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Abstract. This study presents a new approach for predicting future order statistics under Type II cen-
soring, based on conditional expectation, to obtain optimal predictors that achieve an almost minimal
mean squared error (MSE). Two distinct predictors are proposed: one based on properties of exponential
spacings and another utilizing uniform order statistics. The theoretical framework is validated through
extensive simulations across various distributions (Weibull, Pareto, Gamma, Beta, and Normal), showing
superior accuracy compared to existing methods. The exponential-based predictor excels in heavy-tailed
scenarios, while the uniform-based predictor offers computational efficiency for light-tailed or symmetric
distributions. Additionally, the paper provides techniques for constructing confidence intervals for future
order statistics and applies the methodology to real-world data, showcasing its practical utility in reliability
engineering and survival analysis.

1. Introduction

Order statistics are foundational in statistical theory and practice, playing a central role in reliability
analysis, quality control, survival studies, and industrial engineering. When complete data are unavailable
(often due to time, cost, or ethical constraints), the censored sampling is employed, with Type II censoring
as a widely used model. Under this scheme, the experiment stops after observing the first r failures out
of n units. In such scenarios, predicting unobserved future order statistics from censored samples is a
fundamental inferential problem.

A natural solution framework is to employ the conditional expectation of future order statistics given
observed data. When treated as a random variable (RV), this conditional expectation becomes the optimal
predictor under squared error loss. While the theoretical properties of order statistics are well-studied
(David and Nagaraja, 2003; Arnold et al., 1992), comprehensive frameworks for conditional prediction
under Type II censoring are still underdeveloped, especially for general continuous distributions.
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Historical and theoretical foundations

Early contributions include Bartholomew (1963) on life-testing estimators and Bhattacharyya (1985) on
the reliability prediction. Lawless (1977) constructed prediction intervals for exponential distributions,
while Kaminsky and Rhodin (1985) introduced maximum likelihood-based predictive procedures. Patel
(1989) presented a comprehensive review of prediction intervals, and Nagaraja (1995) provided a broad
treatment of prediction theory in applied statistics. Raqab and Nagaraja (1995) further examined the
prediction of future order statistics in parametric and nonparametric contexts.

Dellaportas and Wright (1991) investigated numerical prediction for the Weibull distribution, and Hsieh
(1996) developed prediction intervals for early-failure Weibull data. Generalized and hybrid censoring
schemes have advanced predictive inference, as seen in Valiollahi et al. (2017), who addressed Type I and
Type II hybrid censoring for generalized exponential distributions.

Censored inference and modern prediction methods

Comprehensive treatments of censored inference are provided by Balakrishnan and Cohen (1991) and
Arnold et al. (1992). Balakrishnan et al. (2010) expanded the methodology by introducing exact nonpara-
metric prediction and tolerance intervals based on ordinary and progressively Type II censored data. In the
Bayesian context, Sharma and Pandey (2007) addressed prediction under exponential and Weibull models
using censored samples, while Wu and Li (2011) presented improved frequentist predictive techniques for
Type II censored data.

Recent developments have focused on distribution-specific modeling. Aly et al. (2023) proposed a least
squares method based on cumulative hazard functions, and Barakat et al. (2022) studied prediction under
the two-parameter exponential model. Prediction under gamma-mixture and beta-mixture distributions
was explored by Khaled et al. (2023), with practical applications to COVID-19 recovery modeling. Further
contributions include the work of El-Adll et al. (2012) on the three-parameter Weibull model, and El-Adll
and Aly (2014, 2016) on prediction intervals from the Pareto distribution using generalized order statistics
(GOSs). Shah et al. (2020) utilized key characterization properties of GOSs and dual GOSs to develop an
effective strategy for predicting future events.

Long and Jiang (2023) advanced predictive inference for two-parameter Pareto models under progres-
sively hybrid censoring.

The use of GOSs and the random sample sizes has broadened the applicability of predictive methods.
Barakat et al. (2011, 2014, 2018, 2021a, 2021b) contributed methods for exact and asymptotic prediction in-
tervals, including for samples of random sizes. Raqab and Barakat (2018) emphasized prediction challenges
in such setups. The Prediction R package (Barakat et al., 2018) offers practical tools for implementation,
bridging the gap between theory and application.

Applications and impact

The proposed methodology holds broad utility in domains where partial life data is common. These
include reliability engineering, public health surveillance, warranty forecasting, and financial risk man-
agement. By offering a unified and distribution-agnostic predictive approach, this work contributes both
theoretically and practically to the advancement of statistical inference under censoring.

Conditional expectation as an RV and best predictor

Let (Ω,F ,P) be a probability space, and let X and Y be integrable RVs defined on this space. The
conditional expectation of X given Y is denoted by E(X | Y) and is defined as:

E(X | Y)(ω) := E(X | σ(Y))(ω),

where σ(Y) denotes the σ-algebra generated by the RV Y. The most important properties of the conditional
expectation E(X | Y), viewed as an RV, are:

• The conditional expectation E(X | Y) is itself an RV.
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• It is σ(Y)-measurable, which means there exists a Borel-measurable function 1 such that:

E(X | Y)(ω) = 1(Y(ω)), almost surely.

• Hence, E(X | Y) can be interpreted as a function of Y and is thus defined on the same probability space
(Ω,F ,P).

The following known and essential result shows that the conditional expectation E(X | Y) uniquely mini-
mizes the MSE among all σ(Y)-measurable functions, making it the optimal predictor of X given Y in the
L2 sense.

Lemma 1.1 (E(X | Y) as the Best Predictor, cf. Bayramoglu; 2022; Billingsley, 1995; and Durrett, 2019). The
conditional expectation E(X | Y) minimizes the mean squared error among all σ(Y)-measurable functions. Formally:

E(X | Y) = arg min
Z=h(Y)

E
[
(X − Z)2

]
,

where the minimum is taken over all RVs Z that are functions of Y. Thus, E(X | Y) is the best predictor (in the L2

sense) of X given knowledge of Y.

The following additional important properties of the conditional expectation E(X|Y), viewed as an RV, are

• Linearity: E(aX + bZ | Y) = aE(X | Y) + bE(Z | Y).

• Tower property: E[E(X | Y)] = E(X) (see Remark 1.1).

• Measurability: E(X | Y) is measurable with respect to σ.

• Multiplication by functions of Y: If h(Y) is a function of Y, then

E[h(Y)X | Y] = h(Y)E[X | Y].

Remark 1.1. If we are using E(X | Y) as an estimator of X, then the tower property implies that:

E [E(X | Y)] = E(X).

Therefore, in this context, we can say E(X | Y) is an unbiased estimator of X in expectation, because the tower property
ensures that its mean is the same as that of X. in the specific context where E(X | Y) is used to estimate X, the tower
property implies unbiasedness of this estimator for X.

2. The best point predictor for future order statistics

We begin this section by presenting Theorems 2.1 and 2.2, which provide predictors for future order
statistics under general continuous distributions. These predictors possess nearly minimal MSE properties.
Although the theorems are broadly applicable, their derivations strategically utilize properties of the
exponential and uniform distributions, respectively. Theorem 2.1 derives its predictor by leveraging the
structure of exponential spacings between order statistics. Specifically, it exploits the fact that, under
an exponential distribution, the spacings are independent and exponentially distributed with decreasing
rates. This facilitates a closed-form expression for the predictor, expressed through the quantile function
F−1

X .Despite the reliance on exponential properties in the derivation, the resulting predictor is valid for any
continuous distribution FX(x).

Theorem 2.2, similarly, uses the known behavior of uniform order statistics, which follow Beta distribu-
tions. This enables a straightforward derivation of the predictor in a linear, multiplicative form involving
the observed order statistic Xr:n, again expressed through the general quantile function F−1

X .
Both theorems are particularly valuable in the context of Type II censoring, where prediction of un-

observed order statistics is required. A notable strength of these results lies in their distribution-free
form: although exponential and uniform distributions are used as tools in the proofs, the final pre-
dictors depend only on the underlying distribution function (DF) FX(x) and the observed value Xr:n.
This distinction—between the specific distributions used for derivation and the generality of the final
results—underscores the practical utility and theoretical elegance of Theorems 2.1 and 2.2.
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2.1. Theoretical results

Theorem 2.1 (Prediction based on exponential distribution). Let X1:n ≤ X2:n ≤ · · · ≤ Xr:n be order statistics
from a continuous distribution FX(x) under Type II censoring at the observation r. For any s > r, the near-minimal
MSE (near-MMSE) predictor of the future order statistic Xs:n is given by

X̂(1)
s:n := F−1

X

1 − (1 − FX(Xr:n)) exp

− n−r∑
j=n−s+1

1
j


 , (1)

where F−1
X is the quantile function of the underlying distribution FX.

Proof. First, let Z1:n ≤ Z2:n ≤ · · · ≤ Zn:n denote the order statistics based on the exponential distribution with
the rate parameter α > 0 (denoted by Exp(α)). Let us define the spacings between order statistics:

Y j = Z j:n − Z j−1:n, for j = 1, 2, . . . ,n,

with the convention Z0:n = 0. It is a known property of the exponential distribution that these spacings are
independent and distributed as (cf. Arnold et al., 1992):

Y j ∼ Exp(α(n − j + 1)).

For s > r, we can express the sth order statistic as

Zs:n = Zr:n +

s∑
j=r+1

Y j.

Conditioning on Zr:n = zr, the conditional expectation becomes

E(Zs:n | Zr:n = zr) = zr +

s∑
j=r+1

E(Y j) = zr +

s∑
j=r+1

1
α(n − j + 1)

.

Changing the index of summation, we obtain

s∑
j=r+1

1
α(n − j + 1)

=

n−r∑
j=n−s+1

1
α j
.

Hence, we get

E(Zs:n | Zr:n = zr) = zr +

n−r∑
j=n−s+1

1
α j
. (2)

Therefore, invoking Lemma 1.1, the best predictor of Zs:n is given by

Ẑs:n = Zr:n +

n−r∑
j=n−s+1

1
α j
.

Now, we apply the integral probability transformation, to get

Ur:n = FX(Xr:n) ∼ Beta(r,n − r + 1), (3)

where Beta(a, b) is the beta distribution with parameters a and b. Transform to exponential order statistics

Zr:n = − ln(1 −Ur:n) ∼ Exp(α). (4)
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Transform back to uniform order statistics, by using (2) and (3),

Ûs:n = 1 − exp

−α
zr:n +

n−r∑
j=n−s+1

1
α j


 .

Simplifying using (4), we get

Ûs:n = 1 − exp

ln(1 −Ur:n) −
n−r∑

j=n−s+1

1
j

 ,
or equivalently

Ûs:n = 1 − (1 −Ur:n) exp

− n−r∑
j=n−s+1

1
j

 ,
apply inverse DF to return to original scale, by using X̂s:n = F−1

X (Ûs:n) and substituting Us:n, we get the
theorem’s expression.

Theorem 2.2 (Prediction based on U(0, 1) distribution). Let X1:n ≤ X2:n ≤ · · · ≤ Xr:n be order statistics from a
continuous distribution FX(x) under Type II censoring at observation r. For any s > r, the near-MMSE predictor of
the future order statistic Xs:n is given by

X̂(2)
s:n := F−1

X

(
FX(Xr:n) + (1 − FX(Xr:n)) ×

s − r
n − r + 1

)
. (5)

Proof. First, let Z1:n ≤ Z2:n ≤ · · · ≤ Zn:n denote the order statistics from a uniform (0, 1) distribution. Suppose
the sample is Type II censored at the rth order statistic, so that Zr:n = zr is observed. For any s > r, we want
to find the conditional expectation E[Zs:n | Zr:n = zr].

