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Abstract. We investigate different properties of ideal convergent second-order quantum difference se-
quence spaces over bi-complex numbers. We define Z[∇2

q , ∥·∥C2 ] for Z ∈ {I∗c,I∗θ,I
∗

1,I
∗

p,I
∗

∞
}, using the second

order q- difference operator ∇2
q under the Euclidean norm. We examine their BK-space structure, symmetric

property, inclusion relations, and isomorphisms with classical I− convergent bi-complex sequence spaces.
A matrix representation of the operator is given, along with counterexamples, to demonstrate contradictions
in specific inclusion cases.

1. Introduction and Priliminaries

In 1892, Segre [15] introduced bi-complex numbers, inspired by the works of Hamilton [7] and Clifford
[4]. He studied a family of algebras, naming them bi-complex, tri-complex, and so on. A bi-complex number
is of the form

(x1 + i1x2) + i2(x3 + i1x4),

or equivalently

z1 + i2z2,

where i21 = i22 = −1, and z1 = x1 + i1x2, z2 = x3 + i1x4 are complex numbers. Here, i1 and i2 are commuting
imaginary units, and their product is j = i1i2.

The set of all bi-complex numbers is denoted C2. In 1991, Price [13] provided foundational work,
followed by studies from Srivastava and Srivastava [16], Wagh [17], Rochan and Shapiro [14], Kumar and
Tripathy [10–12], and Bera and Tripathy [1–3] on sequences of bi-complex numbers.

Each bi-complex number ξ ∈ C2 can be written as

ξ = µ1e1 + µ2e2,
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where the idempotents e1 =
1+ j

2 and e2 =
1− j

2 satisfy e2
1 = e1, e2

2 = e2, and e1e2 = 0. The set C2 can be
decomposed as

C2 = e1A1(i1) + e2A2(i1) = e1{z1 − i1z2 : z1, z2 ∈ C1} + e2{z1 + i1z2 : z1, z2 ∈ C1}.

The Euclidean norm on C2 is

∥ξ∥C2 =
√

x2
1 + x2

2 + x2
3 + x2

4,

where ξ = (x1 + i1x2) + i2(x3 + i1x4).
A bi-complex number ξ = z1 + i2z2 is hyperbolic if the imaginary part of z1 and the real part of z2 are

zero. It is singular (or non-invertible) if ∥z2
1 + z2

2∥C2 = 0; otherwise, it is non-singular (or invertible). The set of
singular bi-complex numbers is O2.

Bi-complex numbers have three types of conjugations:

• i1-conjugation (i1 7→ −i1),

• i2-conjugation (i2 7→ −i2),

• i1i2-conjugation (i1 7→ −i1 and i2 7→ −i2).

1.1. Sequence space
The collection of all sequences with real or complex values is represented by ω, while the set of all

sequences with bi-complex values is denoted by ω∗. The spaces of absolutely summable, p-summable,
bounded sequences, convergent sequences, and null sequences are denoted by ℓ1, ℓp, ℓ∞, c, and c0, respec-
tively. For bi-complex valued sequence spaces, these are represented as ℓ∗1, ℓ

∗
p, ℓ
∗
∞, c∗, and c∗0, respectively.

Definition 1.1. A sequence space E is said to be BK− space (Banach coordinate maps continuous) if ∥xn
− x∥ →

0, as n→∞ implies |xn
k − xk| → 0, as n→∞, where xn = (xn

k ) for each n ∈N and x = (xk).

Definition 1.2. Let A = (an,k) be an infinite matrix with real or complex entries, and let An = (an,k)k∈N0 . The
A-transform of a sequence z = (zk) is given by the sequence Az = {(Az)n}, where

(Az)n =

∞∑
k=0

an,kzk

provided that the series
∑
∞

k=0 an,kzk converges for each n ∈N0.

Furthermore, if Z and U are sequence spaces and Az ∈ U for every sequence z ∈ Z, then the matrix A
is said to define a matrix mapping from Z to U. The notation (Z,U) denotes the family of all matrices that
map sequences from Z to U. A triangular matrix A = (an,k) satisfies the conditions an,n , 0 and an,k = 0 for
n < k. The domain of the matrix A in the sequence space Z, denoted by ZA, is defined as:

ZA = {z ∈ ω : Az ∈ Z}.

Additionally, if Z is a BK-space and A is a triangular matrix, then the matrix domain ZA = {z ∈ ω : Az ∈ Z}
is also a BK-space when equipped with the norm

∥z∥ZA = ∥Az∥Z.

This ensures that the transformed space inherits the normed structure from Z.

Definition 1.3. A sequence space E ⊆ w is said to be solid if for every sequence x = (xk) ∈ E and every sequence
y = (yk) ∈ w satisfying |yk| ≤ |xk| for all k ∈N, it follows that y ∈ E.
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Definition 1.4. A sequence space E is said to be symmetric if (xk) ∈ E implies (xπ(k)) ∈ E, where π is a permutation
ofN.

Definition 1.5. Let K = {k1 < k2 < · · · } ⊂ N and let E be a sequence space. A K-step space of E is the sequence
space

λE
K = {(xkn ) ∈ w : (xn) ∈ E}.

Definition 1.6. A canonical preimage of a sequence (xkn ) ∈ λE
K is a sequence (yn) ∈ w defined by

yn =

xn, if n ∈ K,
0, otherwise.

A canonical preimage of a step space λE
K is the set of all canonical preimages of elements in λE

K. That is, y ∈ w
belongs to the canonical preimage of λE

K if and only if y is the canonical preimage of some x ∈ λE
K.

Definition 1.7. A sequence space E ⊆ w is said to be monotone if it contains the canonical preimages of its step
spaces.

