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Abstract. We investigate different properties of ideal convergent second-order quantum difference se-
quence spaces over bi-complex numbers. We define Z[Vé, Illc,1forZ e {17, I3, 17,1 o I}, using the second
order g- difference operator V; under the Euclidean norm. We examine their BK-space structure, symmetric
property, inclusion relations, and isomorphisms with classical 7— convergent bi-complex sequence spaces.

A matrix representation of the operator is given, along with counterexamples, to demonstrate contradictions
in specific inclusion cases.

1. Introduction and Priliminaries

In 1892, Segre [15] introduced bi-complex numbers, inspired by the works of Hamilton [7] and Clifford

[4]. He studied a family of algebras, naming them bi-complex, tri-complex, and so on. A bi-complex number
is of the form

(x1 + i1x2) + ia(x3 + i1X4),
or equivalently
z1 + 22y,

where i% = ig = -1, and z; = x1 + i1Xp, Z» = X3 + i1X4 are complex numbers. Here, i; and i, are commuting
imaginary units, and their product is j = i;7,.

The set of all bi-complex numbers is denoted C,. In 1991, Price [13] provided foundational work,
followed by studies from Srivastava and Srivastava [16], Wagh [17], Rochan and Shapiro [14], Kumar and
Tripathy [10-12], and Bera and Tripathy [1-3] on sequences of bi-complex numbers.

Each bi-complex number & € C; can be written as

& = ey + poey,
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where the idempotents e; = % and e, = % satisfy e% = e, e% = ey, and eje; = 0. The set C, can be
decomposed as

Gy = e1A1(i1) + e2A2(i1) = erz1 — 1120 1 21,20 € Ci} + ep{z1 + 120 1 21,20 € C1}.

The Euclidean norm on C, is

IElle, = [x] +25 + 25 +x3,

where & = (x1 + i1x2) + i2(x3 + i1X4).

A bi-complex number & = z; + irz; is hyperbolic if the imaginary part of z; and the real part of z; are
zero. It is singular (or non-invertible) if ||Z% + z%llq:2 = 0; otherwise, it is non-singular (or invertible). The set of
singular bi-complex numbers is O,.

Bi-complex numbers have three types of conjugations:

o ij-conjugation (iy — —iy),
o i)-conjugation (ip — —iz),
o iyip-conjugation (iy — —iy and i, — —ip).

1.1. Sequence space

The collection of all sequences with real or complex values is represented by w, while the set of all
sequences with bi-complex values is denoted by @*. The spaces of absolutely summable, p-summable,
bounded sequences, convergent sequences, and null sequences are denoted by ¢, 5,,, {s,c, and cy, respec-
tively. For bi-complex valued sequence spaces, these are represented as €], €, €z, ¢*, and cj, respectively.

Definition 1.1. A sequence space E is said to be BK— space (Banach coordinate maps continuous) if ||x* — x|| —
0, as n — oo implies |x}| — x| = 0, as n — oo, where x" = (x}/) for each n € N and x = (x).

Definition 1.2. Let A = (a,x) be an infinite matrix with real or complex entries, and let A, = (ani)keN,- 1he
A-transform of a sequence z = (zx) is given by the sequence Az = {(Az),}, where

o)

(Az), = Z Ak Zk

k=0
provided that the series Y ;- ay xzx converges for each n € INy.

Furthermore, if Z and U are sequence spaces and Az € U for every sequence z € Z, then the matrix A
is said to define a matrix mapping from Z to U. The notation (Z, U) denotes the family of all matrices that
map sequences from Z to U. A triangular matrix A = (a,) satisfies the conditions a,, # 0 and a,,, = 0 for
n < k. The domain of the matrix A in the sequence space Z, denoted by Z4, is defined as:

Za={zew:Az € Z}.

Additionally, if Z is a BK-space and A is a triangular matrix, then the matrix domain Z, = {z € w : Az € Z}
is also a BK-space when equipped with the norm

llzllz, = llAzlz.
This ensures that the transformed space inherits the normed structure from Z.