The uniform distribution on [0, 1] has the property that, given Zr:n = zr, the remaining observations
(those exceeding zr) are conditionally independent and uniformly distributed on [zr, 1]. This is analogous
to the memoryless property of the exponential distribution, adapted for uniform order statistics (cf. David
and Nagaraja, 2003). Thus, given Zr:n = zr, the remaining order statistics Zr+1:n, . . . ,Zn:n are conditionally
distributed like the order statistics of a uniform sample of size n − r on the interval [zr, 1]. Now, define the
transformed RVs:

Ui =
Zi:n − zr

1 − zr
, for i = r + 1, . . . ,n.

Given Zr:n = zr, the Ui are the order statistics of a uniform (0, 1) sample of size n − r. The sth order statistic
Zs:n (for s > r) can be written as:

Zs:n = zr + (1 − zr)Us−r:n−r,

where Us−r:n−r is the (s− r)th order statistic from a uniform (0, 1) sample of size n− r. The expectation of the
kth order statistic from a uniform (0, 1) sample of size m is

E[Uk:m] =
k

m + 1
.

Here, k = s − r and m = n − r, so:

E[Us−r:n−r] =
s − r

n − r + 1
.

Thus, the conditional expectation of Zs:n given Zr:n = zr is

E[Zs:n | Zr:n = zr] = zr + (1 − zr) ×
s − r

n − r + 1
. (6)
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Therefore, by appealing to Lemma 1.1, the best predictor of Zs:n is given by

Ẑs:n = Zr:n + (1 − Zr:n) ×
s − r

n − r + 1
.

Now, by applying the integral probability transform and its inverse, we obtain the expression stated in the
theorem.

Remark 2.1 (cf. David and Nagaraja, 2003; Chapters 2 and 3). The conditional probability density function (PDF)
of X j:n|Xi:n = xi, where X1:n ≤ X2:n ≤ · · · ≤ Xr:n are order statistics from the continuous distribution F(.) with PDF
f (.) is given by

f j:n(x j | xi) =
(n − i)!

( j − i − 1)!(n − j)!

(
F(x j) − F(xi)

1 − F(xi)

) j−i−1 (
1 − F(x j)
1 − F(xi)

)n− j f (x j)
1 − F(xi)

.

Therefore, by using Lemma 1.1, one can obtain the MMSE predictor X̂s = E[Xs:n|Xr:n]. However, this predictor does
not have a closed-form expression and is generally more complex than the near-MMSE predictors derived in Theorems
2.1 and 2.2.

The exponential-based predictor given in (1) involves a sum of a harmonic series, which can be computa-
tionally intensive for large n. The uniform-based predictor given in (5) is simpler and more interpretable,
as it depends only on the fraction of remaining observations. Based on the following simulation study
and the supporting theoretical background, the exponential-based predictor (2) is recommended when the
underlying distribution is known to be exponential or exhibits exponential-like spacings, particularly in
cases involving heavy-tailed data or memoryless properties. Conversely, the uniform-based predictor (5)
is more appropriate when the underlying distribution is uniform or approximately uniform, especially
when simplicity and computational efficiency are desired. Finally, the uniform-based predictor may also
be preferable when the underlying distribution is light-tailed or symmetric.

Remark 2.2. While the predictor Ẑs:n is the MMSE predictor of Zs:n in the Z-scale (being the conditional mean
of Zs:n given Zr:n), the corresponding predictor X̂s:n is obtained by transforming Ẑs:n back to the original X-scale.
This nonlinear transformation generally prevents X̂s:n from being an exact MMSE predictor of Xs:n; nevertheless,
it typically remains very close to the true MMSE predictor and may be regarded as a near-MMSE predictor. The
practical superiority of this near-MMSE predictor will be demonstrated through the comprehensive simulation study
presented in the next subsections.

2.2. Simulation study

The paper presents two estimators for predicting future order statistics under Type II censoring:

• Exponential-based predictor (X̂(1)
s:n): Derived using properties of exponential spacings between order

statistics.

• Uniform-based predictor (X̂(2)
s:n): Derived using properties of uniform order statistics.

Tables 1-5 compare these estimators across different distributions (Weibull, Pareto, Gamma, Beta, Nor-
mal) and parameter settings. Below is a sketch of the algorithm used in this study:

Algorithm description

The algorithm implemented estimates the conditional expectation of order statistics from a DF FX using
the exponential or uniform transformation methods. The main steps are as follows:

1. Data generating: Generate 1000 samples, each of size n = 100, from the distribution FX with different
shape and scale parameters. Each sample is sorted in ascending order to obtain the order statistics.
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2. Conditional expectation estimation: For a fixed order statistic index i (e.g., i = 50), estimate the
value of the jth order statistic X j:n based on the observed ith order statistic Xi:n. This is done using a
theoretical prediction functions X̂(1)

s:n, defined in (1), and X̂(2)
s:n, defined in (5)

3. Simulation: Repeat the estimation over 1000 simulated samples to obtain empirical means of the
observed and estimated order statistics.

4. Performance evaluation: Compute the MSE between the estimated and observed values.

Table 1: The best predictor of Xs:n based on the Weibull distribution FX(x) = 1 − exp(−( x
λ )k), for n = 100, r = 50

k = 0.5, λ = 25 k = 1, λ = 25 k = 3, λ = 25 k = 7, λ = 25 k = 11, λ = 25

s xs:n x̂(1)
s:n

51 12.918 12.921
52 13.669 13.658
53 14.469 14.432
54 15.318 15.245
55 16.222 16.099
56 17.096 16.996
57 18.079 17.939
58 19.096 18.931
59 20.149 19.975
60 21.233 21.073
61 22.432 22.230
62 23.636 23.449
63 24.954 24.734
64 26.335 26.090
65 27.727 27.521
66 29.219 29.034
67 30.766 30.634
68 32.471 32.327
69 34.274 34.122
70 36.263 36.025
71 38.269 38.047
72 40.371 40.197
73 42.607 42.487
74 45.097 44.928
75 47.683 47.536
76 50.528 50.327
77 53.619 53.319
78 56.948 56.534
79 60.482 59.996
80 64.358 63.734
81 68.269 67.780
82 72.703 72.175
83 77.549 76.964
84 82.579 82.203
85 88.398 87.959
86 94.935 94.314
87 102.345 101.369
88 110.100 109.253
89 119.141 118.127
90 129.200 128.204
91 140.666 139.766
92 153.939 153.200
93 169.777 169.050
94 189.995 188.121
95 214.489 211.660
96 246.366 241.741
97 285.506 282.154
98 343.560 340.899
99 443.181 439.434

100 696.575 674.003
MSE=11.670

x̂(2)
s:n

12.914
13.644
14.409
15.213
16.056
16.942
17.873
18.852
19.881
20.963
22.103
23.302
24.567
25.900
27.306
28.792
30.362
32.022
33.781
35.645
37.623
39.724
41.960
44.342
46.884
49.601
52.511
55.633
58.991
62.610
66.523
70.765
75.378
80.415
85.935
92.013
98.742

106.234
114.635
124.130
134.966
147.473
162.111
179.546
200.782
227.432
262.310
310.951
386.532
534.777

MSE=637.930

xs:n x̂(1)
s:n

17.796 17.804
18.310 18.315
18.840 18.836
19.387 19.367
19.952 19.911
20.489 20.466
21.067 21.035
21.656 21.616
22.249 22.211
22.842 22.821
23.480 23.446
24.104 24.087
24.765 24.745
25.438 25.421
26.108 26.115
26.801 26.829
27.506 27.565
28.256 28.322
29.029 29.103
29.858 29.910
30.675 30.743
31.511 31.605
32.381 32.498
33.315 33.424
34.258 34.386
35.258 35.386
36.316 36.427
37.425 37.514
38.572 38.651
39.791 39.841
40.994 41.091
42.312 42.407
43.696 43.796
45.091 45.266
46.653 46.829
48.342 48.496
50.179 50.281
52.055 52.204
54.135 54.288
56.379 56.560
58.828 59.060
61.507 61.838
64.559 64.963
68.264 68.535
72.500 72.701
77.604 77.701
83.468 83.951
91.398 92.285
103.492 104.785
128.428 129.785

MSE=0.106

x̂(2)
s:n

17.800
18.305
18.820
19.346
19.884
20.434
20.995
21.570
22.158
22.761
23.378
24.011
24.660
25.327
26.012
26.716
27.441
28.187
28.957
29.750
30.570
31.418
32.295
33.204
34.148
35.128
36.149
37.213
38.324
39.487
40.707
41.989
43.341
44.770
46.285
47.899
49.624
51.476
53.477
55.653
58.035
60.670
63.614
66.952
70.806
75.364
80.943
88.135
98.271
115.600

MSE=4.469

xs:n x̂(1)
s:n

22.273 22.279
22.487 22.492
22.702 22.706
22.920 22.920
23.141 23.134
23.348 23.350
23.565 23.566
23.784 23.783
24.000 24.001
24.212 24.220
24.436 24.441
24.651 24.664
24.874 24.888
25.096 25.114
25.316 25.342
25.538 25.572
25.761 25.805
25.993 26.040
26.227 26.278
26.475 26.520
26.715 26.765
26.956 27.014
27.203 27.267
27.462 27.525
27.720 27.787
27.985 28.055
28.262 28.328
28.546 28.608
28.836 28.895
29.137 29.189
29.429 29.492
29.743 29.804
30.063 30.127
30.380 30.461
30.727 30.808
31.092 31.170
31.479 31.549
31.868 31.946
32.285 32.366
32.725 32.813
33.193 33.290
33.685 33.804
34.229 34.365
34.868 34.984
35.572 35.680
36.378 36.480
37.265 37.434
38.396 38.634
39.994 40.306
42.887 43.286

MSE=0.010

x̂(2)
s:n

22.276
22.488
22.699
22.911
23.124
23.337
23.551
23.766
23.982
24.199
24.417
24.637
24.859
25.083
25.308
25.536
25.766
25.998
26.234
26.473
26.715
26.960
27.210
27.464
27.723
27.986
28.256
28.531
28.813
29.102
29.400
29.706
30.022
30.349
30.688
31.041
31.410
31.797
32.204
32.636
33.096
33.590
34.125
34.712
35.367
36.110
36.981
38.046
39.452
41.648

MSE=0.045

xs:n x̂(1)
s:n

23.786 23.789
23.884 23.887
23.982 23.984
24.080 24.081
24.180 24.178
24.272 24.274
24.368 24.370
24.466 24.467
24.560 24.563
24.653 24.659
24.751 24.755
24.844 24.852
24.940 24.948
25.035 25.045
25.129 25.143
25.223 25.241
25.318 25.339
25.415 25.438
25.513 25.538
25.616 25.638
25.715 25.740
25.814 25.842
25.916 25.946
26.021 26.050
26.126 26.157
26.232 26.264
26.343 26.374
26.456 26.485
26.571 26.599
26.690 26.715
26.805 26.833
26.927 26.955
27.050 27.080
27.172 27.208
27.305 27.341
27.443 27.478
27.589 27.620
27.735 27.769
27.889 27.925
28.052 28.089
28.223 28.264
28.401 28.450
28.596 28.652
28.824 28.872
29.071 29.116
29.351 29.395
29.655 29.722
30.036 30.126
30.563 30.678
31.484 31.631

MSE=0.002

x̂(2)
s:n

23.788
23.885
23.981
24.077
24.173
24.269
24.364
24.459
24.554
24.650
24.745
24.840
24.936
25.032
25.129
25.225
25.323
25.421
25.519
25.618
25.719
25.820
25.922
26.026
26.131
26.237
26.345
26.455
26.567
26.681
26.797
26.917
27.039
27.165
27.295
27.429
27.568
27.713
27.865
28.025
28.193
28.373
28.566
28.775
29.007
29.267
29.567
29.929
30.398
31.112

