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Abstract. The general problem of determinization of fuzzy automata over the product structure is un-
solvable, which necessitates the use of approximate methods. This paper introduces a new approach to
the approximate determinization of fuzzy finite automata by utilizing a transition to a different structure,
known as the truncated product structure. This structure is residuated and has a locally finite semiring
reduct, which enables efficient computation. The proposed method constructs a so-called Children automa-
ton and employs approximate weak simulations to achieve more effective determinization. In comparison
to existing techniques, this approach significantly enhances the performance and precision of the resulting
crisp-deterministic fuzzy automata.

1. Introduction

The determinization of fuzzy finite automata stands as a fundamental and thought-provoking topic
in fuzzy automata theory. In the classical framework of Boolean-valued automata, any non-deterministic
finite automaton can be replaced by an equivalent deterministic one, albeit with a potentially exponential
increase in the number of states. However, this property does not hold for fuzzy automata, as an equivalent
deterministic fuzzy finite automaton may not always exist. This complexity makes the determinization
process for fuzzy automata considerably more challenging.

There are two primary approaches to the determinization of fuzzy finite automata. The first, known
as crisp-determinization, involves converting a fuzzy automaton into an equivalent crisp-deterministic
fuzzy automaton [1, 4, 5, 7, 8]. This form can be interpreted as a classical deterministic automaton, where
the traditional final state set is replaced by a fuzzy set of final states. The second approach, called fuzzy
determinization, produces fuzzy deterministic finite automata, representing a generalized form of crisp-
deterministic fuzzy automata, where the initial and transition truth degrees are not restricted to absolute
truth [11, 12, 15, 16, 26, 27].
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https://orcid.org/0000-0001-8625-4682 (Miroslav Ćirić)
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The concept of crisp-determinization was first explored in [1, 23], with a foundational procedure intro-
duced in [8]. This method, known as the accessible fuzzy subset construction, is the fuzzy analogue of the
well-known subset construction used for non-deterministic finite automata. When the semiring reduct of
the underlying truth value structure is locally finite, this procedure completes within a finite number of
steps. However, this is not guaranteed in the general case. For example, if the underlying truth structure
is the product structure, the process may not terminate. Moreover, even when termination occurs, the
resulting crisp-deterministic fuzzy automaton can have an excessively large number of states. To mitigate
these issues, several improved procedures have been proposed in [4, 5, 7, 14], offering faster solutions and
automata with fewer states.

Both crisp- and fuzzy determinization procedures can be further improved using simulations. This en-
hancement was achieved for crisp-determinization in [7] and for fuzzy determinization in [17]. Simulations
significantly enhance determinization procedures, sometimes yielding finite crisp-deterministic or fuzzy
deterministic automata in cases where other methods result in infinite ones. Such enhancements play a
critical role in Brzozowski-type determinization procedures [4, 11, 12]. However, simulations themselves
present challenges. If the underlying truth value structure is not locally finite, the computation of both
ordinary and weak simulations may not terminate within a finite number of steps. This issue arises, for
instance, with fuzzy automata over the product structure. One way to overcome these challenges is through
approximate determinization using approximate simulations.

Approximate determinization of fuzzy finite automata over the product structure was investigated
in [19] using a parametric modification of the product t-norm within the pre-determinization framework.
This approach covered both crisp- and fuzzy determinization. The resulting deterministic automaton
behaves similarly to the original fuzzy automaton, except for words with acceptance degrees below a
specified parameter, where the membership value differences also remain within the parameter’s bounds.
By choosing a sufficiently small parameter, the algorithms from [19] generate deterministic automata whose
behavior closely approximates that of the original fuzzy automaton.

The parametric modification of the product t-norm ensures the structure has a locally finite semiring
reduct, guaranteeing algorithm termination in a finite number of steps. However, the modified t-norm
lacks left continuity, preventing the residuum operation necessary for computing both ordinary and weak
simulations. To overcome this limitation, we adopt the approach from [18], which truncates the product
structure based on the given parameter. This truncation yields a new residuated structure with a locally finite
semiring reduct, which facilitates efficient computation of approximate weak simulations [18]. Building
on this structure, we develop new algorithms for the approximate determinization of fuzzy automata,
leveraging approximate weak simulations to enhance efficiency. A key contribution of this paper is a new
determinization method that always yields a finite deterministic fuzzy automaton, even in cases where
general determinization procedures fail to terminate. Unlike traditional methods, our approach guarantees
language equivalence with the original fuzzy automaton on all words whose acceptance degrees exceed a
predefined parameter ε, thus providing an effective and practical approximation framework.

