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Abstract. This study presents a new approach for predicting future order statistics under Type II cen-
soring, based on conditional expectation, to obtain optimal predictors that achieve an almost minimal
mean squared error (MSE). Two distinct predictors are proposed: one based on properties of exponential
spacings and another utilizing uniform order statistics. The theoretical framework is validated through
extensive simulations across various distributions (Weibull, Pareto, Gamma, Beta, and Normal), showing
superior accuracy compared to existing methods. The exponential-based predictor excels in heavy-tailed
scenarios, while the uniform-based predictor offers computational efficiency for light-tailed or symmetric
distributions. Additionally, the paper provides techniques for constructing confidence intervals for future
order statistics and applies the methodology to real-world data, showcasing its practical utility in reliability
engineering and survival analysis.

1. Introduction

Order statistics are foundational in statistical theory and practice, playing a central role in reliability
analysis, quality control, survival studies, and industrial engineering. When complete data are unavailable
(often due to time, cost, or ethical constraints), the censored sampling is employed, with Type II censoring
as a widely used model. Under this scheme, the experiment stops after observing the first r failures out
of n units. In such scenarios, predicting unobserved future order statistics from censored samples is a
fundamental inferential problem.

A natural solution framework is to employ the conditional expectation of future order statistics given
observed data. When treated as a random variable (RV), this conditional expectation becomes the optimal
predictor under squared error loss. While the theoretical properties of order statistics are well-studied
(David and Nagaraja, 2003; Arnold et al., 1992), comprehensive frameworks for conditional prediction
under Type II censoring are still underdeveloped, especially for general continuous distributions.
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Historical and theoretical foundations

Early contributions include Bartholomew (1963) on life-testing estimators and Bhattacharyya (1985) on
the reliability prediction. Lawless (1977) constructed prediction intervals for exponential distributions,
while Kaminsky and Rhodin (1985) introduced maximum likelihood-based predictive procedures. Patel
(1989) presented a comprehensive review of prediction intervals, and Nagaraja (1995) provided a broad
treatment of prediction theory in applied statistics. Raqab and Nagaraja (1995) further examined the
prediction of future order statistics in parametric and nonparametric contexts.

Dellaportas and Wright (1991) investigated numerical prediction for the Weibull distribution, and Hsieh
(1996) developed prediction intervals for early-failure Weibull data. Generalized and hybrid censoring
schemes have advanced predictive inference, as seen in Valiollahi et al. (2017), who addressed Type I and
Type II hybrid censoring for generalized exponential distributions.

Censored inference and modern prediction methods

Comprehensive treatments of censored inference are provided by Balakrishnan and Cohen (1991) and
Arnold et al. (1992). Balakrishnan et al. (2010) expanded the methodology by introducing exact nonpara-
metric prediction and tolerance intervals based on ordinary and progressively Type Il censored data. In the
Bayesian context, Sharma and Pandey (2007) addressed prediction under exponential and Weibull models
using censored samples, while Wu and Li (2011) presented improved frequentist predictive techniques for
Type II censored data.

Recent developments have focused on distribution-specific modeling. Aly et al. (2023) proposed a least
squares method based on cumulative hazard functions, and Barakat et al. (2022) studied prediction under
the two-parameter exponential model. Prediction under gamma-mixture and beta-mixture distributions
was explored by Khaled et al. (2023), with practical applications to COVID-19 recovery modeling. Further
contributions include the work of El-Adll et al. (2012) on the three-parameter Weibull model, and El-Adll
and Aly (2014, 2016) on prediction intervals from the Pareto distribution using generalized order statistics
(GOSs). Shah et al. (2020) utilized key characterization properties of GOSs and dual GOSs to develop an
effective strategy for predicting future events.

Long and Jiang (2023) advanced predictive inference for two-parameter Pareto models under progres-
sively hybrid censoring.

The use of GOSs and the random sample sizes has broadened the applicability of predictive methods.
Barakat et al. (2011, 2014, 2018, 2021a, 2021b) contributed methods for exact and asymptotic prediction in-
tervals, including for samples of random sizes. Ragab and Barakat (2018) emphasized prediction challenges
in such setups. The Prediction R package (Barakat et al., 2018) offers practical tools for implementation,
bridging the gap between theory and application.

Applications and impact

The proposed methodology holds broad utility in domains where partial life data is common. These
include reliability engineering, public health surveillance, warranty forecasting, and financial risk man-
agement. By offering a unified and distribution-agnostic predictive approach, this work contributes both
theoretically and practically to the advancement of statistical inference under censoring.

Conditional expectation as an RV and best predictor

Let (QQ, 7, P) be a probability space, and let X and Y be integrable RVs defined on this space. The
conditional expectation of X given Y is denoted by E(X | Y) and is defined as:

EX | Y)() := EX | o(Y))(w),

where ¢(Y) denotes the o-algebra generated by the RV Y. The most important properties of the conditional
expectation E(X | Y), viewed as an RV, are:

e The conditional expectation E(X | Y) is itself an RV.
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e Itis o(Y)-measurable, which means there exists a Borel-measurable function g such that:

EX|Y)w) =9(Y(w)), almostsurely.

e Hence, E(X | Y) can be interpreted as a function of Y and is thus defined on the same probability space

(Q,F,P).

The following known and essential result shows that the conditional expectation E(X | Y) uniquely mini-
mizes the MSE among all o(Y)-measurable functions, making it the optimal predictor of X given Y in the
L? sense.

Lemma 1.1 (E(X | Y) as the Best Predictor, cf. Bayramoglu; 2022; Billingsley, 1995; and Durrett, 2019). The
conditional expectation E(X | Y) minimizes the mean squared error among all o(Y)-measurable functions. Formally:

E(X|Y) = arg min E [x-27],

where the minimum is taken over all RVs Z that are functions of Y. Thus, E(X | Y) is the best predictor (in the L*
sense) of X given knowledge of Y.

The following additional important properties of the conditional expectation E(X|Y), viewed as an RV, are
e Linearity: E@X +bZ |Y) =aE(X | Y) +bE(ZY).
o Tower property: E[E(X | Y)] = E(X) (see Remark 1.1).
e Measurability: E(X | Y) is measurable with respect to o.
e Multiplication by functions of Y: If h(Y) is a function of Y, then
E[h()X | Y] = ((Y)E[X | Y].
Remark 1.1. If we are using E(X | Y) as an estimator of X, then the tower property implies that:
E[EX | V)] = E(X).

Therefore, in this context, we can say E(X | Y) is an unbiased estimator of X in expectation, because the tower property
ensures that its mean is the same as that of X. in the specific context where E(X | Y) is used to estimate X, the tower
property implies unbiasedness of this estimator for X.

2. The best point predictor for future order statistics

We begin this section by presenting Theorems [2.1| and which provide predictors for future order
statistics under general continuous distributions. These predictors possess nearly minimal MSE properties.
Although the theorems are broadly applicable, their derivations strategically utilize properties of the
exponential and uniform distributions, respectively. Theorem [2.1| derives its predictor by leveraging the
structure of exponential spacings between order statistics. Specifically, it exploits the fact that, under
an exponential distribution, the spacings are independent and exponentially distributed with decreasing
rates. This facilitates a closed-form expression for the predictor, expressed through the quantile function
F3!. Despite the reliance on exponential properties in the derivation, the resulting predictor is valid for any
continuous distribution Fx/(x).

Theorem similarly, uses the known behavior of uniform order statistics, which follow Beta distribu-
tions. This enables a straightforward derivation of the predictor in a linear, multiplicative form involving
the observed order statistic X;,.,, again expressed through the general quantile function F)‘(l.

Both theorems are particularly valuable in the context of Type II censoring, where prediction of un-
observed order statistics is required. A notable strength of these results lies in their distribution-free
form: although exponential and uniform distributions are used as tools in the proofs, the final pre-
dictors depend only on the underlying distribution function (DF) Fx(x) and the observed value X,.,.
This distinction—between the specific distributions used for derivation and the generality of the final
results—underscores the practical utility and theoretical elegance of Theorems|2.1|and
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2.1. Theoretical results

Theorem 2.1 (Prediction based on exponential distribution). Let X;., < Xy, < -+ < X, be order statistics
from a continuous distribution Fx(x) under Type II censoring at the observation r. For any s > r, the near-minimal
MSE (near-MMSE) predictor of the future order statistic Xs., is given by

R n—r 1

= 1- - ep|- Y =], (1)
j=n—s+1 J

where F}! is the quantile function of the underlying distribution Fx.

Proof. First,let Zy,, < Zy,, < --- < Z,., denote the order statistics based on the exponential distribution with
the rate parameter o > 0 (denoted by Exp(«a)). Let us define the spacings between order statistics:

Yj = Z]‘;n - Zj—l:n/ for ] = 1,2,. .., n,

with the convention Z,, = 0. It is a known property of the exponential distribution that these spacings are
independent and distributed as (cf. Arnold et al., 1992):

Y; ~ Exp(a(n —j +1)).
For s > r, we can express the sth order statistic as
S
Zsn = Lyy + Z Yj-
j=r+1

Conditioning on Z,., = z,, the conditional expectation becomes

EZan | Zen =2,) = 2, + ZE(Y)_ZVJF Z

54 a(n -j+1)
Changing the index of summation, we obtain
ZS: 1 _ Z 1
j=r+1 a(n I 1) j=n—s+1 aj
Hence, we get
n-r 1
E(Zs:n | Lin = Zr) =2zt ‘ Z Oé_] (2)
j=n—s+1

Therefore, invoking Lemma the best predictor of Z;,, is given by

Now, we apply the integral probability transformation, to get
Upn = FX(Xr:n) ~ Beta(r,n —-r+ 1)/ (3)
where Beta(a, b) is the beta distribution with parameters a and b. Transform to exponential order statistics

Zyn = —In(1 = U,.,) ~ Exp(a). 4)
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Transform back to uniform order statistics, by using (2) and (3),

j=n—s+1

Hs;n =1-exp [—a

Simplifying using (@), we get

n—r
- 1
Usp =1 —exp|In(1 — Upy) — =1,
[ j:nz—s‘ﬂ J
or equivalently
Uy =1— (1 - Upn)exp|— f !
‘ . j=n—s+1 ] ,

apply inverse DF to return to original scale, by using Koy = F)‘(l(lfls:n) and substituting Us.,, we get the
theorem’s expression. []

Theorem 2.2 (Prediction based on U(0, 1) distribution). Let Xi., < Xp, < -+ < X,y be order statistics from a
continuous distribution Fx(x) under Type Il censoring at observation r. For any s > r, the near-MMSE predictor of
the future order statistic Xs., is given by

A(2) — —1 — i)
82 = B (Fx() + (1= Fx (Ko x 1), ©)

Proof. First,let Zy,, < Zy.y < -+ < Z,, denote the order statistics from a uniform (0, 1) distribution. Suppose
the sample is Type II censored at the rth order statistic, so that Z,., = z, is observed. For any s > r, we want
to find the conditional expectation E[Z;., | Z,., = z/].

