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Complete forcing numbers of multiple hexagonal chains

Xin He?

#School of Science, Lanzhou University of Technology, Lanzhou, Gansu 730050, P.R. China

Abstract. Let G be a graph with a perfect matching. The complete forcing number of G is the minimum
cardinality of an edge subset S of G such that for each perfect matching M of G, the intersection of S and
M forms a forcing set of M. Chan et al. showed that the complete forcing number of a catacondensed
hexagonal system is equal to the sum of the number of hexagons and its Clar number. Closed formulas for
the complete forcing numbers of certain peri-condensed hexagonal systems, such as parallelograms, have
also been established. In this paper, we consider the complete forcing number of a multiple hexagonal chain
(MHC), as we identified a mistake in a published result. We establish an upper bound on the complete
forcing number of an MHC and a lower bound on that of a normal hexagonal system via face coloring.
Using these bounds, we obtain explicit expressions for the complete forcing numbers of MHCs with 3m
columns of hexagons (where m is a positive integer), as well as for zigzag MHCs and chevrons.

1. Introduction

Let G be a simple graph with vertex set V(G) and edge set E(G). A matching of G is a set of edges with no
shared end-vertices. A perfect matching (or 1-factor) of G is a matching in which each vertex in G is incident
with exactly one edge in this matching. A perfect matching corresponds to a Kekulé structure in organic
chemistry.

In 1985, Randi¢ and Klein [14, 16] found that a Kekulé structure of a molecule can be uniquely determined
by a fixed subset of double bonds, and the minimum number of such double bonds required is called the
innate degree of freedom of the Kekulé structure. This concept was later generalized by Harary and Klein [8]
as the forcing number of a perfect matching M in a graph G. A forcing set of M is a subset S C M such that
no other perfect matching of G contains S. The forcing number of M is the minimum cardinality among all
its forcing sets. Further information on this topic and related concepts, including the anti-forcing number
of a perfect matching and the global forcing number of a graph, can be found in the surveys [5, 22].

In 2015, Xu, Zhang and Cai [18] introduced the concept of “complete forcing” for all perfect matchings
of a graph G. A subset S C E(G) is called a complete forcing set if for each perfect matching M of G, the
intersection S N M is a forcing set of M. Among all such sets, one with the minimum cardinality is called
a minimum complete forcing set, and its cardinality is referred to as the complete forcing number of G, denoted
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by cf(G). Meanwhile, they also provided a characterization for complete forcing sets of G. Subsequent
studies revealed that a complete forcing set of G not only forces but also antiforces each perfect matching of
G [13]. The complete forcing number of G is bounded above by twice its cyclomatic number [11], given by
|E(G)| = 1V(G)| + w(G), where w(G) denotes the number of connected components of G. Additionally, explicit
formulas for the complete forcing numbers have been obtained for grids [4], cylinders [11], complete
multipartite graphs [12], the Rook’s graphs [1] and several types of graphs with chemical significance
[13, 15,17, 19]. Recently, Ebrahimi et al. [7] proposed a new method for constructing complete forcing sets
of G and established two upper bounds on the complete forcing number of G in terms of its degeneracy
and spectral radius, respectively.

A hexagonal system (HS) is a finite connected plane graph without cut-vertices, in which all interior
faces are regular hexagons [2]. If the system has a perfect matching, it models the carbon framework
of a benzenoid hydrocarbon. Xu et al. [18] provided an expression for the complete forcing number of
a hexagonal chain and a recurrence relation for this number in a catacondensed HS. Moreover, Chan et
al. [3] proved that the complete forcing number of a catacondensed HS equals the sum of the number of
hexagons and its Clar number, a crucial parameter for assessing the stability of benzenoid hydrocarbons
[6]. In earlier works [9, 10], we used elementary edge-cuts to construct complete forcing sets for HSs, and
derived some bounds on the complete forcing numbers of normal HSs. These results were then applied to
derive expressions for the complete forcing numbers of specific types of pericondensed HSs.