Definition 1.8. A sequence space E is said to be a sequence algebra if (xk) ∗ (yk) = (xkyk) ∈ E whenever (xk), (yk) ∈ E.

Definition 1.9. A sequence space E is said to be convergence free if (yk) ∈ E whenever (xk) ∈ E and xk = 0 implies
yk = 0.

1.2. q-Sequence Space
A q-integer is defined as

[a]q =


a−1∑
k=0

qk, for a = 1, 2, 3, . . .

0, for a = 0.

As q→ 1−, we have [a]q = a.
The q-analog of the binomial coefficient is given by(

a
b

)
q
=


[a]q!

[a−b]q![b]q! , for a ≥ b,

0, for b > a.

where [a]q! is defined as

[a]q! =


a∏

k=0
[k]q, for a = 1, 2, 3, . . . ,

1, for a = 0.

Additionally, the following identities hold:(
0
0

)
q
=

(
a
0

)
q
=

(
a
a

)
q
= 1,

(
a

a − b

)
q
=

(
a
b

)
q

For further details on q-calculus, see [6, 8, 9]. Yaying et al. [18, 19] defined the difference operator
∇

2
q : ω→ ω by

(∇2
qx)k = xk − (1 + q)xk−1 + qxk−2,

where k ∈N and xk = 0 for k < 0.
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1.3. Ideal convergence of bi-complex numbers
Definition 1.10. Let X be a non empty set. A collection I ⊆ 2X is said to be an ideal in X if and only if for all
A,B ∈ I =⇒ A ∪ B ∈ I if A ∈ I and B ⊂ A then B ∈ I.

Definition 1.11. I is said to be an admissible ideal if ∀x ∈ X, {x} ∈ I.

Definition 1.12. I is said to be a non trivial ideal if I , {∅} and X < I.

Definition 1.13. A sequence of bi-complex numbers (ξk) is said to be I−convergent to η if and only if for every
ε > 0, the set {k ∈N : ∥ξk − η∥C2 ≥ ε} ∈ I.

The bi-complex number ζ is I−limit of (ξk) and denoted by I − lim (ξk) = ζ. I∗1,I
∗
p,I

∗
∞,I

∗
c, and I∗θ are

denoted by I− absolutely summable, I− p summable, I− bounded, I−convergent, and I−null sequences
of bi-complex numbers, respectively. For a detailed discussion one may refer to [5].

2. Main Results

Metric represantation : For the subsequent results, all ideals considered are nontrivial and admissible.
Define the difference operator ∇2

q : ω∗ → ω∗ by

(∇2
qξ)k = ξk − (1 + q)ξk−1 + qξk−2,

where k ∈ N and any term of the sequence with negative indices are assumed to be zero. The operator
∇

2
q = (δ2

qnk
) can also be expressed in the form of a triangle matrix as follows:

δ2
qnk
=


1 0 0 0 · · ·

−(1 + q) 1 0 0 · · ·

q −(1 + q) 1 0 · · ·

0 q −(1 + q) 1 · · ·

...
...

...
...
. . .


We observe that the operator ∇2

q reduces to ∇2 when q→ 1−. Using some elementary calculation, we derive
the inverse of the operator ∇2

q as

∇
−2
q =


(n−k+1

n−k
)

q , if 0 < k ≤ n,

0 , k > n.

Now, We define the following ideal convergent quantum difference sequences of spaces of bi-complex
numbers as I∗1[,∇m

q , ∥ · ∥C2 ], I∗p[∇m
q , ∥ · ∥C2 ] ,I∗∞[∇m

q , ∥ · ∥C2 ],I∗c[∇αq , ∥ · ∥C2 ], and I∗0[∇αq , ∥ · ∥C2 ] as I− absolutely
summable, I−p-summable, I− bounded, I− convergent, andI− null q-difference sequences of bi-complex
numbers using q-difference operator ∇m

q .
These sequence spaces are defined as:

I
∗

1[∇m
q , ∥ · ∥C2 ] = {ξ = (ξk) ∈ ω∗ :

∑
k∈K⊆F (I)

∥∇
m
q ξk∥C2 < ∞}

I
∗

p[∇m
q , ∥ · ∥C2 ] = {ξ = (ξk) ∈ ω∗ :

∑
k∈K⊆F (I)

∥∇
m
q ξk∥

p
C2
< ∞}

I
∗

∞[∇m
q , ∥ · ∥C2 ] = {ξ = (ξk) ∈ ω∗ : sup

k∈K⊆F (I)
∥∇

m
q ξk∥C2 < ∞},

I
∗

c[∇
m
q , ∥ · ∥C2 ] = {ξ = (ξk) ∈ ω∗ : {k ∈N : ∥∇m

q ξk − ζ∥C2 ≥ ε} ∈ I}, and

I
∗

θ[∇
m
q , ∥ · ∥C2 ] = {ξ = (ξk) ∈ ω∗ : {k ∈N : ∥∇m

q ξk∥C2 ≥ ε} ∈ I}.
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Theorem 2.1. The spaces I∗c[∇2
q , ∥ · ∥C2 ], I∗θ[∇

2
q , ∥ · ∥C2 ], and I∗∞[∇2

q , ∥ · ∥C2 ] are sequence spaces.

Proof. Let (ξk) and (ηk) be two sequences in I∗c[∇2
q , ∥ · ∥C2 ]. Then:

∇
2
qξk = ξk − (1 + q)ξk−1 + qξk−2 is is I − convergent to ζ1,

∇
2
qηk = ηk − (1 + q)ηk−1 + qηk−2 is is I − convergent to ζ2,

which means, for every ε > 0,{
k ∈N :

∥∥∥∇2
qξk − ζ1

∥∥∥
C2
≥ ε

}
∈ I,

{
k ∈N :

∥∥∥∇2
qηk − ζ2

∥∥∥
C2
≥ ε

}
∈ I.

