many related articles on the existence and uniqueness of fractional differential equations under
different types can be found, as seenin [2, 4, 5,7, 9, 16]. Recently, the study of the existence and uniqueness
of solutions of fractional integral equations through integral operators such as Caputo, Riemann-Liouville,
Hadamard, Katugampola, and Hilfer has gained prominence in both analytical and functional contexts
(Abbas et al. 2018). A significant amount of research has been completed so far on fractional differential
equations involving Hilfer derivatives with initial and boundary conditions; therefore, it is worth further
consideration. In [8], K. M. Furati et al. studied Hilfer fractional differential equations. In 2015, in the same
context, ]. Wang and Y. Zang investigated the existence of a solution to a nonlocal IVP for Hilfer fractional
differential equations. For details, see [24]. In this regard, in [23], the authors considered implicit fractional
equations with nonlocal conditions. In [12], S. Harikrishnan et al. studied the existence and stability results
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for Langevin equations with Hilfer fractional derivatives.
Further, in [20], Suphawat et al. studied the nonlocal BVP.

HOL dw) =R, du), 1<p<2, 0<v<l u€la,b],

with the integral boundary conditions
@) =0, ()= Z AXVS), 7i>0 A eR e labl.
i=1

The Banach contraction mapping principle, Banach fixed point theorem with Holder inequality, nonlinear
contraction, Krasnoselskii’s fixed point theorem, and the nonlinear Leray-Schauder alternative are em-
ployed to prove the existence of a solution to the integral boundary value problem (BVP).

Recently, Mohamed S. Abdo et al. [18] discussed the existence of a solution for Hilfer fractional differential
equations with boundary value conditions

"D y(s) = R(s,4(5)), s €la, b],

Slley(@h) +dy(0) = e, cde,€R, E=p+v(l-p),
where D! (.) is the left Hilfer fractional derivative of order p with 0 < p < 1 and type v with 0 < v < 1,
S;;‘E(.) is the left Riemann-Liouville fractional integral of order 1 — &, R : ]a,b] X R — R is a continuous

function. They obtained several existence results using Schauder’s, Schaefer’s, and Krasnoselskii’s fixed-
point theorems.

Motivated by the aforementioned works, this paper considers the following boundary value problem for a
class of right Hilfer fractional differential equations

o) HO) S(u) = R (u, 9(u), §(tu)), 0<t<1, u€a,b,
T,79(0) = L A4S (i) + S, y=p+v—vp, welab]

where HD’ZT(.) represents the right Hilfer fractional derivative of order p with 0 < p < 1 and type v with
0<v<l, ‘Ill):y(.) is the right Riemann-Liouville fractional integral of order 1 -y, R: [2,)) X RXR — R
is a continuous function, y; (i = 0,1,--- ,m) are prefixed points satisfyinga < u; < --- < i, < b, A; is real
numbers and 9, is a constant.

The rest of the paper is organized as follows: In Section 2, essential definitions and useful lemmas are
provided. In Section 3, we discuss the suitable conditions for the existence and uniqueness of the solution
to (1.1) — (1.2). Section 4 focuses on an application to illustrate the results.

2. An auxiliary results

In this section, we present some background material for the forthcoming analysis. Interested readers
can refer to [3, 14, 22].

Definition 2.1. Let u, w € C, such that Re(u) > 0, Re(w) > 0. Then,
a) The gamma function T is given as

T'(u) = f t=Ye7tdt, where T(u+ 1) = ul'(u).
0

b) The beta function B is defined as follows

1
Blu,w) = fo PN 1 - Pt so that ﬁ(u,w)z—r(”)r(w).

T'(u +w)
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Definition 2.2. Let S € L'[a, b]. Then, the right Riemann-Liouville fractional integral of order p > 0 is defined by

1 (° _
T S(u) = i) f (t — )y~ ts(t)dt.

Definition 2.3. Let u € [a,b], q € N such that g = [p] and & € Cla, b].
Then, the right Riemann-Liouville fractional derivative of order p is defined by

A\ gy~
RLDZ_G(L{) = (_E) Zz_pb(u).

Definition 2.4. Letp >0, geIN, g—1<p<gq, y=p+v(q—-p), ve[0,1], u € [a,b] and S € C[a,b]. Then,
the right Hilfer fractional derivative of order p and type v is determined as

_ d\" -
HO Sy = T, (_E) TV ().