Definition 1.3. A sequence space E C w is said to be solid if for every sequence x = (xx) € E and every sequence
y = (yx) € w satisfying |yxl < |xi| for all k € IN, it follows that y € E.
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Definition 1.4. A sequence space E is said to be symmetric if (xy) € E implies (X)) € E, where 1 is a permutation
of N.

Definition 1.5. Let K = {ky < k, < ---} € IN and let E be a sequence space. A K-step space of E is the sequence
space

AE ={(x,) €ew: (x,) € E).
Definition 1.6. A canonical preimage of a sequence (xi,) € A% is a sequence (y,) € w defined by

" ={xn, ifnek,

0, otherwise.

A canonical preimage of a step space AL is the set of all canonical preimages of elements in AE. That is, y € w
belongs to the canonical preimage of AL if and only if y is the canonical preimage of some x € AE.

Definition 1.7. A sequence space E C w is said to be monotone if it contains the canonical preimages of its step
spaces.

Definition 1.8. A sequence space E is said to be a sequence algebra if (xi) = (yx) = (xxyx) € E whenever (xi), (yx) € E.

Definition 1.9. A sequence space E is said to be convergence free if (yi) € E whenever (x) € E and x; = 0 implies
Y = 0.

1.2. g-Sequence Space
A g-integer is defined as

a—1
Y gk fora=1,2,3,...
[l = i

0, fora =0.

Asq— 17, we have [a]; = a.
The g-analog of the binomial coefficient is given by

[a],!
(a) = quzmq;, fora>b,
7 (0 forb > a.

where [a],! is defined as

a
kl,, fora=1,2,3,...,
]t = L
1, fora = 0.

Additionally, the following identities hold:

o], ~{o) =)= (23], ),

For further details on g-calculus, see [6, 8, 9]. Yaying et al. [18, 19] defined the difference operator
V; tw = wby
(Vax)k = % = (1 + )x1 + 2,

where k € IN and x, = 0 for k < 0.
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1.3. Ideal convergence of bi-complex numbers
Definition 1.10. Let X be a non empty set. A collection I C 2% is said to be an ideal in X if and only if for all
ABel = AUBerl ifAcTandBCAthenBe 1.

Definition 1.11. 1 is said to be an admissible ideal if Vx € X, {x} € 1.
Definition 1.12. 1 is said to be a non trivial ideal if I # {0} and X ¢ 1.

Definition 1.13. A sequence of bi-complex numbers (&) is said to be T—convergent to 1 if and only if for every
e>0,theset ke N: ||& —lle, > €} € T.

The bi-complex number C is 7 —limit of (&) and denoted by I — lim (&) = C. 17, I;, I, 1%, and I*e are

denoted by 7 - absolutely summable, 7 — p summable, 7 — bounded, 7 —convergent, and 7 —null sequences
of bi-complex numbers, respectively. For a detailed discussion one may refer to [5].

2. Main Results

Metric represantation : For the subsequent results, all ideals considered are nontrivial and admissible.
Define the difference operator V; tw' = W' by

(Voo = & — (1 + )k + géx2,

where k € IN and any term of the sequence with negative indices are assumed to be zero. The operator
V% = (6f,nk) can also be expressed in the form of a triangle matrix as follows:

1 0 0 0

-(1+9) 1 0 0

62 — q —(1 + q) 1 0
Tk 0 g —(l+g 1

We observe that the operator Vﬁ reduces to V2 when g — 17. Using some elementary calculation, we derive
the inverse of the operator V; as

n-k /q
0 , k>n.

V2=

{”"‘*1 Jif 0<k<n,
q

Now, We define the following ideal convergent quantum difference sequences of spaces of bi-complex
numbers as I3[, VI | - lle,], Z,IVE - e, ], Ze IV -l 1L ZEIVE - lic, 1, and ZHIVE, I - lle, ] as 7 — absolutely
summable, 7 —p-summable, 7 — bounded, 7 — convergent, and / — null g-difference sequences of bi-complex
numbers using g-difference operator V{'.