The uniform distribution on [0, 1] has the property that, given Z,., = z,, the remaining observations
(those exceeding z,) are conditionally independent and uniformly distributed on [z, 1]. This is analogous
to the memoryless property of the exponential distribution, adapted for uniform order statistics (cf. David
and Nagaraja, 2003). Thus, given Z,., = z,, the remaining order statistics Z,.1., ..., Z,., are conditionally
distributed like the order statistics of a uniform sample of size nn — r on the interval [z,, 1]. Now, define the
transformed RVs:

Zi:n —Zr

u =
T 1—z,

, fori=r+1,...,n

Given Z,., = z,, the U; are the order statistics of a uniform (0, 1) sample of size n — r. The sth order statistic
Zsn (for s > r) can be written as:

Zsn =2y + (1 - Zr)us—r:n—rr

where Us_;.,— is the (s — r)th order statistic from a uniform (0, 1) sample of size n — r. The expectation of the
kth order statistic from a uniform (0, 1) sample of size m is

k
m+1

E[uk:m] =

Here,k=s—randm=n-r, so:
s—r
E[Us—r.n—r] = m
Thus, the conditional expectation of Z, given Z,., = z, is
s—r

ElZsy | Zrn =2z ) =2z, + (1 = 2,) X m

(6)
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Therefore, by appealing to Lemma the best predictor of Z;,, is given by
-7
an =Zn + (1 Zrn) X ﬁ

Now, by applying the integral probability transform and its inverse, we obtain the expression stated in the
theorem. [0

Remark 2.1 (cf. David and Nagaraja, 2003; Chapters 2 and 3). The conditional probability density function (PDF)
of Xjn|Xin = xi, where X1,y < Xy < -+ < Xy are order statistics from the continuous distribution F(.) with PDF
f(.) is given by

B (n—i)' Fxj) = Fea)\ ™ (1= Fe) '™ f(x)
i 160 = G5 - ])'( 1—F(xi>) (1—P<xi>) 1= Flx)

Therefore, by using Lemma one can obtain the MMSE predictor X; = E[Xs:n|Xyn]. However, this predictor does
not have a closed-form expression and is generally more complex than the near-MMSE predictors derived in Theorems

2Iand22

The exponential-based predictor given in (1) involves a sum of a harmonic series, which can be computa-
tionally intensive for large n. The uniform-based predictor given in (5) is simpler and more interpretable,
as it depends only on the fraction of remaining observations. Based on the following simulation study
and the supporting theoretical background, the exponential-based predictor (2) is recommended when the
underlying distribution is known to be exponential or exhibits exponential-like spacings, particularly in
cases involving heavy-tailed data or memoryless properties. Conversely, the uniform-based predictor
is more appropriate when the underlying distribution is uniform or approximately uniform, especially
when simplicity and computational efficiency are desired. Finally, the uniform-based predictor may also
be preferable when the underlying distribution is light-tailed or symmetric.

Remark 2.2. While the predictor Zan is the MMSE predictor of Zs., in the Z-scale (being the conditional mean
of Zsy given Z,.,), the corresponding predictor Xsn is obtained by transforming Zan back to the original X-scale.

This nonlinear transformation generally prevents Xen from being an exact MMSE predictor of X.,; nevertheless,
it typically remains very close to the true MMSE predictor and may be regarded as a near-MMSE predictor. The
practical superiority of this near-MMSE predictor will be demonstrated through the comprehensive simulation study
presented in the next subsections.

2.2. Simulation study

The paper presents two estimators for predicting future order statistics under Type II censoring:

e Exponential-based predictor (X{}): Derived using properties of exponential spacings between order
statistics.

e Uniform-based predictor (X2): Derived using properties of uniform order statistics.

Tables 1-5 compare these estimators across different distributions (Weibull, Pareto, Gamma, Beta, Nor-
mal) and parameter settings. Below is a sketch of the algorithm used in this study:

Algorithm description

The algorithm implemented estimates the conditional expectation of order statistics from a DF Fx using
the exponential or uniform transformation methods. The main steps are as follows:

1. Data generating: Generate 1000 samples, each of size n = 100, from the distribution Fx with different
shape and scale parameters. Each sample is sorted in ascending order to obtain the order statistics.
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2. Conditional expectation estimation: For a fixed order statistic index i (e.g., i = 50), estimate the
value of the jth order statistic X}, based on the observed ith order statistic X;,,. This is done using a
. . g . (1 . . (2 . .
theoretical prediction functions ng,z, defined in (1), and X;Z, defined in
3. Simulation: Repeat the estimation over 1000 simulated samples to obtain empirical means of the
observed and estimated order statistics.
4. Performance evaluation: Compute the MSE between the estimated and observed values.
Table 1: The best predictor of X;.;, based on the Weibull distribution Fx(x) =1 - exp(—(f)k), forn =100, r =50
k=05 A=25 k=1, A1=25 k=3, 1=25 k=7,A=25 k=11, A=25
T [ ) w [ @ = [ [ O = [0 [ O = [0 [ O
51 12918 12.921 12914 17.796 17.804 17.800 22273 | 22.279 22.276 23.786 | 23.789 23.788 24220 | 24.221 24.221
52 13.669 13.658 13.644 18.310 18.315 18.305 22487 | 22.492 22.488 23.884 | 23.887 23.885 24.283 | 24.285 24.283
53 14.469 14.432 14.409 18.840 18.836 18.820 22.702 | 22.706 22.699 23.982 | 23.984 23.981 24.346 | 24.348 24.346
54 15.318 15.245 15.213 19.387 19.367 19.346 22920 | 22.920 22911 24.080 | 24.081 24.077 24.410 | 24.410 24.408
55 16.222 16.099 16.056 19.952 19.911 19.884 23.141 | 23.134 23.124 24.180 | 24.178 24.173 24.474 | 24473 24.470
56 17.096 16.996 16.942 20.489 20.466 20.434 23.348 | 23.350 23.337 24272 | 24.274 24.269 24533 | 24.535 24.531
57 18.079 17.939 17.873 21.067 21.035 20.995 23.565 | 23.566 23.551 24.368 | 24.370 24.364 24.595 | 24.597 24.593
58 19.096 18.931 18.852 21.656 21.616 21.570 23.784 | 23.783 23.766 24466 | 24.467 24.459 24.658 | 24.659 24.654
59 20.149 19.975 19.881 22.249 22211 22.158 24.000 | 24.001 23.982 24560 | 24.563 24.554 24718 | 24.720 24.715
60 21.233 21.073 20.963 22.842 22.821 22.761 24212 | 24.220 24.199 24.653 | 24.659 24.650 24778 | 24.782 24.776
61 22432 22.230 22.103 23.480 23.446 23.378 24436 | 24.441 24417 24751 | 24.755 24.745 24.840 | 24.843 24.837
62 23.636 23.449 23.302 24104 24.087 24.011 24.651 | 24.664 24.637 24.844 | 24.852 24.840 24900 | 24.905 24.898
63 24.954 24.734 24.567 24.765 24.745 24.660 24.874 | 24.888 24.859 24.940 | 24.948 24.936 24961 | 24.967 24.959
64 26.335 26.090 25.900 25.438 25.421 25.327 25.096 | 25.114 25.083 25.035 | 25.045 25.032 25.021 | 25.028 25.020
65 27.727 27.521 27.306 26.108 26.115 26.012 25.316 | 25.342 25.308 25.129 | 25.143 25.129 25.081 | 25.090 25.081
66 29.219 29.034 28.792 26.801 26.829 26.716 25.538 | 25.572 25.536 25.223 | 25.241 25.225 25.141 | 25.152 25.143
67 30.766 30.634 30.362 27.506 27.565 27.441 25.761 25.805 25.766 25.318 | 25.339 25.323 25.201 25.215 25.204
68 32.471 32.327 32.022 28.256 28.322 28.187 25.993 | 26.040 25.998 25415 | 25.438 25.421 25262 | 25.277 25.266
69 34.274 34.122 33.781 29.029 29.103 28.957 26227 | 26.278 26.234 25.513 | 25.538 25.519 25.324 | 25.340 25.329
70 36.263 36.025 35.645 29.858 29.910 29.750 26475 | 26.520 26473 25.616 | 25.638 25.618 25389 | 25.404 25.391
71 38.269 38.047 37.623 30.675 30.743 30.570 26.715 | 26.765 26.715 25.715 | 25.740 25.719 25452 | 25.468 25.455
72 40.371 40.197 39.724 31.511 31.605 31.418 26.956 | 27.014 26.960 25.814 | 25.842 25.820 25.514 | 25532 25.518
73 42.607 42.487 41.960 32.381 32.498 32.295 27.203 | 27.267 27.210 25916 | 25946 25.922 25.578 | 25.597 25.583
74 45.097 44.928 44.342 33.315 33.424 33.204 27.462 | 27.525 27.464 26.021 | 26.050 26.026 25.644 | 25.663 25.648
75 47.683 47.536 46.884 34.258 34.386 34.148 27.720 | 27.787 27.723 26.126 | 26.157 26.131 25.710 | 25.730 25.713
76 50.528 50.327 49.601 35.258 35.386 35.128 27.985 | 28.055 27.986 26.232 | 26.264 26.237 25.776 | 25.797 25.780
77 53.619 53.319 52.511 36.316 36.427 36.149 28.262 | 28.328 28.256 26.343 | 26.374 26.345 25.846 | 25.866 25.847
78 56.948 56.534 55.633 37.425 37.514 37.213 28.546 | 28.608 28.531 26.456 | 26.485 26.455 25916 | 25.935 25.916
79 60.482 59.996 58.991 38.572 38.651 38.324 28.836 | 28.895 28.813 26.571 | 26.599 26.567 25.988 | 26.006 25.986
80 64.358 63.734 62.610 39.791 39.841 39.487 29.137 | 29.189 29.102 26.690 | 26.715 26.681 26.061 | 26.078 26.057
81 68.269 67.780 66.523 40.994 41.091 40.707 29.429 | 29.492 29.400 26.805 | 26.833 26.797 26.133 | 26.151 26.129
82 72.703 72175 70.765 42.312 42.407 41.989 29.743 | 29.804 29.706 26.927 | 26.955 26917 26208 | 26.227 26.203
83 77.549 76.964 75.378 43.696 43.796 43.341 30.063 | 30.127 30.022 27.050 | 27.080 27.039 26.285 | 26.304 26.279
84 82.579 82.203 80.415 45.091 45.266 44.770 30.380 | 30.461 30.349 27.172 | 27.208 27.165 26.360 | 26.383 26.357
85 88.398 87.959 85.935 46.653 46.829 46.285 30.727 | 30.808 30.688 27.305 | 27.341 27.295 26.442 | 26.465 26.437
86 94.935 94.314 92.013 48.342 48.496 47.899 31.092 | 31.170 31.041 27.443 | 27.478 27.429 26.527 | 26.549 26.519
87 102.345 | 101.369 98.742 50.179 50.281 49.624 31.479 | 31.549 31.410 27.589 | 27.620 27.568 26.617 | 26.637 26.605
88 110.100 | 109.253 106.234 52.055 52.204 51.476 31.868 | 31.946 31.797 27.735 | 27.769 27.713 26.706 | 26.728 26.694
89 119.141 118.127 114.635 54.135 54.288 53.477 32.285 | 32.366 32.204 27.889 | 27.925 27.865 26.801 26.824 26.787
90 129.200 | 128.204 124.130 56.379 56.560 55.653 32.725 | 32.813 32.636 28.052 | 28.089 28.025 26.900 | 26.924 26.884
91 140.666 139.766 134.966 58.828 59.060 58.035 33.193 | 33.290 33.096 28.223 | 28.264 28.193 27.004 | 27.030 26.987
92 153.939 153.200 147.473 61.507 61.838 60.670 33.685 | 33.804 33.590 28.401 | 28.450 28.373 27113 | 27.144 27.097
93 169.777 | 169.050 162.111 64.559 64.963 63.614 34229 | 34.365 34.125 28.596 | 28.652 28.566 27231 | 27.266 27214
94 189.995 | 188.121 179.546 68.264 68.535 66.952 34.868 | 34.984 34.712 28.824 | 28.872 28.775 27.369 | 27.399 27.341
95 214.489 | 211.660 200.782 72.500 72.701 70.806 35.572 | 35.680 35.367 29.071 | 29.116 29.007 27.518 | 27.546 27.480
96 246.366 | 241.741 227.432 77.604 77.701 75.364 36.378 | 36.480 36.110 29.351 | 29.395 29.267 27.686 | 27.714 27.637
97 285.506 | 282.154 262.310 83.468 83.951 80.943 37.265 | 37.434 36.981 29.655 | 29.722 29.567 27.868 | 27.909 27.817
98 343.560 | 340.899 310.951 91.398 92.285 88.135 38.396 | 38.634 38.046 30.036 | 30.126 29.929 28.095 | 28.151 28.033
99 443.181 | 439.434 386.532 103.492 | 104.785 98.271 39.994 | 40.306 39.452 30.563 | 30.678 30.398 28.408 | 28.478 28.312
100 | 696.575 | 674.003 534.777 128.428 | 129.785 115.600 42.887 | 43.286 41.648 31.484 | 31.631 31.112 28.948 | 29.038 28.733
MSE=11.670 1 MSE=637.930 1 [ MSE=0.106 1 MSE=4.469 1 [ MSE=0.010 1 MSE=0.045 1 [ MSE=0.002 1 MSE=0.004 1 [ MSE=0.001 1 MSE=0.001 1
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Table 2: The best predictor of Xs., based on the Pareto distribution Fx(x) =1 - (%)k), x> A forn =100, r =50

