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Abstract. Motivated by the Hilfer fractional derivative, we introduced a new problem involving the right
Hilfer fractional operator. We present some important results through the use of lemmas. In this context, we
discuss the existence and uniqueness of the solution using the Krasnoselskii fixed point theorem. Finally,
we also demonstrate the application of the obtained results with the aid of an example.

1. Introduction

In recent years, the scientific community has focused more attention on fractional differential equations,
as they are effective tools in modeling many phenomena in applied sciences and engineering applications
such as acoustic control, rheology, polymer physics, porous media, medicine, electrochemistry, proteins,
electromagnetics, economics, astrophysics, chemical engineering, signal processing, optics, chaotic dy-
namics, statistical physics, etc. (For details and examples, one may refer to papers [13, 14, 17, 19, 21]
and references cited therein). Over the years, many researchers have been interested in discussing the
qualitative analysis of fractional differential equations, including existence and uniqueness, as seen in
[1, 6, 10, 11, 15]. Some authors have dedicated their efforts to further qualitative analysis of these kinds of
equations. Many related articles on the existence and uniqueness of fractional differential equations under
different types can be found, as seen in [2, 4, 5, 7, 9, 16]. Recently, the study of the existence and uniqueness
of solutions of fractional integral equations through integral operators such as Caputo, Riemann-Liouville,
Hadamard, Katugampola, and Hilfer has gained prominence in both analytical and functional contexts
(Abbas et al. 2018). A significant amount of research has been completed so far on fractional differential
equations involving Hilfer derivatives with initial and boundary conditions; therefore, it is worth further
consideration. In [8], K. M. Furati et al. studied Hilfer fractional differential equations. In 2015, in the same
context, J. Wang and Y. Zang investigated the existence of a solution to a nonlocal IVP for Hilfer fractional
differential equations. For details, see [24]. In this regard, in [23], the authors considered implicit fractional
equations with nonlocal conditions. In [12], S. Harikrishnan et al. studied the existence and stability results

2020 Mathematics Subject Classification. Primary 34A08; Secondary 26A33.
Keywords. The Weighted space, The right Riemann-liouville fracional derivative and integral, The right Hilfer fractional derivative,

Existence and uniqueness.
Received: 13 August 2025; Accepted: 14 August 2025
Communicated by Maria Alessandra Ragusa
Email address: belqassim.azzouz@univ-relizane.dz (Belqassim Azzouz)
ORCID iD: https://orcid.org/0009-0009-4132-7812 (Belqassim Azzouz)



B. Azzouz / Filomat 40:1 (2026), 295–308 296

for Langevin equations with Hilfer fractional derivatives.
Further, in [20], Suphawat et al. studied the nonlocal BVP.

HO
p,ν
a+ϑ(u) = R (u, ϑ(u)) , 1 < p < 2, 0 ≤ ν ≤ 1 u ∈ [a, b],

with the integral boundary conditions

ϑ(a) = 0, ϑ(b) =
m∑

i=1

λiT
γi
a+ϑ(µi), γi > 0 λi ∈ R µi ∈ [a, b].

The Banach contraction mapping principle, Banach fixed point theorem with Hölder inequality, nonlinear
contraction, Krasnoselskii’s fixed point theorem, and the nonlinear Leray-Schauder alternative are em-
ployed to prove the existence of a solution to the integral boundary value problem (BVP).
Recently, Mohamed S. Abdo et al. [18] discussed the existence of a solution for Hilfer fractional differential
equations with boundary value conditionsHDp,ν

a+ y(s) = R
(
s, y(s)

)
, s ∈]a, b],

I
1−ξ
a+ [cy(a+) + dy(b−)] = ei, c, d, ei,∈ R, ξ = p + ν(1 − p),

where HDp,ν
a+ (.) is the left Hilfer fractional derivative of order p with 0 < p < 1 and type ν with 0 ≤ ν ≤ 1,

I
1−ξ
a+ (.) is the left Riemann-Liouville fractional integral of order 1 − ξ, R : ]a, b] × R → R is a continuous

function. They obtained several existence results using Schauder’s, Schaefer’s, and Krasnoselskii’s fixed-
point theorems.
Motivated by the aforementioned works, this paper considers the following boundary value problem for a
class of right Hilfer fractional differential equations

(Pτ)

HO
p,ν
b−ϑ(u) = R (u, ϑ(u), ϑ(τu)) , 0 < τ < 1, u ∈ [a, b[,

T
1−γ
b− ϑ(b) =

∑m
i=1 λiϑ(µi) + ϑb, γ = p + ν − νp, µi ∈ [a, b[,

where HO
p,ν
b− (.) represents the right Hilfer fractional derivative of order p with 0 < p < 1 and type ν with

0 ≤ ν ≤ 1, T1−γ
b− (.) is the right Riemann-Liouville fractional integral of order 1 − γ, R : [a, b) × R × R → R

is a continuous function, µi (i = 0, 1, · · · ,m) are prefixed points satisfying a < µ1 < · · · < µm < b, λi is real
numbers and ϑb is a constant.
The rest of the paper is organized as follows: In Section 2, essential definitions and useful lemmas are
provided. In Section 3, we discuss the suitable conditions for the existence and uniqueness of the solution
to (1.1) − (1.2). Section 4 focuses on an application to illustrate the results.