These sequence spaces are defined as:

LV lle] =1 = (&) € Z IV Eklle, < oo}

keKSF (T)
LIVl lel=te =@ ew: Y. IVI&ll, <ol
keKCF (T)

TLIVE el ={E = (&) e @ s sup  [IVF@élle, < oo},
keKCF (I)

ZAVE N lle, ] = {€ = (&) € " : {k € N = |IVF & = ClIc, > ¢} € 7}, and
LolVi Nl -l ] = 1€ = (&) € " : {k € N 1 IV Elle, > ¢} € ).
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Theorem 2.1. The spaces IE[V; I llc, 1, I’é[V;, Il llc,], and I;[Vg, Il - llc,] are sequence spaces.
Proof. Let (&) and (1¢) be two sequences in 1| Z[Vﬁ, I llc,]- Then:
V?ék =& — (1 +q)ék-1 + gék—2 is is I — convergent to (y,

Vgr]k =1 — (1 + q)nk-1 + gMk—2 is is I — convergent to Cy,

which means, for every ¢ > 0,

fkew:|Via-cl, 2efer, {keN:|[V2n-Cf, 2 efeT.
Let a, § € C;, and define a new sequence (uy) by:
tr = ai + P
Then the generalized second-order g-backward difference of () is given by:
Vgﬂk = ur — (1 + q)up-1 + qur—o,
= a&p + B — (1 + q) (@& + Prc-1) + gade— + Prc-2),
= a(&x = (L + )&k + qéx2) + POk — (L + @)1k + q1i—2),
= aVi& + Vi
Since (Vflék) is I — convergent to (; and (Vf]nk) is I — convergent to (y, it follows that:
(Véyk) is I — convergent to al; + BCy,

that is, for every ¢ > 0,

{keN: V20 - @ti + ), > ef € 7

Hence, (u) € IZ[V?, I llc,]-

Therefore, the class J :[V;, Il - llc,] is closed under addition and scalar multiplication. As it also contains
the zero sequence, it forms a sequence space over complex numbers.
A comparable approach can be used to demonstrate the result for the spaces 1 ;[Vf,, I llc,], and

TV - lle, ] O

Theorem 2.2. The space 1 ;[Vﬁ, II - llc,], endowed with the I —sup norm, is a Banach space, where the I —sup norm
is

€Nl 7, = sup {llékllc, k¢ A, A e I}.

Proof. We aim to prove that 1 ;[Vﬁ, II - llc,] is @ Banach space.

It is easy to verify that 7' ;[V;, Il - llc,] is an ideal normed linear space, because the space is closed under
addition and scalar multiplication. The 7 — sup norm is well-defined and satisfies the properties of a norm.
Thus, I ;,[Vﬁ, Il - llc,] is an ideal normed linear space.

Let (™) be an I- -Cauchy sequence in 1 ;,[V;, I - llc,]- Then for every € > 0, there exists m(e) such that

(neN: g - &Mle, 2 e} e I
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Thus, for each fixed k € IN, (51({”)),1 is a Cauchy sequence in €5, and hence converges to some & € C,.
Define & = (&) as the pointwise 7-limit. We now show that £ € I;,[V;, I lc,], ie., (V%ék) is J-bounded.
From linearity and continuity:

¢ _ 2 ¢(n)
Vqék = Vqék .

n—oo,neKeF(K)

Since each (Vgé;{”)) is 7-bounded and the limit of 7-bounded sequences is also 7-bounded, it follows that
(V2&x) is I-bounded.

Hence, £ € T ;[Vf], I - llc,], and the limit lies in the space.

Hence, the space 1 ;[V;, Il - llc,], equipped with the 7— sup norm || - ||, is a Banach space. O

Theorem 2.3. The spaces IZ[V%, Il llc,], and I*Q[Vé, II - llc,], endowed with the I— sup norm, are Banach spaces.

Proof. We aim to show that each of the spaces 1 Z[Vg, II"lc,] and I, [Vg, |Illc,], endowed with the 7-supremum
norm, are Banach space.

First, note that both spaces are normed linear spaces. The second-order g-difference operator V; is linear,
and the 7-supremum norm

Nz, = sup{lléklic, k¢ A, AeT}.