In 2022, Xue et al. [20] proved that the complete forcing number of a multiple hexagonal chain (MHC)
is at most the number of its vertical edges (see Proposition 3.1), and the complete forcing number of each
MHC attains this upper bound. In this paper, however, we show that the above upper bound can not
be reached by each MHC and further study the complete forcing numbers of MHCs. In Section 3, we
establish a new upper bound on the complete forcing number of an MHC in terms of the smallest number
of parallelograms that it can be split into, and a lower bound on the complete forcing number of a normal
HS based on face coloring. In the final section, using the bounds provided in Section 3, we prove that the
complete forcing number of an MHC with 3m (m is a positive integer) hexagons in each row is equal to the
number of its hexagons plus one and present some closed formulas for the complete forcing numbers of
zigzag MHCs and chevrons.

2. Preliminaries

Let G be a graph. For a nonempty subset V; C V(G), the subgraph of G induced by V; is the subgraph
of G with vertex set V; and edge set consisting of all the edges xy € E(G) with x, y € V1. We write G - V4
for the subgraph induced by V(G) \ V. For an even cycle C in G, if G — V(C) has a perfect matching, then
we say that C is a nice cycle of G. C has two perfect matchings, each one is called a frame of C. Let V; be
a nonempty proper subset of V(G). The set of edges xy € E(G) with x € V, and y € V(G) \ V3 is called an
edge-cut of G.

Let H be an HS. An edge cut T of H is called an elementary edge-cut (or simply an e-cut) of H if it satisfies
the following two conditions: (1) removing the edges in T from H results in a graph with exactly two
components G; and G, and (2) all edges in T are incident with black vertices in G; and white vertices in G,
(see Fig. 1).

Figure 1: An elementary edge-cut of an HS with 7 hexagons.
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The dual graph H* of H is obtained by placing a vertex inside each face of H (including the exterior
face), and connecting two vertices if their corresponding faces in H share an edge. We use h* to represent
the vertex in H* that corresponds to a hexagon k in H. By definition, an e-cut T of H is a minimal edge-cut,
meaning that the edges in H* crossing T form a cycle in H*. The following theorem provides a method to
construct a complete forcing set of an HS.

Theorem 2.1. [9] Let H be an HS that admits a perfect matching. If there is a sequence of e-cuts T1, T, ..., Ts of H
such that for each nice cycle C in H, there is at least one of these e-cuts intersects E(C), then \J;_, T; is a complete
forcing set of H.

A sequence of e-cuts T1, T, ..., Ts of H is said to cover H if the edge set of each facial cycle intersects at
least one of these e-cuts. We also refer to such a sequence of e-cuts, or |J;_; T}, as an e-cut cover of H.

An HS is called normal if each edge of which is contained in a perfect matching. It is known that all
facial cycles of a normal HS are nice [21]. The following lemma can be used to determine whether an HS is
normal.

Lemma 2.2. [21] An HS is normal if an only if its exterior facial cycle is a nice cycle.

An HS is called a multiple hexagonal chain (MHC) if it can be embedded in the plane such that certain
edges are vertical and intersected by a sequence of parallel horizontal lines L; (i = 1,2,...,p), thereby
dividing the HS into p + 1 horizontal zigzag paths Py, P, ..., Py that satisfy the following conditions: (1)
Each L; passes through g hexagons; (2) The length of both Py and P,,; are equal to 2g; (3) The length of P;
(j=2,3,...,p)is equal to 29 + 1 (see Fig. 2).

P;;+1VWW !

Figure 2: A multiple hexagonal chain.

Let H be an MHC. We define the linear hexagonal chain formed by all hexagons intersected by L;
(i=1,2,...,p) as the i-th row of H, denoted by R;. We denote by h;; (j = 1,2,...,4q) the j-th hexagon in R;
from left to right. The six edges of the boundary cycle of £, ; are denote by ey(h; ), ei(hi ), eu(hi;), ewr(hij),
ey(hi ;) and ey, (h; j), corresponding respectively to the lower left edge, the left vertical edge, the upper left
edge, the upper right edge, the right vertical edge and the lower right edge. The hexagonal chain which
consists of all hexagons whose second index is equal to j is called the j-th column of H. Directly, H contains
exactly g columns. In R; (i > 2), if the degree of the upper end-vertex of the leftmost (resp. rightmost)
vertical edge is 3, we say R; turns to the right (resp. left). If both end-vertices of either the leftmost or the
rightmost vertical edge in R; have degree 3, then R; is defined as a turning row. An MHC without turning
rows is called a parallelogram. A parallelogram is called right monotonic (resp. left monotonic) if each row of
it turns to the right (resp. left) except the top row.
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Let H be an MHC with p rows and g columns of hexagons, and let C be the exterior facial cycle of H. If
p =1org =1, then Cis a spanning cycle of H. Otherwise, H — V(C) contains p — 1 disjoint horizontal zigzag
paths, each of which is of length 2g — 3. The union of the perfect matchings of these paths yields a perfect
matching of H — V(C). So C is a nice cycle, by Lemma 2.2, we have