Now, we consider the weighted space of continuous function
Ciyla,b] ={S: [a,5[— R, (b —u)' 7 S(u) € Cla, b]} where 0 < y < 1,

with the norm
= — A S e
1€l 1an) = LI[IE}’;‘?] )(b u) O(u)| ,

and
q

q d\ d
G, la,b] = {o e, b[— R, (——) S(u) € Cla, bland (_E)

= S(u) € Ciyla, b]},

we also introduce the spaces

Cl [a,b] ={S: [a,b[— R, S € Ciyfa bl and y O} S € C1-, [a, b1},

and

Cl_labl={&: [s,b[— R, S € C1-,la,bland O} S € C1-,la,b]}.

Lemma 2.5. Leth, , > 0. Then we have the following semigroup property
Logh _ gt
W -
Lemma 2.6. Letp >0, q € N such that q = [p]. Then,
1) reO) T S(u) = S(u). If S € Cyy[a, b]

q
2) (—%) ¥ S(u) = S(u). If S € Cla, b].

Lemma 2.7. Letp e Ry withp <1,ve [0,1]andy =p+v —vp.
IfGe C?_y[a, b], Then,

/) YT Su) = O, " Su).
and

T, w9, Sw) = T, O Su).
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Proposition 2.8. Let 1 > 0, and let y € R such that y > —1. Then fractional integral and derivative of a power
function are given by

1 , I(y+1) s+l
ib_ (b—lxl)) = m (b—u)) .
and
r 1
RO (b —u) = % (b—uy.

Moreovere, If 0 < | < 1, then
RO, (b—u) =

Lemma 2.9. Letl, 0 € R, witho < landq = [I]. If S € C,[a, b] and ZZ:IG € C!a,b]. Then,

1 b — )i q-i
3 st 2] = o [6"’”‘ e T }
i=1 u=b

Proof. First, by the lemma 2.6-(2). Taking g = 1, we have

d <1 = o~
(—@) T, S(u) = S(u). (1)
Using the equation (1) with &(u) replaced by li}_ RL Dé_ S(u), we have
d
T (uS0) = (‘@) [T (wm-2w)]. @

From the relation (2) and the definition of the right Riemann-liouville fractional integrals, and derivative,
we have

% (woh &) =(~10) [3 (el 200)

z(‘i)[r(zn) f (t— ) r DL S(t)dt]

_(_ 4| (1) 3 1
_(_ )[r(l+1)f(t )(dt) T (t)dt] (3)

Integration by parts the relation

1 b i d 1 —1
TS f (t —u) (E) T Syt (4)
— 1 ’ -l =
_mf(t— o [ 30 C(t)]dt
d B e
F(l+1)( ~u) _t - ()t:b

_ d -~
_ mfu' (t—u)l 1dt{ o ZZ_ b(t)]dt
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Repeating the proces of integration by parts n'* step, we have

j=q . A\
4 = Zf l"(l—;jﬁLZ)(b — 1=+ [(E) fIZf G(t)]t b
= -

1 b - d\1 4
_—F(l—(q—l))j;(t_u) ﬂ(a) T S(tydt.

Now, consider using the definition of right Riemann-liouville fractional integrale, its semi groupe property,
we have

J=q q-j
_ 1 _em |4 g

1 ! 1) i
“f oy ), et s

t=b

Ji?‘ 1 (I-j+1) ()" q-1 ﬁ
= = (b—u)""/ (—) T S(1)
j=1 Tl-j+2) \dt b Jizs

-, A ()

=1 [\ 7
D — (e (1) e
j=1

rig-j+2) i dt ies

b
- f S(t)dt. ®)

Using the equation (3) in the equation (5), we get

b
3wl ew = o - [ eon
u u

j=q q-j
U g e |4 e
+;T(l—]’+2)(b " ”[(dt) Iz—g(t)]tzb}

= (_1)’1+1 S(u) - f‘ ;(b - u)(l—f) [(i)q_j 12:16(1?)]
_ = raq-j+1) dt i=b

d q-j .l
(E) T e(u)L_J.

Lemma 2.10. Letp € Rwithp <1,ve[0,1]and y =p+v —vp.
Suppose R : [a,b[XR — R is a function such that R(.,3(.)) € C1-,[a, 1],
forany 9 € Ci_,[a,b].