Let (£™) be an 7-Cauchy sequence in either space. Then for every ¢ > 0, there exists N € N such that for
alln,m > N,

ke N1 - e, > e} e T.

This implies that for each fixed k € IN, the sequence (cff{”)

exists & € C, such that (5,(:1)) — &. Define & = (&).
Since fo is linear and continuous, we may write

) is Cauchy in C,, which is complete. Hence, there

Vii = lim Vel

For each n, the sequence (Vgé,ﬁn)) is J-convergent to some (, € C,. Furthermore, since the sequence (&)
is 7-Cauchy, the sequence (Vgél((")) is also 7-Cauchy in norm, and hence converges Z-uniformly to Vf,ék.
Therefore, by the preservation of 7-limits, we conclude that (V;ék) is 7-convergent to some C € C,.

Thus, £ € T Z[Vs, Il - llc,]. An analogous argument applies for 77, where the limit is C = 0.
Finally, for every ¢ > 0, and for all n > N, we have

(ke N:Ig” - &lle, 2 e} e 7,

so €W — &l < ¢, showing that EM — & in the norm.
Hence, the spaces are complete under the 7-sup norm, and thus are Banach spaces. [

Remark 2.4. The spaces IZ[V;, I llc, 1, I*Q[Vg, I llc,], and I;[Vg, II - llc,] are not sequence algebras.
The following examples illustrate the above remark.

Example 2.5. Consider two bi-complex sequences (&x) and (ny) in 1, ;[V;, Il - llc,] such that their product sequence

does not belong to IZ[V%, I llc,], proving that I:[V;, Il - llc,] is not closed under multiplication.
We define the sequences as follows:

&e=nk+ ],
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(-DF.
=1+ .
Nk X (5]
where iy, iy are imaginary units satzsfymg = —land j = i1ip with * = 1.

For &,
V2 = & — 281 + &k
= (ihk + ) = 2(i1(k = 1) + j) + (i1 (k = 2) + )
= i1k+j—2i1k+2i1 +2j+i1k—2i1 +j
=0.

Therefore, {k € N : |[V2& — Ollc, > €} € I;. Thus, (&) € IZ[V%, Il llc,1-
For 1,

V210 = 1 — 201 + M2

_1)k _1)\k-1 n-2
:(1+(k1)i2)—2(1+(k_)1 ) (1+(k1_)2i2)

(-DF. 2(=pF'. (=D,
=0+ k 2 n-—1 b+ n-— 2

Since the terms # — 0as, k — oo, {k € N : ||V2& — Ollc, > €} € 7. We conclude () € T:[VZ, |- llc,]-

On computing (px) = (Ex1k), we get:

yk—(11k+])(1+( 0P )

_1) k
=i1k+j+i1k ( )12+] (kl) iz.
By using i1i; = j, we get:
_ k 1k
yk_11k+]+]( )+]( )2.
On simplifying we get:

GO0
k k2

U =itk +7 (1 + —
Now, computing its second-order backward difference for q=1:

V20 = ik — 21 + pk—

_ (ilk i+ % + #b))
_ z(il(k —1) 4+ (,:1_)2_ 1* (;1—)k1_ : iZ))
; (il(k -2)+j(1+ (;1_)1{2_2 * (;1—)1(2_2 iZ)) '
On expanding we get:
V2 = 0 +J(( 1)t 2 i’iﬁl " (;1_)’(22) + jia ((_13 - o i)l;l

Since the expression inside the brackets oscillates, (Vi) does not converge.

Thus, (k) ¢ I V2, - llc,], proving that IZ[V;, II - llc,] is not a sequence algebra.

361
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Example 2.6. We define the bi-complex sequences (&) and (nx) as followes:

— llk +L —L.,.(_l)ki
Tkl kU T kvl Tk

&k

It can be easily verified that these are null sequences.
The second-order q-difference for q=1, is defined as:

V2& = & — 281 + Eka.

On expanding we get:
oo [k G\ (ak=1 j\ (ak=2)
Vé”‘@+1+k+1) 2( k)= TR-a1)

For large k, it can be shown that:
V& — 0.