MSE=0.004

xs:n x̂(1)
s:n

24.220 24.221
24.283 24.285
24.346 24.348
24.410 24.410
24.474 24.473
24.533 24.535
24.595 24.597
24.658 24.659
24.718 24.720
24.778 24.782
24.840 24.843
24.900 24.905
24.961 24.967
25.021 25.028
25.081 25.090
25.141 25.152
25.201 25.215
25.262 25.277
25.324 25.340
25.389 25.404
25.452 25.468
25.514 25.532
25.578 25.597
25.644 25.663
25.710 25.730
25.776 25.797
25.846 25.866
25.916 25.935
25.988 26.006
26.061 26.078
26.133 26.151
26.208 26.227
26.285 26.304
26.360 26.383
26.442 26.465
26.527 26.549
26.617 26.637
26.706 26.728
26.801 26.824
26.900 26.924
27.004 27.030
27.113 27.144
27.231 27.266
27.369 27.399
27.518 27.546
27.686 27.714
27.868 27.909
28.095 28.151
28.408 28.478
28.948 29.038

MSE=0.001

x̂(2)
s:n

24.221
24.283
24.346
24.408
24.470
24.531
24.593
24.654
24.715
24.776
24.837
24.898
24.959
25.020
25.081
25.143
25.204
25.266
25.329
25.391
25.455
25.518
25.583
25.648
25.713
25.780
25.847
25.916
25.986
26.057
26.129
26.203
26.279
26.357
26.437
26.519
26.605
26.694
26.787
26.884
26.987
27.097
27.214
27.341
27.480
27.637
27.817
28.033
28.312
28.733

MSE=0.001
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Table 2: The best predictor of Xs:n based on the Pareto distribution FX(x) = 1 − ( λx )k), x ≥ λ for n = 100, r = 50
k = 10, λ = 25 k = 15, λ = 25 k = 3, λ = 25 k = 7, λ = 25

s xs:n x̂(1)
s:n

51 26.846 26.847
52 26.901 26.902
53 26.958 26.958
54 27.017 27.015
55 27.079 27.074
56 27.137 27.134
57 27.200 27.196
58 27.264 27.259
59 27.329 27.324
60 27.394 27.391
61 27.464 27.459
62 27.533 27.530
63 27.606 27.602
64 27.680 27.677
65 27.755 27.754
66 27.832 27.834
67 27.910 27.916
68 27.994 28.000
69 28.081 28.088
70 28.175 28.179
71 28.267 28.273
72 28.362 28.370
73 28.461 28.472
74 28.568 28.578
75 28.676 28.688
76 28.791 28.803
77 28.914 28.923
78 29.043 29.049
79 29.176 29.181
80 29.319 29.321
81 29.461 29.468
82 29.617 29.623
83 29.782 29.788
84 29.949 29.964
85 30.137 30.152
86 30.342 30.353
87 30.567 30.571
88 30.798 30.807
89 31.056 31.065
90 31.337 31.348
91 31.647 31.664
92 31.990 32.017
93 32.386 32.420
94 32.873 32.887
95 33.439 33.439
96 34.137 34.115
97 34.957 34.978
98 36.103 36.164
99 37.934 38.018

100 42.110 42.017
MSE=0.0005

x̂(2)
s:n

26.846
26.900
26.956
27.013
27.071
27.130
27.192
27.254
27.318
27.384
27.452
27.522
27.593
27.667
27.743
27.821
27.902
27.985
28.071
28.161
28.253
28.349
28.449
28.552
28.660
28.773
28.891
29.014
29.143
29.279
29.422
29.574
29.734
29.904
30.086
30.281
30.491
30.717
30.964
31.235
31.534
31.868
32.246
32.679
33.187
33.797
34.560
35.569
37.040
39.699

MSE=0.1474

xs:n x̂(1)
s:n

26.216 26.216
26.252 26.252
26.289 26.288
26.327 26.326
26.367 26.364
26.405 26.403
26.445 26.443
26.487 26.484
26.529 26.526
26.571 26.569
26.616 26.614
26.661 26.659
26.708 26.706
26.756 26.754
26.804 26.804
26.853 26.855
26.904 26.907
26.958 26.962
27.013 27.018
27.073 27.076
27.132 27.136
27.193 27.199
27.256 27.264
27.324 27.331
27.393 27.401
27.467 27.475
27.544 27.551
27.626 27.631
27.711 27.715
27.801 27.803
27.891 27.896
27.989 27.994
28.093 28.098
28.197 28.208
28.315 28.326
28.443 28.452
28.584 28.588
28.727 28.735
28.887 28.895
29.061 29.071
29.252 29.265
29.463 29.483
29.705 29.729
30.001 30.014
30.344 30.349
30.763 30.756
31.252 31.273
31.927 31.976
32.989 33.060
35.330 35.339

MSE=0.0002

x̂(2)
s:n

26.216
26.251
26.287
26.324
26.362
26.401
26.440
26.481
26.522
26.565
26.609
26.654
26.700
26.747
26.796
26.847
26.899
26.952
27.008
27.065
27.124
27.185
27.249
27.315
27.384
27.456
27.530
27.609
27.691
27.777
27.867
27.963
28.064
28.171
28.285
28.407
28.538
28.679
28.833
29.000
29.185
29.391
29.623
29.887
30.196
30.565
31.023
31.624
32.491
34.027

MSE=0.0439

xs:n x̂(1)
s:n

31.713 31.716
31.931 31.932
32.159 32.155
32.395 32.383
32.641 32.619
32.876 32.861
33.132 33.111
33.394 33.369
33.660 33.635
33.928 33.909
34.219 34.193
34.507 34.487
34.814 34.791
35.130 35.105
35.446 35.432
35.777 35.771
36.116 36.123
36.482 36.490
36.862 36.872
37.275 37.271
37.686 37.687
38.110 38.123
38.556 38.580
39.042 39.059
39.539 39.563
40.076 40.094
40.651 40.655
41.262 41.248
41.902 41.878
42.594 42.548
43.285 43.263
44.056 44.029
44.886 44.852
45.736 45.740
46.708 46.703
47.784 47.752
48.988 48.903
50.238 50.173
51.675 51.586
53.261 53.173
55.051 54.975
57.102 57.050
59.533 59.477
62.624 62.378
66.362 65.941
71.240 70.487
77.286 76.613
86.476 85.616

102.921 101.144
152.420 141.157

MSE=2.6410

x̂(2)
s:n

31.713
31.928
32.148
32.374
32.607
32.847
33.094
33.349
33.611
33.882
34.162
34.452
34.751
35.062
35.383
35.717
36.064
36.425
36.800
37.192
37.600
38.028
38.475
38.944
39.437
39.956
40.504
41.083
41.696
42.347
43.042
43.784
44.580
45.438
46.365
47.374
48.476
49.688
51.032
52.533
54.229
56.168
58.417
61.076
64.296
68.325
73.600
81.008
92.731
116.833

MSE=28.6809

xs:n x̂(1)
s:n

27.679 27.680
27.760 27.761
27.845 27.844
27.932 27.928
28.023 28.015
28.109 28.104
28.202 28.196
28.297 28.290
28.393 28.386
28.490 28.485
28.594 28.587
28.697 28.692
28.805 28.800
28.917 28.911
29.028 29.026
29.143 29.145
29.261 29.268
29.387 29.395
29.518 29.526
29.658 29.663
29.797 29.804
29.940 29.951
30.090 30.105
30.251 30.264
30.415 30.431
30.590 30.605
30.777 30.788
30.973 30.980
31.177 31.182
31.396 31.395
31.613 31.620
31.852 31.858
32.106 32.112
32.364 32.383
32.656 32.674
32.974 32.986
33.324 33.325
33.684 33.693
34.090 34.096
34.532 34.542
35.021 35.039
35.567 35.600
36.199 36.241
36.982 36.988
37.898 37.880
39.040 38.977
40.393 40.395
42.313 42.365
45.443 45.501
52.919 52.489

MSE=0.0040

x̂(2)
s:n

27.679
27.759
27.841
27.925
28.011
28.099
28.189
28.282
28.377
28.475
28.576
28.679
28.786
28.896
29.009
29.126
29.247
29.372
29.502
29.636
29.775
29.919
30.070
30.226
30.390
30.560
30.739
30.927
31.124
31.331
31.550
31.782
32.029
32.291
32.572
32.874
33.200
33.553
33.939
34.363
34.834
35.363
35.963
36.655
37.472
38.460
39.706
41.372
43.839
48.402

MSE= 0.5045
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Table 3: The best predictor of Xs:n based on Gamma distribution with shape parameter k for n = 100, r = 50
k = 1, λ = 0.25 k = 5, λ = 0.25 k = 7, λ = 0.25 k = 11, λ = 0.25

s xs:n x̂(1)
s:n

51 2.839 2.839
52 2.923 2.920
53 3.008 3.004
54 3.096 3.089
55 3.183 3.176
56 3.269 3.265
57 3.357 3.356
58 3.448 3.449
59 3.544 3.544
60 3.639 3.641
61 3.737 3.741
62 3.845 3.844
63 3.951 3.949
64 4.056 4.057
65 4.170 4.168
66 4.281 4.283
67 4.397 4.400
68 4.515 4.522
69 4.641 4.647
70 4.784 4.776
71 4.922 4.909
72 5.063 5.047
73 5.202 5.190
74 5.355 5.338
75 5.514 5.492
76 5.677 5.652
77 5.846 5.818
78 6.022 5.992
79 6.215 6.174
80 6.404 6.365
81 6.588 6.565
82 6.796 6.775
83 7.016 6.997
84 7.259 7.233
85 7.509 7.483
86 7.776 7.749
87 8.060 8.035
88 8.365 8.343
89 8.697 8.676
90 9.070 9.040
91 9.458 9.440
92 9.900 9.884
93 10.418 10.384
94 10.981 10.956
95 11.655 11.622
96 12.455 12.422
97 13.401 13.422
98 14.747 14.756
99 16.742 16.756

100 20.994 20.756
MSE=0.002

x̂(2)
s:n

2.838
2.919
3.001
3.085
3.172
3.259
3.349
3.441
3.535
3.632
3.731
3.832
3.936
4.042
4.152
4.265
4.381
4.500
4.623
4.750
4.881
5.017
5.157
5.303
5.454
5.611
5.774
5.944
6.122
6.308
6.503
6.708
6.925
7.153
7.396
7.654
7.930
8.226
8.546
8.894
9.276
9.697
10.168
10.702
11.319
12.048
12.941
14.092
15.713
18.486

MSE=0.174

xs:n x̂(1)
s:n

18.825 18.820
19.043 19.038
19.259 19.258
19.483 19.479
19.706 19.703
19.938 19.929
20.159 20.158
20.394 20.389
20.632 20.623
20.870 20.860
21.107 21.101
21.358 21.345
21.605 21.592
21.848 21.844
22.091 22.099
22.351 22.360
22.620 22.625
22.890 22.896
23.155 23.172
23.427 23.453
23.718 23.742
24.017 24.037
24.319 24.340
24.624 24.651
24.936 24.970
25.256 25.299
25.583 25.638
25.951 25.988
26.322 26.350
26.691 26.726
27.078 27.116
27.490 27.523
27.958 27.947
28.402 28.392
28.871 28.859
29.370 29.352
29.912 29.874
30.445 30.430
31.035 31.025
31.680 31.666
32.392 32.362
33.164 33.125
34.010 33.972
34.959 34.926
36.035 36.020
37.327 37.312
38.830 38.895
40.829 40.959
43.810 43.970
49.383 49.753