Ifde C?_Y [a, b] then 3 satisfies the problem (IP)

& o-w-

= (1™ | S(u) - L TI=j+1)

O

rO" () = R(u, 9(w)), u € [a,b],
(]P) Il—)/‘9 _
b O0) = Sy,
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if and only if O satisfiees the following fractional integral equation

(b—uy!
I'(y)

Theorem 2.11. Let I, 0 € Rywith 0 < 1. Then, the right Riemann-Liouville fractional integral 312_(.) is bounded
from Cy_y[a,b] into Cy_,[a, b].

S(u) = rr f b(t— uPLR(t, S(1)dt, u € [a, b] (6)
- % L'(p) J. ' ' o

Theorem 2.12. Let | > 0, 0 > 0, with 0 <1 < 1. Then, the right Riemann-Liouville fractional integral i%F is
bounded from C,[a, b] and to C[a, b].

Theorem 2.13. Let0<[,0<y <1land S € C1_[a,b]. Ifl >y, then 1’2_(.) € Cla, b] and
T,_80) = lim T, S(u) =
Theorem 2.14. Letp >0, 0 <v < 1 and S € L'[a, b]. Assume that RLDZ(_H’) S(u) exists it lies in L'[a, b]. Then,
HO W Sy = T 00 S(u),  uelab).
Moreovere, if S € C1-[a,b], IZ(_l_p)Q € C%_y[a, b], then HDZT iIZ_ S(.) exists on [a, b) and
o) T S(u) = S(u), u€a,bl.

Theorem 2.15. Let0<p <1, 0<v<landy =p+v—vp. IfS€C_ [a,b], then

1-y
T, rO, Su)= T, yO) S(u)

Theorem 2.16. (Krasnoselskii’s fixed point theorem) Let () be a closed convex and nonempty subset of a Banach
space X, let T1, T, be the operators such that

a) Tix + T2d € Q for every pair x, § € Q.

b) Ty is compact and continous.

c) T is a contraction mapping.

Then there exists z € Q such that z = T1z + Toz.

Theorem 2.17. (Banach fixed point theorem) Let (X ; d) be a nonempty complete metric space with T : X — X isa
contraction mapping. Then map T has a fixed point.

Lemma 2.18. Let y =p+v —vp where0 <p <1,v € [0, 1]. Assume that
R: [a,b[XR X R — R be a function such that R(.,9(.), 8(1.)) € C1_,[a,b], forany 9 € C1_,[a,b]. If S € C)l/_y[a, b]
then 3 satisfies the problem (IPt) if and only if 3 satisfies the following fractional integral equation

_ (b - M V_ _ -1
M = ) T AlG Z ) f (=)

b
XR(t, 8(t), S(tt))dt + sb] + %p) f (t— )L R(t, S(t), 9(zt))dt, u € [a,b].

For the sake of convenience, we use the following notations :
®)—/ (br ) = (b - ‘)},_11 R(tr S(t)/ S(Tt)) = 6(t)r
and

O (b)=(b-)7"",  £=T()- )Y 4O bu)#0.

i=1
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Now, we can write

% m b
s = 2= g” “) {Z A @" (t, ;) SOt + 9y Q" (t,u) S(t)dt. 7)

T J,

Proof. Assume that 9 € C}_ ~ [a,b] is a solution to the problem (IPt). We show that 9 is also a solution of

fractional integrale Equation (7).
Since 9 € C?_y [a,b], we have 9 € C;,[a,b] and

dl i
[—;} T, 9= O]9 €Ciylabl. (8)

Further, by applying Theorem 2.12 with [ = 1 -y, we get
~1-
T,7"9 € Cla,b]. ©)
According to Equation (8) and (9) and using the definition of the space C?_y[a, b], we obtain
T, 9 eCl labl.

Sinc 9 € Ci_,[a,b] and 1278 € C%_y[a, b], by applying the lemma 29 witho =1-y,I=yandg=[y] =1,

we get

OL(b,u)
I'(y)

By hypothesis RLDZ_ ¥ € C1-,[a, b], using Lemma 2.7 and Equation (1), we have

T RO Su) = S(u) - [T, 90 s (10)

Ib RLDV_ d(u) = EZ_ HDZT d(u) = 15_ S(u). (11)
Comparing Equation (10) and (11), we see that
@’ (b,u)
I'(y)

Now, we substitute u = y; in (12) and multiply by A; we can write

@ O (b, )
CTO)

The last equality with the nonlocal condition (1), gives us

S(u) = [T, 80)ums + T S(u) (12)

Aid(i) = Ai [T, 8)ums + As Ty S(u).