340

k=10, A =25 k=15, A=25 k=3, 1=25 k=7,A=25
S Xsin fgz 3?227), Xsin 3?21,)1 ffz,z Xsin ﬁglr)n 7?2272 Xsin 7?92 ffz
51 | 26.846 | 26.847 26.846 26.216 | 26.216 26.216 31.713 | 31.716 31.713 27.679 | 27.680 27.679
52 | 26901 | 26.902 26.900 26.252 | 26.252 26.251 31.931 | 31.932 31.928 27.760 | 27.761 27.759
53 | 26.958 | 26.958 26.956 26.289 | 26.288 26.287 32.159 | 32.155 32.148 27.845 | 27.844 27.841
54 | 27.017 | 27.015 27.013 26.327 | 26.326 26.324 32.395 | 32.383 32.374 27.932 | 27.928 27.925
55 | 27.079 | 27.074 27.071 26.367 | 26.364 26.362 32.641 | 32.619 32.607 28.023 | 28.015 28.011
56 | 27.137 | 27.134 27.130 26.405 | 26.403 26.401 32.876 | 32.861 32.847 28.109 | 28.104 28.099
57 | 27.200 | 27.196 27.192 26.445 | 26.443 26.440 33.132 | 33.111 33.094 28.202 | 28.196 28.189
58 | 27.264 | 27.259 27.254 26.487 | 26.484 26.481 33.394 | 33.369 33.349 28.297 | 28.290 28.282
59 | 27.329 | 27.324 27.318 26.529 | 26.526 26.522 33.660 | 33.635 33.611 28.393 | 28.386 28.377
60 | 27.394 | 27.391 27.384 26.571 | 26.569 26.565 33.928 | 33.909 33.882 28.490 | 28.485 28.475
61 | 27.464 | 27.459 27.452 26.616 | 26.614 26.609 34.219 | 34.193 34.162 28.594 | 28.587 28.576
62 | 27.533 | 27.530 27.522 26.661 | 26.659 26.654 34.507 | 34.487 34.452 28.697 | 28.692 28.679
63 | 27.606 | 27.602 27.593 26.708 | 26.706 26.700 34.814 | 34.791 34.751 28.805 | 28.800 28.786
64 | 27.680 | 27.677 27.667 26.756 | 26.754 26.747 35.130 | 35.105 35.062 28917 | 28911 28.896
65 | 27.755 | 27.754 27.743 26.804 | 26.804 26.796 35.446 | 35.432 35.383 29.028 | 29.026 29.009
66 | 27.832 | 27.834 27.821 26.853 | 26.855 26.847 35.777 | 35.771 35.717 29.143 | 29.145 29.126
67 | 27.910 | 27916 27.902 26.904 | 26.907 26.899 36.116 | 36.123 36.064 29.261 | 29.268 29.247
68 | 27.994 | 28.000 27.985 26.958 | 26.962 26.952 36.482 | 36.490 36.425 29.387 | 29.395 29.372
69 | 28.081 | 28.088 28.071 27.013 | 27.018 27.008 36.862 | 36.872 36.800 29.518 | 29.526 29.502
70 | 28.175 | 28.179 28.161 27.073 | 27.076 27.065 37.275 | 37.271 37.192 29.658 | 29.663 29.636
71 | 28.267 | 28.273 28.253 27.132 | 27.136 27.124 37.686 | 37.687 37.600 29.797 | 29.804 29.775
72 | 28.362 | 28.370 28.349 27.193 | 27.199 27.185 38.110 | 38.123 38.028 29.940 | 29.951 29.919
73 | 28.461 | 28.472 28.449 27.256 | 27.264 27.249 38.556 | 38.580 38.475 30.090 | 30.105 30.070
74 | 28.568 | 28.578 28.552 27.324 | 27.331 27.315 39.042 | 39.059 38.944 30.251 | 30.264 30.226
75 | 28.676 | 28.688 28.660 27.393 | 27.401 27.384 39.539 | 39.563 39.437 30.415 | 30.431 30.390
76 | 28.791 | 28.803 28.773 27.467 | 27.475 27.456 40.076 | 40.094 39.956 30.590 | 30.605 30.560
77 | 28.914 | 28.923 28.891 27.544 | 27.551 27.530 40.651 | 40.655 40.504 30.777 | 30.788 30.739
78 | 29.043 | 29.049 29.014 27.626 | 27.631 27.609 41.262 | 41.248 41.083 30.973 | 30.980 30.927
79 129.176 | 29.181 29.143 27.711 | 27.715 27.691 41.902 | 41.878 41.696 31.177 | 31.182 31.124
80 | 29.319 | 29.321 29.279 27.801 | 27.803 27.777 42594 | 42.548 42.347 31.396 | 31.395 31.331
81 | 29.461 | 29.468 29.422 27.891 | 27.896 27.867 43.285 | 43.263 43.042 31.613 | 31.620 31.550
82 | 29.617 | 29.623 29.574 27.989 | 27.994 27.963 44.056 | 44.029 43.784 31.852 | 31.858 31.782
83 | 29.782 | 29.788 29.734 28.093 | 28.098 28.064 44.886 | 44.852 44.580 32.106 | 32.112 32.029
84 | 29.949 | 29.964 29.904 28.197 | 28.208 28.171 45.736 | 45.740 45.438 32.364 | 32.383 32.291
85 | 30.137 | 30.152 30.086 28.315 | 28.326 28.285 46.708 | 46.703 46.365 32.656 | 32.674 32.572
86 | 30.342 | 30.353 30.281 28.443 | 28.452 28.407 47.784 | 47.752 47.374 32.974 | 32.986 32.874
87 | 30.567 | 30.571 30.491 28.584 | 28.588 28.538 48.988 | 48.903 48.476 33.324 | 33.325 33.200
88 | 30.798 | 30.807 30.717 28.727 | 28.735 28.679 50.238 | 50.173 49.688 33.684 | 33.693 33.553
89 | 31.056 | 31.065 30.964 28.887 | 28.895 28.833 51.675 | 51.586 51.032 34.090 | 34.096 33.939
90 | 31.337 | 31.348 31.235 29.061 | 29.071 29.000 53.261 | 53.173 52.533 34.532 | 34.542 34.363
91 | 31.647 | 31.664 31.534 29.252 | 29.265 29.185 55.051 | 54.975 54.229 35.021 | 35.039 34.834
92 | 31.990 | 32.017 31.868 29.463 | 29.483 29.391 57.102 | 57.050 56.168 35.567 | 35.600 35.363
93 | 32.386 | 32.420 32.246 29.705 | 29.729 29.623 59.533 | 59.477 58.417 36.199 | 36.241 35.963
94 | 32.873 | 32.887 32.679 30.001 | 30.014 29.887 62.624 | 62.378 61.076 36.982 | 36.988 36.655
95 | 33.439 | 33.439 33.187 30.344 | 30.349 30.196 66.362 | 65.941 64.296 37.898 | 37.880 37.472
96 | 34.137 | 34.115 33.797 30.763 | 30.756 30.565 71.240 | 70.487 68.325 39.040 | 38.977 38.460
97 | 34.957 | 34.978 34.560 31.252 | 31.273 31.023 77.286 | 76.613 73.600 40.393 | 40.395 39.706
98 | 36.103 | 36.164 35.569 31.927 | 31.976 31.624 86.476 | 85.616 81.008 42.313 | 42.365 41.372
99 | 37.934 | 38.018 37.040 32.989 | 33.060 32.491 102.921 | 101.144 92.731 45.443 | 45.501 43.839
100 | 42.110 | 42.017 39.699 35.330 | 35.339 34.027 152.420 | 141.157 116.833 52.919 | 52.489 48.402
I MSE=0.0005 l MSE=0.1474 l I MSE=0.0002 l MSE=0.0439 l I MSE=2.6410 l MSE=28.6809 l I MSE=0.0040 l MSE= 0.5045 l
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Table 3: The best predictor of X;., based on Gamma distribution with shape parameter k for n = 100, r = 50

k=1, A1=025 k=5, 1=025 k=7,A=025 k=11, A =0.25
S Xsin fglr)r fg: Xsin igl;)x "%52;1 Xsin iﬁlr)l ngy)l Xsin fflr)z fgzr)z
51 | 2.839 | 2.839 2.838 18.825 | 18.820 18.818 26.873 | 26.865 26.863 42904 | 42.903 42.900
52 | 2923 | 2.920 2919 19.043 | 19.038 19.034 27.133 | 27.126 27.121 43.250 | 43.232 43.226
53 | 3.008 | 3.004 3.001 19.259 | 19.258 19.251 27.390 | 27.388 27.380 43.589 | 43.563 43.554
54 | 3.096 | 3.089 3.085 19.483 | 19.479 19.471 27.650 | 27.652 27.642 43.917 | 43.897 43.884
55 | 3.183 | 3.176 3.172 19.706 | 19.703 19.692 27914 | 27918 27.905 44236 | 44.233 44.216
56 | 3.269 | 3.265 3.259 19.938 | 19.929 19.916 28.185 | 28.187 28.171 44570 | 44.571 44.551
57 | 3.357 | 3.356 3.349 20.159 | 20.158 20.142 28.467 | 28.458 28.440 44908 | 44912 44.889
58 | 3.448 | 3.449 3.441 20.394 | 20.389 20.371 28.744 | 28.733 28.711 45.252 | 45.256 45.229
59 | 3.544 | 3.544 3.535 20.632 | 20.623 20.602 29.012 | 29.010 28.985 45.601 | 45.604 45.573
60 | 3.639 | 3.641 3.632 20.870 | 20.860 20.837 29.302 | 29.290 29.263 45.947 | 45.955 45.921
61 | 3.737 | 3.741 3.731 21.107 | 21.101 21.075 29.582 | 29.574 29.544 46.312 | 46.310 46.272
62 | 3.845 | 3.844 3.832 21.358 | 21.345 21.316 29.857 | 29.862 29.828 46.682 | 46.670 46.627
63 | 3.951 | 3.949 3.936 21.605 | 21.592 21.560 30.146 | 30.154 30.117 47.034 | 47.034 46.987
64 | 4.056 | 4.057 4.042 21.848 | 21.844 21.809 30.446 | 30.450 30.410 47.393 | 47.403 47.352
65 | 4.170 | 4.168 4.152 22.091 | 22.099 22.062 30.746 | 30.751 30.707 47.763 | 47.777 47.722
66 | 4.281 | 4.283 4.265 22.351 | 22.360 22.319 31.041 | 31.057 31.009 48.128 | 48.157 48.097
67 | 4.397 | 4.400 4.381 22.620 | 22.625 22.581 31.332 | 31.368 31.316 48.519 | 48.543 48.479
68 | 4515 | 4522 4.500 22.890 | 22.896 22.848 31.653 | 31.685 31.629 48911 | 48.936 48.866
69 | 4.641 | 4.647 4.623 23.155 | 23.172 23.120 31.965 | 32.008 31.948 49.306 | 49.335 49.261
70 | 4784 | 4.776 4.750 23.427 | 23.453 23.398 32293 | 32.338 32.273 49.696 | 49.743 49.663
71 | 4922 | 4.909 4.881 23.718 | 23.742 23.682 32.634 | 32.675 32.605 50.096 | 50.158 50.072
72 | 5.063 | 5.047 5.017 24.017 | 24.037 23.973 32.980 | 33.019 32.945 50.501 | 50.583 50.491
73 | 5202 | 5.190 5.157 24.319 | 24.340 24.271 33.330 | 33.372 33.292 50.943 | 51.017 50.919
74 | 5355 | 5.338 5.303 24.624 | 24.651 24.577 33.686 | 33.734 33.648 51.373 | 51.461 51.356
75 | 5514 | 5492 5.454 24.936 | 24.970 24.891 34.060 | 34.105 34.013 51.840 | 51.917 51.804
76 | 5.677 | 5.652 5.611 25.256 | 25.299 25.215 34.437 | 34.486 34.389 52.301 | 52.384 52.265
77 | 5.846 | 5.818 5.774 25.583 | 25.638 25.548 34.825 | 34.879 34.775 52.777 | 52.865 52.737
78 | 6.022 | 5.992 5.944 25.951 | 25.988 25.891 35.232 | 35.285 35.173 53.297 | 53.361 53.224
79 | 6215 | 6.174 6.122 26.322 | 26.350 26.247 35.638 | 35.704 35.584 53.817 | 53.872 53.726
80 | 6.404 | 6.365 6.308 26.691 | 26.726 26.615 36.082 | 36.138 36.009 54.335 | 54.400 54.244
81 | 6.588 | 6.565 6.503 27.078 | 27.116 26.997 36.549 | 36.588 36.450 54.872 | 54.948 54.780
82 | 6.796 | 6.775 6.708 27.490 | 27.523 27.394 37.024 | 37.056 36.908 55.491 | 55.516 55.337
83 | 7.016 | 6.997 6.925 27.958 | 27.947 27.809 37.527 | 37.544 37.385 56.080 | 56.108 55.915
84 | 7.259 | 7.233 7.153 28.402 | 28.392 28.242 38.074 | 38.055 37.883 56.723 | 56.727 56.519
85 | 7.509 | 7.483 7.396 28.871 | 28.859 28.697 38.617 | 38.591 38.405 57.357 | 57.374 57.150
86 | 7.776 | 7.749 7.654 29.370 | 29.352 29.176 39.209 | 39.155 38.954 58.049 | 58.056 57.813
87 | 8.060 | 8.035 7.930 29912 | 29.874 29.682 39.794 | 39.752 39.533 58.752 | 58.775 58.511
88 | 8.365 | 8.343 8.226 30.445 | 30.430 30.220 40.444 | 40.387 40.147 59.492 | 59.537 59.250
89 | 8.697 | 8.676 8.546 31.035 | 31.025 30.794 41.123 | 41.065 40.802 60.361 | 60.351 60.036
90 | 9.070 | 9.040 8.894 31.680 | 31.666 31.411 41.844 | 41.794 41.504 61.238 | 61.225 60.878
91 | 9.458 | 9.440 9.276 32.392 | 32.362 32.078 42.622 | 42.585 42.262 62.161 | 62.170 61.784
92 | 9.900 | 9.884 9.697 33.164 | 33.125 32.805 43.508 | 43.450 43.088 63.198 | 63.201 62.770
93 | 10.418 | 10.384 10.168 34.010 | 33.972 33.608 44.476 | 44.408 43.996 64.342 | 64.341 63.852
94 | 10.981 | 10.956 10.702 34.959 | 34.926 34.505 45.548 | 45.485 45.010 65.667 | 65.618 65.056
95 | 11.655 | 11.622 11.319 36.035 | 36.020 35.525 46.739 | 46.718 46.160 67.092 | 67.077 66.418
96 | 12.455 | 12.422 12.048 37.327 | 37.312 36.711 48.120 | 48.168 47.494 68.721 | 68.788 67.994
97 | 13.401 | 13.422 12.941 38.830 | 38.895 38.137 49.882 | 49.941 49.093 70.660 | 70.872 69.876
98 | 14.747 | 14.756 14.092 40.829 | 40.959 39.937 52.157 | 52.244 51.105 73.380 | 73.567 72.236
99 | 16.742 | 16.756 15.713 43.810 | 43.970 42413 55.512 | 55.589 53.861 77.268 | 77.460 75.452
100 | 20.994 | 20.756 18.486 49.383 | 49.753 46.507 61.712 | 61.968 58.394 84.514 | 84.821 80.706
MSE=0.002 l MSE=0.174 l [ MSE=0.004 l MSE=0.263 l [ MSE=0.003 l MSE=0.352 l [ MSE= 0.006 l MSE=0.445 l
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Table 4: The best predictor of Xs., based on Beta(a, b) for n = 100, r = 50