MSE=0.004

x̂(2)
s:n

18.818
19.034
19.251
19.471
19.692
19.916
20.142
20.371
20.602
20.837
21.075
21.316
21.560
21.809
22.062
22.319
22.581
22.848
23.120
23.398
23.682
23.973
24.271
24.577
24.891
25.215
25.548
25.891
26.247
26.615
26.997
27.394
27.809
28.242
28.697
29.176
29.682
30.220
30.794
31.411
32.078
32.805
33.608
34.505
35.525
36.711
38.137
39.937
42.413
46.507

MSE=0.263

xs:n x̂(1)
s:n

26.873 26.865
27.133 27.126
27.390 27.388
27.650 27.652
27.914 27.918
28.185 28.187
28.467 28.458
28.744 28.733
29.012 29.010
29.302 29.290
29.582 29.574
29.857 29.862
30.146 30.154
30.446 30.450
30.746 30.751
31.041 31.057
31.332 31.368
31.653 31.685
31.965 32.008
32.293 32.338
32.634 32.675
32.980 33.019
33.330 33.372
33.686 33.734
34.060 34.105
34.437 34.486
34.825 34.879
35.232 35.285
35.638 35.704
36.082 36.138
36.549 36.588
37.024 37.056
37.527 37.544
38.074 38.055
38.617 38.591
39.209 39.155
39.794 39.752
40.444 40.387
41.123 41.065
41.844 41.794
42.622 42.585
43.508 43.450
44.476 44.408
45.548 45.485
46.739 46.718
48.120 48.168
49.882 49.941
52.157 52.244
55.512 55.589
61.712 61.968

MSE=0.003

x̂(2)
s:n

26.863
27.121
27.380
27.642
27.905
28.171
28.440
28.711
28.985
29.263
29.544
29.828
30.117
30.410
30.707
31.009
31.316
31.629
31.948
32.273
32.605
32.945
33.292
33.648
34.013
34.389
34.775
35.173
35.584
36.009
36.450
36.908
37.385
37.883
38.405
38.954
39.533
40.147
40.802
41.504
42.262
43.088
43.996
45.010
46.160
47.494
49.093
51.105
53.861
58.394

MSE=0.352

xs:n x̂(1)
s:n

42.904 42.903
43.250 43.232
43.589 43.563
43.917 43.897
44.236 44.233
44.570 44.571
44.908 44.912
45.252 45.256
45.601 45.604
45.947 45.955
46.312 46.310
46.682 46.670
47.034 47.034
47.393 47.403
47.763 47.777
48.128 48.157
48.519 48.543
48.911 48.936
49.306 49.335
49.696 49.743
50.096 50.158
50.501 50.583
50.943 51.017
51.373 51.461
51.840 51.917
52.301 52.384
52.777 52.865
53.297 53.361
53.817 53.872
54.335 54.400
54.872 54.948
55.491 55.516
56.080 56.108
56.723 56.727
57.357 57.374
58.049 58.056
58.752 58.775
59.492 59.537
60.361 60.351
61.238 61.225
62.161 62.170
63.198 63.201
64.342 64.341
65.667 65.618
67.092 67.077
68.721 68.788
70.660 70.872
73.380 73.567
77.268 77.460
84.514 84.821

MSE= 0.006

x̂(2)
s:n

42.900
43.226
43.554
43.884
44.216
44.551
44.889
45.229
45.573
45.921
46.272
46.627
46.987
47.352
47.722
48.097
48.479
48.866
49.261
49.663
50.072
50.491
50.919
51.356
51.804
52.265
52.737
53.224
53.726
54.244
54.780
55.337
55.915
56.519
57.150
57.813
58.511
59.250
60.036
60.878
61.784
62.770
63.852
65.056
66.418
67.994
69.876
72.236
75.452
80.706

MSE=0.445
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Table 4: The best predictor of Xs:n based on Beta(a, b) for n = 100, r = 50
a = 1, b = 1 a = 2, b = 2 a = 5, b = 1 a = 1, b = 5

s xs:n x̂(1)
s:n

51 0.505 0.505
52 0.515 0.515
53 0.525 0.525
54 0.535 0.535
55 0.545 0.545
56 0.555 0.555
57 0.565 0.565
58 0.575 0.575
59 0.585 0.585
60 0.594 0.595
61 0.604 0.605
62 0.614 0.615
63 0.624 0.625
64 0.633 0.635
65 0.643 0.645
66 0.653 0.655
67 0.663 0.665
68 0.673 0.675
69 0.682 0.685
70 0.692 0.695
71 0.702 0.705
72 0.712 0.715
73 0.722 0.725
74 0.731 0.735
75 0.741 0.745
76 0.751 0.755
77 0.760 0.765
78 0.771 0.775
79 0.781 0.785
80 0.791 0.795
81 0.802 0.805
82 0.812 0.815
83 0.822 0.825
84 0.832 0.835
85 0.841 0.845
86 0.852 0.855
87 0.862 0.865
88 0.871 0.875
89 0.881 0.885
90 0.891 0.895
91 0.901 0.905
92 0.911 0.915
93 0.921 0.925
94 0.931 0.935
95 0.941 0.945
96 0.951 0.955
97 0.961 0.965
98 0.971 0.975
99 0.981 0.985

100 0.991 0.994
MSE=0.000009

x̂(2)
s:n

0.505
0.515
0.525
0.535
0.545
0.554
0.564
0.574
0.584
0.594
0.604
0.614
0.624
0.634
0.644
0.653
0.663
0.673
0.683
0.693
0.703
0.713
0.723
0.733
0.743
0.752
0.762
0.772
0.782
0.792
0.802
0.812
0.822
0.832
0.842
0.851
0.861
0.871
0.881
0.891
0.901
0.911
0.921
0.931
0.941
0.950
0.960
0.970
0.980
0.990

MSE=0.000001

xs:n x̂(1)
s:n

0.503 0.503
0.510 0.510
0.516 0.517
0.523 0.523
0.530 0.530
0.537 0.537
0.544 0.543
0.550 0.550
0.557 0.557
0.564 0.564
0.571 0.571
0.577 0.577
0.584 0.584
0.591 0.591
0.598 0.598
0.605 0.605
0.612 0.612
0.618 0.619
0.625 0.626
0.632 0.633
0.639 0.641
0.646 0.648
0.654 0.655
0.661 0.663
0.668 0.670
0.675 0.678
0.683 0.685
0.691 0.693
0.699 0.701
0.707 0.709
0.715 0.717
0.724 0.725
0.732 0.734
0.741 0.742
0.749 0.751
0.759 0.760
0.768 0.770
0.778 0.779
0.787 0.789
0.797 0.799
0.808 0.810
0.819 0.821
0.830 0.832
0.842 0.845
0.855 0.858
0.868 0.872
0.884 0.888
0.901 0.905
0.921 0.927
0.948 0.956

MSE=0.000005

x̂(2)
s:n

0.503
0.510
0.516
0.523
0.530
0.536
0.543
0.550
0.556
0.563
0.570
0.577
0.583
0.590
0.597
0.604
0.611
0.618
0.625
0.632
0.639
0.646
0.654
0.661
0.668
0.676
0.683
0.691
0.699
0.707
0.715
0.723
0.731
0.740
0.748
0.757
0.766
0.776
0.785
0.795
0.805
0.816
0.827
0.839
0.852
0.865
0.880
0.897
0.916
0.941

MSE=0.000003

xs:n x̂(1)
s:n

0.871 0.871
0.875 0.875
0.878 0.878
0.882 0.882
0.885 0.885
0.888 0.888
0.892 0.891
0.895 0.895
0.898 0.898
0.901 0.901
0.904 0.904
0.907 0.907
0.910 0.910
0.913 0.913
0.915 0.916
0.918 0.918
0.921 0.921
0.924 0.924
0.926 0.927
0.929 0.930
0.931 0.932
0.934 0.935
0.937 0.937
0.939 0.940
0.942 0.943
0.944 0.945
0.947 0.948
0.949 0.950
0.952 0.953
0.954 0.955
0.957 0.957
0.959 0.960
0.962 0.962
0.964 0.964
0.966 0.967
0.968 0.969
0.971 0.971
0.973 0.974
0.975 0.976
0.977 0.978
0.979 0.980
0.981 0.982
0.984 0.984
0.986 0.987
0.988 0.989
0.990 0.991
0.992 0.993
0.994 0.995
0.996 0.997
0.998 0.999
MSE=0.0000004

x̂(2)
s:n

0.871
0.875
0.878
0.881
0.885
0.888
0.891
0.894
0.897
0.901
0.904
0.907
0.909
0.912
0.915
0.918
0.921
0.924
0.926
0.929
0.932
0.934
0.937
0.939
0.942
0.945
0.947
0.949
0.952
0.954
0.957
0.959
0.961
0.964
0.966
0.968
0.971
0.973
0.975
0.977
0.979
0.981
0.984
0.986
0.988
0.990
0.992
0.994
0.996
0.998

MSE=0.0000000

xs:n x̂(1)
s:n

0.132 0.132
0.136 0.136
0.139 0.139
0.143 0.143
0.147 0.147
0.151 0.150
0.154 0.154
0.158 0.158
0.162 0.162
0.166 0.166
0.170 0.170
0.175 0.175
0.179 0.179
0.183 0.183
0.188 0.188
0.193 0.193
0.198 0.197
0.203 0.202
0.208 0.207
0.213 0.212
0.218 0.217
0.223 0.223
0.228 0.228
0.234 0.234
0.240 0.240
0.247 0.246
0.253 0.252
0.259 0.259
0.265 0.265
0.273 0.272
0.280 0.280
0.287 0.287
0.294 0.295
0.302 0.303
0.310 0.312
0.319 0.321
0.328 0.331
0.338 0.341
0.349 0.352
0.361 0.363
0.374 0.376
0.387 0.390
0.402 0.405
0.419 0.422
0.437 0.441
0.459 0.462
0.484 0.489
0.515 0.522
0.558 0.567
0.633 0.646

MSE=0.000008

x̂(2)
s:n

0.132
0.136
0.139
0.143
0.146
0.150
0.154
0.158
0.162
0.166
0.170
0.174
0.178
0.183
0.187
0.192
0.196
0.201
0.206
0.211
0.216
0.222
0.227
0.233
0.238
0.244
0.251
0.257
0.263
0.270
0.277
0.285
0.292
0.300
0.309
0.318
0.327
0.337
0.348
0.359
0.371
0.384
0.398
0.414
0.432
0.452
0.476
0.506
0.544
0.603

MSE=0.000029
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Table 5: The best predictor of Xs:n based on normal distribution with mean µ and variance σ2 for n = 100, r = 50
µ = 0, σ = 1 µ = 0, σ = 6 µ = 5, σ = 1 µ = 1, σ = 5

s xs:n x̂(1)
s:n

51 0.013 0.013
52 0.039 0.038
53 0.065 0.063
54 0.089 0.089
55 0.114 0.114
56 0.140 0.139
57 0.166 0.165
58 0.191 0.190
59 0.216 0.216
60 0.241 0.242
61 0.267 0.268
62 0.294 0.294
63 0.321 0.320
64 0.347 0.347
65 0.374 0.374
66 0.400 0.401
67 0.427 0.428
68 0.455 0.456
69 0.483 0.484
70 0.511 0.512
71 0.539 0.541
72 0.568 0.570
73 0.597 0.600
74 0.626 0.630
75 0.656 0.661
76 0.687 0.692
77 0.721 0.725
78 0.754 0.758
79 0.788 0.791
80 0.824 0.826
81 0.857 0.862
82 0.897 0.899
83 0.936 0.937
84 0.974 0.976
85 1.014 1.017
86 1.059 1.060
87 1.103 1.105
88 1.149 1.152
89 1.198 1.202
90 1.251 1.256
91 1.310 1.312
92 1.370 1.374
93 1.435 1.441
94 1.508 1.516
95 1.592 1.600
96 1.685 1.696
97 1.801 1.812
98 1.948 1.959
99 2.154 2.165