The paper is organized as follows. Section 2 presents fundamental concepts and notation related
to complete residuated lattices and specific structures of fuzzy truth values, with a particular focus on
truncated product structures. It also reviews key concepts and results concerning fuzzy sets, relations,
languages, automata, deterministic fuzzy automata, and approximate weak simulations and bisimulations.
Section 3 introduces the main results for approximate crisp-determinization using approximate weak
simulations. Section 4 presents an algorithm for constructing a fuzzy deterministic finite automaton which
is equivalent to a given fuzzy automaton for all words which are accepted by the original automaton with
the degree greater or equal to ε, where ε > 0 is a very small value.

2. Preliminmaries

2.1. Complete residuated lattices and particular structures of membership values
A resuduated lattice is an algebra L = (L,∨,∧,⊗,→, 0, 1) that consists of a non-empty set L, four binary

operations ∨, ∧, ⊗ and→ on L, and two constants 0 and 1 from L, such that the following conditions are
satisfied:
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(L1) (L,∨,∧, 0, 1) is a bounded lattice with the least element 0 and the greatest element 1;
(L2) (L,⊗, 1) is a commutative semigroup with the identity 1;
(L3) the operations ⊗ and→ satisfy the adjunction property: for all a, b, c ∈ L,

a ⊗ b ⩽ c ⇔ a ⩽ b→ c,

where ⩽ is the ordering in the lattice (L,∨,∧, 0, 1).

The operation ⊗ is called the multiplication, and the operation → is called the residuum. The operation ↔
defined by (a ↔ b) = (a → b) ∧ (b → a), for arbitrary a, b ∈ L, is called the biresiduum. In addition, if
(L,∨,∧, 0, 1) is a complete lattice, then L is called a complete residuated lattice.

In applications of fuzzy sets, the most commonly used complete residuated lattices are the Gödel,
Łukasiewicz and product structures, whose carrier set is the real unit interval I = [0, 1], the operations ∨ and
∧ are given by a∨ b = max(a, b) and a∧ b = min(a, b), for all a, b ∈ I, and the adjoint operations ⊗ and→ are
defined, for arbitrary a, b ∈ I, as follows:

Gödel structure : a ⊗ b = a ∧ b, (a→ b) =

 1 if a ⩽ b
b if a > b

; (1)

Łukasiewicz structure : a ⊗ b = max(a + b − 1, 0), (a→ b) = min(1 − a + b, 1); (2)

product structure : a ⊗ b = a · b, (a→ b) =

 1 if a ⩽ b
b
a if a > b

. (3)

The product structure will be denoted by the same letter I as its carrier, i.e., I = (I,∧,∨,⊗,→, 0, 1), where ⊗
and→ are defied as in (3).

The reduct (L,∨,⊗, 0, 1) of a residuated lattice L = (L,∨,∧,⊗,→, 0, 1) is a semiring (for a definition we
refer the reader to [3]), and it is called the semiring reduct of L.

An algebra is called locally finite if each of its finitelly generated subalgebras is finite. In particular, a
semiring is locally finite if each of its finitelly generated subsemirings is finite, and a monoid is locally finite
if each of its finitelly generated submonoids is finite. Let us point out that the semiring reducts of the Gödel
and Łukasiewicz structures are locally finite, but the semiring reduct of the product structure is not locally
finite.

In order to obtain a locally finite structure that approximate the product structure, in [18] the construction
that we present in the sequel was given. Instead of the real unit interval I = [0, 1], the carrier set of this new
structure is assumed to be the interval Iε = [ε, 1], for a given ε ∈ (0, 1).

Theorem 2.1. For a given ε ∈ (0, 1), let ∗ε and→ε be binary operations on Iε defined by

a ∗ε b =

 a · b if a · b ⩾ ε,
ε if a · b < ε,

a→ε b =

 1 if a ⩽ b,
b
a if a > b,

for arbitrary a, b ∈ Iε. Then Iε = (Iε,∧,∨, ∗ε,→ε, ε, 1) is a complete residuated lattice and its semiring reduct
(Iε,∨, ∗ε, ε, 1) is a locally finite semiring.

The proof of this theorem can be seen in [18] (Theorems 3.1 and 3.2).

The complete residuated lattice Iε is called the ε-truncated product structure, or just the truncated product
structure, when it is understood in relation to which ε this truncation is performed.