2. An auxiliary results

In this section, we present some background material for the forthcoming analysis. Interested readers
can refer to [3, 14, 22].

Definition 2.1. Let u, w ∈ C, such that Re(u) > 0, Re(w) > 0. Then,
a) The 1amma function Γ is given as

Γ(u) =
∫
∞

0
tu−1e−tdt, where Γ(u + 1) = uΓ(u).

b) The beta function β is defined as follows

β(u,w) =
∫ 1

0
tu−1(1 − t)w−1dt, so that β(u,w) =

Γ(u)Γ(w)
Γ(u + w)

.
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Definition 2.2. Let S ∈ L1[a, b]. Then, the right Riemann-Liouville fractional integral of order p > 0 is defined by

T
p
b−S(u) =

1
Γ(p)

∫ b

u
(t − u)p−1S(t)dt.

Definition 2.3. Let u ∈ [a, b], q ∈N such that q =
[
p
]

and S ∈ C[a, b].
Then, the right Riemann-Liouville fractional derivative of order p is defined by

RLO
p
b−S(u) =

(
−

d
du

)q

T
q−p
b− S(u).

Definition 2.4. Let p > 0, q ∈ N, q − 1 < p ≤ q, γ = p + ν(q − p), ν ∈ [0, 1], u ∈ [a, b] and S ∈ Cq[a, b]. Then,
the right Hilfer fractional derivative of order p and type ν is determined as

HO
p,ν
b− S(u) = Tν(q−p)

b−

(
−

d
du

)q

T
(1−ν)(q−p)
b− S(u).

Now, we consider the weighted space of continuous function

C1−γ[a, b] =
{
S : [a, b[−→ R, (b − u)1−γS(u) ∈ C[a, b]

}
where 0 < γ ≤ 1,

with the norm
∥S∥C1−γ[a,b] = max

u∈[a,b]

∣∣∣(b − u)1−γS(u)
∣∣∣ ,

and

Cq
1−γ[a, b] =

S : [a, b[−→ R,
(
−

d
du

)q−1

S(u) ∈ C[a, b] and
(
−

d
du

)q

S(u) ∈ C1−γ[a, b]

 ,
we also introduce the spaces

Cp,ν
1−γ[a, b] =

{
S : [a, b[−→ R, S ∈ C1−γ[a, b] and HO

p,ν
b−S ∈ C1−γ[a, b]

}
,

and
Cγ1−γ[a, b] =

{
S : [a, b[−→ R, S ∈ C1−γ[a, b] and RLO

γ
b−S ∈ C1−γ[a, b]

}
.

Lemma 2.5. Let ł1, ł2 > 0. Then we have the following semigroup property

T
ł1
b− T

ł2
b− = T

ł1+l2
b− .

Lemma 2.6. Let p > 0, q ∈N such that q =
[
p
]
. Then,

(1) RLO
p
b− T

p
b−S(u) = S(u). If S ∈ Cq−γ[a, b]

(2)
(
−

d
du

)q

T
q
b−S(u) = S(u). If S ∈ C[a, b].

Lemma 2.7. Let p ∈ R+ with p < 1, ν ∈ [0, 1] and γ = p + ν − νp.
If S ∈ Cγ1−γ[a, b], Then,

RLO
γ
b−
TT

p
b− S(u) = RLO

ν−νp
b− S(u).

and

T
γ
b− RLO

γ
b− S(u) = Tp

b− HO
p,ν
b− S(u).
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Proposition 2.8. Let ł > 0, and let γ ∈ R such that γ > −1. Then fractional integral and derivative of a power
function are given by

Tł
b− (b − u)γ =

Γ(γ + 1)
Γ(γ + 1 + l)

(b − u)γ+l.

and

RLO
l
b−(b − u)γ =

Γ(γ + 1)
Γ(γ + 1 − l)

(b − u)γ−l.