Let α, β ∈ C2, and define a new sequence (µk) by:

µk = αξk + βηk.

Then the generalized second-order q-backward difference of (ηk) is given by:

∇
2
qµk = µk − (1 + q)µk−1 + qµk−2,

= αξk + βηk − (1 + q)(αξk−1 + βηk−1) + q(αξk−2 + βηk−2),

= α(ξk − (1 + q)ξk−1 + qξk−2) + β(ηk − (1 + q)ηk−1 + qηk−2),

= α∇2
qξk + β∇

2
qηk.

Since (∇2
qξk) is I − convergent to ζ1 and (∇2

qηk) is I − convergent to ζ2, it follows that:

(∇2
qµk) is I − convergent to αζ1 + βζ2,

that is, for every ε > 0,{
k ∈N :

∥∥∥∇2
qηk − (αζ1 + βζ2)

∥∥∥
C2
≥ ε

}
∈ I.

Hence, (µk) ∈ I∗c[∇2
q , ∥ · ∥C2 ].

Therefore, the class I∗c[∇2
q , ∥ · ∥C2 ] is closed under addition and scalar multiplication. As it also contains

the zero sequence, it forms a sequence space over complex numbers.
A comparable approach can be used to demonstrate the result for the spaces I∗θ[∇

2
q , ∥ · ∥C2 ], and

I
∗
∞[∇2

q , ∥ · ∥C2 ].

Theorem 2.2. The space I∗∞[∇2
q , ∥ · ∥C2 ], endowed with the I−sup norm, is a Banach space, where the I−sup norm

is

∥ξ∥I∗∞ = sup
{
∥ξk∥C2 : k < A, A ∈ I

}
.

Proof. We aim to prove that I∗∞[∇2
q , ∥ · ∥C2 ] is a Banach space.

It is easy to verify that I∗∞[∇2
q , ∥ · ∥C2 ] is an ideal normed linear space, because the space is closed under

addition and scalar multiplication. The I− sup norm is well-defined and satisfies the properties of a norm.
Thus, I∗∞[∇2

q , ∥ · ∥C2 ] is an ideal normed linear space.
Let (ξ(n)) be an I-Cauchy sequence in I∗∞[∇2

q , ∥ · ∥C2 ]. Then for every ε > 0, there exists m(ε) such that{
n ∈N : ∥ξ(n)

k − ξ
(m)
k ∥C2 ≥ ε

}
∈ I.



T. Deb, B. C. Tripathy / Filomat 40:1 (2026), 355–370 360

Thus, for each fixed k ∈N, (ξ(n)
k )n is a Cauchy sequence in C2, and hence converges to some ξk ∈ C2.

Define ξ = (ξk) as the pointwise I-limit. We now show that ξ ∈ I∗∞[∇2
q , ∥ · ∥C2 ], i.e., (∇2

qξk) is I-bounded.
From linearity and continuity:

∇
2
qξk = lim

n→∞,n∈K∈F(K)
∇

2
qξ

(n)
k .

Since each (∇2
qξ

(n)
k ) is I-bounded and the limit of I-bounded sequences is also I-bounded, it follows that

(∇2
qξk) is I-bounded.

Hence, ξ ∈ I∗∞[∇2
q , ∥ · ∥C2 ], and the limit lies in the space.

Hence, the space I∗∞[∇2
q , ∥ · ∥C2 ], equipped with the I− sup norm ∥ · ∥I∗∞ , is a Banach space.

Theorem 2.3. The spaces I∗c[∇2
q , ∥ · ∥C2 ], and I∗θ[∇

2
q , ∥ · ∥C2 ], endowed with the I− sup norm, are Banach spaces.

Proof. We aim to show that each of the spacesI∗c[∇2
q , ∥·∥C2 ] andI∗θ[∇

2
q , ∥·∥C2 ], endowed with theI-supremum

norm, are Banach space.
First, note that both spaces are normed linear spaces. The second-order q-difference operator ∇2

q is linear,
and the I-supremum norm

∥ξ∥I∗∞ = sup
{
∥ξk∥C2 : k < A, A ∈ I

}
.

Let (ξ(n)) be an I-Cauchy sequence in either space. Then for every ε > 0, there exists N ∈ N such that for
all n,m ≥ N,{

k ∈N : ∥ξ(n)
k − ξ

(m)
k ∥C2 ≥ ε

}
∈ I.

This implies that for each fixed k ∈N, the sequence (ξ(n)
k ) is Cauchy in C2, which is complete. Hence, there

exists ξk ∈ C2 such that (ξ(n)
k )→ ξk. Define ξ = (ξk).

Since ∇2
q is linear and continuous, we may write

∇
2
qξk = lim

n→∞
∇

2
qξ

(n)
k .

For each n, the sequence (∇2
qξ

(n)
k ) is I-convergent to some ζn ∈ C2. Furthermore, since the sequence (ξ(n))

is I-Cauchy, the sequence (∇2
qξ

(n)
k ) is also I-Cauchy in norm, and hence converges I-uniformly to ∇2

qξk.
Therefore, by the preservation of I-limits, we conclude that (∇2

qξk) is I-convergent to some ζ ∈ C2.
Thus, ξ ∈ I∗c[∇2

q , ∥ · ∥C2 ]. An analogous argument applies for I∗θ, where the limit is ζ = 0.
Finally, for every ε > 0, and for all n ≥ N, we have{

k ∈N : ∥ξ(n)
k − ξk∥C2 ≥ ε

}
∈ I,

so ∥ξ(n)
− ξ∥I∗∞ < ε, showing that ξ(n)

→ ξ in the norm.
Hence, the spaces are complete under the I-sup norm, and thus are Banach spaces.