2.2. Fuzzy subsets and fuzzy relations

Throughout this paper, Lwill denote an arbitrary complete residuated lattice.
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For a nonempty set A, a fuzzy subset of A is defined as any function α : A → L, and the set of all fuzzy
subsets of A is denoted by LA. For two fuzzy sets α, β ∈ LA, if α(a) ⩽ β(a), for every a ∈ A, then we say that
α is included in β, and we write α ⩽ β. For an arbitrary family {α j} j∈J of fuzzy subsets of A, the union

∨
j∈J α j

and the intersection
∧

j∈J α j of this family are defined coordinatewise (see [20, 21] for more details).
A fuzzy relation between nonempty sets A and B is defined as any fuzzy subset of A×B, and the equality,

inclusion, union and intersection of fuzzy relations are defined as for fuzzy sets. Following notation that
we use for fuzzy sets, the set of all fuzzy relations between A and B, with membership values in L, will be
denoted by LA×B. The inverse of a fuzzy relation ϕ ∈ LA×B is defined as the fuzzy relation ϕ−1

∈ LB×A given
by ϕ−1(b, a) = ϕ(a, b), for all a ∈ A and b ∈ B.

Given fuzzy relationsϕ ∈ LA×B,φ ∈ LB×C and fuzzy sets α ∈ LA, β ∈ LB, where A, B and C are non-empty
sets, the compositions ϕ ◦ φ ∈ LA×C, α ◦ ϕ ∈ LB and ϕ ◦ β ∈ LA are defined by

(ϕ ◦ φ)(a, c) =
∨
b∈B

ϕ(a, b) ⊗ φ(b, c), (4)

(α ◦ ϕ)(b) =
∨
a∈A

α(a) ⊗ ϕ(a, b), (5)

(ϕ ◦ β)(a) =
∨
b∈B

ϕ(a, b) ⊗ β(b), (6)

for all a ∈ A, b ∈ B and c ∈ C. If α, β ∈ LA, then we also define α ◦ β ∈ L by

α ◦ β =
∨
a∈A

α(a) ⊗ β(a). (7)

In particular, for fuzzy relations and fuzzy sets with membership values in the ε-truncated product structure
Iε, for some ε ∈ (0, 1), the composition operations defined by (4)–(7) are denoted by ◦ε.

At the end of this subsection we deal with fuzzy sets and relations with membership values in the
product structure I. For a fuzzy set α ∈ IA and ε ∈ (0, 1), the ε-truncation of α is a fuzzy set αε ∈ IA×A

ε defined
by

αε(a) =

α(a) if α(a) ⩾ ε,
ε if α(a) < ε,

and, in particular, the ε-truncation of a fuzzy relation φ ∈ LA×A is a fuzzy relation φε ∈ IA×A
ε defined by

φε(a, b) =

φ(a, b) if φ(a, b) ⩾ ε,
ε if φ(a, b) < ε.

2.3. Fuzzy languages and fuzzy automata

Throughout this paper, Σwill denote a finite non-empty set called an alphabet, whose elements are called
letters, Σ∗ will denote the free monoid over Σ, e will denote the identity of Σ∗, called the empty word, and
Σ+ will denote the free semigroup over Σ, that is, Σ+ = Σ∗ \ {e}. A fuzzy language over Σ, with membership
values in L, is defined as any fuzzy subset of Σ∗, i.e., as any mapping from Σ∗ to L.

A fuzzy automaton over Σ and L (abbrev. FA) is a quadruple A = (Q,Σ, I,T,F), where
• Q is a non-empty set, called the set of states;
• I ∈ LQ is the fuzzy set of initial states;
• T ∈ LQ×Σ×Q is the fuzzy transition function;
• F ∈ LQ is the fuzzy set of final states.
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If the set of states Q is finite, then A is called a fuzzy finite automaton over Σ and L (abbrev. FfA).
The fuzzy transition function T : Q×X×Q→ Ldetermines the family {Tu}u∈X∗ ⊆ LQ×Q of fuzzy relations,

which are defined inductively as follows:

• Te is the equality relation on Q, that is, Te(a, a) = 1, for every a ∈ Q, and Te(a, b) = 0, for all a, b ∈ Q such
that a , b;

• Tx(a, b) = T(a, x, b), for all a, b ∈ Q and x ∈ X,

• Tux = Tu ◦ Tx, for all u ∈ Σ∗ and x ∈ Σ.

Due to the associativity of the composition of relations, we have that Tuv = Tu ◦ Tv, for all u, v ∈ X∗. This
means that if u = x1x2 . . . xn, for x1, x2, . . . , xn ∈ Σ, then Tu = Tx1 ◦ Tx2 ◦ . . . ◦ Txn . Each Tu we call a fuzzy
transition relation of A .