Moreovere, If 0 < l < 1, then

RLO
l
b−(b − u)l = 0

Lemma 2.9. Let l, σ ∈ R+ with σ < 1 and q = [l] . If S ∈ Cσ[a, b] and Tq−l
b− S ∈ Cq

σ[a, b]. Then,

Tl
b−

[
RLO

l
b−S(u)

]
= (−1)q+1

S(u) −
q∑

i=1

(b − u)l−i

Γ(l − i + 1)

( d
du

)q−i

T
q−l
b− S(u)


u=b

 .
Proof. First, by the lemma 2.6-(2). Taking q = 1, we have(

−
d

du

)
T1

b− S(u) = S(u). (1)

Using the equation (1) with S(u) replaced by Tl
b− RLD

l
b−S(u), we have

Tl
b−

(
RLD

l
b−S(u)

)
=

(
−

d
du

)
T1

b−

[
Tl

b−

(
RLD

l
b−S(u)

)]
. (2)

From the relation (2) and the definition of the right Riemann-liouville fractional integrals, and derivative,
we have

Tl
b−

(
RLD

l
b− S(u)

)
=

(
−

d
du

) [
T1+l

b−

(
RLD

l
b− S(u)

)]
=

(
−

d
du

) [
1

Γ(l + 1)

∫ b

u
(t − u)l

RLD
l
b− S(t)dt

]
=

(
−

d
du

) [
(−1)q

Γ(l + 1)

∫ b

u
(t − u)l

(
d
dt

)q

T
q−l
b− S(t)dt

]
. (3)

Integration by parts the relation

1
Γ(l + 1)

∫ b

u
(t − u)l

(
d
dt

)q

T
q−l
b− S(t)dt (4)

=
1

Γ(l + 1)

∫ b

u
(t − u)l d

dt

( d
dt

)q−1

T
q−l
b− S(t)

 dt

=
1

Γ(l + 1)
(b − u)l

( d
dt

)q−1

T
q−l
b− S(t)


t=b

−
1
Γ(l)

∫ b

u
(t − u)l−1 d

dt

( d
dt

)q−2

T
q−l
b− S(t)

 dt.
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Repeating the proces of integration by parts nth step, we have

(4) =
j=q∑
j=1

1
Γ(l − j + 2)

(b − t)(l− j+1)

( d
dt

)q− j

T
q−l
b− S(t)


t=b

−
1

Γ(l − (q − 1))

∫ b

u
(t − u)l−q

(
d
dt

)q−q

T
q−l
b− S(t)dt.

Now, consider using the definition of right Riemann-liouville fractional integrale, its semi groupe property,
we have

(4) =
j=q∑
j=1

1
Γ(l − j + 2)

(b − u)(l− j+1)

( d
dt

)q− j

T
q−l
b− S(t)


t=b

−
1

Γ(l + 1 − q)

∫ b

u
(t − u)(l+1−q−1) T

q−l
b− S(t)dt.

=

j=q∑
j=1

1
Γ(l − j + 2)

(b − u)(l− j+1)

( d
dt

)q− j

T
q−l
b− S(t)


t=b

− T
l+1−q
b− T

q−l
b− S(u)

=

j=q∑
j=1

1
Γ(l − j + 2)

(b − u)(l− j+1)

( d
dt

)q− j

T
q−l
b− S(t)


t=b

−

∫ b

u
S(t)dt. (5)

Using the equation (3) in the equation (5), we get

Tl
b− RLD

l
b−S(u) = (−1)q+1 d

du

{
−

∫ b

u
S(t)dt

+

j=q∑
j=1

1
Γ(l − j + 2)

(b − u)(l− j+1)

( d
dt

)q− j

T
q−l
b− S(t)


t=b

}

= (−1)q+1

S(u) −
j=q∑
j=1

1
Γ(l − j + 1)

(b − u)(l− j)

( d
dt

)q− j

T
q−l
b− S(t)


t=b


= (−1)q+1

S(u) −
j=q∑
j=1

(b − u)l− j

Γ(l − j + 1)

( d
du

)q− j

T
q−l
b− S(u)


u=b

 .

Lemma 2.10. Let p ∈ R with p < 1, ν ∈ [0, 1] and γ = p + ν − νp.
Suppose R : [a, b[×R→ R is a function such that R(., ϑ(.)) ∈ C1−γ[a, b],
for any ϑ ∈ C1−γ[a, b].
If ϑ ∈ Cγ1−γ[a, b] then ϑ satisfies the problem (P)

(P)

HO
p,ν
b−ϑ(u) = R(u, ϑ(u)), u ∈ [a, b[,

T
1−γ
b− ϑ(b) = ϑb,
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if and only if ϑ satisfiees the following fractional integral equation

ϑ(u) =
(b − u)γ−1

Γ(γ)
ϑb +

1
Γ(p)

∫ b

u
(t − u)p−1 R(t, ϑ(t))dt, u ∈ [a, b[. (6)

Theorem 2.11. Let l, σ ∈ R+with σ < 1. Then, the right Riemann-Liouville fractional integral Tl
b−(.) is bounded

from C1−γ[a, b] into C1−γ[a, b].

Theorem 2.12. Let l > 0, σ > 0, with σ ≤ ł < 1. Then, the right Riemann-Liouville fractional integral Tł
b− is

bounded from Cσ[a, b] and to C[a, b].

Theorem 2.13. Let 0 < l, 0 < γ ≤ 1 and S ∈ C1−γ[a, b]. If l > γ, then Tl
b−(.) ∈ C[a, b] and

Tl
b−S(b) = lim

u→b−
Tl

b−S(u) = 0.