100 2.493 2.537
MSE=0.00006

x̂(2)
s:n

0.013
0.038
0.063
0.088
0.113
0.138
0.163
0.188
0.214
0.239
0.265
0.291
0.317
0.343
0.370
0.396
0.423
0.451
0.478
0.507
0.535
0.564
0.593
0.623
0.653
0.684
0.716
0.748
0.782
0.816
0.851
0.887
0.924
0.963
1.003
1.045
1.089
1.135
1.183
1.234
1.289
1.348
1.412
1.483
1.562
1.652
1.757
1.887
2.060
2.332

MSE=0.00093

xs:n x̂(1)
s:n

0.076 0.077
0.233 0.228
0.389 0.380
0.537 0.532
0.686 0.684
0.841 0.836
0.996 0.989
1.148 1.142
1.295 1.296
1.449 1.451
1.603 1.607
1.765 1.764
1.923 1.922
2.079 2.081
2.242 2.242
2.402 2.404
2.563 2.568
2.728 2.734
2.897 2.902
3.065 3.072
3.231 3.245
3.409 3.421
3.580 3.599
3.758 3.781
3.938 3.966
4.123 4.155
4.326 4.348
4.525 4.545
4.729 4.748
4.946 4.956
5.143 5.171
5.382 5.392
5.614 5.620
5.846 5.857
6.087 6.104
6.355 6.361
6.620 6.631
6.896 6.914
7.191 7.214
7.509 7.533
7.858 7.875
8.218 8.244
8.609 8.647
9.051 9.094
9.552 9.597

10.110 10.178
10.807 10.874
11.685 11.754
12.923 12.990
14.956 15.222
MSE=0.00207

x̂(2)
s:n

0.075
0.225
0.375
0.526
0.676
0.827
0.978
1.130
1.283
1.436
1.590
1.745
1.902
2.059
2.218
2.379
2.541
2.705
2.871
3.039
3.210
3.383
3.559
3.738
3.920
4.106
4.296
4.491
4.690
4.895
5.105
5.322
5.546
5.778
6.019
6.270
6.532
6.808
7.098
7.407
7.736
8.090
8.475
8.898
9.370
9.910
10.543
11.322
12.358
13.990

MSE= 0.03350

xs:n x̂(1)
s:n

5.013 5.013
5.039 5.038
5.065 5.063
5.089 5.089
5.114 5.114
5.140 5.139
5.166 5.165
5.191 5.190
5.216 5.216
5.241 5.242
5.267 5.268
5.294 5.294
5.321 5.320
5.347 5.347
5.374 5.374
5.400 5.401
5.427 5.428
5.455 5.456
5.483 5.484
5.511 5.512
5.539 5.541
5.568 5.570
5.597 5.600
5.626 5.630
5.656 5.661
5.687 5.692
5.721 5.725
5.754 5.758
5.788 5.791
5.824 5.826
5.857 5.862
5.897 5.899
5.936 5.937
5.974 5.976
6.014 6.017
6.059 6.060
6.103 6.105
6.149 6.152
6.198 6.202
6.251 6.256
6.310 6.312
6.370 6.374
6.435 6.441
6.508 6.516
6.592 6.600
6.685 6.696
6.801 6.812
6.948 6.959
7.154 7.165
7.493 7.537
MSE= 0.00006

x̂(2)
s:n

5.013
5.038
5.063
5.088
5.113
5.138
5.163
5.188
5.214
5.239
5.265
5.291
5.317
5.343
5.370
5.396
5.423
5.451
5.478
5.507
5.535
5.564
5.593
5.623
5.653
5.684
5.716
5.748
5.782
5.816
5.851
5.887
5.924
5.963
6.003
6.045
6.089
6.135
6.183
6.234
6.289
6.348
6.412
6.483
6.562
6.652
6.757
6.887
7.060
7.332

MSE=0.00093

xs:n x̂(1)
s:n

1.063 1.064
1.195 1.190
1.325 1.317
1.447 1.443
1.571 1.570
1.701 1.697
1.830 1.824
1.957 1.952
2.079 2.080
2.207 2.209
2.336 2.339
2.471 2.470
2.603 2.602
2.733 2.734
2.868 2.868
3.001 3.004
3.136 3.140
3.273 3.278
3.414 3.419
3.554 3.560
3.693 3.704
3.841 3.851
3.983 3.999
4.131 4.151
4.282 4.305
4.436 4.462
4.605 4.623
4.770 4.788
4.941 4.957
5.122 5.130
5.286 5.309
5.485 5.493
5.679 5.684
5.871 5.881
6.072 6.087
6.296 6.301
6.516 6.526
6.746 6.762
6.992 7.012
7.257 7.278
7.548 7.562
7.848 7.870
8.174 8.206
8.542 8.578
8.960 8.998
9.425 9.482

10.006 10.061
10.738 10.795
11.769 11.825
13.463 13.685
MSE=0.00144

x̂(2)
s:n

1.063
1.188
1.313
1.438
1.564
1.689
1.815
1.942
2.069
2.197
2.325
2.455
2.585
2.716
2.849
2.982
3.117
3.254
3.392
3.533
3.675
3.819
3.966
4.115
4.267
4.422
4.580
4.742
4.909
5.079
5.254
5.435
5.622
5.815
6.016
6.225
6.444
6.673
6.915
7.172
7.446
7.742
8.062
8.415
8.809
9.258
9.786

10.435
11.298
12.659

MSE=0.02326

Analysis of Tables 1-5

The simulation study, as shown in Tables 1-5, shows that the two estimators have unprecedented
accuracy compared to previous known methods such as Aly et al. (2023); Barakat et al. (2011, 2014, 2022),
El-Adll and Aly (2014, 2016), and El-Adll et al. (2012). Although their accuracy differs slightly depending
on the distribution used, it is worth noting that this accuracy is almost stable regardless of how far s is from
r.

Tables 1-5 compare the estimators X̂(1)
s:n and X̂(2)

s:n across different distributions (Weibull, Pareto, Gamma,
Beta, Normal) and parameter settings. Below is a detailed comparison and commentary on the results:

• Mean squared error (MSE): The tables report MSE for both estimators. Consistently, X̂(1)
s:n has lower

MSE than X̂(2)
s:n across most of distributions, indicating better predictive accuracy.
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• Bias and variance: While not explicitly reported, the lower MSE suggests X̂(1)
s:n has a better bias-variance

tradeoff.

Weibull distribution (Table 1):.

• X̂(1)
s:n performs significantly better (MSE = 0.106) compared to X̂(2)

s:n (MSE = 4.469) for k = 1, λ = 25, as
expected (the case k = 1 corresponds to the exponential distribution)

• As the shape parameter k increases (e.g., k = 11), the gap narrows, but X̂(1)
s:n remains superior.

Pareto distribution (Table 2):.

• X̂(1)
s:n dominates, especially for heavy-tailed cases (e.g., k = 3, λ = 25, MSE = 2.641 vs. 28.681).

• The uniform-based predictor struggles with heavy tails, as expected.

Gamma distribution (Table 3):.

• X̂(1)
s:n consistently outperforms, with MSE differences ranging from 0.002 vs. 0.174 (for k = 1) to 0.006

vs. 0.445 (for k = 11).

Beta distribution (Table 4):.

• Both estimators perform well due to the bounded support of Beta, but X̂(1)
s:n still has slightly lower

MSE.

• For symmetric Beta (e.g., a = 2, b = 2), the differences are minimal.

Normal distribution (Table 5):.

• X̂(1)
s:n is superior, especially for larger variances (e.g., σ = 6, MSE = 0.002 vs. 0.034).

Generally speaking, the estimator X̂(1)
s:n performs better for heavy-tailed, skewed, or exponential-like

distributions and is robust to the distributional assumptions. However, it is computationally intensive
due to the summation of harmonic series. On the other hand, the estimator X̂(2)

s:n is simpler and faster to
compute, making it suitable for light-tailed or symmetric distributions. Nevertheless, its performance tends
to deteriorate for heavy-tailed or highly skewed data. No major errors are evident in the tables.

Recommendations based on the study

Use X̂(1)
s:n for:.

• Heavy-tailed distributions (Pareto, Weibull with small k).

• High-precision applications where MSE is critical.

Use X̂(2)
s:n for:.

• Light-tailed or symmetric distributions (Beta, Normal with small σ).

• Applications requiring computational efficiency.
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2.3. Further simulation study— Mixture gamma distribution
This section extends the analysis to a mixture of two gamma distributions, a flexible model for scenarios

where data may arise from heterogeneous subpopulations (e.g., reliability engineering, survival analysis).
The section bridges the mixture model to the earlier prediction framework (Theorems 2.1 and 2.2), though
it does not explicitly derive new predictors. Instead, it evaluates the existing X̂(1)

s:n and X̂(2)
s:n estimators

empirically. The mixture of two gamma distributions has the PDF and DF expressed, respectively, as

f (x :a;α1, η1;α2, η2) = a f1(x;α1, η1) + a f2(x;α2, η2),

= a
1

Γ(α1)ηα1
1

x(α1−1) e
−x
η1 + a

1
Γ(α2)ηα2

2

x(α2−1) e
−x
η2 ,

F(x :a;α1, η1;α2, η2) = aF1(x;α1, η1) + aF2(x;α2, η2),

= a
γ(α1, x

η1
)

Γ(α1)
+ a
γ(α2, x

η2
)

Γ(α2)
,

where γ(α1, x
η1

) =
∫ x
η1

0 tα1−1e−tdt, 0 ≤ a ≤ 1, and a = 1 − a, x ∈ [0,∞), (α1, α2) > 0, (η1, η2) > 0. The
parameter a is known as the mixing proportion, and γ(α1, x

η1
) is lower incomplete gamma function.

Lemma 2.3 (cf. Khaled et al., 2023). Let p ∈ (0, 1). Then, the quantile function (QF) (i.e., F−1) for the DF F(x :
a;α1, η1;α2, η2) is given by

Q(p :a;α1, η1;α2, η2) = η2γ
−1(α2, λ0Γ(α2)),

where γ−1(α, x) is the inverse of lower incomplete gamma function and λ0 ∈ (0, 1) is the minimum root of the
non-linear equation (of λ)

a
Γ(α1)

γ(α1,
η2

η1
γ−1(α2, λΓ(α2))) + aλ = p, 0 ≤ λ ≤ 1. (7)

Performance metrics
• MSE: Reported for three prediction horizons (50%, 80%, 100% of future order statistics).

– X̂(2)
s:n generally outperforms X̂(1)

s:n for early predictions (e.g., MSE =0.005 vs. 0.017 for s = 51 in the
first mixture).

– As s approaches n = 100, MSE escalates sharply (e.g., 4.688 vs. 18.2 for X̂(2)
s:n vs. X̂(1)

s:n in the first
mixture), indicating challenges in tail prediction.

Distributional sensitivity
• Light-tailed mixtures (e.g., third setting: a = 0.7, α1 = 1, η1 = 0.5): Both estimators perform similarly

(MSE = 0.000), likely due to symmetry and boundedness.

• Heavy-tailed mixtures (e.g., first setting: a = 0.2, α1 = 1, η1 = 25): X̂(2)
s:n shows superior robustness

(MSE =0.005 vs. 0.017 ).

Notable observations
• The fourth mixture (a = 0.9, α1 = 1, η1 = 5) exhibits the largest MSE (25.8 for X̂(1)

s:n), suggesting
instability with dominant high-variance components.