Proposition 2.3. An MHC is normal.

3. Bounds

In this section, we first establish an upper bound on the complete forcing number of an MHC by graph
decomposition, and then derive a new lower bound on the complete forcing number of a normal HS via
face coloring.

3.1. Upper bounds

Xue et al. obtained the following upper bound on the complete forcing number of an MHC by the
definition of the complete forcing set, and they claimed that the complete forcing number of each MHC
attains this upper bound.

Proposition 3.1. [20] Let H be an MHC with p rows and q columns. Then cf(H) < p(g + 1).

However, by Proposition 3.5 at the end of this subsection, the equality in Proposition 3.1 holds if and
only if p = 1. In the following, we derive another upper bound on the complete forcing numbers of MHCs.

LetP;, Pi,,..., P, (1 <ij <ip <...<i; < p+1)besomehorizontal zigzag paths of an MHC H. We denote
by H; the subsystem of H that consists of the rows of hexagons between P; and P;,, by H i the subsystem of
H that consists of the rows of hexagons between P; - and P; : (j=2,3,...,t)and by Hy.1 the subsystem of H
that consists of the rows of hexagons between P;, and P,,;. Then we say that H can be split into Hy, H, ...,
Hi1 by Py, P, ..., P, (see Fig. 3). Specially, if each of Hy, Hy, ..., Hy41 is a parallelogram, then we say that
H is split into parallelograms.

H

Figure 3: An MHC is split into three subsystems by two horizontal zigzag paths.

Let B(p, q) be a right monotonic parallelogram of p rows and g columns of hexagons, where p > 1 and
g > 1. We define three paths in B*(p,q) by p = 0,1,2 (mod 3).

If p = 0 (mod 3), let P] be the path in B*(p, q) that traverses the corresponding vertices of the first three
rows of hexagons of B(p, q) in the order: h;/q, h Lol R, R, I i, k. This pattern is

1,4-17" 117 Mo Mt s Mg pr v sty gr Thg e
repeated every three rows until the path reaches Ir; , (see the dash lines in Fig. 4 (a)).
Ifp=1(mod3), forp =1,let P; = (h] & h 17 I ). For p > 4, define P}, by repeating the same pattern

as P] every three rows, and by traversing the final row in the order: #;, ,, h;

-1 ,h;/l (see Fig. 4 (b)).
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If p = 2 (mod 3), let P;, first traverse the vertices of the first two rows in the order: h],, 1, hi,, 15, ...,
h;,p, h;/p. If p > 5, then P} continues by applying the same pattern as P} to each subsequent group of three

rows (see Fig. 4 (c)).

Figure 4: Illustration for P}, P, P; and minimum complete forcing sets of a parallelogram B(p, q) for (a) p = 0 (mod 3);
(b) p =1 (mod 3); () p = 2 (mod 3).

Let S1, S; and S be the set of edges of B(p, q) that crosses P}, P; and P;, respectively. The following
Proposition gives an expression for the complete forcing number of a parallelogram by its face number, and
presents some minimum complete forcing sets of it by constructing an e-cut that satisfies Theorem 2.1.

Proposition 3.2. [9] Let B(p, q) be a right monotonic parallelogram with p rows and q columns of hexagons. Then
cf(B(p,q) = pq+1and

(1) If p = 0 (mod 3), then Sy U {eq, e2} is a minimum complete forcing set of B(p, q), where e1 € {e;(h1,), eu(h1,4)}
and ey € {eyr(hy,4), er(hy,q)} (see the bold lines in Fig. 4 (a)).