a=1,b=1 a=2,b=2 a=5b=1 a=1,b=5
S Xs:n J€gl))t fgzr)t Xs:n fglr)y )25221 Xs:n fglr)z ngr)z Xs:n fgly)y ngr)z
51 | 0.505 | 0.505 0.505 0.503 | 0.503 0.503 0.871 | 0.871 0.871 0.132 | 0.132 0.132
52 | 0.515 | 0.515 0.515 0.510 | 0.510 0.510 0.875 | 0.875 0.875 0.136 | 0.136 0.136
53 | 0.525 | 0.525 0.525 0.516 | 0.517 0.516 0.878 | 0.878 0.878 0.139 | 0.139 0.139
54 | 0.535 | 0.535 0.535 0.523 | 0.523 0.523 0.882 | 0.882 0.881 0.143 | 0.143 0.143
55 | 0.545 | 0.545 0.545 0.530 | 0.530 0.530 0.885 | 0.885 0.885 0.147 | 0.147 0.146
56 | 0.555 | 0.555 0.554 0.537 | 0.537 0.536 0.888 | 0.888 0.888 0.151 | 0.150 0.150
57 | 0.565 | 0.565 0.564 0.544 | 0.543 0.543 0.892 | 0.891 0.891 0.154 | 0.154 0.154
58 | 0.575 | 0.575 0.574 0.550 | 0.550 0.550 0.895 | 0.895 0.894 0.158 | 0.158 0.158
59 | 0.585 | 0.585 0.584 0.557 | 0.557 0.556 0.898 | 0.898 0.897 0.162 | 0.162 0.162
60 | 0.594 | 0.595 0.594 0.564 | 0.564 0.563 0.901 | 0.901 0.901 0.166 | 0.166 0.166
61 | 0.604 | 0.605 0.604 0.571 | 0.571 0.570 0.904 | 0.904 0.904 0.170 | 0.170 0.170
62 | 0.614 | 0.615 0.614 0.577 | 0.577 0.577 0.907 | 0.907 0.907 0.175 | 0.175 0.174
63 | 0.624 | 0.625 0.624 0.584 | 0.584 0.583 0.910 | 0.910 0.909 0.179 | 0.179 0.178
64 | 0.633 | 0.635 0.634 0.591 | 0.591 0.590 0.913 | 0.913 0.912 0.183 | 0.183 0.183
65 | 0.643 | 0.645 0.644 0.598 | 0.598 0.597 0.915 | 0.916 0.915 0.188 | 0.188 0.187
66 | 0.653 | 0.655 0.653 0.605 | 0.605 0.604 0.918 | 0.918 0.918 0.193 | 0.193 0.192
67 | 0.663 | 0.665 0.663 0.612 | 0.612 0.611 0.921 | 0.921 0.921 0.198 | 0.197 0.196
68 | 0.673 | 0.675 0.673 0.618 | 0.619 0.618 0.924 | 0.924 0.924 0.203 | 0.202 0.201
69 | 0.682 | 0.685 0.683 0.625 | 0.626 0.625 0.926 | 0.927 0.926 0.208 | 0.207 0.206
70 | 0.692 | 0.695 0.693 0.632 | 0.633 0.632 0.929 | 0.930 0.929 0.213 | 0.212 0.211
71 | 0.702 | 0.705 0.703 0.639 | 0.641 0.639 0.931 | 0.932 0.932 0.218 | 0.217 0.216
72 | 0.712 | 0.715 0.713 0.646 | 0.648 0.646 0.934 | 0.935 0.934 0.223 | 0.223 0.222
73 | 0.722 | 0.725 0.723 0.654 | 0.655 0.654 0.937 | 0.937 0.937 0.228 | 0.228 0.227
74 10.731 | 0.735 0.733 0.661 | 0.663 0.661 0.939 | 0.940 0.939 0.234 | 0.234 0.233
75 | 0.741 | 0.745 0.743 0.668 | 0.670 0.668 0.942 | 0.943 0.942 0.240 | 0.240 0.238
76 | 0.751 | 0.755 0.752 0.675 | 0.678 0.676 0.944 | 0.945 0.945 0.247 | 0.246 0.244
77 | 0.760 | 0.765 0.762 0.683 | 0.685 0.683 0.947 | 0.948 0.947 0.253 | 0.252 0.251
78 | 0.771 | 0.775 0.772 0.691 | 0.693 0.691 0.949 | 0.950 0.949 0.259 | 0.259 0.257
79 |0.781 | 0.785 0.782 0.699 | 0.701 0.699 0.952 | 0.953 0.952 0.265 | 0.265 0.263
80 | 0.791 | 0.795 0.792 0.707 | 0.709 0.707 0.954 | 0.955 0.954 0.273 | 0.272 0.270
81 | 0.802 | 0.805 0.802 0.715 | 0.717 0.715 0.957 | 0.957 0.957 0.280 | 0.280 0.277
82 | 0.812 | 0.815 0.812 0.724 | 0.725 0.723 0.959 | 0.960 0.959 0.287 | 0.287 0.285
83 | 0.822 | 0.825 0.822 0.732 | 0.734 0.731 0.962 | 0.962 0.961 0.294 | 0.295 0.292
84 | 0.832 | 0.835 0.832 0.741 | 0.742 0.740 0.964 | 0.964 0.964 0.302 | 0.303 0.300
85 | 0.841 | 0.845 0.842 0.749 | 0.751 0.748 0.966 | 0.967 0.966 0.310 | 0.312 0.309
86 | 0.852 | 0.855 0.851 0.759 | 0.760 0.757 0.968 | 0.969 0.968 0.319 | 0.321 0.318
87 | 0.862 | 0.865 0.861 0.768 | 0.770 0.766 0.971 | 0.971 0.971 0.328 | 0.331 0.327
88 | 0.871 | 0.875 0.871 0.778 | 0.779 0.776 0.973 | 0.974 0.973 0.338 | 0.341 0.337
89 | 0.881 | 0.885 0.881 0.787 | 0.789 0.785 0.975 | 0.976 0.975 0.349 | 0.352 0.348
90 | 0.891 | 0.895 0.891 0.797 | 0.799 0.795 0.977 | 0.978 0.977 0.361 | 0.363 0.359
91 | 0.901 | 0.905 0.901 0.808 | 0.810 0.805 0.979 | 0.980 0.979 0.374 | 0.376 0.371
92 | 0911 | 0.915 0.911 0.819 | 0.821 0.816 0.981 | 0.982 0.981 0.387 | 0.390 0.384
93 | 0.921 | 0.925 0.921 0.830 | 0.832 0.827 0.984 | 0.984 0.984 0.402 | 0.405 0.398
94 | 0.931 | 0.935 0.931 0.842 | 0.845 0.839 0.986 | 0.987 0.986 0.419 | 0422 0414
95 | 0941 | 0.945 0.941 0.855 | 0.858 0.852 0.988 | 0.989 0.988 0.437 | 0.441 0.432
96 | 0.951 | 0.955 0.950 0.868 | 0.872 0.865 0.990 | 0.991 0.990 0.459 | 0.462 0.452
97 | 0.961 | 0.965 0.960 0.884 | 0.888 0.880 0.992 | 0.993 0.992 0.484 | 0.489 0.476
98 | 0971 | 0.975 0.970 0.901 | 0.905 0.897 0.994 | 0.995 0.994 0.515 | 0.522 0.506
99 | 0.981 | 0.985 0.980 0.921 | 0.927 0.916 0.996 | 0.997 0.996 0.558 | 0.567 0.544
100 | 0.991 | 0.994 0.990 0.948 | 0.956 0.941 0.998 | 0.999 0.998 0.633 | 0.646 0.603
MSE=0.000009 || MsE=0.000001 | | [ MSE=0.000005 || MSE=0.000003 | | [ MSE=0.0000004 || MSE=00000000 | | [ MSE=0.000008 || MSE=0.000029 |
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Table 5: The best predictor of Xs., based on normal distribution with mean p and variance o2 for n = 100, r = 50