• X̂(2)
s:n occasionally matches X̂(1)

s:n (e.g., third setting), supporting its use for simpler mixtures.

• Table 6 shows that the MSE spikes for high s (e.g., extrapolation challenges in mixture tails).
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Table 6: n = 100, r = 50 simulation 1000 times f (x :a;α1, η1;α2, η2)
(0.2, 1, 25; 1, 10) (0.2, 25, 0.5; 3, 10) (0.7, 1, 0.5; 2, 0.25) (0.9, 1, 5; 5, 10)

s xs:n x̂(1)
s:n

51 8.124 8.133
52 8.358 8.381
53 8.618 8.634
54 8.877 8.893
55 9.128 9.158
56 9.403 9.430
57 9.675 9.709
58 9.940 9.995
59 10.233 10.288
60 10.524 10.590
61 10.849 10.900
62 11.160 11.219
63 11.461 11.548
64 11.776 11.886
65 12.104 12.235
66 12.442 12.596
67 12.821 12.968
68 13.196 13.353
69 13.590 13.752
70 13.979 14.166
71 14.395 14.595
72 14.832 15.041
73 15.308 15.505
74 15.770 15.990
75 16.260 16.495
76 16.760 17.024
77 17.338 17.579
78 17.897 18.161
79 18.489 18.774
80 19.089 19.421
81 19.759 20.107
82 20.443 20.834
83 21.157 21.609
84 21.921 22.438
85 22.754 23.328
86 23.650 24.290
87 24.560 25.333
88 25.524 26.473
89 26.728 27.727
90 28.016 29.120
91 29.444 30.683
92 31.108 32.459
93 32.897 34.509
94 34.953 36.922
95 37.315 39.837
96 40.112 43.490
97 43.662 48.280
98 48.114 55.018
99 54.141 65.926

100 62.792 88.668
MSE50% 0.017
MSE80% 0.150
MSE100% 18.2

x̂(2)
s:n

8.131
8.376
8.626
8.883
9.145
9.414
9.689
9.972
10.262
10.560
10.866
11.181
11.505
11.839
12.183
12.539
12.905
13.285
13.677
14.084
14.506
14.944
15.400
15.874
16.370
16.888
17.430
17.999
18.597
19.228
19.895
20.602
21.354
22.157
23.018
23.944
24.947
26.039
27.237
28.561
30.038
31.707
33.617
35.843
38.497
41.762
45.944
51.622
60.115
75.968
0.005
0.036
4.688

xs:n x̂(1)
s:n

21.871 21.892
22.310 22.358
22.791 22.830
23.261 23.305
23.713 23.786
24.201 24.271
24.678 24.761
25.132 25.255
25.631 25.755
26.117 26.261
26.655 26.772
27.159 27.291
27.642 27.816
28.138 28.349
28.649 28.890
29.170 29.441
29.740 30.001
30.297 30.571
30.874 31.153
31.433 31.747
32.024 32.355
32.635 32.977
33.291 33.614
33.916 34.268
34.572 34.940
35.229 35.631
35.975 36.345
36.684 37.082
37.420 37.845
38.155 38.636
38.965 39.459
39.774 40.316
40.602 41.212
41.474 42.151
42.400 43.138
43.377 44.181
44.350 45.286
45.360 46.465
46.585 47.727
47.866 49.090
49.234 50.573
50.776 52.201
52.388 54.011
54.174 56.053
56.139 58.405
58.365 61.186
61.044 64.607
64.225 69.087
68.255 75.671
73.633 88.407

0.049
0.239

6.8

x̂(2)
s:n

21.888
22.349
22.816
23.287
23.762
24.242
24.727
25.217
25.711
26.211
26.717
27.230
27.749
28.276
28.810
29.354
29.907
30.470
31.044
31.630
32.229
32.842
33.469
34.113
34.774
35.454
36.155
36.878
37.626
38.401
39.207
40.045
40.920
41.835
42.796
43.809
44.881
46.020
47.238
48.548
49.967
51.518
53.232
55.152
57.339
59.891
62.968
66.863
72.268
81.239
0.018
0.075
1.882

xs:n x̂(1)
s:n

0.373 0.373
0.382 0.383
0.392 0.393
0.402 0.403
0.411 0.413
0.422 0.423
0.432 0.433
0.442 0.444
0.453 0.455
0.463 0.466
0.475 0.477
0.487 0.489
0.498 0.501
0.509 0.513
0.521 0.526
0.533 0.539
0.546 0.552
0.559 0.565
0.573 0.579
0.587 0.594
0.601 0.608
0.616 0.624
0.632 0.639
0.648 0.656
0.664 0.673
0.681 0.690
0.700 0.709
0.719 0.728
0.738 0.748
0.757 0.769
0.779 0.791
0.800 0.814
0.823 0.838
0.847 0.864
0.872 0.892
0.900 0.921
0.927 0.952
0.956 0.986
0.991 1.023
1.029 1.063
1.069 1.107
1.116 1.157
1.165 1.212
1.220 1.276
1.282 1.351
1.353 1.442
1.441 1.556
1.547 1.710
1.685 1.945
1.874 2.426

0.000
0.000
0.009

x̂(2)
s:n

0.373
0.383
0.392
0.402
0.412
0.422
0.433
0.443
0.454
0.465
0.476
0.488
0.499
0.512
0.524
0.537
0.549
0.563
0.577
0.591
0.605
0.620
0.636
0.652
0.669
0.686
0.704
0.723
0.742
0.763
0.784
0.807
0.830
0.855
0.882
0.910
0.941
0.973
1.009
1.047
1.089
1.136
1.188
1.248
1.317
1.399
1.501
1.633
1.822
2.151
0.000
0.000
0.002

xs:n x̂(1)
s:n

4.625 4.753
4.670 4.842
4.727 4.994
4.796 5.135
4.871 5.192
4.954 5.333
5.045 5.551
5.150 5.717
5.267 5.919
5.401 6.111
5.552 6.270
5.708 6.413
5.863 6.562
6.028 6.772
6.204 6.970
6.387 7.169
6.599 7.390
6.809 7.637
7.035 7.863
7.259 8.113
7.499 8.383
7.755 8.666
8.045 8.948
8.327 9.258
8.631 9.588
8.947 9.944
9.320 10.315
9.694 10.733
10.106 11.182
10.537 11.673
11.034 12.214
11.573 12.819
12.169 13.506
12.842 14.292
13.662 15.214
14.624 16.321
15.696 17.688
16.939 19.441
18.699 21.763
20.770 24.854
23.316 28.718
26.421 33.021
29.869 37.457
33.800 41.973
38.096 46.676
42.798 51.758
48.081 57.522
53.890 64.525
60.635 74.080
68.951 91.182

0.487
1.653
25.8

x̂(2)
s:n

4.753
4.838
4.989
5.128
5.188
5.328
5.537
5.704
5.899
6.094
6.254
6.391
6.540
6.745
6.942
7.138
7.358
7.593
7.827
8.066
8.326
8.602
8.881
9.184
9.505
9.854

10.214
10.614
11.051
11.526
12.043
12.622
13.276
14.019
14.882
15.907
17.159
18.738
20.802
23.554
27.104
31.241
35.602
40.037
44.600
49.445
54.815
61.118
69.216
81.733
0.440
1.019

11.424

Recommendations based on the study

• For practice: Use X̂(2)
s:n for heavy-tailed or complex mixtures.

• For research: Explore hybrid estimators or bias-correction techniques for tail predictions.

2.4. Impact of parameter estimation uncertainty on prediction accuracy

This subsection systematically quantifies the additional uncertainty introduced when distribution pa-
rameters must be estimated from Type II censored data, rather than being known exactly. We implemented
maximum likelihood estimation to derive the Weibull shape parameter k from the first 50 order statistics.
Then, we used these estimates (the mean estimate over 1000 simulated sample, denoted in Table 7 by k̂)
to predict 10%(5 observations), 20%(10 observations), and 30%(15 observations) of the original number of
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observations, by using the predictor x̂(1).
s:n Table 7 compare the MSE of the predictions when we use the true

value of k and MSE of those predictions (denoted by x̂(1)⋆
s:n in Table 7) when we use the mean estimated

value of k. Table 7 provides a quantitative assessment of the effect of parameter estimation uncertainty on
the accuracy of predicting future order statistics under Type II censoring. When the true shape parameter
k of the Weibull distribution is employed in the predictor, the resulting mean squared errors (MSEs) are
negligible across all prediction levels (10%, 20%, and 30% of the original sample size). This confirms that,
under complete parametric knowledge, the proposed predictor X̂(1)

s:n performs with essentially unbiased ac-
curacy. In contrast, when the predictor is constructed using the mean of the maximum likelihood estimates
of k (obtained from the first r = 50 order statistics across 1000 replications), the prediction error increases
nontrivially, although, they are still acceptably small compared to other known methods.

The impact of estimation error is most pronounced for the case k = 0.5, where the MSE inflates from
near zero to 0.323 at 10%, reaching as high as 5.214 at 30%. These results underscore two important points.
First, parameter estimation error systematically propagates into prediction error, with the magnitude of
degradation increasing with the number of predicted future order statistics. Second, the effect is exacerbated
for more extreme parameter settings (e.g., small shape values), where estimation of k is intrinsically more
variable under censoring. Consequently, while the best predictor retains its desirable properties under
known parameters, practitioners should anticipate and account for appreciable loss of efficiency when
relying on estimated parameters in censored-sample contexts.

Table 7: The best predictor of Xs:n based on the Weibull distribution for n = 100, r = 50 , λ = 25
k = 0.5 , k̂ = 0.729 k = 3 , k̂ = 4.374 k = 7 , k̂ = 10.206 k = 11 , k̂ = 16.037

s xs:n x̂(1)
s:n x̂(1)⋆

s:n

51 12.918 12.921 12.794
52 13.669 13.658 13.389
53 14.469 14.432 14.005
54 15.318 15.245 14.642
55 16.222 16.099 15.301
56 17.096 16.996 15.983
57 18.079 17.939 16.691
58 19.096 18.931 17.423
59 20.149 19.975 18.183
60 21.233 21.073 18.972
61 22.432 22.230 19.790
62 23.636 23.449 20.640
63 24.954 24.734 21.523
64 26.335 26.090 22.441
65 27.727 27.521 23.397

MSE10% 0.00438 0.323
MSE20% 0.01345 1.656
MSE30% 0.02412 5.214

xs:n x̂(1)
s:n x̂(1)⋆

s:n

22.273 22.279 22.243
22.487 22.492 22.419
22.702 22.706 22.594
22.920 22.920 22.768
23.141 23.134 22.941
23.348 23.350 23.114
23.565 23.566 23.286
23.784 23.783 23.458
24.000 24.001 23.629
24.212 24.220 23.801
24.436 24.441 23.972
24.651 24.664 24.144
24.874 24.888 24.316
25.096 25.114 24.488
25.316 25.342 24.661

0.00002 0.016
0.00002 0.063
0.00010 0.147

xs:n x̂(1)
s:n x̂(1)⋆

s:n

23.786 23.789 23.773
23.884 23.887 23.854
23.982 23.984 23.934
24.080 24.081 24.013
24.180 24.178 24.091
24.272 24.274 24.169
24.368 24.370 24.246
24.466 24.467 24.323
24.560 24.563 24.399
24.653 24.659 24.475
24.751 24.755 24.551
24.844 24.852 24.626
24.940 24.948 24.701
25.035 25.045 24.776
25.129 25.143 24.851

0.00000 0.003
0.00001 0.012
0.00003 0.027

xs:n x̂(1)
s:n x̂(1)⋆

s:n

24.220 24.221 24.211
24.283 24.285 24.263
24.346 24.348 24.315
24.410 24.410 24.366
24.474 24.473 24.417
24.533 24.535 24.467
24.595 24.597 24.517
24.658 24.659 24.566
24.718 24.720 24.615
24.778 24.782 24.664
24.840 24.843 24.712
24.900 24.905 24.761
24.961 24.967 24.809
25.021 25.028 24.857
25.081 25.090 24.905

0.00000 0.001
0.00000 0.005
0.00002 0.011

3. Confidence intervals for future order statistics

To construct confidence intervals for the predicted future order statistic Xs:n, based on Theorems 2.1 and
2.2, we assume that the underlying distribution FX is known or well-estimated. The goal is to construct an
interval [L,U] such that:

P(Xs:n ∈ [L,U] | X1:n, . . . ,Xr:n) = 1 − α.