(2) If p = 1 (mod 3), then Sy U {ey, ez} is a minimum complete forcing set of B(p, q), where ey € {e,(h1,4), eu(h1,4)}
and e € {e/(hy1), eir(hp1)} (see Fig. 4 (b)).

(3) If p = 2 (mod 3), then S3 U {e1, e2} is a minimum complete forcing set of B(p, q), where e1 € {ey(h1,1), ew(h11)}
and ey € {eur(hyq), e (hyq)} (see Fig. 4 (c)).

Remark 3.3. (1) If B(p, q) is left monotonic, we can use Proposition 3.2 to construct a minimum complete forcing
set of B(p, q) according to p = 0,1,2 (mod 3), since a left monotonic parallelogram B(p,q) is symmetric to a right
monotonic parallelogram B(p, q). (2) We can also use Proposition 3.2 to construct a minimum complete forcing set of
B(p, q) according to q = 0,1,2 (mod 3), since a right (resp. left) monotonic parallelogram B(p, q) can be obtained by
rotating a left (resp. right) monotonic parallelogram B(q, p) in the plane.

Theorem 3.4. Let H be an MHC with p rows and q columns of hexagons, and r(H) be the smallest number of
parallelograms that H can be split into. Then cf(H) < pq + r(H).

Proof. Let Hy, Hy, ..., Hym) be the parallelograms that H can be split into. Suppose that H; has p; rows of
hexagons. If H; is right monotonic. And if p; = 0 (mod 3), by Proposition 3.2 (1), there exists a minimum
complete forcing set S; of H; that contains e,(h1,) and ey (hy, 4). If p1 = 1 (mod 3), by Proposition 3.2 (2),
there exists a minimum complete forcing set S; of H; that contains e,(h14) and e;(hp, 1). If p1 = 2 (mod
3), by Proposition 3.2 (3), there exists a minimum complete forcing set S; of H; that contains e;(h;,1) and
eur(p, 4). In each of the above cases, S; contains two peripheral edges of H and S; is an e-cut of H whose
cardinality is equal to the number of hexagons of H; plus 1. If H; is left monotonic, by Remark 3.3 (1),
there is also a minimum complete forcing set S; of H; with the same property as the above. Similarly, for
H;(i=2,3,...,7(H)), there is a minimum complete forcing set S; of H; with two peripheral edges of H, such

that S; is an e-cut of H and the cardinality of S; is equal to the number of hexagons of H; plus 1. Further,
r(H)

S = | S;iisane-cut cover of H that intersects the edge set of each cycle of H and |S| = pq +r(H). By Theorem
i=1

2.1, S is a complete forcing set of H, and cf(H) < |S| = pg + r(H). O
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From Proposition 3.2 and Theorem 3.4, we give a characterization for an MHC whose complete forcing
number reaches the upper bound given in Proposition 3.1.

Proposition 3.5. Let H be an MHC with p rows and q columns of hexagons. Then cf(H) = p(q + 1) if and only if
p=1L1

Proof. If p = 1, H is a parallelogram with one row of hexagons, and cf(H) = q + 1 by Proposition 3.2. If
p =2, His a also a parallelogram, by Proposition 3.2, cf(H) = pg + 1 < p(q + 1). If p > 2, the first two rows
of H forms a parallelogram, and H can be split into p — 1 parallelograms by the horizontal zigzag paths Ps,
Py, ..., Py. By Theorem 3.4, cf(H) <pg+r(H) <pg+(p—-1)<p@g+1). O

3.2. Lower bounds

Previously, two lower bounds on the complete forcing number of a normal HS were established in [9],
based respectively on its face number and the matching numbers of certain subgraphs of its dual graph.

Theorem 3.6. [9] If a normal HS H contains n hexagons, then cf(H) > n + 1.