Theorem 2.14. Let p > 0, 0 ≤ ν ≤ 1 and S ∈ L1[a, b]. Assume that RLO
ν(1−p)
b− S(u) exists it lies in L1[a, b]. Then,

HO
p,ν
b− T

p
b−S(u) = Tν(1−p)

b− RLO
ν(1−p)
b− S(u), u ∈ [a, b).

Moreovere, if S ∈ C1−γ[a, b], Tν(1−p)
b− S ∈ C1

1−γ[a, b], then HO
p,ν
b− T

p
b−S(.) exists on [a, b) and

HO
p,ν
b− T

p
b−S(u) = S(u), u ∈ [a, b[.

Theorem 2.15. Let 0 < p < 1, 0 ≤ ν ≤ 1 and γ = p + ν − νp. If S ∈ Cγ1−γ[a, b], then

T
γ
b− RLO

γ
b−S(u) = Tp

b− HO
p,ν
b−S(u)

Theorem 2.16. (Krasnoselskii’s fixed point theorem) Let Ω be a closed convex and nonempty subset of a Banach
space X, let T1, T2 be the operators such that
a) T1x + T2ϑ ∈ Ω for every pair x, ϑ ∈ Ω.
b) T1 is compact and continous.
c) T2 is a contraction mapping.
Then there exists z ∈ Ω such that z = T1z + T2z.

Theorem 2.17. (Banach fixed point theorem) Let (X ; d) be a nonempty complete metric space with T : X → X is a
contraction mapping. Then map T has a fixed point.

Lemma 2.18. Let γ = p + ν − νp where 0 < p < 1, ν ∈ [0, 1]. Assume that
R : [a, b[×R ×R→ R be a function such that R(., ϑ(.), ϑ(τ.)) ∈ C1−γ[a, b], for any ϑ ∈ C1−γ[a, b]. If ϑ ∈ Cγ1−γ[a, b]
then ϑ satisfies the problem (Pτ) if and only if ϑ satisfies the following fractional integral equation

ϑ(u) =
(b − u)γ−1

Γ(γ) −
∑m

i=1 λi[(b − µi)]γ−1

[ m∑
i=1

λi

Γ(p)

∫ b

µi

(t − µi)p−1

×R(t, ϑ(t), ϑ(τt))dt + ϑb

]
+

1
Γ(p)

∫ b

u
(t − u)p−1 R(t, ϑ(t), ϑ(τt))dt, u ∈ [a, b[.

For the sake of convenience, we use the following notations :

Θ
γ
−

(b, .) = (b − .)γ−1, R(t, ϑ(t), ϑ(τt)) = S(t),

and

Θ
−γ
−

(b, .) = (b − .)−γ+1, £ = Γ(γ) −
m∑

i=1

λiΘ
γ
−

(b, µi) , 0.
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Now, we can write

ϑ(u) =
Θ
γ
−

(b,u)
£

 m∑
i=1

λi

Γ(p)

∫ b

µi

Θ
p
−

(t, µi) S(t)dt + ϑb

 + 1
Γ(p)

∫ b

u
Θ

p
−

(t,u) S(t)dt. (7)

Proof. Assume that ϑ ∈ Cγ1−γ[a, b] is a solution to the problem (Pτ). We show that ϑ is also a solution of
fractional integrale Equation (7).
Since ϑ ∈ Cγ1−γ[a, b], we have ϑ ∈ C1−γ[a, b] and[

−
d
u

]
T

1−γ
b− ϑ = RLO

γ
b− ϑ ∈ C1−γ[a, b]. (8)

Further, by applying Theorem 2.12 with l = 1 − γ, we get

T
1−γ
b− ϑ ∈ C[a, b]. (9)

According to Equation (8) and (9) and using the definition of the space Cq
1−γ[a, b], we obtain

T
1−γ
b− ϑ ∈ C1

1−γ[a, b].

Sinc ϑ ∈ C1−γ[a, b] and T1−γ
b− ϑ ∈ C1

1−γ[a, b], by applying the lemma 2.9 with σ = 1 − γ, l = γ and q =
[
γ
]
= 1,

we get

T
γ
b− RLO

γ
b− ϑ(u) = ϑ(u) −

Θ
γ
−

(b,u)
Γ(γ)

[T1−γ
b− ϑ(u)]u=b. (10)

By hypothesis RLO
γ
b− ϑ ∈ C1−γ[a, b], using Lemma 2.7 and Equation (1), we have

T
γ
b− RLO

γ
b− ϑ(u) = Tp

b− HO
p,ν
b− ϑ(u) = Tp

b− S(u). (11)

Comparing Equation (10) and (11), we see that

ϑ(u) =
Θ
γ
−

(b,u)
Γ(γ)

[T1−γ
b− ϑ(u)]u=b + T

p
b− S(u) (12)

Now, we substitute u = µi in (12) and multiply by λi we can write

λiϑ(µi) = λi
Θ
γ
−

(b, µi)
Γ(γ)

[T1−γ
b− ϑ(u)]u=b + λi T

p
b− S(µi).