The behavior of a fuzzy automaton A = (Q,Σ, I,T,F) is a mapping [[A]] : Σ∗ → L, i.e., a fuzzy subset of
Σ∗, defined by

[[A]](u) = I ◦ Tx1 ◦ Tx2 ◦ · · · ◦ Txn ◦ F = I ◦ Tu ◦ F, (8)

for every u = x1x2 . . . xn ∈ Σ
+, where x1, x2, . . . , xn ∈ Σ, and

[[A]](e) = I ◦ F. (9)

We say that [[A]] is the fuzzy language accepted (recognized) by A , and we also say that A accepts (recognizes) the
fuzzy language [[A]]. In addition, we say that a word u ∈ Σ∗ is accepted with degree [[A]](u), and that [[A]](u)
is the acceptance degree of u.

Two fuzzy automata A and B over Σ and L are said to be equivalent if [[A]] = [[B]], i.e., if they accept the
same fuzzy language.

Let A = (Q,Σ, I,T,F) be a fuzzy finite automaton over the product structure I and ε ∈ (0, 1). We define a
new fuzzy finite automaton Aε = (Qε,Σ, Iε,Tε,Fε), called the ε-copy of A , which has the same set of states,
i.e., Qε = Q, whereas the fuzzy set of initial states Iε, the fuzzy set of final states Fε, and the fuzzy transition
function Tε are ε-truncations of I, F and T, respectively. The behavior of Aε is defined over Iε, which means
that

[[Aε]](u) = Iε ◦ε Tεx1
◦ε Tεx2

◦ε · · · ◦ε Tεxn
◦ε Fε = Iε ◦ε Tεu ◦ε Fε. (10)

for every u = x1x2 . . . xn ∈ Σ
+, where x1, x2, . . . , xn ∈ Σ, and

[[Aε]](e) = Iε ◦ε Fε. (11)

The following was proven in [18]:

Proposition 2.2. Let A be a fuzzy finite automaton over the product structure I, let ε ∈ (0, 1), and let Aε be the
ε-copy of A . Then the fuzzy language accepted by Aε is the ε-truncation of the fuzzy language accepted by A , that is

[[Aε]] = [[A]]ε. (12)

For a given ε ∈ (0, 1), two fuzzy finite automata A and B over the product structure I and the same
alphabet Σ are said to be ε-equivalent if their ε-copies are equivalent, that is, if [[A]]ε = [[B]]ε. This means
that the fuzzy languages accepted by ε-equivalent automata A and B must coincide on all words whose
acceptance degree in A or B is greater than or equal to ε, and they can differ only on those words whose
acceptance degree in A and B is less than ε.
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2.4. Deterministic fuzzy automata

Let A = (Q,Σ, I,T,F) be a fuzzy automaton over a complete residuated lattice L. If I = {p/1} is a
singleton fuzzy set with the membership degree 1 (i.e., a singleton crisp set), and T : Q × Σ→ Q is a crisp
mapping, then A is called a crisp-deterministic fuzzy automaton (abbrev. cDFA). If the set of states Q is finite,
then we call A a crisp-deterministic fuzzy finite automaton (abbrev. cDFfA). This model of deterministic fuzzy
automata and the corresponding determinization procedures were investigated in [1, 4, 5, 7, 8, 14].

As usual when working with classical deterministic automata, for a crisp-deterministic fuzzy automaton
A = (Q,Σ, I,T,F) overL, the transition function T : Q×Σ→ Q is extended to the function T∗ : Q×Σ∗ → Q by
T∗(a, e) = a and T∗(a,ux) = T(T∗(a,u), x), for all a ∈ Q, u ∈ Σ∗ and x ∈ Σ. For the sake of simplicity, we will
write T instead of T∗. The behavior of the crisp-deterministic fuzzy automaton A is now represented by

[[A]](u) = F(T(p,u)), (13)

for every u ∈ Σ∗.
Further, let A = (Q,Σ, I,T,F) be a fuzzy finite automaton overL. The families {Iu |u ∈ Σ∗} and {Fu |u ∈ Σ∗}

of fuzzy subsets of Q are defined inductively as follows:

Ie = I, Iux = Iu ◦ Tx, (14)
Fe = F, Fxu = Tx ◦ Fu, (15)

for all u ∈ Σ∗ and x ∈ Σ. The Nerode automaton of A is defined as a crisp-deterministic fuzzy autom-
aton N(A) = (QN,Σ, {Ie/1},TN,FN), whose set of states is QN = {Iu | u ∈ Σ∗}, and the transition function
TN : QN × Σ→ QN and the fuzzy set of final states FN : QN → L are given by:

TN(Iu, x) = Iux, FN(Iu) = Iu ◦ F, (16)

for all u ∈ Σ∗ and x ∈ Σ. It is easy to verify that these functions are well-defined. In addition, for any u ∈ Σ∗

we have that

[[N(A)]](u) = FN(TN(Ie,u)) = FN(Iu) = Iu ◦ F = I ◦ Tu ◦ F = [[A]](u),

which means thatN(A) s equivalent to A .
The reverse Nerode automaton of a fuzzy finite automaton A , denoted by R(A), is the Nerode au-

tomaton of the reverse fuzzy finite automaton A of A , i.e., R(A) = N(A). It can be represented by
R(A) = (QR,Σ, {Fe/1},TR,FR), where the set of states is QR = {Fu |u ∈ X∗}, and the transition function
TR : QR × Σ→ QR and the fuzzy set of final states FR : QR → L are given by

TR(Fu, x) = Fxu, FR(Fu) = I ◦ Fu, (17)

for all u ∈ Σ∗ and x ∈ Σ.

2.5. Approximate weak simulations and bisimulations
Let A = (Q,Σ, I,T,F) be a fuzzy finite automaton over the product structure I, and let ε ∈ (0, 1). A

fuzzy relation φ ∈ IQ×Q is called an ε-weak forward simulation on A if its ε-truncation φε is an ordinary weak
forward simulation on Aε, i.e., if the following inequalities are satisfied:

Iε ⩽ Iε ◦ε φ−1
ε , (18)

φ−1
ε ◦ε Fεu ⩽ Fεu, for all u ∈ X∗. (19)

In addition, φ is called an ε-weak forward bisimulation on A if its ε-truncation is an ordinary weak for-
ward bisimulation on Aε, i.e., if φε satisfies (18) and (19) together with:

Iε ⩽ Iε ◦ε φε, (20)
φε ◦ε Fεu ⩽ Fεu, for all u ∈ X∗. (21)

If a fuzzy relation φ is reflexive, then inequality (19) is equivalent to

φ−1
ε ◦ε Fεu = Fεu, for all u ∈ X∗. (22)
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Theorem 2.3. Let A = (Q,Σ, I,T,F) be a fuzzy finite automaton over the product structure I, let ε ∈ (0, 1) and let
φ be an ε-weak forward bisimulation on A . The greatest element of the set:

H = {ψ ∈ IQ×Q
|ψε = φε},

is relation φε. Let ψ be an element of the set H, then ψε = φε.

Proof. For a given fuzzy relation φ, its ε-truncation φε is an element of the set H.
According to Proposition 3.4. a) [18], for every relation ψ, holds ψ ⩽ ψε. Therefore, ψ ⩽ φε, which

means that φε is the greatest element of set H.

This fact completes Theorem 4.6 and Corollary 4.7 [18].

3. Approximate crisp-determinization by means of ε-weak simulations

Let A = (Q,Σ, I,T,F) be a fuzzy finite automaton over the product structure I. Let ε ∈ (0, 1), and let
φ ∈ IQ×Q be a fuzzy relation. We define a family of fuzzy relations {φv}v∈Σ∗ , inductively as follows. For
empty word e:

φe = Iε ◦ε φ−1
ε , (23)

for all u ∈ Σ∗ and x ∈ Σ:

φux = φu ◦ε Tεx ◦ε φ
−1
ε . (24)

According to the fact that the semiring reduct of Iε is locally finite, the family of fuzzy relations {φv}v∈Σ∗

is finite. The automaton Aφ = (Qφ,Σ, φe,Tφ,Fφ), where Qφ = {φu |u ∈ Σ∗}, and let Tφ : Qφ × Σ → Qφ and
Fφ : Qφ → Iε are given by:

Tφ(φu, x) = φux, Fφ(φu) = φu ◦ε Fε,

for each word u ∈ Σ∗ and every letter x ∈ Σ is crisp-deterministic fuzzy finite automaton [6]. Furthermore,
it was proven in [6] that if φwere to be a reflexive ε-weak forward simulation on A , then Aφ is ε-equivalent
to A .

Theorem 3.1. Let A = (Q,Σ, I,T,F) be a fuzzy automaton and ε ∈ (0, 1), such that ε. Let φ be the greatest ε1-weak
forward bisimulation on A . Then the automaton Aφ2 is isomorphic to the Nerode automaton of the after-set fuzzy
automaton A/φ over the ε-truncated product structure Iε.