We approximate the DF of Xs:n as a Beta distribution, FX(Xs:n) ∼ Beta(s,n − s + 1). From this, we obtain a
naive (marginal) approach to constructing a confidence interval for Xs:n would be[

F−1
X

(
Bα/2

)
, F−1

X
(
B1−α/2

)]
,
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where Bα/2 and B1−α/2 are the quantiles of the Beta(s,n− s+ 1) distribution. However, this interval does not
incorporate the predictors and thus is not conditional on the observed data.

In both Theorems 2.1 and 2.2, the predictor for the future order statistic Xs:n is of the form X̂(i)
s:n =

F−1
X (p(i)

s ), i = 1, 2, where p(1)
s and p(2)

s are functions of FX(Xr:n) and depend on the censoring and the position
of the target order statistic. Namely,

p(1)
s = 1 − (1 − FX(Xr:n)) exp

− n−r∑
j=n−s+1

1
j


and

p(2)
s = FX(Xr:n) + (1 − FX(Xr:n)) ×

s − r
n − r + 1

.

Thus, p(i)
s is the estimated quantile level where the future order statistic Xs:n is expected to lie, based on the

available censored data. We note that for large enough s and n−s+1, the distribution FX(Xs:n) ∼ Beta(s,n−s+1)
can be approximated by a normal distribution:

FX(Xs:n) ≈ N
(
µBeta , σ

2
Beta

)
,

where µBeta =
s

n+1 and σ2
Beta =

s(n−s+1)
(n+1)2(n+2) . Thus, we can approximate the confidence interval for FX(Xs:n) as:[

p(i)
s − zα/2σBeta , p(i)

s + zα/2σBeta

]
, i = 1, 2,

where zα/2 is the standard normal quantile (e.g., z0.025 ≈ 1.96) and σBeta is the standard deviation of the Beta
distribution. Mapping this interval back to the original X-scale using the quantile function F−1

X , we obtain
the final (approximate) confidence interval:[

F−1
X

(
p(i)

s − zα/2σBeta

)
, F−1

X

(
p(i)

s + zα/2σBeta

)]
. (8)

Remark 3.1 (Bounds for p(i)
s , i = 1, 2). It is not hard to verify that p(1)

s ∈ [0, 1] and p(2)
s ∈

[
s−r

n−r+1 , 1
]
. These bounds

ensure that p(i)
s remains within valid probability limits for any continuous distribution FX. The lower bound for p(2)

s
reflects its dependence on the relative position of s within the remaining order statistics.

Remark 3.2 (Conditions for large s and n in confidence interval approximation). The confidence intervals for
future order statistics rely on a normal approximation of the Beta distribution for FX(Xs:n). The normal approxi-
mation is valid under the condition that n is sufficiently large (typically n ≥ 30) to ensure the Beta distribution is
well-approximated by a normal distribution. Moreover, the approximation works best when s is not too close to the
boundaries (i.e., when both s and n − s + 1 are large). A common rule of thumb is: min(s,n − s + 1) ≥ 5 (ensures
the Beta distribution is not too skewed). For example, if n = 100, s should satisfy 5 ≤ s ≤ 95. The approximation
deteriorates if s is too close to 1 or n (e.g., when predicting the very first or last order statistic).

Based on the theoretical justification of this approximation and empirical evidence from a simulation study, we
conclude that the approximation is reasonable if 0.1 n ≤ s ≤ 0.9 n (e.g., for n = 100, 10 ≤ s ≤ 90).

Example 3.1 (Normal distribution). Let X ∼ N(µ, σ2). Furthermore, let Xi:n = xi i = 1, 2, ..., r be the observed
values. Our target is constructing a 95% confidence interval for Xs:n r < s, using p(2)

s . Thus, by Theorem 2.2, compute
p(2)

s as

p(2)
s = FX(xr) + (1 − FX(xr)) ×

s − r
n − r + 1

,

where FX(xr) = Φ
( xr−µ
σ

)
is the DF of the normal distribution. For large s and n − s + 1, approximate FX(Xs:n) ∼

Beta(s,n − s + 1) by a normal distribution, where

µBeta =
s

n + 1
and σ2

Beta =
s(n − s + 1)

(n + 1)2(n + 2)
. (9)
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Therefore, the confidence interval for FX(Xs:n) is given by[
p(2)

s − z0.025σBeta, p(2)
s + z0.025σBeta

]
,

where z0.025 ≈ 1.96. Thus, map back to the X-scale, by using the inverse DF of the normal distribution, we get[
µ + σΦ−1(p(2)

s − 1.96σBeta), µ + σΦ−1(p(2)
s + 1.96σBeta)

]
.

By choosing µ = 0, σ = 1, n = 20, r = 10, s = 15, and zr = 0.5. Therefore, compute p(2)
s as

FZ(0.5) = Φ(0.5) ≈ 0.6915, p(2)
s = 0.6915 + (1 − 0.6915)

5
11
≈ 0.8319.

The Beta approximation is given by

σBeta =

√
15 × 6

212 × 22
≈ 0.077.

The confidence interval for FX(X15:20) is now given by

[0.8319 − 1.96 × 0.077, 0.8319 + 1.96 × 0.077] ≈ [0.681, 0.983].

Finally, map to X-scale by using (8), we get the confidence interval for X15:20 as[
Φ−1(0.681),Φ−1(0.983)

]
≈ [0.47, 2.12].

Example 3.2 (Weibull distribution). Let X ∼ Weibull(k, λ), with DF Fx(x) = 1 − e−(x/λ)k . Furthermore, Let
Xi:n = xi, i = 1, 2, ..., r. Our target is constructing a 95% confidence interval for Xs:n using p(1)

s . Thus, by Theorem
2.1, compute p(1)

s as

p(1)
s = 1 − (1 − FX(xr)) × exp

− n−r∑
j=n−s+1

1
j

 ,
where FX(xr) = 1 − e−(zr/λ)k . For large s and n − s + 1, approximate FX(Xs:n) ∼ Beta(s,n − s + 1) by a normal
distribution, where µBeta and σ2

Beta are defined in (9. Thus, the confidence interval for FX(Xs:n) is given by[
p(1)

s − 1.96σBeta, p(1)
s + 1.96σBeta

]
.

By mapping back to the X-scale, using the inverse DF of the Weibull distribution, we get[
λ(− ln(1 − p(1)

s + 1.96σBeta))1/k, λ(− ln(1 − p(1)
s − 1.96σBeta))1/k

]
.

By choosingk = 2, λ = 1, n = 20, r = 10, s = 15, and zr = 0.8, we can compute p(1)
s as

FX(0.8) = 1 − e−(0.8)2
≈ 0.5273,

10∑
j=6

1
j
≈ 0.645.

p(1)
s = 1 − (1 − 0.5273)e−0.645

≈ 0.754.

Also, the Beta approximation is given by σBeta ≈ 0.077. Thus, the confidence interval for FX(X15:20) is

[0.754 − 1.96 × 0.077, 0.754 + 1.96 × 0.077] ≈ [0.603, 0.905].

Finally, by mapping to X-scale, we get[
(− ln(1 − 0.603))1/2, (− ln(1 − 0.905))1/2

]
≈ [0.95, 1.52].
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4. Apllications

Example 4.1 (Voltage stress data). We use real data from El-Adll et al. (2012) to illustrate the effectiveness of our
method. The data, originally provided by Lawless (2011, p. 189), consist of voltage levels at which failures occurred
in a certain type of electrical cable insulation (Type 1 insulation). In this laboratory experiment, 20 specimens were
subjected to progressively increasing voltage stress, and the failure voltages, measured in kilovolts per millimeter, are
listed in Table 8.

Table 8: Voltage stress data in a laboratory experiment

32.0 35.4 36.2 39.8 41.2 43.3 45.5 46.0 46.2 46.4
46.5 46.8 47.3 47.3 47.6 49.2 50.4 50.9 52.4 56.3

In Table 9, x̂s:n and x̂(1)
s:n denote the predictors of xs:n obtained using the pivotal quantity method (cf. El-Adll et al.,

2012) and Theorem 2.2 of this work, respectively. Additionally, PI and CIα=0.05 represent the corresponding prediction
intervals.

Table 9 compares the two prediction methods for the voltage stress data:

• Pivotal quantity method (El-Adll et al., 2012)

• Conditional expectation (exponential-Based) method

Key findings:

• The exponential-based predictor (X̂(1)
s:n) achieves a lower MSE (1.665 vs. 2.50), indicating improved accuracy.

• Its adaptive confidence intervals better capture the observed values, though they become unbounded for extreme
order statistics (s ≥ 17).

• The pivotal method provides fixed-width intervals but may exclude the true values in the tails.

Conclusion: The exponential-based method offers enhanced point predictions, though inference for the extreme tails
remains challenging. A hybrid approach that leverages both methods could potentially offer further improvements.

Table 9: Specimens and the failure voltages initial Weibull: a = 9.1973, σ = 47.7383

Pivotal quantity Conditional expectation(exp)
s xs:n x̂s:n PI

10 46.40 47.32 (46.20, 48.44)
11 46.50 47.93 (46.20, 49.67)
12 46.80 48.46 (46.20, 50.72)
13 47.30 48.95 (46.20, 51.71)
14 47.30 49.43 (46.20, 52.66)
15 47.60 49.91 (46.20, 53.62)
16 49.20 50.41 (46.20, 54.62)
17 50.40 50.95 (46.20, 55.69)
18 50.90 51.57 (46.20, 56.93)
19 52.40 52.35 (46.20, 58.50)
20 56.30 53.63 (46.20, 61.06)

MSE=2.50

s xs:n x̂(1)
s:n CIα=0.05

10 46.400 46.786 [43.66, 49.83]
11 46.500 47.368 [44.33, 50.52]
12 46.800 47.952 [45.00, 51.26]
13 47.300 48.546 [45.67, 52.07]
14 47.300 49.160 [46.35, 53.01]
15 47.600 49.804 [47.05, 54.22]
16 49.200 50.497 [47.78, 56.49]
17 50.400 51.266 [48.57, NaN]
18 50.900 52.163 [49.45, NaN]
19 52.400 53.309 [50.52, NaN]
20 56.300 55.132 [51.98, NaN]

MSE=1.665
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Example 4.2 (Employer sponsored health insurance). This dataset contains information on ESI (Employer-
Sponsored Insurance) coverage among private-sector workers in the USA from 1979 to 2019. It includes demographic
breakdowns such as race, gender, education level, and recent graduation status.

We focus on the data for women specifically, the percentage of female workers with ESI coverage-comprising 41
observations. We aim to predict the next 21 future observations. The dataset is publicly available at:

https://www.kaggle.com/datasets/asaniczka/health-insurance-coverage-in-the-usa-1979-2019/data
The data are well-fitted by the Weibull distribution with parameters (13.6, 55.4). Table 8 compares the prediction

performance of Theorems 2.1 and 2.2, along with the two corresponding prediction confidence intervals (given by
Equation (8)). Table 10 compares the performance of two predictors X̂(1)

s:n (exponential-based) and X̂(2)
s:n (uniform-based)-

for predicting future order statistics in the context of the ESI data for female workers. The predictions are made for 21
future observations based on 41 existing data points.