u=0,0=1 u=0,0=6 u=5ro0=1 u=1,0=5
s | xen | 20 0 You | A0 ) You |80 ) Xou | 50 )
51 | 0.013 | 0.013 0.013 0.076 | 0.077 0.075 5.013 | 5.013 5.013 1.063 | 1.064 1.063
52 | 0.039 | 0.038 0.038 0.233 | 0.228 0.225 5.039 | 5.038 5.038 1.195 | 1.190 1.188
53 | 0.065 | 0.063 0.063 0.389 0.380 0.375 5.065 | 5.063 5.063 1.325 1.317 1.313
54 | 0.089 | 0.089 0.088 0.537 | 0.532 0.526 5.089 | 5.089 5.088 1.447 1.443 1.438
55 | 0.114 | 0.114 0.113 0.686 | 0.684 0.676 5.114 | 5.114 5.113 1.571 1.570 1.564
56 | 0.140 | 0.139 0.138 0.841 | 0.836 0.827 5.140 | 5.139 5.138 1.701 | 1.697 1.689
57 | 0.166 | 0.165 0.163 0.996 | 0.989 0.978 5.166 | 5.165 5.163 1.830 | 1.824 1.815
58 | 0.191 | 0.190 0.188 1.148 1.142 1.130 5191 | 5.190 5.188 1.957 1.952 1.942
59 | 0.216 | 0.216 0.214 1.295 1.296 1.283 5.216 | 5.216 5.214 2.079 | 2.080 2.069
60 | 0.241 | 0.242 0.239 1.449 1.451 1.436 5.241 | 5.242 5.239 2.207 | 2.209 2.197
61 | 0.267 | 0.268 0.265 1.603 | 1.607 1.590 5.267 | 5.268 5.265 2.336 | 2.339 2.325
62 | 0.294 | 0.294 0.291 1.765 | 1.764 1.745 5294 | 5294 5.291 2471 | 2.470 2.455
63 | 0.321 | 0.320 0.317 1.923 1.922 1.902 5.321 | 5.320 5.317 2.603 | 2.602 2.585
64 | 0.347 | 0.347 0.343 2.079 2.081 2.059 5.347 | 5.347 5.343 2.733 | 2.734 2.716
65 | 0.374 | 0.374 0.370 2242 | 2.242 2.218 5.374 | 5.374 5.370 2.868 | 2.868 2.849
66 | 0.400 | 0.401 0.396 2402 | 2.404 2.379 5.400 | 5.401 5.396 3.001 | 3.004 2.982
67 | 0.427 | 0.428 0.423 2.563 | 2.568 2.541 5.427 | 5.428 5.423 3.136 | 3.140 3.117
68 | 0.455 | 0.456 0.451 2728 | 2.734 2.705 5455 | 5.456 5.451 3.273 | 3.278 3.254
69 | 0.483 | 0.484 0.478 2.897 | 2.902 2.871 5483 | 5.484 5.478 3414 3.419 3.392
70 | 0.511 | 0.512 0.507 3.065 | 3.072 3.039 5511 | 5.512 5.507 3.554 | 3.560 3.533
71 | 0.539 | 0.541 0.535 3.231 | 3.245 3.210 5539 | 5.541 5.535 3.693 | 3.704 3.675
72 | 0.568 | 0.570 0.564 3.409 3.421 3.383 5.568 | 5.570 5.564 3.841 3.851 3.819
73 | 0.597 | 0.600 0.593 3.580 | 3.599 3.559 5.597 | 5.600 5.593 3.983 3.999 3.966
74 | 0.626 | 0.630 0.623 3.758 | 3.781 3.738 5.626 | 5.630 5.623 4131 | 4.151 4115
75 | 0.656 | 0.661 0.653 3.938 | 3.966 3.920 5.656 | 5.661 5.653 4282 | 4.305 4267
76 | 0.687 | 0.692 0.684 4.123 | 4.155 4.106 5.687 | 5.692 5.684 4436 | 4.462 4.422
77 | 0.721 | 0.725 0.716 4326 | 4.348 4.296 5.721 | 5.725 5.716 4.605 | 4.623 4.580
78 | 0.754 | 0.758 0.748 4525 | 4545 4.491 5.754 | 5.758 5.748 4.770 | 4.788 4.742
79 10.788 | 0.791 0.782 4.729 4.748 4.690 5.788 | 5.791 5.782 4941 4.957 4909
80 | 0.824 | 0.826 0.816 4946 | 4.956 4.895 5.824 | 5.826 5.816 5122 | 5.130 5.079
81 | 0.857 | 0.862 0.851 5143 | 5.171 5.105 5.857 | 5.862 5.851 5286 | 5.309 5.254
82 | 0.897 | 0.899 0.887 5.382 | 5.392 5.322 5.897 | 5.899 5.887 5.485 5.493 5.435
83 | 0.936 | 0.937 0.924 5.614 | 5.620 5.546 5.936 | 5.937 5.924 5.679 | 5.684 5.622
84 | 0.974 | 0.976 0.963 5.846 | 5.857 5.778 5974 | 5976 5.963 5.871 | 5.881 5.815
85 | 1.014 | 1.017 1.003 6.087 | 6.104 6.019 6.014 | 6.017 6.003 6.072 | 6.087 6.016
86 | 1.059 | 1.060 1.045 6.355 | 6.361 6.270 6.059 | 6.060 6.045 6.296 6.301 6.225
87 | 1.103 | 1.105 1.089 6.620 | 6.631 6.532 6.103 | 6.105 6.089 6.516 6.526 6.444
88 | 1.149 | 1.152 1.135 6.896 | 6.914 6.808 6.149 | 6.152 6.135 6.746 | 6.762 6.673
89 | 1.198 | 1.202 1.183 7.191 7214 7.098 6.198 | 6.202 6.183 6.992 7.012 6.915
90 | 1.251 | 1.256 1.234 7.509 | 7.533 7.407 6.251 | 6.256 6.234 7.257 | 7.278 7.172
91 | 1.310 | 1.312 1.289 7.858 7.875 7.736 6.310 | 6.312 6.289 7.548 7.562 7.446
92 | 1.370 | 1.374 1.348 8.218 | 8.244 8.090 6.370 | 6.374 6.348 7.848 7.870 7.742
93 | 1435 | 1.441 1.412 8.609 8.647 8.475 6.435 | 6.441 6.412 8.174 8.206 8.062
94 | 1.508 | 1.516 1.483 9.051 | 9.094 8.898 6.508 | 6.516 6.483 8.542 | 8.578 8.415
95 | 1.592 | 1.600 1.562 9.552 | 9.597 9.370 6.592 | 6.600 6.562 8.960 | 8.998 8.809
96 | 1.685 | 1.696 1.652 10.110 | 10.178 9.910 6.685 | 6.696 6.652 9.425 | 9.482 9.258
97 | 1.801 | 1.812 1.757 10.807 | 10.874 10.543 6.801 | 6.812 6.757 10.006 | 10.061 9.786
98 | 1.948 | 1.959 1.887 11.685 | 11.754 11.322 6.948 | 6.959 6.887 10.738 | 10.795 10.435
99 | 2.154 | 2.165 2.060 12.923 | 12.990 12.358 7.154 | 7.165 7.060 11.769 | 11.825 11.298
100 | 2.493 | 2.537 2.332 14.956 | 15.222 13.990 7.493 | 7.537 7.332 13.463 | 13.685 12.659
[ MSE=0.00006 ][ MSE=0.00093 | | [ MSE=0.00207 || MSE= 0.03350 | | [ MSE= 0.00006 || MSE=0.00093 | | [ MSE=0.00144 || MSE=0.02326 |

Analysis of Tables

The simulation study, as shown in Tables shows that the two estimators have unprecedented
accuracy compared to previous known methods such as Aly et al. (2023); Barakat et al. (2011, 2014, 2022),
El-Adll and Aly (2014, 2016), and El-Adll et al. (2012). Although their accuracy differs slightly depending
on the distribution used, it is worth noting that this accuracy is almost stable regardless of how far s is from

T,

Tables compare the estimators Xgl,i and Xﬁl across different distributions (Weibull, Pareto, Gamma,
Beta, Normal) and parameter settings. Below is a detailed comparison and commentary on the results:

e Mean squared error (MSE): The tables report MSE for both estimators. Consistently, )A{S,z has lower

MSE than Xﬁi across most of distributions, indicating better predictive accuracy.
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¢ Bias and variance: While not explicitly reported, the lower MSE suggests K1) has a better bias-variance
tradeoff.

Weibull distribution (Table[I):.

° )A(ély), performs significantly better (MSE = 0.106) compared to ngg (MSE = 4.469) for k = 1,A = 25, as
expected (the case k = 1 corresponds to the exponential distribution)

o As the shape parameter k increases (e.g., k = 11), the gap narrows, but XY remains superior.

Pareto distribution (Table[2):.
e X)) dominates, especially for heavy-tailed cases (e.g., k = 3, A = 25, MSE = 2.641 vs. 28.681).

e The uniform-based predictor struggles with heavy tails, as expected.

Gamma distribution (Table[3):.

o XU consistently outperforms, with MSE differences ranging from 0.002 vs. 0.174 (for k = 1) to 0.006
vs. 0.445 (for k = 11).

Beta distribution (Table[d):.

e Both estimators perform well due to the bounded support of Beta, but )221,3 still has slightly lower
MSE.

e For symmetric Beta (e.g., a = 2,b = 2), the differences are minimal.

Normal distribution (Table[p):.
o X is superior, especially for larger variances (e.g., 0 = 6, MSE = 0.002 vs. 0.034).

Generally speaking, the estimator X0 performs better for heavy-tailed, skewed, or exponential-like
distributions and is robust to the distributional assumptions. However, it is computationally intensive

due to the summation of harmonic series. On the other hand, the estimator Xg%i is simpler and faster to
compute, making it suitable for light-tailed or symmetric distributions. Nevertheless, its performance tends
to deteriorate for heavy-tailed or highly skewed data. No major errors are evident in the tables.

Recommendations based on the study
Use Xgl,i for:.
e Heavy-tailed distributions (Pareto, Weibull with small k).

e High-precision applications where MSE is critical.
Use Xg%i for:.
e Light-tailed or symmetric distributions (Beta, Normal with small o).

e Applications requiring computational efficiency.
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2.3. Further simulation study— Mixture gamma distribution

This section extends the analysis to a mixture of two gamma distributions, a flexible model for scenarios
where data may arise from heterogeneous subpopulations (e.g., reliability engineering, survival analysis).
The section bridges the mixture model to the earlier prediction framework (Theorems[2.1and , though
it does not explicitly derive new predictors. Instead, it evaluates the existing X1 and XY estimators
empirically. The mixture of two gamma distributions has the PDF and DF expressed, respectively, as

afi(x; a1, m) +af(x; a2, m2),

1 = _ 1 =
T x(al_l) emn + a—azx(aZ_l) emn,
INGINIA [(az)1,

flx:a; a1, n1; a0, 1m2)

= a

aFq(x; a1, m1) + aFa(x; az, m2),
V(Oélr ,]ll) _')/(062, ,]LZ)
a +a ’
I'(a;) I'(a2)

F(x:a; a1, m; az,1m2)

where y(a1, r;‘—l) = LH t-le7tdt, 0 <a < 1,anda =1-4a, x € [0,0), (1, a2) > 0,(m1, M2) > 0. The
parameter 4 is known as the mixing proportion, and (a1, ;) is lower incomplete gamma function.

Lemma 2.3 (cf. Khaled et al., 2023). Let p € (0,1). Then, the quantile function (QF) (i.e., F™!) for the DF F(x:
a; a1, M1; g, M2) 1s given by

Qp:a; a1, m; a2, m2) = M2y~ Haz, AT (a2)),

where y~Y(a, x) is the inverse of lower incomplete gamma function and Ay € (0,1) is the minimum root of the
non-linear equation (of A)

a % -1 — —
r(al)V(al, n (a2, AT(@))) +ad =p, 0< A < 1. @)

Performance metrics
e MSE: Reported for three prediction horizons (50%, 80%, 100% of future order statistics).

- Xﬁ%ﬁ generally outperforms Xil,i for early predictions (e.g., MSE =0.005 vs. 0.017 for s = 51 in the
first mixture).

- As s approaches n = 100, MSE escalates sharply (e.g., 4.688 vs. 18.2 for ng,g VS. Xgl,z in the first
mixture), indicating challenges in tail prediction.

Distributional sensitivity
e Light-tailed mixtures (e.g., third setting: a = 0.7, a1 = 1, 1 = 0.5): Both estimators perform similarly
(MSE = 0.000), likely due to symmetry and boundedness.

e Heavy-tailed mixtures (e.g., first setting: a = 0.2, a1 = 1, 1 = 25): Xﬁ%ﬁ shows superior robustness
(MSE =0.005 vs. 0.017).