Proof. First we will describe the Nerode automaton of the after-set fuzzy automaton A/φ over the ε-
truncated product structure Iε. Therefore, instead of considering the automaton A we will observe the
ε-copy of the automaton A , and instead of φ we will consider its ε-truncation φε. According to Corollary
4.7, φε is a fuzzy equivalence, which also means that φε = φ−1

ε .
Now, denote by C = (C,Σ, IC,TC,FC) the after-set automaton Aε/φε. The set of states is C = {aφε | a ∈ Q}.

The fuzzy set of initial states IC : C→ Iε and fuzzy set of final states FC : C→ Iε are defined by:

IC(aφε) = Iε ◦ε φε(a), FC(aφε) = φε ◦ε Fε(a), for all aφε ∈ C.

The fuzzy transition function: TC : C × Σ × C→ Iε is defined by:

TC(aφε, x, bφε) = φε ◦ε Tεx ◦ε φε(a, b), for all a, b ∈ Q.

Now, using the fact that φε = φ−1
ε , when we apply the Nerode construction to this automaton, we obtain

exactly the automaton Aφ.
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In the sequel, we propose the new construction of the crisp-deterministic fuzzy automaton, which is an
adaptation of the Children automaton[7].

Let A = (Q,Σ, I,T,F) be a fuzzy finite automaton over the product structure I. The size of the alphabet
Σ will be denoted by k (with x1, ..., xk we will denote all the letters of Σ). Let ε ∈ (0, 1) and let φ ∈ IQ×Q be
a fuzzy relation. The family of fuzzy relations {φv}v∈Σ∗ is given by formulas (23)-(24). Let k + 1-tuple φεc

u be
given by the following formula:

φεc
u = (φux1 , φux2 , ..., φuxk , φu ◦ε Fε),

for any u ∈ X∗. Since the family {φv}v∈Σ∗ is finite, the set Qεc
φ = {φ

εc
u |u ∈ Σ∗} is also finite.

Finally, let Tεc
φ : Qεc

φ × Σ→ Qεc
φ and Fεc

φ : Qεc
φ → Iε be defined as:

Tεc
φ (φεc

u , x) = φεc
ux, Fεc

φ (φεc
u ) = φu ◦ε Fε,

for each word u ∈ Σ∗ and every letter x ∈ Σ. To prove that Tεc
φ is well defined, consider φεc

u and φεc
v such that

φεc
u = φ

εc
v . From the definition of φεc, it follows that for every x ∈ Σ, φux = φvx holds. Which implies that,

Tεc
φ (φεc

u , x) = (φuxx1 , φuxx2 , ..., φuxxk , φux ◦ε Fε) =

= (φux ◦ε Tεx1
◦ε φ

−1
ε , ..., φux ◦ε Tεxk

◦ε φ
−1
ε , φux ◦ε Fε)

= (φvx ◦ε Tεx1
◦ε φ

−1
ε , ..., φvx ◦ε Tεxk

◦ε φ
−1
ε , φvx ◦ε Fε)

= Tεc
φ (φεc

v , x).

Accordingly, Tφ is well-defined and Aεc
φ = (Qεc

φ ,Σ, φ
εc
e ,Tεc

φ ,Fεc
φ ) is a crisp-deterministic fuzzy finite automa-

ton.

Theorem 3.2. Let A = (Q,Σ, I,T,F) be a fuzzy finite automaton over the product structure I, let ε ∈ (0, 1), and let
φ be a reflexive ε-weak forward simulation on A .

The automaton Aεc
φ = (Qεc

φ ,Σ, φ
εc
e ,Tεc

φ ,Fεc
φ ) is an accessible crisp-deterministic fuzzy finite automaton which

satisfies:

[[Aεc
φ ]] = [[Aε]]. (25)

In other words, Aεc
φ is an accessible cdffa ε-equivalent to A .

Proof. According to the definition of automaton Aεc
φ it directly follows that it is accessible and we already

proved that it is a finite crisp-deterministic automaton. Therefore, it remains to be shown that the language
is ε-equivalent to A .

Since φ is an ε- weak forward simulation, system of equations (22) holds and thus for every word
u = xi1 . . . xin ∈ Σ

∗, where xi1 , ..., xin ∈ Σ and n ∈N holds:

[[Aεc
φ ]](u) = Fεc

φ (Tεc
φ (φεc

e ,u)) = Fεc
φ (φεc

u ) = φu ◦ε Fεc =

= (Iε ◦ε φ−1
ε ◦ε Tεx1

◦ε φ
−1
ε ◦ε Tεx2

◦ε · · · ◦ε φ
−1
ε ◦ε Tεxn

◦ε φ
−1
ε ) ◦ε Fε =

= Iε ◦ε Fεu = Iε ◦ε Tεu ◦ε Fε = [[Aε]](u).