9(0) = Z/\ S() + 9y = Z/\ r(( )“ o T, Wms + Y AT S().
i=1

We find
) (T8 A T S(u) + 90)
5 .

Substituting (13) into (12), we conclude that 9(u) satisfies (7).
Conversly, suppose that 9 € C)l’_y[a, b] satistying equation (7). Then,

@’ (bu
S(u) = ( ){Zr(pf®p(ty,)6(t)dt+9b

1—
T,779(0b) =

(13)

+ T » @'i (t, u) S(t)dt.
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Inserting RLDZ_ on both sides of above equation, we get

O @ (bu) [ A

RL~,_Y_ U, i

O S() = ———— |}
i=1

b
i Py = RPN
£ — T(p) fui O (t, ) S(tydt + 9| + rO, T, S(u)

By applying the Lemma 2.6 and Lemma 2.7 we obtain
1O, S) = O S(w). (14)

Since 9 € C}l'_y [4,b], and by Definition of C{_V [a,b], we have RLD;LS € Ci[a,b].
Therefore, from (14) it follows that

xR (w, S(u), 8(tw) € C1-yla, bl (15)
Sincep<1,ve[0,1]and 0 <1—-p <1, we obtain v(1 — p) < 1. Therefore

[v@-pl=1

In this case the definition of Riemann-Liouville derivative reduce to

Rt O R(u, S(u), S(tu)) = [—%] T, PR, S(u), S(Tu)). (16)
Clearly, by (15) and (16), we obtain
[—%] T, "PR(u, 9(u), S(tu)) € Ci-, [a, b]. 17)

Sincey =p+v—-vp>v(l-p),wehavel -y <1-v+vp.
Since &(.) € C1-,[a, b], by applying Theorem 2.12, we get

T,""P&() € Cla, bl. (18)

Using the definition of the space C?_V[u, b], from equation (17) and (18), it follows that
1—v+v,
T,""e() e Cp_ [a, b].

By applying ZZ(_H’ ) on both sided of equation (14) and using Lemma 2.9 with
I=v—-vpand g =1, wehave
L w0 8 =T w0l &)
©""" (b,u)
I(v(1~p))

Using the theorem 2.13 with ] = 1 — v(1 — p), we obtain

= G(u) - [7,7 ). (19)

[7,7 )] =o. (20)
Comparing the last equality with (1), we get

1O, () = S(u), u € [a,b).
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which means that (1) holds. Next, we show that if 9 € C/

(@)
To this end, we multiply both sides of (7) by X;:yand use Proposition 2.8 and Lemma 2.5, we have

er)f e’ (t, H)G(t)dt+\9b}

+m f @7 (u, ) S(tydt.

Since 1 —y < p —y + 1, Theorem 2.13 can be used when taking the limit u — b,

T
T 9(0) (V [Z r(p)fe” (t, 113) dt+8bl 1)

Substituting u = y; into (7), we have

O (b [ A [ )
Sui) = —F {; TP) jy\i @ (t, ui) S(t)dt + Sbl

b
+%p) [ O (t, ;) S(tydt

Then, we drive

1oy [a, b] satisfies (7), it also satisfies the condition

179()

m m ) /\
Aid(ui) = _1f®P(t l)v(tdt[ gy, 1}
;‘ H ; T(p) . u ; . .
m A /
i=1 £ b
_TO v A [0 I'(y)
- {i:l Tp) j;i @’ (t, ui) S(t)dt| + [T _ 1] 9.

which gives,

b A8 (u IOy A (M )G
;)\18(#,)+9b— ; [; ) L O (t, ) (t)dt+9b}_ )

It follows (21) and (22) that
T,790) = ) Ai(u) + O
i=1

This proves the initial condition 1 is verified. [

3. Existence and uniqueness results for problem (IP7)

In this section, we present existence and uniqueness results for the considered problem (IP7).