Notable observations

e The fourth mixture (@ = 0.9, &y = 1, 11 = 5) exhibits the largest MSE (25.8 for Xy, suggesting
instability with dominant high-variance components.

o X0 occasionally matches e (e.g., third setting), supporting its use for simpler mixtures.

e Table[p|shows that the MSE spikes for high s (e.g., extrapolation challenges in mixture tails).
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Table 6: n = 100, r = 50 simulation 1000 times f(x:a; a1, m1; a2, 12)

0.2,1,25;1,10) (0.2,25,0.5;3,10) (0.7,1,0.5;2,0.25) 0.9,1,5;5,10)
s Xsn 20 20 Xsn i) 2 Xen | A 22 Xsn 20 0
51 8124 | 8.133 | 8.131 21.871 | 21.892 | 21.888 0373 | 0373 [ 0.373 4625 | 4753 | 4.753

52 8.358 | 8.381 8.376 22.310 | 22.358 | 22.349 0.382 | 0.383 | 0.383 4.670 | 4.842 4.838
53 8.618 | 8.634 8.626 22.791 | 22.830 | 22.816 0.392 | 0.393 | 0.392 4.727 | 4.99% 4.989
54 8.877 | 8.893 8.883 23.261 | 23.305 | 23.287 0.402 | 0.403 | 0.402 4.796 | 5.135 5.128
55 9.128 | 9.158 9.145 23.713 | 23.786 | 23.762 0.411 | 0.413 | 0.412 4871 | 5.192 5.188
56 9.403 | 9.430 9.414 24201 | 24271 | 24.242 0.422 | 0.423 | 0.422 4954 | 5.333 5.328
57 9.675 | 9.709 9.689 24.678 | 24.761 | 24.727 0.432 | 0.433 | 0.433 5.045 | 5.551 5.537
58 9.940 | 9.995 9.972 25.132 | 25.255 | 25.217 0.442 | 0.444 | 0.443 5150 | 5.717 5.704
59 10.233 | 10.288 | 10.262 25.631 | 25.755 | 25.711 0.453 | 0.455 | 0.454 5.267 | 5919 5.899
60 10.524 | 10.590 | 10.560 26.117 | 26.261 | 26.211 0.463 | 0.466 | 0.465 5401 | 6.111 6.094
61 10.849 | 10.900 | 10.866 26.655 | 26.772 | 26.717 0.475 | 0.477 | 0.476 5.552 | 6.270 6.254
62 11.160 | 11.219 | 11.181 27.159 | 27.291 | 27.230 0.487 | 0.489 | 0.488 5708 | 6.413 6.391
63 11.461 | 11.548 | 11.505 27.642 | 27.816 | 27.749 0.498 | 0.501 | 0.499 5.863 | 6.562 6.540
64 11.776 | 11.886 | 11.839 28.138 | 28.349 | 28.276 0.509 | 0.513 | 0.512 6.028 | 6.772 6.745
65 12.104 | 12.235 | 12.183 28.649 | 28.890 | 28.810 0.521 | 0.526 | 0.524 6.204 | 6.970 6.942
66 12.442 | 12.596 | 12.539 29.170 | 29.441 | 29.354 0.533 | 0.539 | 0.537 6.387 | 7.169 7.138
67 12.821 | 12.968 | 12.905 29.740 | 30.001 | 29.907 0.546 | 0.552 | 0.549 6.599 | 7.390 7.358
68 13.196 | 13.353 | 13.285 30.297 | 30.571 | 30.470 0.559 | 0.565 | 0.563 6.809 | 7.637 7.593
69 13.590 | 13.752 | 13.677 30.874 | 31.153 | 31.044 0.573 | 0.579 | 0.577 7.035 | 7.863 7.827
70 13.979 | 14.166 | 14.084 31.433 | 31.747 | 31.630 0.587 | 0.594 | 0.591 7.259 | 8.113 8.066
71 14.395 | 14.595 | 14.506 32.024 | 32.355 | 32.229 0.601 | 0.608 | 0.605 7.499 | 8.383 8.326
72 14.832 | 15.041 | 14.944 32.635 | 32.977 | 32.842 0.616 | 0.624 | 0.620 7.755 | 8.666 8.602
73 15.308 | 15.505 | 15.400 33.291 | 33.614 | 33.469 0.632 | 0.639 | 0.636 8.045 | 8.948 8.881
74 15.770 | 15.990 | 15.874 33.916 | 34.268 | 34.113 0.648 | 0.656 | 0.652 8.327 | 9.258 9.184
75 16.260 | 16.495 | 16.370 34.572 | 34.940 | 34.774 0.664 | 0.673 | 0.669 8.631 | 9.588 9.505
76 16.760 | 17.024 | 16.888 35.229 | 35.631 | 35.454 0.681 | 0.690 | 0.686 8.947 | 9.944 9.854
77 17.338 | 17.579 | 17.430 35.975 | 36.345 | 36.155 0.700 | 0.709 | 0.704 9.320 | 10.315 | 10.214
78 17.897 | 18.161 | 17.999 36.684 | 37.082 | 36.878 0.719 | 0.728 | 0.723 9.694 | 10.733 | 10.614
79 18.489 | 18.774 | 18.597 37.420 | 37.845 | 37.626 0.738 | 0.748 | 0.742 10.106 | 11.182 | 11.051
80 19.089 | 19.421 | 19.228 38.155 | 38.636 | 38.401 0.757 | 0.769 | 0.763 10.537 | 11.673 | 11.526
81 19.759 | 20.107 | 19.895 38.965 | 39.459 | 39.207 0.779 | 0.791 | 0.784 11.034 | 12.214 | 12.043
82 20.443 | 20.834 | 20.602 39.774 | 40.316 | 40.045 0.800 | 0.814 | 0.807 11.573 | 12.819 | 12.622
83 21.157 | 21.609 | 21.354 40.602 | 41.212 | 40.920 0.823 | 0.838 | 0.830 12.169 | 13.506 | 13.276
84 21.921 | 22.438 | 22.157 41.474 | 42.151 | 41.835 0.847 | 0.864 | 0.855 12.842 | 14.292 | 14.019
85 22.754 | 23.328 | 23.018 42.400 | 43.138 | 42.796 0.872 | 0.892 | 0.882 13.662 | 15.214 | 14.882
86 23.650 | 24.290 | 23.944 43.377 | 44.181 | 43.809 0.900 | 0.921 | 0.910 14.624 | 16.321 | 15.907
87 24.560 | 25.333 | 24.947 44.350 | 45.286 | 44.881 0.927 | 0.952 | 0.941 15.696 | 17.688 | 17.159
88 25.524 | 26.473 | 26.039 45.360 | 46.465 | 46.020 0.956 | 0.986 | 0.973 16.939 | 19.441 | 18.738
89 26.728 | 27.727 | 27.237 46.585 | 47.727 | 47.238 0.991 | 1.023 | 1.009 18.699 | 21.763 | 20.802
90 28.016 | 29.120 | 28.561 47.866 | 49.090 | 48.548 1.029 | 1.063 | 1.047 20.770 | 24.854 | 23.554
91 29.444 | 30.683 | 30.038 49.234 | 50.573 | 49.967 1.069 | 1.107 | 1.089 23.316 | 28.718 | 27.104
92 31.108 | 32.459 | 31.707 50.776 | 52.201 | 51.518 1.116 | 1.157 | 1.136 26.421 | 33.021 | 31.241
93 32.897 | 34.509 | 33.617 52.388 | 54.011 | 53.232 1.165 | 1.212 | 1.188 29.869 | 37.457 | 35.602
94 34.953 | 36.922 | 35.843 54.174 | 56.053 | 55.152 1.220 | 1.276 | 1.248 33.800 | 41.973 | 40.037
95 37.315 | 39.837 | 38.497 56.139 | 58.405 | 57.339 1.282 | 1.351 | 1.317 38.096 | 46.676 | 44.600
96 40.112 | 43.490 | 41.762 58.365 | 61.186 | 59.891 1.353 | 1.442 | 1.399 42.798 | 51.758 | 49.445
97 43.662 | 48.280 | 45.944 61.044 | 64.607 | 62.968 1.441 | 1.556 | 1.501 48.081 | 57.522 | 54.815
98 48.114 | 55.018 | 51.622 64.225 | 69.087 | 66.863 1.547 | 1.710 | 1.633 53.890 | 64.525 | 61.118
99 54.141 | 65.926 | 60.115 68.255 | 75.671 | 72.268 1.685 | 1.945 | 1.822 60.635 | 74.080 | 69.216
100 62.792 | 88.668 | 75.968 73.633 | 88.407 | 81.239 1.874 | 2426 | 2.151 68.951 | 91.182 | 81.733

MSEs9, 0.017 0.005 0.049 0.018 0.000 | 0.000 0.487 0.440
MSEsqq,
MSE100% 18.2 4.688 6.8 1.882 0.009 | 0.002 25.8 11.424

Recommendations based on the study

e For practice: Use Xﬁ%ﬁ for heavy-tailed or complex mixtures.

e For research: Explore hybrid estimators or bias-correction techniques for tail predictions.

2.4. Impact of parameter estimation uncertainty on prediction accuracy

This subsection systematically quantifies the additional uncertainty introduced when distribution pa-
rameters must be estimated from Type II censored data, rather than being known exactly. We implemented
maximum likelihood estimation to derive the Weibull shape parameter k from the first 50 order statistics.
Then, we used these estimates (the mean estimate over 1000 simulated sample, denoted in Table E]by k)
to predict 10%(5 observations), 20%(10 observations), and 30%(15 observations) of the original number of
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observations, by using the predictor 2\ Table compare the MSE of the predictions when we use the true
value of k and MSE of those predictions (denoted by 3?&12* in Table EI) when we use the mean estimated
value of k. Table [/ provides a quantitative assessment of the effect of parameter estimation uncertainty on
the accuracy of predicting future order statistics under Type II censoring. When the true shape parameter
k of the Weibull distribution is employed in the predictor, the resulting mean squared errors (MSEs) are
negligible across all prediction levels (10%, 20%, and 30% of the original sample size). This confirms that,
under complete parametric knowledge, the proposed predictor X0 performs with essentially unbiased ac-
curacy. In contrast, when the predictor is constructed using the mean of the maximum likelihood estimates
of k (obtained from the first = 50 order statistics across 1000 replications), the prediction error increases
nontrivially, although, they are still acceptably small compared to other known methods.

The impact of estimation error is most pronounced for the case k = 0.5, where the MSE inflates from
near zero to 0.323 at 10%, reaching as high as 5.214 at 30%. These results underscore two important points.
First, parameter estimation error systematically propagates into prediction error, with the magnitude of
degradation increasing with the number of predicted future order statistics. Second, the effect is exacerbated
for more extreme parameter settings (e.g., small shape values), where estimation of k is intrinsically more
variable under censoring. Consequently, while the best predictor retains its desirable properties under
known parameters, practitioners should anticipate and account for appreciable loss of efficiency when
relying on estimated parameters in censored-sample contexts.