Similarly, it can be shown for an empty word equation [[Aφ]](e) = [[Aε]](e) also holds. Hence, equation (25)
holds.

Moreover, in the case where the fuzzy relation φ is a fuzzy equality, the automaton Aεc
φ is the classical

Children automaton of the Nerode automaton of ε-copy of automaton A , and we will denote it by Aεc
N .

Theorem 3.3. Let A = (Q,Σ, I,T,F) be a fuzzy finite automaton on the product structure, and let ε ∈ (0, 1).
Then the Children automaton Aεc

N = (Qεc,Σ, Iεc
e ,Tεc,Fεc) is a homomorphic image of the Nerode automaton Aε

N =
(QN,Σ, Iεe ,TεN,F

ε
N) of the ε-copy of the automaton A , and |Aεc

N | ⩽ |A
ε
N |.



Z. Jančić et al. / Filomat 40:1 (2026), 309–320 317

Proof. Let f : QN → Qεc be defined as:

f (Iεu) = Iεc
u , u ∈ Σ∗.

Let u, v ∈ X∗ be words, such that Iεu = Iεv. Then:

f (Iεu) = Iεc
u = (Iεux1

, Iεux2
, ..., Iεuxk

, Iεu ◦ε Fε) = (Iεu ◦ε Tx1 , I
ε
u ◦ε Tx2 , ..., I

ε
u ◦ε Txk , I

ε
u ◦ε Fε) =

(Iεv ◦ε Tx1 , I
ε
v ◦ε Tx2 , ..., I

ε
v ◦ε Txk , I

ε
v ◦ε Fε) = (Iεvx1

, Iεvx2
, ..., Iεvxk

, Iεv ◦ε Fε) = Iεc
v = f (Iεc ).

So, the mapping f is well defined. Clearly, it is a surjective mapping. Also for any u ∈ Σ∗ and x ∈ Σ:

f (TεN(Iεu, x)) = Tεc( f (Iεu), x).

Furthermore, f (Iεe ) = Iεc
u and for all u ∈ Σ∗ holds f (FεN(Iεu) = Fεc( f (Iεc

u ))). So, the mapping is an surjective
homomorphism, which implies |Aεc

N | ⩽ |A
ε
N |.

Theorem 3.4. Let A = (Q,Σ, I,T,F) be a fuzzy finite automaton on the product structure, let ε1, ε2 ∈ (0, 1), such
that ε1 < ε2 and let φ1 and φ2 be reflexive ε1 and ε2-weak forward simulations on A .

Then, the automaton Aε1c
φ1

is ε2-equivalent to Aε2c
φ2

, that is, [[(Aε1c
φ1

)]]ε2 = [[Aε2c
φ2

]]ε2 .

Proof. As has been shown in the previous theorem, for ε1, ε2 ∈ (0, 1) holds [[Aε1c
φ1

]] = [[Aε1 ]] and [[Aε2c
φ2

]] = [[Aε2 ]].
Next, according to (12) it follows that:

[[Aε1c
φ1

]] = [[A]]ε1 , [[Aε2c
φ2

]] = [[A]]ε2 .

Now, according to Proposition 3.4 [18] for values ε1, ε2 ∈ (0, 1), such that ε1 ⩽ ε2 holds:

[[A]]ε2 = ([[A]]ε1 )ε2 .

Hence, we conclude that Aε1c
φ1

is ε2-equivalent to Aε2c
φ2

.

Theorem 3.5. Let A = (Q,Σ, I,T,F) be a fuzzy finite automaton on the product structure I, let ε ∈ (0, 1) and let φ
be the greatest ε-weak forward simulation on A . The automaton Aεc

φ is isomorphic to the automaton C εc
N , where CN

is the Nerode automaton of the after-set automaton A/φ.

Proof. Follows directly from the Theorem 3.1.

Theorem 3.6. Let A = (Q,Σ, I,T,F) be a fuzzy finite automaton on the product structure I, let ε ∈ (0, 1) and let φ
be the greatest ε-weak forward simulation on A . Then, Aεc

φ is homomorphic image of the automaton Aφ, consequently
|Aεc
φ | ⩽ |Aφ|.

Proof. Define the mapping f : Qφ → Qεc
φ as f (φu) = φεc

u , for every u ∈ Σ∗. It can easily be shown that f is an
surjective homomorphism.