Remark 2.4. The spaces I∗c[∇2
q , ∥ · ∥C2 ], I∗θ[∇

2
q , ∥ · ∥C2 ], and I∗∞[∇2

q , ∥ · ∥C2 ] are not sequence algebras.

The following examples illustrate the above remark.

Example 2.5. Consider two bi-complex sequences (ξk) and (ηk) in I∗c[∇2
q , ∥ · ∥C2 ] such that their product sequence

does not belong to I∗c[∇2
q , ∥ · ∥C2 ], proving that I∗c[∇2

q , ∥ · ∥C2 ] is not closed under multiplication.
We define the sequences as follows:

ξk = i1k + j,
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ηk = 1 +
(−1)k

k
i2.

where i1, i2 are imaginary units satisfying i21 = i22 = −1 and j = i1i2 with j2 = 1.
For ξk,

∇
2ξk = ξk − 2ξk−1 + ξk−2

= (i1k + j) − 2(i1(k − 1) + j) + (i1(k − 2) + j)
= i1k + j − 2i1k + 2i1 + 2 j + i1k − 2i1 + j
= 0.

Therefore, {k ∈N : ∥∇2ξk − 0∥C2 ≥ ε} ∈ I
∗
c. Thus, (ξk) ∈ I∗c[∇2

q , ∥ · ∥C2 ].
For ηk,

∇
2ηk = ηk − 2ηk−1 + ηk−2

=

(
1 +

(−1)k

k
i2

)
− 2

(
1 +

(−1)k−1

k − 1
i2

)
+

(
1 +

(−1)n−2

k − 2
i2

)
= 0 +

(−1)k

k
i2 −

2(−1)k−1

n − 1
i2 +

(−1)n−2

n − 2
i2.

Since the terms (−1)k

k → 0 as, k→∞, {k ∈N : ∥∇2ξk − 0∥C2 ≥ ε} ∈ I
∗
c.We conclude (ηk) ∈ I∗c[∇2

q , ∥ · ∥C2 ].
On computing (µk) = (ξkηk), we get:

µk = (i1k + j)
(
1 +

(−1)k

k
i2

)
= i1k + j + i1k ·

(−1)k

k
i2 + j ·

(−1)k

k
i2.

By using i1i2 = j, we get:

µk = i1k + j + j
(−1)k

k
+ j

(−1)k

k
i2.

On simplifying we get:

µk = i1k + j
(
1 +

(−1)k

k
+

(−1)k

k
i2

)
.

Now, computing its second-order backward difference for q=1:

∇
2µk = µk − 2µk−1 + µk−2

=

(
i1k + j(1 +

(−1)k

k
+

(−1)k

k
i2)

)
− 2

(
i1(k − 1) + j(1 +

(−1)k−1

k − 1
+

(−1)k−1

k − 1
i2)

)
+

(
i1(k − 2) + j(1 +

(−1)k−2

k − 2
+

(−1)k−2

k − 2
i2)

)
.

On expanding we get:

∇
2µk = 0 + j

(
(−1)k

k
−

2(−1)k−1

k − 1
+

(−1)k−2

k − 2

)
+ ji2

(
(−1)k

k
−

2(−1)k−1

k − 1
+

(−1)k−2

k − 2

)
.

Since the expression inside the brackets oscillates, (∇2µk) does not converge.
Thus, (µk) < I∗c[∇2

q , ∥ · ∥C2 ], proving that I∗c[∇2
q , ∥ · ∥C2 ] is not a sequence algebra.
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Example 2.6. We define the bi-complex sequences (ξk) and (ηk) as followes:

ξk =
i1k

k + 1
+

j
k + 1

, ηk =
1

k + 1
+

(−1)k

k + 1
i2.

It can be easily verified that these are null sequences.
The second-order q-difference for q=1, is defined as:

∇
2ξk = ξk − 2ξk−1 + ξk−2.

On expanding we get:

∇
2ξk =

(
i1k

k + 1
+

j
k + 1

)
− 2

(
i1(k − 1)

k
+

j
k

)
+

(
i1(k − 2)

k − 1
+

j
k − 1

)
.

For large k, it can be shown that:

∇
2ξk → 0.

Then, (∇2ξk) ∈ I∗θ, as every convergent sequence is I−convergent. Thus, (ξk) ∈ I∗θ[∇
2
q , ∥ · ∥C2 ].

Similarly, for ηk, we compute:

∇
2ηk = ηk − 2ηk−1 + ηk−2.

we have

∇
2ηk → 0 as k→∞.

Thus, (ηk) ∈ I∗θ[∇
2
q , ∥ · ∥C2 ].

Now,

ζk = ξkηk =

(
i1k

k + 1
+

j
k + 1

) (
1

k + 1
+

(−1)k

k + 1
i2

)
.

=
i1k

(k + 1)2 +
(−1)k jk
(k + 1)2 +

j
(k + 1)2 +

(−1)k ji2
(k + 1)2 .

Since, i1i2 = j, we rewrite the above expression as follows :

ζk =
i1k

(k + 1)2 + j
(

(−1)kk
(k + 1)2 +

1
(k + 1)2 +

(−1)ki2
(k + 1)2

)
.

On computing ∇2ζk, we get:

∇
2ζk = ζk − 2ζk−1 + ζk−2.

For large k, the dominant terms oscillate rather than tending to zero, To observe the oscillation, we present the values
for different k.

Observations

• The sign of (−1)k in the terms involving j alternates as k increases.