Theorem 3.1. Assume that the hypotheses following two (A1) and (A2) are fulfilled
(A1) Let R : [a,b[XR x R — R be a function such that R(., 9(.), 9(1.)) € CV(1 Pa,b],
forany § € Cy_,[a,b], and there exists L > 0 such that

IR(u, 91, x1) = R(u, 92, x2)] < L[I91 — 92| + |x1 — x2]], (23)
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forall u€la,bland9;,x; € R(i =1,2).
(A2) The constant

N A, " 2LB(y, p)
- {; E@’i’ b, u) + O (u,b)] o < 1. (24)

where B(.,.) is defined as in Definition 2.1.
The first result is based on Theorem 2.16. And so there exists at least one solution for the Hilfer problem (IPt) in the

space C)_ Ja, bl c c’ y[a b].

Proof. We use the Krasnoselskii’s fixed point theorem to prove the existence of solution 9 in the weighted
space C?l'ﬂ, [a, b]. Define the operator T : C1-,[a,b] — Ci1-,[a,b] by

(b u)

Ty = Xr( ) f O (t11) ot + 9,

f @ (t,u) Fs(t)dt. (25)

L
L(p)
Where Fs(f) := R(t, 9(t), 9(tt)).
Setting R(t) = Fo(t) := R(t,0,0), and suppose the ball B, = {8 € C1_,[a,b] : [ISllc,_, < r}, having r > 1%, 0 < 1
where

L9
—~

VrP) p+)/ p+1
{Z 207 (0, 1) + O (@, )| IRlle,,

T T

First, surmise the operator T into sum two operators T1 + T, as follows

m b
Z f O (t, i) Fso(t)dt + 9y
= i

Tﬁ(u):w f @ (t,u) Fs(t)dt.

e’ (b i)

Tl \9(7/1)

4

The proof will be demonstrated by the accompanying three steps.
Step 1: we show that T19 + Tox € B, for every 9, x € B,.
For operator T1, by our hypotheses, we have

| @ (b M)T13(M) I

% Z I(p) G)p (t, H) [| Fs(t) — Fo(t) | + | Fo(t) [1dt + |‘Z_h|

VP A pe <
—— 0" (b, i) (2LIVIc,,+ I R llc,., ) +
£ Lip® w) (2LISMler, + I R llc,.,)

Ai p L9l
5 fy O (1) (L 8 1 +1 5 D | R [ +

1l
—_

IN
[os] =
Ms IR

[ 9 |

< B
£

hence, for every 9 € B,, we find that

B(y,p) v | 9 |

A ~
IT1Sllc,., < Y W@ﬁ” (b, ) (2LISler, + I R lle,, ) + =5 (26)
i=1
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For operator T,, we have

_ e (b, b
107 (b, u)Tox(w) | < # @ (L) [| Fu() = Fo(®) | + | Folt) 1t
>
< QT%”’@W (b, ) B p) (2L11 S lle,, +IRIc,.,).
Thus we get :
B 7 5, +
ITavlle,, < 222 (sl . + IRl )[@F™ ()] (27)

- T

By Definitions of ¢ and r with (27) and (26), we get
IT1x + T2¥le,, < [IT19le,, + IT2xlle,, Sor+w <.

This proves that T19 + Tox € B, for every 9,x € B,.
Step 2 : The operator T; is a contration mapping on B;.
For any 9,x € 8B,, and for any u € [a,]), we have

ot

S

,)T19() = @7 (b, u)T1x(u) |

‘ -

b
P) fy O (t, i) | Fot) = Fa(t) | dt

1l
—_

ml m|
‘ —
p— )

—

b
® fy | @’ (t, ) 2L | S(t) — x(t) | dt

ﬂ.

<

VP) o N Ay g
() ZL; = O (B, p)ll9 — Al

This yields

B(y,
T2 = Ty, < 227P)

Y & Pty . _
<TI0 ZL; 2O (0,119 ~ e,

The operator T; is contraction mapping. Thus, condition (A;) of Theorem 3.1 is satisfied.

Step 3 : The operator T, is completely continuous on 5.

Now, we will prove that the opertor T is continuous.

Now, we prove that (T>8;) is uniformly bounded. Indeed, it is enough to show that for some r > 0, there
exists a positive constant / such that [|T29lc, , <.

According to step 1, for 9 € B,, we know that

B(y,p)
L'(p)

IT28llc, , < [ (2LIISllc,., + ||R||c1,,)] | a,b)] :=1.