The last equality with the nonlocal condition (1), gives us

T
1−γ
a+ ϑ(b) =

m∑
i=1

λiϑ(µi) + ϑb =

m∑
i=1

λi
Θ
γ
−

(b, µi)
Γ(γ)

[T1−γ
b− ϑ(u)]u=b +

m∑
i=1

λiT
p
b− S(µi).

We find

T
1−γ
b− ϑ(b) =

Γ(γ)
(∑m

i=1 λi T
p
b− S(µi) + ϑb

)
£

. (13)

Substituting (13) into (12), we conclude that ϑ(u) satisfies (7).
Conversly, suppose that ϑ ∈ Cγ1−γ[a, b] satisfying equation (7). Then,

ϑ(u) =
Θ
γ
−

(b,u)
£

 m∑
i=1

λi

Γ(p)

∫ b

µi

Θ
p
−

(t, µi) S(t)dt + ϑb

 + 1
Γ(p)

∫ b

u
Θ

p
−

(t,u) S(t)dt.
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Inserting RLO
γ
b− on both sides of above equation, we get

RLO
γ
b− ϑ(u) =

RLO
γ
b−Θ

γ
−

(b,u)

£

 m∑
i=1

λi

Γ(p)

∫ b

µi

Θ
p
−

(t, µi) S(t)dt + ϑb

 + RLO
γ
b− T

p
b− S(u).

By applying the Lemma 2.6 and Lemma 2.7 we obtain

RLO
γ
b−ϑ(u) = RLO

ν(1−p)
b− S(u). (14)

Since ϑ ∈ Cγ1−γ[a, b], and by Definition of Cγ1−γ[a, b], we have RLO
γ
b−ϑ ∈ C1−γ[a, b].

Therefore, from (14) it follows that

RLO
ν(1−p)
b− R(u, ϑ(u), ϑ(τu)) ∈ C1−γ[a, b]. (15)

Since p < 1 , ν ∈ [0, 1] and 0 < 1 − p < 1, we obtain ν(1 − p) < 1. Therefore[
ν(1 − p)

]
= 1.

In this case the definition of Riemann-Liouville derivative reduce to

RLO
ν(1−p)
b− R(u, ϑ(u), ϑ(τu)) =

[
−

d
du

]
T

1−ν(1−p)
b− R(u, ϑ(u), ϑ(τu)). (16)

Clearly, by (15) and (16), we obtain[
−

d
du

]
T

1−ν(1−p)
b− R(u, ϑ(u), ϑ(τu)) ∈ C1−γ[a, b]. (17)

Since γ = p + ν − νp > ν(1 − p), we have 1 − γ < 1 − ν + νp.
Since S(.) ∈ C1−γ[a, b], by applying Theorem 2.12, we get

T
1−ν(1−p)
b− S(.) ∈ C[a, b]. (18)

Using the definition of the space Cq
1−γ[a, b], from equation (17) and (18), it follows that

T
1−ν+νp
b− S(.) ∈ C1

1−γ[a, b].

By applying Tν(1−p)
b− on both sided of equation (14) and using Lemma 2.9 with

l = ν − νp and q = 1, we have

T
ν(1−p)
b− RLO

γ
b− ϑ(u) = Tν(1−p)

b− RLO
ν(1−p)
b− S(t)

= S(u) −
Θ
ν(1−p)
−

(b,u)
Γ(ν(1 − p))

[
T

1−ν(1−p)
b− S(b)

]
. (19)

Using the theorem 2.13 with l = 1 − ν(1 − p), we obtain[
T

1−ν(1−p)
b− S(b)

]
= 0. (20)

Comparing the last equality with (1), we get

HO
p,ν
b−ϑ(u) = S(u), u ∈ [a, b).
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which means that (1) holds. Next, we show that if ϑ ∈ Cγ1−γ[a, b] satisfies (7), it also satisfies the condition
(1).
To this end, we multiply both sides of (7) by T1−γ

b− and use Proposition 2.8 and Lemma 2.5, we have

T
1−γ
b− ϑ(u) =

Γ(γ)
£

 m∑
i=1

λi

Γ(p)

∫ b

µi

Θ
p
−

(t, µi) S(t)dt + ϑb


+

1
Γ(p − γ + 1)

∫ b

u
Θ

p−γ+1
−

(u, t) S(t)dt.

Since 1 − γ < p − γ + 1, Theorem 2.13 can be used when taking the limit u→ b,

T
1−γ
a+ ϑ(b) =

Γ(γ)
£

 m∑
i=1

λi

Γ(p)

∫ b

µi

Θ
p
−

(t, µi) S(t)dt + ϑb

 . (21)

Substituting u = µi into (7), we have

ϑ(µi) =
Θ
γ
−

(b, µi)
£

 m∑
i=1

λi

Γ(p)

∫ b

µi

Θ
p
−

(t, µi) S(t)dt + ϑb


+

1
Γ(p)

∫ b

µi

Θ
p
−

(t, µi) S(t)dt.