• This sign change affects the values of (ζk), and more importantly, the second-order q−difference (∇2ζk).

• Since the dominant terms retain alternating signs, (∇2ζk) does not tend to zero.

• The sequence (ζk) oscillates in the imaginary unit components and fails to belong to I∗θ[∇
2
q , ∥ · ∥C2 ].
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k ζk ζk−1 ∇
2ζk ∇

2ζk−1

1 i1
4 +

j
4 + (−1)1 j

4 + (−1)1 i2 j
4

i1
9 +

j
9 + (−1)0 j

9 + (−1)0 i2 j
9 ∇

2ζ1 ∇
2ζ0

2 2i1
9 +

j
9 + (−1)2 j

9 + (−1)2 i2 j
9

i1
16 +

j
16 + (−1)1 j

16 + (−1)1 i2 j
16 ∇

2ζ2 ∇
2ζ1

3 3i1
16 +

j
16 + (−1)3 j

16 + (−1)3 i2 j
16

2i1
25 +

j
25 + (−1)2 j

25 + (−1)2 i2 j
25 ∇

2ζ3 ∇
2ζ2

4 4i1
25 +

j
25 + (−1)4 j

25 + (−1)4 i2 j
25

3i1
36 +

j
36 + (−1)3 j

36 + (−1)3 i2 j
36 ∇

2ζ4 ∇
2ζ3

5 5i1
36 +

j
36 + (−1)5 j

36 + (−1)5 i2 j
36

4i1
49 +

j
49 + (−1)4 j

49 + (−1)4 i2 j
49 ∇

2ζ5 ∇
2ζ4

6 6i1
49 +

j
49 + (−1)6 j

49 + (−1)6 i2 j
49

5i1
64 +

j
64 + (−1)5 j

64 + (−1)5 i2 j
64 ∇

2ζ6 ∇
2ζ5

Table 1: To observe the oscillation, we present the values for different k.

The oscillatory nature of (ζk) confirms that (ζk) < I∗θ[∇
2
q , ∥ · ∥C2 ] due to the persistent sign alternations in (∇2ζk).

Which implies :

(∇2ζk) ̸→ 0.

Thus, (ζk) < I∗θ[∇
2
q , ∥ · ∥C2 ]. Since (ξk), (ηk) ∈ I∗θ[∇

2
q , ∥ · ∥C2 ] but (ξkηk) < I∗θ[∇

2
q , ∥ · ∥C2 ], we conclude that the

I
∗

θ[∇
2
q , ∥ · ∥C2 ] is not closed under multiplication. Hence, it is not a sequence algebra. The same example works for

I
∗
∞[∇2

q , ∥ · ∥C2 ]

Remark 2.7. The spaces I∗c[∇2
q , ∥ · ∥C2 ] and I∗θ[∇

2
q , ∥ · ∥C2 ] are not symmetric.

The following example illustrates the above remark.

Example 2.8. Consider the bicomplex sequence ξ = (ξk) and I′ be an arbitrary element of I given by

ξk =

1 + i1 + i2 + j, if k < I′ ,
1
k + i1 − i2 − j, if k ∈ I′ .

The first-order backward difference sequence is

∇qξk|q=1 = ∇ξk =


0, if both k, k − 1 < I′ ,
1
k − 1 − 2i2 − 2 j, if k ∈ I′ , k − 1 < I′ ,
1 − 1

k−1 + 2i2 + 2 j, if k < I′ , k − 1 ∈ I′ ,
1
k −

1
k−1 , if k, k − 1 ∈ I′ .

The second-order backward difference sequence is

∇
2
qξk|q=1 = ∇

2ξk =



0, if k, k − 1, k − 2 < I′ ,
1
k −

1
k−1 − 1 + 2i2 + 2 j, if k < I′ , k − 1 < I′ , k − 2 ∈ I′ ,

1
k −

1
k−1 −

1
k−2 + 2i2 + 2 j, if k ∈ I′ , k − 1, k − 2 ∈ I′ ,

1
k −

1
k−1 − 1 + 2i2 + 2 j, if k < I′ , k − 1 ∈ I′ , k − 2 ∈ I′ ,

1
k −

1
k−2 , if k ∈ I′ , k − 1 < I′ , k − 2 < I′ ,

1
k −

1
k−1 , if k < I′ , k − 1 ∈ I′ , k − 2 < I′ ,

1
k −

1
k−2 − 1 + 2i2 + 2 j, if k ∈ I′ , k − 1 < I′ , k − 2 ∈ I′ ,

1
k −

1
k−1 −

1
k−2 , if k, k − 1, k − 2 ∈ I′ .

Since the deviations occur only on the ideal, the sequence (ξk) belongs to I∗c[∇2
q , ∥ · ∥C2 ].
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Now consider a permutation σ :N→N that rearranges the indices such that the locations of nonzero second-order
q− differences are spread across an infinite subset ofN not belonging to I. In this case,

∇
2ξσ(k) = ξσ(k) − 2ξσ(k)−1 + ξσ(k)−2

may no longer be ideally convergent. Thus, the permuted sequence fails to satisfy the membership criteria for
I
∗
c[∇2

q , ∥ · ∥C2 ], proving that the space is not symmetric.
Similarly, we can easily show that the space I∗θ[∇

2
q , ∥ · ∥C2 ] is not symmetric by modifying the above example and

taking ξk = 0 for all k < I′, while assigning nonzero values to ξk for all k ∈ I′.

Remark 2.9. The sequence space I∗c[∇2
q , ∥ · ∥C2 ], I∗θ[∇

2
q , ∥ · ∥C2 ], and I∗∞[∇2

q , ∥ · ∥C2 ], are not monotone.