Hence, ||T28||c1_}, < 1. Which shows that the operator T is uniformly bounded on $,. Finaly, we show that
(T»8,) is equicontinuous in B,.
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Let 9 € B, and uy, uy € [a,b] with uy < up, we have

1@ (b, uz)Tzs(uz) — O (b,u1)T2d(u1) |

O (b,us) ) i
‘W | O tm) |07 (b, max | @ (b, Fs(t) | dt
0 (b,u1) ! i

_T)l . 95 (t,m) [© (0, 1)] max | ©7 (b, HFs(t) | dt
B(y,p)

< IFsllc,, [0 o) |[®’1+Y (b, Mz)] - [G)’})/ o, ul)]|.

As | up —uy |— 0, the right-hand side of the above inequality tends to zero, independent of 9. Thus, (T5) is
equicontinuis. Therefore, it follows by Arzela-Ascoli Theorem, that T is a completly continuous operator
on B,. As a consequence of Theorem 2.16, we conclude that the problem (IPt) has at least one solution in
Ci-yla,b].

Finaly, we show that such a solution is indeed in le'fy [a,b] By applying RLD;’_ on both sides of (7), we get

RO S(u) = rO) T S(u) = reO) "R(u, S(u), H(tu))
= O YR, S(u), H(wu)).

Since R(., 9(.), 9(1.)) € Cv(l_p ) [a, ], it follows by definition of the space CV(1 P) [a, D] that RLDy S(u) € C1-y[a,b]

which implies that 9(u) € C1 - [a,b]. O

Theorem 3.2. Assume that hypotheses (A1) and (Az) are fulfilled.
If 0 < 1. Then, the problem (IPt) has a unique solution where o is defined as in Theorem 3.1.

Proof. For the proof of Theorem 3.2, one can adopt the same technique as we did Theorem 3.1 and easily
prove that the operator T : Ci_,[a,b] — C;_,[a, b] stated in equation (25) is completely continuous. In view
of Theorem 3.1, we know that the fixed point of T are solutions of problem (IPt). Now, we prove that T has
a unique fixed point, which is a solution of problem (I’7). Indeed, by hypotheses (A;) — (A2), Proposition
2.8, then for 9,x € C1,[a,b], u € [a,b), we have

|®:V (b, )TSw) — @ (b,u)Tx(u)(

S A1 (P,
= ; £ T(p) fy,- @~ (t, u) [Fs(t) — Fx(b)l dt

e (bu (T _,

T J, @GR - ROl
Ai 2L

Z £ T(p) f ©” (t,1)|© (0, 1)] IS - xlc, ,
-y

%p()b’u) ) e’ (t, u)@Z b9 - x”Cl_),]dt

m Ai
< ;E@W (b, i) +[@"" (@ b)]l r() 2LBYP)ys - Aic,-

This gives, [| TO = Tx [lc, ,< o || 9 —xlc,., -
Since 0 < 1, the operator T : C;_,[a,b] — C1-,[a, b] is a contraction mapping. Hence by Banach fixed point
theorem, it follows that T has a unique fixed point. which is a solution of problem (IPt). This completed
the proof. O
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4. An example

This section provide illustrative example of the justness and applicability of the main results.
We consider the following problem of the left Hilfer fractional differential equations of the following form:

e\ (308+|9(u)l)

(){ 057 8(u) = 30’5( Sl ) 4 V1989, 0<t<1, uelL2]

© s

90) = £9(5) + 8y, p=2+@xn-(Gxd=t
6

From Example, we havea =1, b =2, p=3/6, v=3/9, y=6/9, 1 -y =3/9, A1 = 3, u1 = g and 9, is a
constant. Thanks to (24) under the given data, this takes the value

=T() = MO (b ) = T(D) - 12(3)7 =09,

Given the continuous function:

R, S(u), 8(r10) = ( o %)Ju)n) + V1989

For each 9, x € R*and u € [1, 2), we obtain
[R(u, 3(u), S(tu) — R(u, x(u), x(tu))| < [IS x| + [9(tu) — x(tu)|]

The assumptions (A1) and (A;) in Theorem 3.1 are verified, we obtain

L
308
Furtheremore, by simple computations we get
_ (M p+l )B(%P)
- (Fer )+ @ @b T 2L
04 2:¢ 6 341 ) (5.2 -12
(09@)_ 29+0:" 12 T 15x1072 <1,

since all conditions of Theorem 3.2 are satisfied. Then the problem (p) has a unique solution on [1, 2).
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