Then, we drive
m∑

i=1

λiϑ(µi) =
m∑

i=1

λi

Γ(p)

∫ b

µi

Θ
p
−

(t, µi) S(t)dt

1 + m∑
i=1

λi

£
Θ
γ
−

(b, µi)


+

m∑
i=1

λi

£
Θ
γ
−

(b, µi)ϑb

=
Γ(γ)

£

 m∑
i=1

λi

Γ(p)

∫ b

µi

Θ
p
−

(t, µi) S(t)dt

 + [
Γ(γ)

£
− 1

]
ϑb.

which gives,

m∑
i=1

λiϑ(µi) + ϑb =
Γ(γ)

£

 m∑
i=1

λi

Γ(p)

∫ b

µi

Θ
p
−

(t, µi) S(t)dt + ϑb

 . (22)

It follows (21) and (22) that

T
1−γ
b− ϑ(b) =

m∑
i=1

λiϑ(µi) + ϑb.

This proves the initial condition 1 is verified.

3. Existence and uniqueness results for problem (Pτ)

In this section, we present existence and uniqueness results for the considered problem (Pτ).

Theorem 3.1. Assume that the hypotheses following two (A1) and (A2) are fulfilled
(A1) Let R : [a, b[×R ×R→ R be a function such that R(., ϑ(.), ϑ(τ.)) ∈ Cν(1−p)

1−γ [a, b],
for any ϑ ∈ C1−γ[a, b], and there exists L > 0 such that

|R(u, ϑ1, x1) − R(u, ϑ2, x2)| ≤ L [|ϑ1 − ϑ2| + |x1 − x2|] , (23)
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for all u ∈ [a, b[ andϑi, xi ∈ R(i = 1, 2).
(A2) The constant

σ :=

 m∑
i=1

λi

£
Θ

p+γ
−

(b, µi) +Θ
p+1
−

(a, b)

 2LB(γ, p)
Γ(p)

< 1. (24)

where B(., .) is defined as in Definition 2.1.
The first result is based on Theorem 2.16. And so there exists at least one solution for the Hilfer problem (Pτ) in the
space Cγ1−γ[a, b] ⊂ Cp,ν

1−γ[a, b].

Proof. We use the Krasnoselskii’s fixed point theorem to prove the existence of solution ϑ in the weighted
space Cγ1−γ[a, b]. Define the operator T : C1−γ[a, b]→ C1−γ[a, b] by

(Ty)(u) =
Θ
γ
−

(b,u)
£

 m∑
i=1

λi

Γ(p)

∫ b

µi

Θ
p
−

(t, µi) Fϑ(t)dt + ϑb


+

1
Γ(p)

∫ b

u
Θ

p
−

(t,u) Fϑ(t)dt. (25)

Where Fϑ(t) := R(t, ϑ(t), ϑ(τt)).
Setting R̃(t) = F0(t) := R(t, 0, 0), and suppose the ball Br =

{
ϑ ∈ C1−γ[a, b] : ∥ϑ∥C1−γ ≤ r

}
, having r ≥ w

1−σ , σ < 1
where

w :=
B(γ, p)
Γ(p)

 m∑
i=1

λi

£
Θ

p+γ
−

(b, µi) +Θ
p+1
−

(a, b)

 ∥R̃∥C1−γ +
| ϑb |

£
.

First, surmise the operator T into sum two operators T1 + T2 as follows

T1ϑ(u) =
Θ
γ
−

(b,u)
£

 m∑
i=1

λi

Γ(p)

∫ b

µi

Θ
p
−

(t, µi) Fϑ(t)dt + ϑb

 ,
T2ϑ(u) =

1
Γ(p)

∫ b

u
Θ

p
−

(t,u) Fϑ(t)dt.

The proof will be demonstrated by the accompanying three steps.
Step 1 : we show that T1ϑ + T2x ∈ Br for every ϑ, x ∈ Br.
For operator T1, by our hypotheses, we have

| Θ
−γ
−

(b,u)T1ϑ(u) |

≤
1
£

m∑
i=1

λi

Γ(p)

∫ b

µi

Θ
p
−

(t, µi) [| Fϑ(t) − F0(t) | + | F0(t) |] dt +
| ϑb |

£

≤
1
£

m∑
i=1

λi

Γ(p)

∫ b

µi

Θ
p
−

(t, µi)
(
L(| ϑ(t) | + | ϑ(τt) |)+ | R̃(t) |

)
dt +

| ϑb |

£

≤
B(γ, p)

£

m∑
i=1

λi

Γ(p)
Θ

p+γ
−

(b, µi)
(
2L∥ϑ∥C1−γ+ ∥ R̃ ∥C1−γ

)
+
| ϑb |

£

hence, for every ϑ ∈ Br, we find that

∥T1ϑ∥C1−γ ≤
B(γ, p)