The following example illustrates the above remark.

Example 2.10. Let I be a nontrivial admissible ideal ofN. For instance, let I′ ∈ I be the set of even natural numbers
and a bicomplex sequence ξ = (ξk) is given by

ξk =

 1
k + i1 − i2 − j, if k ∈ I′,
0, otherwise.

Then ξ ∈ I∗c[∇2
q , ∥ · ∥C2 ] since the second-order q-differences of the nonzero terms decay suitably and are ideal-

convergent with respect to I.
Now, choose a finite subset K ⊂ N, for example, K = {2, 4} ⊂ I′, and define the canonical preimage η = (ηk) of ξ

by

ηk =

ξk, if k ∈ K,
0, otherwise.

Then we have

η =
(
0,

1
2
+ i1 − i2 − j, 0,

1
4
+ i1 − i2 − j, 0, 0, . . .

)
.

This sequence has only two nonzero terms and zeros elsewhere. When computing the second-order q-difference
∇

2
qηk, the large gaps between nonzero and zero terms create sharp fluctuations. As a result, the norm ∥∇2

qηk∥C2 does
not converge to zero in the ideal sense. Therefore, η < I∗c[∇2

q , ∥ · ∥C2 ].
This shows that although ξ ∈ I∗c[∇2

q , ∥ · ∥C2 ], its canonical preimage η < I∗c[∇2
q , ∥ · ∥C2 ].

Hence, the space I∗c[∇2
q , ∥ · ∥C2 ] is not monotone.

A similar construction can be used to show that the spaces I∗θ[∇
2
q , ∥ · ∥C2 ] and I∗∞[∇2

q , ∥ · ∥C2 ] are also not monotone.

Remark 2.11. The sequence spaces , I∗c[∇2
q , ∥ · ∥C2 ], I∗θ[∇

2
q , ∥ · ∥C2 ], and I∗∞[∇2

q , ∥ · ∥C2 ], are not convergence-free.

The following example illustrates the validity of the above remark.

Example 2.12. Consider I′ ∈ I and the sequence ξ = (ξk) given by

ξk =

1 + i1 + i2 + j, if k ∈ I′ ,
0, otherwise.

Here, ξ ∈ I∗c[∇2
q , ∥ · ∥C2 ].

Now define the sequence η = (ηk) by

ηk =

 1
k + i1 + i2 + j, if k ∈ I′ ,
1 + i1 + i2 + j, otherwise.
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Clearly, ξk = 0⇒ ηk = 1 + i1 + i2 + j , 0. So the implication ξk = 0⇒ ηk = 0 fails, which does not yet violate the
convergence-free property.

However, for the convergence-free condition, we require the reverse: if ξk = 0⇒ ηk = 0, and still η < I∗c, then the
space is not convergence-free.

So instead, define:

ηk =

 1
k + i1 + i2 + j, if k ∈ I′ ,
0, otherwise.

Now observe that:

ξk = 0⇒ ηk = 0,

so the condition for convergence-free space is satisfied.
Next, compute the second-order difference:

∇
2ηk = ηk − 2ηk−1 + ηk−2.

Let us assume I′ is the set of all even numbers, i.e., I′ = {2, 4, 6, . . . }. Then for k = 6, we have:

η6 =
1
6
+ i1 + i2 + j, η5 = 0, η4 =

1
4
+ i1 + i2 + j.

Therefore,

∇
2η6 = η6 − 2η5 + η4 =

(1
6
+

1
4

)
+ 2(i1 + i2 + j) =

5
12
+ 2(i1 + i2 + j).

Then,

∥∇
2η6∥C2 =

∥∥∥∥∥ 5
12
+ 2(i1 + i2 + j)

∥∥∥∥∥
C2

> 0.

This kind of non-zero second-order difference occurs for infinitely many even-indexed k (since I′ is infinite), and hence
the sequence (∇2ηk) does not converge ideally to 0.

So,

η < I∗c[∇
2
q , ∥ · ∥C2 ].

Thus, although ξk = 0 implies ηk = 0 and ξ ∈ I∗c[∇2
q , ∥·∥C2 ], the sequence η does not belong to the space. Therefore,

the space I∗c[∇2
q , ∥ · ∥C2 ] is not convergence-free.

A similar construction can be used to show that the spaces I∗θ[∇
2
q , ∥ · ∥C2 ] and I∗∞[∇2

q , ∥ · ∥C2 ] are also not convergence-
free.

Remark 2.13. The sequence spaces I∗p[∇2
q , ∥ · ∥C2 ], I∗∞[∇2

q , ∥ · ∥C2 ], I∗c[∇2
q , ∥ · ∥C2 ], and I∗θ[∇

2
q , ∥ · ∥C2 ] are, in general,

not solid. This is due to the fact that the second-order q-difference operator ∇2
q does not preserve coordinatewise

domination. That is, even if ∥ηk∥C2 ≤ ∥ξk∥C2 for all k ∈ N, it does not necessarily follow that ∥∇2
qηk∥C2 ≤ ∥∇

2
qξk∥C2 .

Therefore, the condition ξ ∈ I∗[∇2
q , ∥ · ∥C2 ] does not imply η ∈ I∗[∇2

q , ∥ · ∥C2 ].

The following example illustrates the above remark.

Example 2.14. Consider q = 1 , the bicomplex sequence ξ = (ξk) given by

ξk = 1 + i1 + i2 + j , for all k ∈N.
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This is a constant sequence. Therefore, the second-order difference satisfies

∇
2ξk = ξk − 2ξk−1 + ξk−2 = 0 for all k ≥ 2.