Let B(p, 9) (p,q = 3) be a parallelogram. Without loss of generality, suppose that B(p, q) is left monotonic.
In the following, we assign three colors 1, 2, 3 to the hexagons of B(p, ) such that each pair of hexagons that
are separated by an edge obtain different colors. Specifically, for a hexagon hy ; in the first row of B(p, ),
if j = 1 (mod 3), we assign 1 to h1y;. If j = 2 (mod 3), we assign 2 to hy,j. If j = 0 (mod 3), we assign 3 to
hy,j (see Fig. 5). For a hexagon hy; (j > 2,3,...,n) in the second row of B(p, q), the two hexagons above h;,;
have been assigned different colors, we assign remaining one of the above three colors to h;,j, so the color
assigned to hy, is 3. Then we assign color 2 to hy;. We can use this method to extend the assignment of
the three colors to the hexagons of B(p, q) row-by-row. Generally, since each HS H is a subsystem of B(p, q)
when p and g are sufficiently large, we can obtain a 3-coloring of hexagons of H by directly applying the
3-coloring of hexagons of B(p, q), we call such 3-coloring of hexagons of H a frame coloring of H.

Figure 5: A frame coloring of B(4, 6).

*

Given a frame coloring of an HS H and let V], V; and V; be the three sets of vertices of H* corresponding
to the hexagons of H that are colored by the three colors of a frame coloring, respectively. Then V] U V7,
Vi U V;and V3 U V3 induce three subgraphs of H", respectively (see Fig. 6 for example). Each of these
subgraphs is a bipartite graph, and each component of one of the above subgraphs is called a frame dual
subgraph of H. This concept coincide with the definition in [10], where it was introduced from the perspective
of edge partition. For a graph G, the matching number of G, denoted by v(G), is the maximum cardinality
among all matchings of G.

Theorem 3.7. [9] For a normal HS H with n hexagons, let F, F,. .. ,F; be all frame dual subgraphs of H. Then
cf(H) = 2n = ) v(F)).

i=1

In the following, we derive a new lower bound on the complete forcing number of a normal HS by face
coloring.
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Figure 6: The three subgraphs of an HS induced by V; U V3, V] U V3 and V;, U V;, respectively.

Theorem 3.8. For a normal HS H with n hexagons, let F1, F2, and F3 (|F1| = |F2| = |F3|) be the three set of
hexagons of H that are colored by the three colors in a frame coloring, respectively. Then

cf(H) 2 n+[F1] = 73]

Proof. Let V3, V; and V} be the set of vertices of H" that corresponds to the hexagons of %1, %> and 73,
respectively. Let Hj, H;, H; be the three subgraphs of H* induced by V; U V;, VI U V] and V] U V3,
respectively. Since V7 is a vertex cover of Hj, V} is a vertex cover of each of H; and Hj, we have

v(H}) < V3|, v(H;) < |V3], v(H}) < V3.
Let F’i, F;, ..,F; be all frame dual subgraphs of H. Then

S

3
Z v(H) = Z v(EY).

i=1 i=1

By Theorem 3.7 and |V}| + V| + V3| = n,

3
cf(H)=2n - ZV(H;‘) >2n— (V5| +2|IV35)) = n + |Vi| = V3] = n+ |F1] = |F3l.

i=1
This completes the proof. [J

Clearly, it is more straightforward to determine the lower bound on the complete forcing number for a
normal HS using Theorem 3.8 than using Theorem 3.7.

4. Complete forcing numbers of MHCs

In this section, we consider the complete forcing number of an MHC with p rows and g columns of
hexagons, where p > 3 and g > 2. Since when p < 2 or g = 1, such an MHC is a catacondensed HS or a
parallelogram, and its complete forcing number has been discussed in [3, 9, 18]. From the bounds provided
in Section 3, we prove that the complete forcing number of an MHC with 3m (m is a positive integer) colums
of hexagons is equal to its face number, and derive some expressions for the complete forcing numbers of
zigzag MHCs and chevrons [2].

4.1. MHC with 3m colums

Theorem 4.1. Let H be an MHC with p rows and q columns of hexagons, where p > 3 and q = 0 (mod 3). Then
cf(H)=pq+1.
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Proof. By Theorem 3.6, cf(H) > pq + 1. Below, we construct a complete forcing set S for H such that the
cardinality of S is pg + 1.