Table 10: The percentage of female workers with ESI coverage, 41 observations, predicts 21 future observations
Theorem 2.1(exp) Theorem 2.2 (uniform)

s xs:n x̂(1)
s:n CIα=0.05

21 53.000 53.326 [51.34, 55.02]
22 53.200 53.643 [51.74, 55.32]
23 53.300 53.953 [52.12, 55.61]
24 53.400 54.258 [52.49, 55.90]
25 53.400 54.559 [52.85, 56.19]
26 53.500 54.857 [53.20, 56.49]
27 53.600 55.154 [53.54, 56.78]
28 53.700 55.452 [53.88, 57.09]
29 54.000 55.751 [54.22, 57.40]
30 54.300 56.054 [54.55, 57.72]
31 54.800 56.362 [54.89, 58.05]
32 54.900 56.679 [55.23, 58.41]
33 55.300 57.006 [55.58, 58.79]
34 59.000 57.348 [55.94, 59.21]
35 59.400 57.710 [56.32, 59.69]
36 59.800 58.099 [56.71, 60.25]
37 60.100 58.526 [57.14, 61.01]
38 60.800 59.010 [57.61, 62.36]
39 60.900 59.586 [58.15, NaN]
40 61.100 60.337 [58.82, NaN]
41 61.300 61.558 [59.76, NaN]

MSE=1.968

s xs:n x̂(2)
s:n CIα=0.05

21 53.000 53.319 [51.33, 55.02]
22 53.200 53.629 [51.72, 55.30]
23 53.300 53.933 [52.10, 55.59]
24 53.400 54.231 [52.46, 55.87]
25 53.400 54.525 [52.81, 56.16]
26 53.500 54.817 [53.15, 56.44]
27 53.600 55.108 [53.49, 56.73]
28 53.700 55.398 [53.82, 57.03]
29 54.000 55.690 [54.16, 57.33]
30 54.300 55.985 [54.49, 57.63]
31 54.800 56.286 [54.82, 57.96]
32 54.900 56.593 [55.15, 58.29]
33 55.300 56.909 [55.50, 58.65]
34 59.000 57.239 [55.85, 59.04]
35 59.400 57.586 [56.21, 59.47]
36 59.800 57.956 [56.60, 59.96]
37 60.100 58.359 [57.01, 60.57]
38 60.800 58.808 [57.47, 61.40]
39 60.900 59.330 [57.98, 63.41]
40 61.100 59.980 [58.61, NaN]
41 61.300 60.919 [59.49, NaN]

MSE=2.074

Key observations:

• Mean squared error (MSE):

– The exponential-based predictor (X̂(1)
s:n) achieves a lower MSE (1.968) compared to the uniform-

based predictor (X̂(2)
s:n) with an MSE of 2.074. This suggests that the exponential-based method

provides slightly more accurate predictions for this dataset.

• Confidence intervals (CIs):

– Both methods produce similar confidence intervals, but the exponential-based predictor tends
to yield tighter intervals, especially for earlier predictions (e.g., s = 21 to s = 30). This indicates
better precision in estimating future values.
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– For extreme predictions (e.g., s ≥ 39), the CIs for both methods become unbounded (indicated
by “NaN”), highlighting the challenge of predicting far-tail observations.

• Performance across predictions:

– The predictors perform comparably for mid-range observations, but the exponential-based
method shows a marginal advantage in accuracy, as evidenced by the lower MSE.

– The uniform-based predictor, while computationally simpler, exhibits slightly higher variability
in predictions, particularly for larger values of s.

Conclusion: The results in Table 10 demonstrate that the exponential-based predictor (X̂(1)
s:n) is preferable

for this dataset due to its lower MSE and tighter confidence intervals. However, the uniform-based
predictor (X̂(2)

s:n) remains a viable alternative, especially when computational efficiency is a priority. The
unbounded CIs for extreme predictions underscore the limitations of both methods in prediction far-tail
events, suggesting a need for further refinement or hybrid approaches in such cases. This analysis aligns
with the paper’s broader findings, where the exponential-based predictor generally excels in accuracy,
while the uniform-based predictor offers simplicity and computational ease.

Example 4.3 (Windscreen failures). It is known that the exponential distribution has an important property,
make it considered as one of the important classical distributions, addition to it is analytically tractable distribution.
However, it has some limited applications, because of its fixed hazard rate and unimoda PDF. For that, several
extensions of the exponential distribution were considered to increase its flexibility and applicability. One of these
extensions is the Modified Kies-Exponential (MKE) distribution, see Al-Babtain et al. (2020) and Aly et al. (2023).
Actually, MKE distribution has many applications in various fields such as reliability engineering: modeling time-
to-failure of components or systems with non-constant failure rates, survival analysis: analyzing time until an event
of interest occurs, accounting for different hazard functions, and queuing Theory. The PDF and DF of the MKE
distribution are given by:

1(x; a, b) = a b e−(ebx
−1)a

ebx (ebx
− 1)a−1,

G(x; a, b) = 1 − e−(ebx
−1)a
, x > 0,

where, a is shape parameter and b is scale parameter. The QF is given by:

Q(x; a, b) =
1
b

ln
(
(− ln(1 − x))

1
a + 1

)
.

Using a dataset of 84 observed failure times for a specific windscreen model (Aly et al., 2023), we applied our
techniques to predict the next 50 failure events. This prediction window represents 150% of the final 34 data points.
The results, presented in Table 11, were best modeled by an MKE distribution with parameters (1.783644, 0.2366933).
Comment: Table 11 compares the exponential-based (X̂(1)

s:n) and uniform-based (X̂(2)
s:n) predictors for windscreen failure

times modeled by the MKE distribution. Key observations include:

• Both predictors yield nearly identical MSEs (0.024 vs. 0.023), indicating comparable accuracy for this dataset.

• Confidence intervals (CIs) are tight for mid-range predictions but become unbounded (NaN) for extreme order
statistics (s ≥ 81), highlighting challenges in tail prediction.

• The results align with the paper’s broader findings: the exponential-based method is robust, while the uniform-
based alternative offers computational simplicity with minimal trade-offs in accuracy for this application.
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Table 11: At r = 34 prediction 150% of data (windscreen failures)
Theorem 2.1(exp) Theorem 2.2 (uniform)

s xs:n x̂(1)
s:n CIα=0.05

35 2.154 2.174 [0.13, 0.19]
36 2.190 2.213 [0.13, 0.19]
37 2.194 2.252 [0.14, 0.20]
38 2.223 2.290 [0.14, 0.20]
39 2.224 2.328 [0.14, 0.21]
40 2.229 2.366 [0.15, 0.21]
41 2.300 2.404 [0.15, 0.21]
42 2.324 2.442 [0.15, 0.22]
43 2.385 2.480 [0.16, 0.22]
44 2.481 2.518 [0.16, 0.23]
45 2.610 2.556 [0.16, 0.23]
46 2.625 2.594 [0.17, 0.24]
47 2.632 2.632 [0.17, 0.24]
48 2.646 2.670 [0.18, 0.24]
49 2.661 2.708 [0.18, 0.25]
50 2.688 2.746 [0.18, 0.25]
51 2.823 2.785 [0.19, 0.26]
52 2.890 2.823 [0.19, 0.26]
53 2.902 2.862 [0.20, 0.27]
54 2.934 2.902 [0.20, 0.27]
55 2.962 2.941 [0.20, 0.28]
56 2.964 2.981 [0.21, 0.28]
57 3.000 3.022 [0.21, 0.29]
58 3.103 3.063 [0.22, 0.29]
59 3.114 3.104 [0.22, 0.30]
60 3.117 3.146 [0.23, 0.31]
61 3.166 3.189 [0.23, 0.31]
62 3.344 3.233 [0.24, 0.32]
63 3.376 3.277 [0.24, 0.32]
64 3.443 3.322 [0.25, 0.33]
65 3.467 3.369 [0.25, 0.34]
66 3.478 3.416 [0.26, 0.35]
67 3.578 3.465 [0.26, 0.35]
68 3.595 3.515 [0.27, 0.36]
69 3.699 3.567 [0.27, 0.37]
70 3.779 3.620 [0.28, 0.38]
71 3.924 3.676 [0.29, 0.39]
72 4.035 3.734 [0.29, 0.40]
73 4.121 3.795 [0.30, 0.41]
74 4.167 3.859 [0.31, 0.42]
75 4.240 3.927 [0.32, 0.44]
76 4.255 4.000 [0.33, 0.46]
77 4.278 4.079 [0.34, 0.48]
78 4.305 4.165 [0.35, 0.50]
79 4.376 4.261 [0.36, 0.54]
80 4.449 4.369 [0.37, 0.59]
81 4.485 4.497 [0.39, NaN]
82 4.570 4.655 [0.41, NaN]
83 4.602 4.870 [0.44, NaN]
84 4.663 5.241 [0.48, NaN]

MSE=0.024

s xs:n x̂(2)
s:n CIα=0.05

35 2.154 2.174 [0.13, 0.19]
36 2.190 2.212 [0.13, 0.19]
37 2.194 2.251 [0.14, 0.20]
38 2.223 2.289 [0.14, 0.20]
39 2.224 2.326 [0.14, 0.21]
40 2.229 2.364 [0.15, 0.21]
41 2.300 2.402 [0.15, 0.21]
42 2.324 2.439 [0.15, 0.22]
43 2.385 2.477 [0.16, 0.22]
44 2.481 2.514 [0.16, 0.23]
45 2.610 2.552 [0.16, 0.23]
46 2.625 2.589 [0.17, 0.24]
47 2.632 2.627 [0.17, 0.24]
48 2.646 2.665 [0.18, 0.24]
49 2.661 2.702 [0.18, 0.25]
50 2.688 2.740 [0.18, 0.25]
51 2.823 2.778 [0.19, 0.26]
52 2.890 2.817 [0.19, 0.26]
53 2.902 2.855 [0.19, 0.27]
54 2.934 2.894 [0.20, 0.27]
55 2.962 2.933 [0.20, 0.28]
56 2.964 2.973 [0.21, 0.28]
57 3.000 3.013 [0.21, 0.29]
58 3.103 3.053 [0.22, 0.29]
59 3.114 3.094 [0.22, 0.30]
60 3.117 3.136 [0.22, 0.30]
61 3.166 3.178 [0.23, 0.31]
62 3.344 3.221 [0.23, 0.32]
63 3.376 3.264 [0.24, 0.32]
64 3.443 3.309 [0.24, 0.33]
65 3.467 3.355 [0.25, 0.34]
66 3.478 3.401 [0.25, 0.34]
67 3.578 3.449 [0.26, 0.35]
68 3.595 3.498 [0.27, 0.36]
69 3.699 3.549 [0.27, 0.37]
70 3.779 3.601 [0.28, 0.38]
71 3.924 3.656 [0.28, 0.38]
72 4.035 3.712 [0.29, 0.39]
73 4.121 3.772 [0.30, 0.41]
74 4.167 3.834 [0.31, 0.42]
75 4.240 3.900 [0.31, 0.43]
76 4.255 3.970 [0.32, 0.45]
77 4.278 4.045 [0.33, 0.46]
78 4.305 4.127 [0.34, 0.49]
79 4.376 4.218 [0.35, 0.51]
80 4.449 4.319 [0.37, 0.55]
81 4.485 4.437 [0.38, 0.62]
82 4.570 4.578 [0.40, NaN]
83 4.602 4.761 [0.43, NaN]
84 4.663 5.040 [0.47, NaN]

MSE=0.023
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