Table 7: The best predictor of Xs., based on the Weibull distribution for n = 100, r =50 ,A = 25

k=05,k=0.729 k=3,k=4374 k=7,k=10.206 k=11 ,k =16.037

S xS n ﬁglf)l ﬁg]ﬁ * xS n 5&9;1 X\g]ﬁ * xS n ﬁfilil X\glz * xS n 53,21}’1 fglz *
51 12.918 | 12.921 | 12.794 22273 | 22.279 |22.243 23.786 | 23.789 |23.773 24220 | 24.221 |24.211
52 13.669 | 13.658 | 13.389 22487 | 22.492 |22.419 23.884 | 23.887 |23.854 24283 | 24.285 | 24.263
53 14.469 | 14.432 | 14.005 22.702 | 22.706 |22.594 23.982 | 23.984 |23.934 24346 | 24.348 | 24.315
54 15.318 | 15.245 | 14.642 22.920 | 22.920 |22.768 24.080 | 24.081 |24.013 24410 | 24.410 |24.366
55 16.222 | 16.099 | 15.301 23.141 | 23.134 |22.941 24180 | 24.178 |24.091 24474 | 24473 | 24.417
56 17.096 | 16.996 | 15.983 23.348 | 23.350 |23.114 24272 | 24274 |24.169 24533 | 24.535 | 24.467
57 18.079 | 17.939 | 16.691 23.565 | 23.566 |23.286 24368 | 24.370 |24.246 24595 | 24597 | 24517
58 19.096 | 18.931 |17.423 23.784 | 23.783 | 23.458 24.466 | 24.467 |24.323 24.658 | 24.659 |24.566
59 20.149 | 19.975 | 18.183 24.000 | 24.001 | 23.629 24.560 | 24.563 |24.399 24718 | 24.720 |24.615
60 21.233 | 21.073 | 18.972 24212 | 24.220 |23.801 24.653 | 24.659 |24.475 24778 | 24.782 | 24.664
61 22.432 | 22.230 |19.790 24436 | 24.441 |23.972 24751 | 24.755 |24.551 24.840 | 24.843 |24.712
62 23.636 | 23.449 | 20.640 24.651 | 24.664 |24.144 24.844 | 24.852 |24.626 24900 | 24905 |24.761
63 24954 | 24734 |21.523 24.874 | 24.888 |24.316 24940 | 24948 |24.701 24961 | 24967 |24.809
64 26.335 | 26.090 |22.441 25.096 | 25.114 | 24.488 25.035 | 25.045 |24.776 25.021 | 25.028 | 24.857
65 27.727 | 27.521 | 23.397 25316 | 25.342 | 24.661 25.129 | 25.143 | 24.851 25.081 | 25.090 | 24.905

MSE g, 0.00438 | 0.323 0.00002 | 0.016 0.00000 | 0.003 0.00000 | 0.001

MSExy,

MSE3zs, 0.02412 | 5.214 0.00010 | 0.147 0.00003 | 0.027 0.00002 | 0.011

3. Confidence intervals for future order statistics

To construct confidence intervals for the predicted future order statistic X;.,, based on Theoremsand
we assume that the underlying distribution Fx is known or well-estimated. The goal is to construct an
interval [L, U] such that:

P(Xs, € [L, U] | X1, - - -

/Xr:n) = 1 —a.

We approximate the DF of X;., as a Beta distribution, Fx(Xs.,) ~ Beta(s,nn — s + 1). From this, we obtain a
naive (marginal) approach to constructing a confidence interval for X;., would be

[F;_<1 (Baj2), Fx' (Bl—a/z)] ,
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where B/, and Bi_,; are the quantiles of the Beta(s, n — s + 1) distribution. However, this interval does not
incorporate the predictors and thus is not conditional on the observed data.

In both Theorems and the predictor for the future order statistic X, is of the form )A(SL =
F)‘(1 (pgl)), i =1,2, where psl) and psz are functions of Fx(X.,) and depend on the censoring and the position
of the target order statistic. Namely,

n-r 1
P =1-(-FxXu)exp|- Y. =
j=n—s+1 J
and
@ _ _ _sTr
ps’ = Fx(Xpn) + (1 = Fx(X0)) X n—r+1

Thus, pgi) is the estimated quantile level where the future order statistic X;., is expected to lie, based on the
available censored data. We note that for large enough s and n—s+1, the distribution Fx(X,.,) ~ Beta(s, n—s+1)
can be approximated by a normal distribution:

FX(Xs:n) ~ N((useta'OZBeta) 4

s(n—s+1)

where Hpeta = n+1 and GBeta = P2

Thus, we can approximate the confidence interval for Fx(X.,) as

[pS - Za/zaBeta’ pS + Za/zaBeta:I s l = 1’ 2’

where z,/; is the standard normal quantile (e.g., zo.025 ® 1.96) and o, is the standard deviation of the Beta
distribution. Mapping this interval back to the original X-scale using the quantile function F;!, we obtain
the final (approximate) confidence interval:

[F;(l (Pgi) - Za/ZGBeta)/ F;(1 (Pgi) + Za/ZGBeta)] . (8)
Remark 3.1 (Bounds for p i=1,2). It is not hard to verify that p(l) € [0,1] and p(z) [ pr 1] These bounds

ensure that p ) remains within valid probability limits for any continuous distribution Fx. The lower bound for p(z)
reflects its dependence on the relative position of s within the remaining order statistics.

Remark 3.2 (Conditions for large s and 7 in confidence interval approximation). The confidence intervals for
future order statistics rely on a normal approximation of the Beta distribution for Fx(Xs.,). The normal approxi-
mation is valid under the condition that n is sufficiently large (typically n > 30) to ensure the Beta distribution is
well-approximated by a normal distribution. Moreover, the approximation works best when s is not too close to the
boundaries (i.e., when both s and n — s + 1 are large). A common rule of thumb is: min(s,n —s + 1) > 5 (ensures
the Beta distribution is not too skewed). For example, if n = 100, s should satisfy 5 < s < 95. The approximation
deteriorates if s is too close to 1 or n (e.g., when predicting the very first or last order statistic).

Based on the theoretical justification of this approximation and empirical evidence from a simulation study, we
conclude that the approximation is reasonable if 0.1n <5 <0.9n (e.g., for n = 100,10 < s < 90).

Example 3.1 (Normal distribution). Let X ~ N(yu, 0?). Furthermore, let X;,, = x; i = 1,2,...,r be the observed

values. Our target is constructing a 95% confidence interval for X., r < s, using p§2>. Thus, by Theorem compute

2
p? as

-7

p? = Fx(x,) + (1 - Fx(x,)) X ﬁ
where Fx(x,) = © (M%”) is the DF of the normal distribution. For large s and n — s + 1, approximate Fx(Xs.) ~
Beta(s,n — s + 1) by a normal distribution, where

and o sm—s+1)

S
oo = 53T ™ oo = G T 2 ©)
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Therefore, the confidence interval for Fx(X.,) is given by

2) 2
[Pg — 20.0250 Betas Pi )+ 20.025GBetu] ’

where zo g5 =~ 1.96. Thus, map back to the X-scale, by using the inverse DF of the normal distribution, we get
[y + 007 (p? = 1.9608u1a), 1t + 0@ (PP + 1.96%&1)] .

By choosing 1 =0,0 =1,n=20,r =10,s = 15, and z, = 0.5. Therefore, compute pgz) as
F7(0.5) = ®(0.5) ~ 0.6915, p? =0.6915 + (1 — 0.6915)% ~ 0.8319.

The Beta approximation is given by

15%x6
= /=222 L0077,
et 212x 22

The confidence interval for Fx(X15.20) is now given by
[0.8319 — 1.96 x 0.077,0.8319 + 1.96 x 0.077] =~ [0.681,0.983].

Finally, map to X-scale by using (8), we get the confidence interval for X150 as
[©7(0.681), ©71(0.983)| ~ [0.47,2.12].

Example 3.2 (Weibull distribution). Let X ~ Weibull(k, A), with DF Fy(x) = 1 — e~®/Y". Furthermore, Let
Xin = xi, 1=1,2,...,r. Our target is constructing a 95% confidence interval for Xs., using pgl). Thus, by Theorem

compute pgl) as

n-r

P =1- (1~ Fx(x)) X exp {— Y 1J,

j=n—s+1 J

where Fx(x,) = 1 — e~ @I For large s and n — s + 1, approximate Fx(Xs.,) ~ Beta(s,n — s + 1) by a normal

distribution, where y,,, and 0%, are defined in @ Thus, the confidence interval for Fx(Xs.,) is given by

[pgl) —1.960Bt4, pgl) + 1.96agm] .
By mapping back to the X-scale, using the inverse DF of the Weibull distribution, we get

[A(=In(1 = p{" + 1.960540)) ", A(=In(1 = p = 1.96080,))" "] .

By choosingk =2, A =1, n =20, r = 10, s = 15, and z, = 0.8, we can compute pgl) as

10
Fx(0.8) = 1 — e~ ©8 ~ 0.5273, Z
j=6

~ 0.645.

=

pM =1-(1-05273)e706% ~ 0.754.

Also, the Beta approximation is given by 0pe, = 0.077. Thus, the confidence interval for Fx(Xis.0) is
[0.754 — 1.96 x 0.077,0.754 + 1.96 x 0.077] ~ [0.603, 0.905].

Finally, by mapping to X-scale, we get
[(— In(1 - 0.603))"/2, (- In(1 — 0.905))1/2] ~ [0.95,1.52].
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4. Apllications

Example 4.1 (Voltage stress data). We use real data from EI-Adll et al. (2012) to illustrate the effectiveness of our
method. The data, originally provided by Lawless (2011, p. 189), consist of voltage levels at which failures occurred
in a certain type of electrical cable insulation (Type 1 insulation). In this laboratory experiment, 20 specimens were
subjected to progressively increasing voltage stress, and the failure voltages, measured in kilovolts per millimeter, are
listed in Table[8l

Table 8: Voltage stress data in a laboratory experiment

320 354 362 398 412 433 455 46.0 462 464
46.5 46.8 473 473 476 492 504 509 524 56.3

In Table @ e and 2L) denote the predictors of X, obtained using the pivotal quantity method (cf. EI-AdIl et al.,
2012) and Theoremof this work, respectively. Additionally, Pl and Cl,— g5 represent the corresponding prediction
intervals.

Table 9 compares the two prediction methods for the voltage stress data:

o Pivotal quantity method (El-Adll et al., 2012)
o Conditional expectation (exponential-Based) method
Key findings:
o The exponential-based predictor ( X®) achieves a lower MSE (1.665 vs. 2.50), indicating improved accuracy.

e [ts adaptive confidence intervals better capture the observed values, though they become unbounded for extreme
order statistics (s > 17).

o The pivotal method provides fixed-width intervals but may exclude the true values in the tails.

Conclusion: The exponential-based method offers enhanced point predictions, though inference for the extreme tails
remains challenging. A hybrid approach that leverages both methods could potentially offer further improvements.

Table 9: Specimens and the failure voltages initial Weibull: a2 = 9.1973, 0 = 47.7383

Pivotal quantity Conditional expectation(exp)
S  Xsen Rsin PI S Xs:n 559;2 Cla=005
10 46.40 47.32 (46.20,48.44) | 10 46.400 46.786 [43.66,49.83]
11 46.50 47.93 (46.20,49.67) | 11 46.500 47.368 [44.33,50.52]
12 46.80 48.46 (46.20,50.72) | 12 46.800 47.952 [45.00,51.26]
13 4730 48.95 (46.20,51.71) | 13 47.300 48.546 [45.67,52.07]
14 47.30 4943 (46.20,52.66) | 14 47.300 49.160 [46.35,53.01]
15 47.60 4991 (46.20,53.62) | 15 47.600 49.804 [47.05,54.22]
16 49.20 50.41 (46.20,54.62) | 16 49.200 50.497 [47.78,56.49]
17 50.40 50.95 (46.20,55.69) | 17 50.400 51.266 [48.57, NaN]
18 50.90 51.57 (46.20,56.93) | 18 50.900 52.163 [49.45, NaN]
19 5240 5235 (46.20,58.50) | 19 52.400 53.309 [50.52, NaN]
20 56.30 53.63 (46.20,61.06) | 20 56.300 55.132 [51.98, NaN]
y MSE=2.50 Il MSE=1.665 \
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Example 4.2 (Employer sponsored health insurance). This dataset contains information on ESI (Employer-
Sponsored Insurance) coverage among private-sector workers in the USA from 1979 to 2019. 1t includes demographic
breakdowns such as race, gender, education level, and recent graduation status.

We focus on the data for women specifically, the percentage of female workers with ESI coverage-comprising 41
observations. We aim to predict the next 21 future observations. The dataset is publicly available at:

https.jfwww.kaggle.com/datasetsfasaniczka/health-insurance-coverage-in-the-usa-1979-2019/data

The data are well-fitted by the Weibull distribution with parameters (13.6,55.4). Table[8|compares the prediction
performance of Theorems [2.1| and along with the two corresponding prediction confidence intervals (given by
Equation ). Tablecompares the performance of two predictors X exponential-based) and X2 uniform-based)-
for predicting future order statistics in the context of the ESI data for female workers. The predictions are made for 21
future observations based on 41 existing data points.