Without loss of generality, we suppose that the second row of H turns to the left. Let S1 = {e;(h1,3%+1),
er(h k1), er(h1ses2), en(hises) | k=0,1,..., Q}. For2 <i<p-1,1letS; = {ew(hizee1), er(hizie1), eur(hizee2),
er(Misee2), en(hizres) | k = 0,1,..., ?} if R; turns to the right, and S; = {ey(hisk+1), er(hisk+1), €ur(hiske),
en(lizess), eurlizess) | k = 0,1,..., 52} if R; turns to the left. Let S, = {ei(tpas1), er(pare), eu(lyera),
eur(hp,3k+3) |k =01,..., q;_?)} U {er(hp,q)} if Rp turns to the left, and Sp = {el(hp,3k+1)r eul(hp,3k+1)/ eur(hp,3k+2)/

P
er(hpsie2) |1k=0,1,..., E’;—S} U {e,(hp,9)} if R, turns to the right (see Fig. 7 (a)). And let S = [J S; (see the edges
k=1
crossed by the dashed line as shown in Fig. 7 (b)). Then S is an e-cut of H that intersects the edge set of
each cycle in H. By Theorem 2.1, S is a complete forcing set of H. Moreover, each edge of S is shared by two
facial cycles (including the exterior facial cycle) of H, and every facial cycle of H contains exactly two edges
from S. As a result, |S| equals the number of faces in H, which is pg + 1. Therefore, cf(H) = pg+1. O

The first row R,

S9000e

The row R, (2<i< p—1) that turns to right

OO

The row R, (2<i< p—1) that turns to left

The last row R, that turns to the left

The last row R, that turns to the right

o o (b)

Figure 7: (a) Some specified edge sets of some particular rows; (b) A minimum complete forcing set of an MHC with p
rows and g (g = 0 (mod 3)) columns of hexagons.

4.2. Zigzag MHC

An MHC with p (p > 3) rows and g (9 > 2) columns of hexagons is called zigzag, denoted by Z(p, g), if all
its rows, except the first and the last rows, are turning rows.

Theorem 4.2. Let Z(p, q) be a zigzag MHC with p rows and q columns of hexagons. Then

~ pg+1, ifg=0 (mod 3),
cf(Zp,9) = { pg+ 181, otherwise.

Proof. If ¢ = 0 (mod 3), by Theorem 4.1, cf(Z(p, q)) = pq + 1.

If g =i (mod 3) (i = 1,2), let F1, %> and F3 (with [F1] > |F2| = |F3]) be the three sets of hexagons of
Z(p,q) that are colored by the three colors of a frame coloring (see Fig. 8). In the first g — i columns of
Z(p,q) from left to right, the numbers of hexagons that are colored by each of the three colors are equal.
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Figure 8: Two frame colorings of two zigzag MHCs.

The difference |F1| — |F3] in Z(p, ) is the same as the difference in the subsystem of Z(p, q) consisting of the
last 7 columns. Hence, if p is even, |F1| = |F3| + g. If p is odd, |F1| = |F3| + %. By Theorem 3.8, we have

cf(Z(p, q)) = pg + 1F1l - [F3| = pg + T51.

On the other hand, if p is even, then Z(p, q) can be split into § parallelograms by the horizontal zigzag
paths P3, Ps, ..., P,-1. If p is odd, Z(p,q) can be split into ’%1 parallelograms by the horizontal zigzag
paths P, Ps, ..., P,. So r(H) < [5]. By Theorem 3.4, cf(Z(p,q)) < pq + r(H) < pq + [41. Consequently,
cf Zp,a) = pg+T51. O

4.3. Chevron

An chevron is an MHC of p (p > 3) rows and g (g > 2) columns of hexagons with exactly one turning
row. We denote a chevron by Ch(p1,p2,q), where p1 (resp. pz) is the number of rows above (resp. under)
the turning row.

Theorem 4.3. Let Ch(p1,p2, q) be a chevron. Then

q(p1 +p2+1) +2,if p1 = 1 (mod 3), p» =1 (mod 3) and
cf(Ch(p1,p2,9) = g =1 (mod 3) or g = 2 (mod 3),
g(p1 + p2 + 1) + 1, otherwise.

Proof. We divide our proof into the following cases.