Then, (V&) € T 4 as every convergent sequence is I —convergent. Thus, (&) € 1 ;[Vg, Il llc,]-
Similarly, for 1y, we compute:

V20 = Mk — 211 + M2
we have
V2 — 0 ask — oo.

Thus, () € T[V, Il - llc,]-
Now,

R I BV T
G = &tk _(k+1 " k+1)(k+1 Tkr1?)

ik N (=1)jk j (=1)4jiz
k+1)2  (k+1)2 (k+1)2 (k+1)%
Since, i1i; = j, we rewrite the above expression as follows :

. _1\k 1Nk

ik ey (1)k+ 1 +(1)12'

(k+1)? (k+12  (k+1)2 (k+1)?

G =

On computing V*Cy, we get:
V20 = G = 201 + Gra.

For large k, the dominant terms oscillate rather than tending to zero, To observe the oscillation, we present the values

for different k.
Observations
e The sign of (—1)¥ in the terms involving j alternates as k increases.
e This sign change affects the values of (Cx), and more importantly, the second-order q—difference (V2Cy).

e Since the dominant terms retain alternating signs, (V2Cy) does not tend to zero.

o The sequence ((x) oscillates in the imaginary unit components and fails to belong to T E[Vg, - lle, 1.
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Ck Cr-1 V2 | V2
FHEHEDE DT | G (DD | VG| VG
21'1 + I +( 1)21' +(_1)2in' % +( 1)1 + (- 1)1121 V20, | V2
1'6 E+CPE+CPE | Bt L+ (125 + (12 | VG | VG
L+ DR D | Bt L+ 1P+ (PR | V2L | VG
B L (1P L+ (1P | g L 1A+ (A | Vi | VR
Ot L+ (L + (DO | By L (—1P L+ (1P | V2L | VG

AN Ul B~ WO N~
|&’

Table 1: To observe the oscillation, we present the values for different k.
The oscillatory nature of (Cx) confirms that () & 1 E[Vg, || - llc,] due to the persistent sign alternations in (V2Cy).
Which implies :
(V2 4 0.

Thus, (G) & T,[Ve, Il - lic,]. Since (&), () € TyIVZ, |l - lle,] but (ki) & 5[V, 11 - lic,], we conclude that the
I ;[V;, Il - llc,] is not closed under multiplication. Hence, it is not a sequence algebra. The same example works for
TLVE - e

8] q 2

Remark 2.7. The spaces IZ[V;, Il llc,] and I;[Vﬁ, | - llc,] are not symmetric.
The following example illustrates the above remark.

Example 2.8. Consider the bicomplex sequence & = (&) and I be an arbitrary element of I given by
£ = 1+i+ip+j, ifkel,
“Tliwi—in-j ifkel.
The first-order backward difference sequence is
ifbothk,k—1¢I,
-1-2i,-2j, ifkel,k-1¢lI,

-2 +2b+2j, ifk¢l k-1¢€l,
-2, ifk,k—1el.

~

Vq£k|q:1 =V& =

== = o= O

The second-order backward difference sequence is

0, ifkk-1,k-2¢I,
-4 1+212+2], ifke¢l k-1¢l,k-2¢€I,
%_E_ 5 +2+2j, ifkel,k-1,k-2¢€I,
1_ L _142,+2) ifkel,k—1€el,k-2€I,

V§5k|q:1=vzf§k= s M lf * , ) , © ,
1_1, ifkel ,k-1¢l,k-2¢T,
1_1, ifk¢l k-1el,k-2¢T,
1 —1+2,+2j, ifkel,k-1¢l,k-2¢€I,
1_ L1 ifkk-1k-2¢€l.

Since the deviations occur only on the ideal, the sequence (i) belongs to 1 Z[V;, I llc,]-
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Now consider a permutation o : IN — IN that rearranges the indices such that the locations of nonzero second-order
q— differences are spread across an infinite subset of IN not belonging to I. In this case,

V2Eot) = Eotky = 201 + o2

may no longer be ideally convergent. Thus, the permuted sequence fails to satisfy the membership criteria for
I Z[Vs, I - llc,1, proving that the space is not symmetric.