4. Algorithm for constructing cDFfA Aεcφ

This section includes an algorithm for constructing the children automaton Aεc
φ of a given fuzzy finite

automaton A over the product structure.
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Algorithm 1: Construction of a children ε-equivalent cDFfA
Input: Fuzzy finite automaton A = (Q,Σ, I,T,F) over the product structure, Σ = {x1, ..., xn} finite

alphabet , ε ∈ (0, 1) and the greatest ε-weak forward simulation φ on A .
Output: Aεc

φ = (Qεc
φ ,Σ, φ

εc
e ,Tεc

φ ,Fεc
φ ) – an accessible crisp-deterministic fuzzy finite automaton

ε-equivalent to A .

1 initialize Qεc
φ with an empty set and unprocessed with an empty queue;

2 foreach i ∈ {1, ...,n} do
3 compute φ0

i = Iε ◦ε φ−1
ε ◦ε Tεxi

◦ε φ−1
ε

4 compute φ0
n+1 = Iε ◦ε φ−1

ε ◦ε Fε;
5 insert tuple φ0 = (φ0

1, φ
0
2, ..., φ

0
n, φ

0
n+1) (as an element) to both Qεc

φ and unprocessed;
6 set φεc

e := φ0;
7 while unprocessed is not empty do
8 extract a n + 1-tuple φ0 = (φ0

1, φ
0
2, ..., φ

0
n, φ

0
n+1) from unprocessed;

9 foreach j ∈ {1, ...,n} do
10 foreach i ∈ {1, ...,n} do
11 compute φ1

i = φ
0
j ◦ε Tεxi

◦ε φ−1
ε

12 compute φ1
n+1 = φ

0
j ◦ε Fε;

13 φ1 := (φ1
1, φ

1
2, ..., φ

1
n, φ

1
n+1);

14 if φ1 < Qεc
φ then

15 insert the state φ1 (as an element) to both Qεc
φ and unprocessed;

16 Fεc
φ (φ1) = φ1

n+1

17 Tεc
φ (φ0, x j) = φ1

Here, we will give a brief explanation of the Algorithm 1. In the first six steps of the algorithm, we
compute a tuple φεc

e which is the initial element of automaton Aεc
φ , and we add this element to the empty

set Qεc
φ . Then, for each element φ0 from Qεc

φ and each letter x j of the alphabet Σ we repeat the following:
computing of n + 1-tuple φ1 and checking if this tuple already exists in the set Qεc

φ , if not we add it there.
The following example shows the case of an automaton where it was not possible to calculate a finite

crisp-deterministic fuzzy automaton equivalent to the given automaton using the algorithms proposed in
[4, 5, 8], while using the Algorithm 1 proposed in this paper it is possible to calculate a crisp-deterministic
fuzzy automaton ε-equivalent to the given automaton.

Example 4.1. Let A be a fuzzy automaton over the product structure and an alphabet X = {x}, where fuzzy
sets of initial and final states, as well as the fuzzy transition function are given by the following vectors and
matrices:

I =
[
1 1 0 0

]
, F =


1
0
1
1

 , Tx =


0.1 1 0 0
0 0 0 0
1 0 1 0
0 0 0 0.1

 .
In case when ε = 0.000001, using the procedure given in [18] we can compute the greatest ε-weak forward
simulation φ on A :

φ =


1 0 1 1
1 1 1 1
ε 0 1 ε
1 0 1 1

 .
Then, using Algorithm 1, we compute the states of an accessible crisp-deterministic fuzzy finite automaton
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ε-equivalent to A , i.e. the states of the automaton Aεc
φ = (Qεc

φ ,Σ, φ
εc
e ,Tεc

φ ,Fεc
φ ). For every n ∈ {0, ..., 5}we have:

φεc
xn = (

[
(0.1)n+1 (0.1)n ε (0.1)n+1

]
, (0.1)n),

while, for every n ∈ N such that n > 5 we have:

φεc
xn = (

[
ε ε ε ε

]
, ε).

Therefore, we can conclude that the automaton Aεc
φ has exactly seven different states.

5. Conclusion and future work

This paper introduced a new approach to the determinization of fuzzy automata, with a key advantage:
unlike traditional methods that may result in an infinite-state system, the proposed method always generates
a finite crisp-deterministic fuzzy automaton. It is important to emphasize, however, that the resulting crisp-
deterministic fuzzy automaton is not fully language-equivalent to the original fuzzy automaton. Instead,
the automata agree on the words whose acceptance degrees exceed a predefined threshold parameter ε. As
part of our future work, we plan to adapt the proposed determinization procedure so that it can be applied
to weighted max-plus automata as well.
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