Case 1. ¢ = 0 (mod 3).

By Theorem 4.1, cf(Ch(p1,p2,9)) = 9(p1 + p2 + 1) + 1.

Case 2. g =1 (mod 3) or g = 2 (mod 3) and p; = 0 (mod 3) or p; = 2 (mod 3).

Let H; be the parallelogram formed by the first p; rows of hexagons from top to bottom and let H; be
the parallelogram formed by the remaining p, + 1 rows of hexagons. Without loss of generality, we suppose
that H; is right monotonic. By Theorem 3.6, cf(Ch(p1,p2,9)) = q(p1 + p2 + 1) + 1. In each of the following
subcases, we construct a complete forcing set S of Ch(p1, p2, q) such that |S| = g(p1 +p2 +1) + 1.

Subcase 2.1. g = 1 (mod 3) and p; = 0 (mod 3).

For 1 <i < py, let S; = {ew(hip)} U le,(hig) | k = 1,2,...,9 — 1} U {ey(hiy)} if i = 1 (mod 3) (see Fig.
9 (@), Si = {ei(hi1), e(hin), en(hi2)t U {en(hix), en(hix) | k = 3,4,...,9 — 2 for g > 4} U {ey(hiz-1), ewr(hig-1),
eu(hig), en(ltg)) if i = 2 (mod 3) (see Fig. 9 (b)), and Si = {ew(hin), ewlhin), ew(iz)) U lewls), eulhis) |
k=3,4,...,q—2for g > 4} U {ey(hig-1), e,(hig-1), eu(hig)} if i = 0 (mod 3) (see Fig. 9 (c)). By Remark 3.3
and Proposition 3.2 (2), there exist a minimum complete forcing set S” of H, that contains e, (h,,+1,1) and

p1

er(Mp,+p,414)- Then S = (U S;) US’ is an e-cut cover of Ch(py, p2, 9) (see Fig. 10 (a)). And each cycle that shares
i=1

no common edges with any one of the above e-cut is the boundary of a subsystem formed by three hexagons

sharing a common vertex, and such a cycle is not a nice cycle. By Theorem 2.1, S is a complete forcing



X. He / Filomat 40:1 (2026), 321-332 330

set of Ch(p1,p2,9). Moreover, each edge of S is shared by two facial cycles (including the exterior one) of
Ch(p1,p2,9), and each facial cycle of Ch(p1, p2, q) contains exactly two edges from S. As a result, |S| is equal to
the number of faces in Ch(p1, p2,q), which is q(p1 + p2 + 1) + 1. Therefore, cf(Ch(p1,p2,9)) = q(p1 +p2+1) + 1.

(a) ®) (©)

Figure 9: Illustration for the edge set S; in R;.

Figure 10: A complete forcing set of Ch(p1, p2,q) for 4 = 1 (mod 3) and (a) p1 = 0 (mod 3); (b) p1 = 2 (mod 3).

Subcase 2.2. g = 1 (mod 3) and p; = 2 (mod 3).

For1 <i<p, letS; = {er(hip), er(hip), en(hi2)} U {en(hix), en(hix) | k = 3,4,...,q — 2 for g > 4} U {ey(hig-1),
eurlltigr), enllig), en(hig)) if i = 1 (mod 3) (see Fig. 9 (B), S; = (ew(in), eurhin), ew(hi)) U (euhys), eulhiy) |
k=3,4,...,q—2for g > 4} U {ey(hig-1), e,(hig-1), eu(hiy)} if i = 2 (mod 3) (see Fig. 9 (c)), and S; = {e,, (i)}
Ufer(hix) 1k =1,2,...,9 =1} U {en(hig)} if i = 0 (mod 3) (see Fig. 9 (a)). By Remark 3.3 and Proposition 3.2
(2), there exists a minimum complete forcing set S of H, that contains e, (hy,+1,1) and e(fp, +p,+1,4). Then

1
S= (6 Si)US’ is an e-cut-cover of Ch(p1, p2, ) (see Fig. 10 (b)). Each cycle that shares no common edges with
i=1
any one of the above e-cut is the boundary of a subsystem formed by three hexagons sharing a common
vertex, and such a cycle is not a nice cycle. By Theorem 2.1, S is a complete forcing set of Ch(p1,p2,9).
Moreover, each edge of S is shared by two facial cycles (including the exterior one) of Ch(p1, p2, q), and each
facial cycle of Ch(p1, p2, q) contains exactly two edges from S. As a result, |S| = g(p1 + p2 + 1) + 1. Therefore,
cf(Ch(pr, p2,9)) = q(pr +p2 +1) + 1.