Table 10: The percentage of female workers with ESI coverage, 41 observations, predicts 21 future observations
Theorem Iﬂkexp) Theoremlﬂ| (uniform)

S Xs:n -7?217)1 CIa:O.OS 5 Xs:n fzznr CIa:O.OS
21{53.000 | 53.326 | [51.34,55.02] | 21 |53.000 | 53.319 | [51.33, 55.02]
22153.200 | 53.643 | [51.74,55.32] | 22|53.200 | 53.629 | [51.72, 55.30]
23{53.300 | 53.953 | [52.12,55.61] | 23|53.300 | 53.933 | [52.10, 55.59]
24 | 53.400 | 54.258 | [52.49, 55.90] 24 | 53.400 | 54.231 | [52.46, 55.87]
25 | 53.400 | 54.559 | [52.85, 56.19] 25| 53.400 | 54.525 | [52.81, 56.16]
26 | 53.500 | 54.857 | [53.20, 56.49] 26 | 53.500 | 54.817 | [53.15, 56.44]
271 53.600 | 55.154 | [53.54,56.78] | 27 |53.600 | 55.108 | [53.49, 56.73]
28| 53.700 | 55.452 | [53.88,57.09] | 28 |53.700 | 55.398 | [53.82, 57.03]
29 | 54.000 | 55.751 | [54.22, 57.40] 29 | 54.000 | 55.690 | [54.16, 57.33]
30 | 54.300 | 56.054 | [54.55, 57.72] 30 | 54.300 | 55.985 | [54.49, 57.63]

] ]
] ]
] ]
] ]
] ]
] ]
] ]

]

31| 54.800 | 56.362 | [54.89, 58.05] | 31 | 54.800 | 56.286 | [54.82, 57.96
32| 54.900 | 56.679 | [55.23, 58.41] | 32 |54.900 | 56.593 | [55.15, 58.29
33 | 55.300 | 57.006 | [55.58, 58.79] | 33 | 55.300 | 56.909 | [55.50, 58.65
34 |59.000 | 57.348 | [55.94,59.21] | 34 | 59.000 | 57.239 | [55.85, 59.04
35| 59.400 | 57.710 | [56.32, 59.69] | 35 |59.400 | 57.586 | [56.21, 59.47
36 | 59.800 | 58.099 | [56.71, 60.25] | 36 | 59.800 | 57.956 | [56.60, 59.96
37| 60.100 | 58.526 | [57.14, 61.01] | 37 | 60.100 | 58.359 | [57.01, 60.57
38 | 60.800 | 59.010 | [57.61, 62.36] | 38 | 60.800 | 58.808 | [57.47, 61.40
39 | 60.900 | 59.586 | [58.15, NaN] | 39 | 60.900 | 59.330 | [57.98, 63.41]
40| 61.100 | 60.337 | [58.82, NaN] | 40 | 61.100 | 59.980 | [58.61, NaN]
41 61.300 | 61.558 | [59.76, NaN] | 41 | 61.300 | 60.919 | [59.49, NaN]
| MSE=1.968 ] MSE=2.074 |

Key observations:

e Mean squared error (MSE):
— The exponential-based predictor (Xg}z) achieves a lower MSE (1.968) compared to the uniform-

based predictor (X)) with an MSE of 2.074. This suggests that the exponential-based method
provides slightly more accurate predictions for this dataset.

e Confidence intervals (Cls):

— Both methods produce similar confidence intervals, but the exponential-based predictor tends
to yield tighter intervals, especially for earlier predictions (e.g., s = 21 to s = 30). This indicates
better precision in estimating future values.
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- For extreme predictions (e.g., s > 39), the CIs for both methods become unbounded (indicated
by “NaN”), highlighting the challenge of predicting far-tail observations.

e Performance across predictions:

— The predictors perform comparably for mid-range observations, but the exponential-based
method shows a marginal advantage in accuracy, as evidenced by the lower MSE.

— The uniform-based predictor, while computationally simpler, exhibits slightly higher variability
in predictions, particularly for larger values of s.

Conclusion: The results in Table [10| demonstrate that the exponential-based predictor Xy is preferable
for this dataset due to its lower MSE and tighter confidence intervals. However, the uniform-based
predictor (X)) remains a viable alternative, especially when computational efficiency is a priority. The
unbounded ClIs for extreme predictions underscore the limitations of both methods in prediction far-tail
events, suggesting a need for further refinement or hybrid approaches in such cases. This analysis aligns
with the paper’s broader findings, where the exponential-based predictor generally excels in accuracy,
while the uniform-based predictor offers simplicity and computational ease.

Example 4.3 (Windscreen failures). It is known that the exponential distribution has an important property,
make it considered as one of the important classical distributions, addition to it is analytically tractable distribution.
However, it has some limited applications, because of its fixed hazard rate and unimoda PDF. For that, several
extensions of the exponential distribution were considered to increase its flexibility and applicability. One of these
extensions is the Modified Kies-Exponential (MKE) distribution, see Al-Babtain et al. (2020) and Aly et al. (2023).
Actually, MKE distribution has many applications in various fields such as reliability engineering: modeling time-
to-failure of components or systems with non-constant failure rates, survival analysis: analyzing time until an event
of interest occurs, accounting for different hazard functions, and queuing Theory. The PDF and DF of the MKE
distribution are given by:

g(x;a,b)y=ab (@ )" b (e - 1)1,

G(x;a,b)=1- e_(ebx‘l)“, x>0,

where, a is shape parameter and b is scale parameter. The QF is given by:
1 1
Q;a,b) = 3 In((-In(1 - x))* +1).

Using a dataset of 84 observed failure times for a specific windscreen model (Aly et al., 2023), we applied our
techniques to predict the next 50 failure events. This prediction window represents 150% of the final 34 data points.
The results, presented in Table[T1} were best modeled by an MKE distribution with parameters (1.783644, 0.2366933).

Comment: Tablecompares the exponential-based ( X)) and uniform-based ( X2) predictors for windscreen failure

times modeled by the MKE distribution. Key observations include:
o Both predictors yield nearly identical MSEs (0.024 vs. 0.023), indicating comparable accuracy for this dataset.

o Confidence intervals (Cls) are tight for mid-range predictions but become unbounded (NaN) for extreme order
statistics (s > 81), highlighting challenges in tail prediction.

o The results align with the paper’s broader findings: the exponential-based method is robust, while the uniform-
based alternative offers computational simplicity with minimal trade-offs in accuracy for this application.
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Table 11: At r = 34 prediction 150% of data (windscreen failures)

Theorem 2.1(exp) Theorem(uniform)

S | Xsmn J?SZ Cla=0.05 S | Xsn JAC__-(,Zr)L_ Cla=0.05

35|2.154|2.174 | [0.13,0.19] | 35|2.154 |2.174 | [0.13, 0.19]
3612.190|2.213 | [0.13,0.19] 362.190 | 2.212 | [0.13,0.19]
3712194 |2.252 | [0.14,0.20] | 37|2.194 | 2.251 | [0.14, 0.20]
3812.22312.290 | [0.14,0.20] | 382.223|2.289| [0.14, 0.20]
391222412328 | [0.14,0.21] | 392224 |2.326| [0.14,0.21]
40(2.229 | 2.366 | [0.15,0.21] | 40|2.229|2.364 | [0.15,0.21]
41 (2.300 | 2.404 | [0.15, 0.21] 41 /2.300 | 2.402 | [0.15,0.21]
4212324 |2.442 | [0.15,0.22] | 42|2.324|2.439 | [0.15,0.22]
43|2.385|2.480| [0.16,0.22] | 43|2.385|2.477 | [0.16,0.22]
4412481 |2.518| [0.16,0.23] | 44|2.481|2.514 | [0.16,0.23]
45(2.610 | 2.556 | [0.16,0.23] | 45|2.610|2.552 | [0.16, 0.23]
46 [2.625|2.594 | [0.17,0.24] | 46|2.625|2.589 | [0.17,0.24]
47 12.632 | 2.632 | [0.17,0.24] 47 12.632 | 2.627 | [0.17,0.24]
48 | 2.646 | 2.670 | [0.18,0.24] | 48|2.646 | 2.665 | [0.18,0.24]
49 | 2.661 |2.708 | [0.18,0.25] | 49|2.661 |2.702 | [0.18,0.25]
50 | 2.688 | 2.746 | [0.18,0.25] | 50 |2.688 | 2.740 | [0.18, 0.25]
51|2.823|2.785| [0.19,0.26] | 51 |2.823|2.778 | [0.19, 0.26]
52 12.890|2.823 | [0.19, 0.26] 5212.890 |2.817 | [0.19, 0.26]
5312902 |2.862 | [0.20,0.27] | 53|2.902 |2.855| [0.19, 0.27]
541293412902 | [0.20,0.27] | 54|2.934 |2.894| [0.20, 0.27]
5512.962|2.941 | [0.20,0.28] | 552.962 |2.933 | [0.20, 0.28]
56 | 2.964 | 2.981 | [0.21,0.28] | 56 |2.964 | 2.973 | [0.21, 0.28]
57 13.000 | 3.022 | [0.21,0.29] | 57 |3.000 | 3.013 | [0.21, 0.29]
58 [3.103 | 3.063 | [0.22,0.29] | 58 |3.103 | 3.053 | [0.22, 0.29]
59 13.114 | 3.104 | [0.22,0.30] | 59 |3.114 | 3.094 | [0.22, 0.30]
60 | 3.117 | 3.146 | [0.23,0.31] | 60 |3.117 | 3.136 | [0.22, 0.30]
61|3.166 | 3.189 | [0.23,0.31] | 61 |3.166 |3.178 | [0.23,0.31]
62 |3.344 | 3.233 | [0.24,0.32] | 62|3.344 |3.221 | [0.23,0.32]
63 |3.376 | 3.277 | [0.24, 0.32] 63 |3.376 | 3.264 | [0.24, 0.32]
64 | 3.443 | 3.322 | [0.25,0.33] | 64 |3.443 |3.309 | [0.24, 0.33]
65 | 3.467 | 3.369 | [0.25,0.34] | 65|3.467 | 3.355| [0.25, 0.34]
66 | 3.478 | 3.416 | [0.26,0.35] | 66 |3.478 | 3.401 | [0.25, 0.34]
67 |3.578 | 3.465 | [0.26,0.35] | 67 |3.578 |3.449 | [0.26, 0.35]
68|3.595|3.515| [0.27,0.36] | 68 |3.595 |3.498 | [0.27,0.36]
69 | 3.699 | 3.567 | [0.27,0.37] | 69 |3.699 |3.549 | [0.27,0.37]
70 |3.779 | 3.620 | [0.28,0.38] | 70|3.779 | 3.601 | [0.28, 0.38]
7113.924 | 3.676 | [0.29,0.39] | 71|3.924 | 3.656 | [0.28, 0.38]
7214.035|3.734| [0.29,0.40] | 72|4.035|3.712| [0.29, 0.39]
7314.121|3.795 | [0.30, 0.41] 7314.121|3.772| [0.30, 0.41]
74 | 4.167 | 3.859 | [0.31,0.42] | 74|4.167 | 3.834 | [0.31, 0.42]
75|4.240 | 3.927 | [0.32,0.44] | 754.240 |3.900 | [0.31, 0.43]
76 | 4.255 | 4.000 | [0.33,0.46] | 76 |4.255|3.970 | [0.32, 0.45]
7714278 |4.079 | [0.34,0.48] | 77 |4.278 | 4.045| [0.33, 0.46]
78|4.305|4.165| [0.35,0.50] | 78 |4.305 |4.127 | [0.34, 0.49]
79| 4.376 | 4.261 | [0.36, 0.54] 79| 4.376 | 4.218 | [0.35,0.51]
80 [ 4.449 | 4.369 | [0.37,0.59] | 80 |4.449 |4.319| [0.37,0.55]
81 (4.485|4.497 | [0.39, NaN] | 81 |4.485 |4.437 | [0.38, 0.62]
82 |4.570|4.655 | [0.41, NaN] | 82 |4.570 | 4.578 | [0.40, NaN]
83 |4.602 | 4.870 | [0.44, NaN] | 83 |4.602 |4.761 | [0.43, NaN]
84 14.663|5.241 | [0.48, NaN] | 84 |4.663 | 5.040 | [0.47, NaN]

MSE=0.024 MSE=0.023

353
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