Thus, ∇2ξk = 0 for k ≥ 2, implying that

∥∇
2ξk∥C2 = 0,

so (∇2ξk) converges ideally to 0, i.e., ξ ∈ I∗c[∇2
q , ∥ · ∥C2 ].

Now define another sequence η = (ηk) by

ηk =
1
k
+ i1 + i2 + j for all k ∈N.

Then clearly, for each k,

∥ηk∥C2 ≤ ∥ξk∥C2 ,

because 1
k ≤ 1 and the imaginary parts are the same.

However, we now compute the second-order difference of η:

∇
2ηk = ηk − 2ηk−1 + ηk−2 =

(1
k
−

2
k − 1

+
1

k − 2

)
.

The imaginary parts cancel because they are constant, so we get:

∇
2ηk =

1
k
−

2
k − 1

+
1

k − 2
.

Let us compute this explicitly at k = 5:

η5 =
1
5
+ i1 + i2 + j, η4 =

1
4
+ i1 + i2 + j, η3 =

1
3
+ i1 + i2 + j,

∇
2η5 =

(1
5
− 2 ·

1
4
+

1
3

)
=

1
5
−

1
2
+

1
3
=

1
30
.

Therefore,

∥∇
2η5∥C2 =

1
30
> 0.

Since (∇2ηk) does not converge to zero ideally, it follows that

η < I∗c[∇
2
q , ∥ · ∥C2 ].

Thus, although ∥ηk∥C2 ≤ ∥ξk∥C2 for all k and ξ ∈ I∗c, the sequence η does not belong to the space. Hence,
I
∗
c[∇2

q , ∥ · ∥C2 ] is not solid.

Theorem 2.15. The relations I∗θ[∇
2
q , ∥ · ∥C2 ] � I∗θ and I∗c[∇2

q , ∥ · ∥C2 ] � I∗c holds good.

Proof. Define the mapping Ω : I∗θ[∇
2
q , ∥ · ∥C2 ]→ I∗θ by Ωξ = η = ∇2

qξ,

for all ξ ∈ I∗θ[∇
2
q , ∥ · ∥C2 ].

Clearly, Ω is linear and injective operator.
Let the sequence (ξk) be given by

ξk =

k∑
i=0

(
k − i + 1

k − i

)
q
ηk
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where (ηk) is an arbitrary sequence inI∗θ. i.e, for every ε > 0, ∃ I′ = {k ∈N : ∥ηk∥C2 ≥ ε} ∈ I orI− lim
k→∞
ηk = 0.

Then, we obtain ∇2
qξn =

n∑
k=0

(−1)kq(k
2)(2

k
)

qξn−k = ηn.

Therefore, for any ε > 0,

{n ∈N : ∥∇2
qξn∥C2 ≥ ε}

=⇒ I− lim
n→∞

(∇2
qξn) = θ

=⇒ (∇2
qξn) ∈ I∗θ

=⇒ (ξn) ∈ I∗θ[∇
2
q , ∥ · ∥C2 ].

The mapping Ω is both onto and norm-preserving. Hence, we establish the isomorphism:

I
∗

θ[∇
2
q , ∥ · ∥C2 ] � I∗θ.

similarly we can show that I∗c[∇2
q , ∥ · ∥C2 ] � I∗c.

Theorem 2.16. The inclusion I∗p[∇2
q , ∥ · ∥C2 ] ⊆ I∗∞[∇2

q , ∥ · ∥C2 ], for 1 ≤ p < ∞, holds.

Proof. Since
∞∑

k, k∈K∈F (I)
∥ξk∥

p
C2
< ∞ =⇒ sup

k, k∈K∈F (I)
∥ξk∥C2 < ∞,I

∗
p ⊂ I

∗
∞ holds, this suffices for the inclusion

relation. Taking example that (ξk) = (i1) , strictness of the relation is clear
To see the inclusion is strict, consider the sequence (i1), showing that I∗p ⊂ I∗∞ is strict. So we can take a
sequence (ξk) ∈ I∗∞ \ I∗p.

We define a sequence (ξ
′

k) such thatξ
′

k =
k∑

i=0

(k−i+1
k−i

)
qξi for each k ∈N.Then the sequence (∇2

qξ
′

k) = (ξ
′

k ∈ I
∗
∞\I

∗
p).

Consequently, (ξ
′

k) ∈ I∗∞[∇2
q , ∥ · ∥C2 ] \ I∗p[∇2

q , ∥ · ∥C2 ].

Theorem 2.17. The relations

I
∗

∞[∇2
q , ∥ · ∥C2 ] � I∗∞ and I

∗

p[∇2
q , ∥ · ∥C2 ] � I∗p,

holds good where 1 ≤ p < ∞.

Proof. We prove the result for the case I∗∞[∇2
q , ∥ · ∥C2 ].

Let, σ : I∗∞[∇2
q , ∥ · ∥C2 ]→ I∗∞ defined by

σ(ξk) = (∇2
qξk) = (ηk).

σ is linear and as q-difference operator ∇2
q can be written as triangular invertible matrix and so σ is linear.

Now, if σ(ξk) = θ, Then (ηk) = σ(ξk) = θ =⇒ (ξk − (1 + q)ξk−1 + qξk−2) = 0 ∀k ∈N. =⇒ T is injective.

Let the sequence ξk be given by

ξk =

k∑
i=0

(
k − i + 1

k − i

)
q
ηk

where (ηk) is an arbitrary sequence in I∗∞. i.e for every G > 0, there exists K ∈ F (I) such that ηk > G, ∀ k ∈

K ∈ F (I). Then, we obtain ∇2
qξn =

n∑
k=0

(−1)kq(k
2)(2

k
)

qξn−k = ηn. Which implies for every G > 0, there exists

K ∈ F (I) such that ∇2
qξk > G, ∀ k ∈ K ∈ F (I).