£

m∑
i=1

λi

Γ(p)
Θ

p+γ
−

(b, µi)
(
2L∥ϑ∥C1−γ+ ∥ R̃ ∥C1−γ

)
+
| ϑb |

£
. (26)



B. Azzouz / Filomat 40:1 (2026), 295–308 305

For operator T2, we have

| Θ
−γ
−

(b,u)T2x(u) | ≤
Θ
−γ
−

(b,u)
Γ(p)

∫ b

u
Θ

p
−

(t,u) [| Fx(t) − F0(t) | + | F0(t) |] dt

≤
Θ
−γ
−

(b,u)
Γ(p)

Θ
p+γ
−

(b,u) B(γ, p)
(
2L ∥ ϑ ∥C1−γ +∥R̃∥C1−γ

)
.

Thus we get :

∥T2x∥C1−γ ≤
B(γ, p)
Γ(p)

(
2L∥ϑ∥C1−γ + ∥R̃∥C1−γ

) [
Θ

p+1
−

(b,u)
]
. (27)

By Definitions of σ and r with (27) and (26), we get

∥T1x + T2ϑ∥C1−γ ≤ ∥T1ϑ∥C1−γ + ∥T2x∥C1−γ ≤ σr + w ≤ r.

This proves that T1ϑ + T2x ∈ Br for every ϑ, x ∈ Br.
Step 2 : The operator T1 is a contration mapping on Br.
For any ϑ, x ∈ Br, and for any u ∈ [a, b), we have

| Θ
−γ
−

(b,u)T1ϑ(u) −Θ−γ
−

(b,u)T1x(u) |

≤

m∑
i=1

λi

£
1
Γ(p)

∫ b

µi

Θ
p
−

(t, µi) | Fϑ(t) − Fx(t) | dt

≤

m∑
i=1

λi

£
1
Γ(p)

∫ b

µi

Θ
p
−

(t, µi) 2L | ϑ(t) − x(t) | dt

≤
B(γ, p)
Γ(p)

2L
m∑

i=1

λi

£
Θ

p+γ
−

(b, µi)∥ϑ − x∥C1−γ .

This yields

∥T1ϑ − T1x∥C1−γ ≤
B(γ, p)
Γ(p)

2L
m∑

i=1

λi

£
Θ

p+γ
−

(b, µi)∥ϑ − x∥C1−γ .

The operator T1 is contraction mapping. Thus, condition (A2) of Theorem 3.1 is satisfied.
Step 3 : The operator T2 is completely continuous on Br.
Now, we will prove that the opertor T2 is continuous.
Now, we prove that (T2Br) is uniformly bounded. Indeed, it is enough to show that for some r > 0, there
exists a positive constant l such that ∥T2ϑ∥C1−γ ≤ l.
According to step 1, for ϑ ∈ Br, we know that

∥T2ϑ∥C1−γ ≤

[
B(γ, p)
Γ(p)

(
2L∥ϑ∥C1−γ + ∥R̃∥C1−γ

)] [
Θ

p+1
−

(a, b)
]

:= l.

Hence, ∥T2ϑ∥C1−γ ≤ l. Which shows that the operator T2 is uniformly bounded on Br. Finaly, we show that
(T2Br) is equicontinuous in Br.
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Let ϑ ∈ Br and u1, u2 ∈ [a, b] with u1 < u2, we have

| Θ
−γ
−

(b,u2)T2ϑ(u2) −Θ−γ
−

(b,u1)T2ϑ(u1) |

≤

∣∣∣∣∣∣Θ−γ− (b,u2)
Γ(p)

∫ b

u2

Θ
p
−

(t,u2)
[
Θ
γ
−

(b, t)
]

max
t∈[a,b]

| Θ
−γ
−

(b, t)Fϑ(t) | dt

−
Θ
−γ
−

(b,u1)
Γ(p)

∫ b

u1

Θ
p
−

(t,u1)
[
Θ
γ
−

(b, t)
]

max
t∈[a,b]

| Θ
−γ
−

(b, t)Fϑ(t) | dt

∣∣∣∣∣∣
≤ ∥Fϑ∥C1−γ[a,b]

B(γ, p)
Γ(p)

∣∣∣∣[Θp+γ
−

(b,u2)
]
−

[
Θ

p+γ
−

(b,u1)
]∣∣∣∣ .

As | u2 − u1 |−→ 0, the right-hand side of the above inequality tends to zero, independent of ϑ. Thus, (T2) is
equicontinuis. Therefore, it follows by Arzela-Ascoli Theorem, that T2 is a completly continuous operator
on Br. As a consequence of Theorem 2.16, we conclude that the problem (Pτ) has at least one solution in
C1−γ[a, b].
Finaly, we show that such a solution is indeed in Cγ1−γ[a, b] By applying RLO

γ
b− on both sides of (7), we get

RLO
γ
b−ϑ(u) = RLO

γ
b− T

p
b−S(u) = RLO

γ−p
b− R(u, ϑ(u), ϑ(τu))

= RLO
ν(1−p),ψ
b− R(u, ϑ(u), ϑ(τu)).