Subcase 2.3. g = 2 (mod 3) and p; = 0 (mod 3).

By Proposition 3.2 (1), there exists a minimum complete forcing set S; of H; that contains e,;(h1,4) and
ey, ) (see Fig. 11 (a)). By Remark 3.3 and Proposition 3.2 (3), there exists a minimum complete forcing
set S, of H, that contains ey, (1, ;) and ejr(hp, +p,+1,1)- It follows that S = S; U S5 is an e-cut of Ch(ps, p2, q) that
intersects the edge set of each cycle in Ch(p1, p2, 4). By Theorem 2.1, S is a complete forcing set of Ch(p1, p2, 9).
Moreover, each edge of S is shared by two facial cycles (including the exterior one) of Ch(p1, p2, q), and each
facial cycle of Ch(p1,p2,q) contains exactly two edges from S. So |S| = g(p1 + p» + 1) + 1. Therefore,
cf(Ch(pr, p2,9) =q(p1 +p2+ 1) + 1.

Subcase 2.4. g = 2 (mod 3) and p; = 2 (mod 3).

By Proposition 3.2 (3), there exists a minimum complete forcing set S; of H; that contains e, (h1,1) and
ey (hy, 4) (see Fig. 11 (b)). By Remark 3.3 and Proposition 3.2 (3), there exists a minimum complete forcing
set S, of H, that contains ey, (hy, 4) and ejr(hp, 4p,+1,1). It follows that S = S; U S5 is an e-cut of Ch(p1, p2, q) that
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Figure 11: A complete forcing set of Ch(p1, p2,g) for ¢ = 2 (mod 3) and (a) p1 = 0 (mod 3); (b) p1 = 2 (mod 3).

intersects the edge set of each cycle in Ch(p1, p2, 9). By Theorem 2.1, S is a complete forcing set of Ch(p1, p2, 9).
Moreover, each edge of S is shared by two facial cycles (including the exterior one) of Ch(p1, p2, q) and each
facial cycle of Ch(p1,p2,9q) contains exactly two edges from S. So |S| = g(p1 + p» + 1) + 1. Therefore,
cf(Chlpr,p2,9) =41 +p2 +1) + 1.

Case 3. g = 1 (mod 3) or g = 2 (mod 3) and p, = 0 (mod 3) or p, = 2 (mod 3).

Since a chevron Ch(p1, p2, q) is symmetric to a chevron Ch(py, p1, q), cf(Ch(p1,p2,9)) = q(p1 + p2 + 1) by the
results in Case 2.

Case4. g =1 (mod 3) or g =2 (mod 3) and p; = 1 (mod 3) and p, = 1 (mod 3).

Let 1, F2 and F3 (with |F1]| 2> |F2| = |F3]) be the three sets of hexagons of Ch(p1, p2, ) that are colored
by each of the three colors of a frame coloring. Suppose that g = i (mod 3) (i = 1,2). Then in the first
g — i columns of Ch(p, p2, q) from left to right, the numbers of hexagons colored by each of the three colors
are equal. The difference |F1| — 3| in Z(p,q) is the same as the difference in the subsystem of Z(p,q)
consisting of the last i columns. Hence, we have || = 3| + 2. By Theorem 3.8, we have cf(Ch(p1, p2,q)) =
q(p1+p2+1)+|F1|=|F3l = g(p1 +p2+1)+2. On the other hand, Ch(p1, p2, ) can be split into two parallelograms
by the horizontal zigzag path P, ;1. By Theorem 3.4, Ch(p1,p2,q) < q(p1 +p2 +1) + r(H) < q(p1 + p2 + 1) + 2.
Consequently, Ch(p1,p2,9) =q(p1 +p2+1)+2. O
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