Thus,
(∇2

qξk) ∈ I∗∞ and so (ξk) ∈ I∗∞[∇2
q , ∥ · ∥C2 ] and I∗∞ are bijective.

Similarly, we can prove for I∗p[∇2
q , ∥ · ∥C2 ], for, 1 ≤ 0 < ∞.
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We state the following result without proofs.

Lemma 2.18. The following inclusions hold and are strict.

(1) I
∗

p ⊂ I
∗

p[∇2, ∥ · ∥C2 ] ⊂ I∗p[∇2
q , ∥ · ∥C2 ],

(2) I
∗

∞ ⊂ I
∗

∞[∇2, ∥ · ∥C2 ] ⊂ I∗∞[∇2
q , ∥ · ∥C2 ].

Theorem 2.19. The following spaces are BK-spaces equipped with their respective norms:

(1) The space I∗p, (1 ≤ p < ∞) is BK-space with the norm

∥ξ∥I∗p =

 ∑
k∈K∈F (I)

∥ξk∥
p
C2


1/p

.

(2) The spaces I∗∞,I∗c, and I∗θ are BK-spaces with the norm

∥ξ∥I∗∞ = sup
k∈K∈F (I)

∥ξk∥C2 .

Proof. Let, ∥ξn
− ξ∥I∗∞ is I−convergent to 0, as n→∞, n ∈ K ∈ F (I).

Then, for given ε > 0,

∥ξn
− ξ∥I∗∞ < ε, ∀n ∈ K ∈ F (I),

=⇒ sup
k∈K∈F (I)

∥ξn
k − ξk∥C2 < ε, ∀n ∈ K ∈ F (I),

=⇒ ∥ξn
k − ξk∥C2 < ε, ∀n ∈ K ∈ F (I)

Therefore, ∥ξn
k − ξk∥C2 is I− convergent to 0, as n tends to 0, ∀n ∈ K ∈ F (I)

Since the newly defined sequence spaces I∗c[∇2
q , ∥ · ∥C2 ],I∗θ[∇

2
q , ∥ · ∥C2 ], and I∗∞[∇2

q , ∥ · ∥C2 ] are isomorphic to the
BK-spaces I∗c,I∗θ, and I∗∞, it follows that I∗c[∇2

q , ∥ · ∥C2 ],I∗θ[∇
2
q , ∥ · ∥C2 ], and I∗∞[∇2

q , ∥ · ∥C2 ] are also BK-spaces.

We present the following theorems without proof.

Theorem 2.20. The sequence space I∗p[∇2
q , ∥ · ∥C2 ], (1 ≤ p < ∞) are BK-space with the norm

∥ξ∥I∗p[∇2
q ,∥·∥C2 ] =

 ∑
k∈K∈F (I)

∥ξk − (1 + q)ξk−1 − qξk−2∥
p
C2


1/p

.

Theorem 2.21. Let ∇2
qξk = ξk − (1 + q)ξk−1 + qξk−2 be the second-order q-difference operator. Then the following

sequence spaces are BK-spaces with their respective norms:

(1) For 1 ≤ p < ∞, the sequence space I∗p[∇2
q , ∥ · ∥C2 ] is a BK-space under the norm

∥ξ∥I∗p[∇2
q ,∥·∥C2 ] =

 ∑
k∈K∈F (I)

∥ξk − (1 + q)ξk−1 + qξk−2∥
p
C2


1/p

.

(2) The sequence space I∗∞[∇2
q , ∥ · ∥C2 ], I∗c[∇2

q , ∥ · ∥C2 ] and I∗θ[∇
2
q , ∥ · ∥C2 ] are BK-spaces under the norm

∥ξ∥I∗∞[∇2
q ,∥·∥C2 ] = sup

k∈K∈F (I)
∥ξk − (1 + q)ξk−1 + qξk−2∥C2 .
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Remark 2.22. The sequence spaces I∗p[∇2
q , ∥ · ∥C2 ], (0 ≤ p < 1) are not BK-space, but quasi norm space with the norm

∥ξ∥I∗p[∇2
q ,∥·∥C2 ],0≤p<1 =

 ∑
k∈K∈F (I)

∥ξk − (1 + q)ξk−1 − qξk−2∥
p
C2


1/p

Example 2.23. Let the bicomplex sequence ξ = (ξk) be defined by

ξk =
1
kα

(1 + i1 − i2 − j), for all k ∈N,

where 0 < α < 1
p and 0 < p < 1. Then the quasi-norm

∥ξ∥I∗p[∇2
q ,∥·∥C2 ],0≤p<1 =

 ∑
k∈K∈F(I)

∥∥∥ξk − (1 + q)ξk−1 − qξk−2

∥∥∥p

C2


1/p

is finite, since each term in the summation is of the form C
kα , where C is a constant inC2, and the series

∑ 1
kαp converges

due to αp < 1. Thus, ξ ∈ I∗p[∇2
q , ∥ · ∥C2 ].

However, since the functional defined for 0 < p < 1 does not satisfy the triangle inequality, it is not a norm.
Therefore, the space I∗p[∇2

q , ∥ · ∥C2 ] is a quasi-normed space but not a BK-space.

3. Conclusion

This paper defines second-order quantum difference sequence spaces over bi-complex numbers and
examines their BK-space structure, symmetry, inclusion relations, and isomorphisms with classical I-
convergent spaces. A matrix representation of the operator ∇2

q is provided, and counterexamples highlight
contradictions in specific inclusion cases. The study advances understanding of quantum difference se-
quence spaces and sets the stage for future research.
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