Since R(., ϑ(.), ϑ(τ.)) ∈ Cν(1−p)
1−γ [a, b], it follows by definition of the space Cν(1−p)

1−γ [a, b] that RLO
γ
b−ϑ(u) ∈ C1−γ[a, b]

which implies that ϑ(u) ∈ Cγ1−γ[a, b].

Theorem 3.2. Assume that hypotheses (A1) and (A2) are fulfilled.
If σ < 1. Then, the problem (Pτ) has a unique solution where σ is defined as in Theorem 3.1.

Proof. For the proof of Theorem 3.2, one can adopt the same technique as we did Theorem 3.1 and easily
prove that the operator T : C1−γ[a, b]→ C1−γ[a, b] stated in equation (25) is completely continuous. In view
of Theorem 3.1, we know that the fixed point of T are solutions of problem (Pτ). Now, we prove that T has
a unique fixed point, which is a solution of problem (Pτ). Indeed, by hypotheses (A1) − (A2), Proposition
2.8, then for ϑ, x ∈ C1−γ[a, b], u ∈ [a, b), we have∣∣∣Θ−γ

−
(b,u)Tϑ(u) −Θ−γ

−
(b,u)Tx(u)

∣∣∣
≤

m∑
i=1

λi

£
1
Γ(p)

∫ b

µi

Θ
p
−

(t, µi) |Fϑ(t) − Fx(t)| dt

+
Θ
−γ
−

(b,u)
Γ(p)

∫ b

u
Θ

p
−

(t,u) |Fϑ(t) − Fx(t)| dt

≤

m∑
i=1

λi

£
2L
Γ(p)

∫ b

µi

Θ
p
−

(t, µi)
[
Θ
γ
−

(b, t)
] [
∥ϑ − x∥C1−γdt

+
2LΘ−γ

−
(b,u)

Γ(p)

∫ b

u
Θ

p
−

(t,u)Θγ
−

(b, t) ∥ϑ − x∥C1−γ

]
dt

≤

 m∑
i=1

λi

£
Θ

p+γ
−

(b, µi) +
[
Θ

p+1
−

(a, b)
] 2LB(γ, p)

Γ(p)
∥ϑ − x∥C1−γ .

This gives, ∥ Tϑ − Tx ∥C1−γ≤ σ ∥ ϑ − x ∥C1−γ .
Since σ < 1, the operator T : C1−γ[a, b]→ C1−γ[a, b] is a contraction mapping. Hence by Banach fixed point
theorem, it follows that T has a unique fixed point. which is a solution of problem (Pτ). This completed
the proof.
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4. An example

This section provide illustrative example of the justness and applicability of the main results.
We consider the following problem of the left Hilfer fractional differential equations of the following form:

(℘)

HO
3
6 ,

3
9

2− ϑ(u) = 30−8

eu

(
|ϑ(τu)|

(308+|ϑ(u)|)

)
+
√

1989u, 0 < τ < 1, u ∈ [1, 2[,

T
1− 6

9
2− ϑ(2) = 6

15ϑ( 6
9 ) + ϑ2, γ = 3

6 + ( 3
9 × 1) − ( 3

9 ×
3
6 ) = 6

9 .

From Example, we have a = 1, b = 2, p = 3/6, ν = 3/9, γ = 6/9, 1 − γ = 3/9, λ1 =
6

15 , µ1 =
6
9 and ϑ2 is a

constant. Thanks to (24) under the given data, this takes the value

£ = Γ(γ) − λ1Θ
γ
−

(b, µ1) = Γ(
6
9

) −
6

15
(
6
9

)
−1
3 ≃ 0.9.

Given the continuous function:

R(u, ϑ(u), ϑ(τu)) =
30−8

eu

(
|ϑ(τu)|

(308 + |ϑ(u)|)

)
+
√

1989u.

For each ϑ, x ∈ R+and u ∈ [1, 2), we obtain

|R(u, ϑ(u), ϑ(τu) − R(u, x(u), x(τu))| ≤
1

308 [|ϑ − x| + |ϑ(τu) − x(τu)|]

The assumptions (A1) and (A2) in Theorem 3.1 are verified, we obtain

L =
1

308 .

Furtheremore, by simple computations we get

σ : =
(
λ1

£
Θ

p+γ
−

(b, µ1) +Θp+1
−

(a, b)
) B(γ, p)
Γ(p)

2L

≈

(0.4
0.9
Θ

3
6+

6
9

−
(2,

6
9

) +Θ
3
6+1
−

(1, 2)
) B( 6

9 ,
3
6 )

Γ(
3
6 )
× 1.5 × 10−12 < 1,

since all conditions of Theorem 3.2 are satisfied. Then the problem (℘) has a unique solution on [1, 2).
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