Similarly, we can easily show that the space 1 ;[V%, II - llc,] is not symmetric by modifying the above example and
taking & = 0 for all k ¢ I, while assigning nonzero values to & forallk € I'.

Remark 2.9. The sequence space I:[V3, |- lic,], Tp[V3, I - lic,], and T, [V, || - llc,], are not monotone.
The following example illustrates the above remark.

Example 2.10. Let I be a nontrivial admissible ideal of IN. For instance, let I' € 1 be the set of even natural numbers
and a bicomplex sequence & = (&) is given by

&z{%+h—h—ﬁ ifker,

0, otherwise.

Then & € T, Z[Vg, I - llc,] since the second-order g-differences of the nonzero terms decay suitably and are ideal-
convergent with respect to 1.
Now, choose a finite subset K C IN, for example, K = {2,4} C I’, and define the canonical preimage 1 = (1) of &

by
, ifkek
nk:{ék if

0, otherwise.

Then we have
—@1+i—'—'01+'—'—'00 )
TI_ /2 1 12 ]/ /4 11 12 ]/ AL B

This sequence has only two nonzero terms and zeros elsewhere. When computing the second-order g-difference
V21, the large gaps between nonzero and zero terms create sharp fluctuations. As a result, the norm ||[V2nillc, does
ql 8¢ gap p qTIklIC,

not converge to zero in the ideal sense. Therefore, 1) ¢ 1 Z[Vﬁ, I e, -
This shows that although & € IZ[V%, Il - llc,], its canonical preimage ) ¢ IZ[V%, Il llc,]-
Hence, the space 1 Z[Vé, II - llc,] is not monotone.
A similar construction can be used to show that the spaces I *Q[Vg, |- llc,] and T ;[V;, II - llc,] are also not monotone.

Remark 2.11. The sequence spaces , I’ ;[Vg, - llc,], T "Q[Vg, Il llc,], and I ;[Vg, Il - llc,], are not convergence-free.

The following example illustrates the validity of the above remark.

Example 2.12. Consider I’ € I and the sequence & = (&) given by

£ = 1+ip+ip+j, ifkel,
£ 0, otherwise.

Here, & € I'[VE, || - llc, ]
Now define the sequence 1 = (i) by

l . . . . ’
e = frii+ia+j, ifkel,
1+iy+iy+j, otherwise.
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Clearly, & = 0= nx = 1+14; + i + j # 0. So the implication & = 0 = 1 = 0 fails, which does not yet violate the
convergence-free property.

Howeuver, for the convergence-free condition, we require the reverse: if & = 0 = 1 = 0, and still n ¢ I, then the

space is not convergence-free.
So instead, define:

e = t+i+i+j, ifkel,
0, otherwise.
Now observe that:
&G=0=>n=0,

so the condition for convergence-free space is satisfied.
Next, compute the second-order difference:

V21K = Mk = 20kt + Mia-
Let us assume I’ is the set of all even numbers, i.e., I’ = {2,4,6,...}. Then for k = 6, we have:
1 . . . T .
T]6=g+11+12+], 7]520, T]4=Z+11+12+].

Therefore,

1 1 . . . 5 . . .
VZ%:né_zn5+n4:(5+Z)+2(11+12+]):ﬁ+2(11+12+])'

Then,

> 0.

5 . . )
V2ndllc, = HE F2in+is + )
()

This kind of non-zero second-order difference occurs for infinitely many even-indexed k (since I’ is infinite), and hence
the sequence (V21x) does not converge ideally to 0.
So,

¢ TIV2 - llc,).

Thus, although & = 0implies gy = 0and & € T, E[Vé, II-llc, ], the sequence 1 does not belong to the space. Therefore,
the space 1 Z[V;, II - llc,] is not convergence-free.
A similar construction can be used to show that the spaces I ;[V;, Il llc,] and T ;[Vé, Il llc,] are also not convergence-

free.

Remark 2.13. The sequence spaces I;[Vg, I llc,1, I;[Vé, - llc,], IZ[V;, I llc,], and Ig[Vg, I llc,] are, in general,

not solid. This is due to the fact that the second-order g-difference operator Vﬁ does not preserve coordinatewise

domination. That is, even if |[nkllc, < |I&kllc, for all k € IN, it does not necessarily follow that IIVénkllc2 < ||V§5k||cz~

Therefore, the condition & € T*[Vg, | - lic,] does not imply n € T*[VZ, |l - lic,]-
The following example illustrates the above remark.
Example 2.14. Consider g = 1, the bicomplex sequence & = (k) given by

Sk=1+i1+i+j ,forallkeN.
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This is a constant sequence. Therefore, the second-order difference satisfies

V2 =& =281+ &2 =0 forallk>2.
Thus, V2& = 0 for k > 2, implying that

IV2&lic, =0,
so (V2&x) converges ideally to 0, i.e., & € IZ[V;, I lle,]-

Now define another sequence 1 = (1) by

m=%+ﬁ+h+jﬁwwkeN.

Then clearly, for each k,

Inklle, < I1Ekllc,,

because ; < 1 and the imaginary parts are the same.
However, we now compute the second-order difference of n:

1 2 1
Vo= = 2mer + ez = (3 - oo + 1)
L R e Vi i
The imaginary parts cancel because they are constant, so we get:

1 2 1
2 [ — —
V=1 ez

Let us compute this explicitly at k = 5:

1 1 1
q5:§+i1+i2+j, n4:Z+i1+i2+j, r]3=§+i1+i2+j,

1 1 1, 1 1 1
2 = - — .« — —_ = — - — - = —
V’75_(5 24+3) 5273730

Therefore,

1
Vsl = 55 > 0.

Since (V*1)) does not converge to zero ideally, it follows that

ne IV lle,]

366

Thus, although |[nkllc, < lkllc, for all k and & € I7, the sequence 1 does not belong to the space. Hence,

T:VE NI - lle, ] s not solid.

Theorem 2.15. The relations I;[Vg, I-lle,] = I and I:[Vg, Il llc,] = I holds good.

Proof. Define the mapping € : I;[Vg, I llc,] = I, by Q& =n = Vf,é,
forall & € T,[V, Il - lic,]-

Clearly, Q) is linear and injective operator.

Let the sequence (&) be given by

k )
k—i+1
cfk=Z( kl_l- )an

i=0
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where (1)) is an arbitrary sequence in 77 i.e, forevery e >0, 31 = {k € N : |Imille, = ¢} € T or I—]}im e = 0.
n
Then, we obtain V3&, = kgo(—l)kq(g)(i)qén,k = 1.
Therefore, for any ¢ > 0,
(neN: V2, = )
= I - lim(V3&,) = 0
n—oo

= (V2&) € T

= (&) € TV - lle,]:
The mapping (2 is both onto and norm-preserving. Hence, we establish the isomorphism:

TV, 1l lle,] = T
similarly we can show that 1| :[V%, I lc,] =7 O

Theorem 2.16. The inclusion I;[V;, Il lle,] € I;[Vé, |- llc,], for 1 < p < oo, holds.

Proof. Since Y, ||cfkllfé2 <00 = sup |lékllc, < oo, 1 p C I holds, this suffices for the inclusion
k, keKeF (I) k, keKeF (I)

relation. Taking example that ({x) = (i1) , strictness of the relation is clear

To see the inclusion is strict, consider the sequence (i;), showing that 1’ p C I, is strict. So we can take a

sequence (&) € 15, \ I;,.

koo
We define a sequence (& )suchthat & = Y (F.7*1) & foreachk € N. Then the sequence (V&) = (& € T:\T%).
q k N q 7%k k p

Consequently, (&) € T5[VE Il - llc,]\ ;3 [V5, 1 -lle,]. O
Theorem 2.17. The relations

IV el =2 5 and V20l ] = T,
holds good where 1 < p < 0.

Proof. We prove the result for the case 1 ;[Vfi, Il llc,]-

Let, o : I;,[V%, |- llc,] = I, defined by

(&) = (Vi&k) = (m)-

o is linear and as g-difference operator V; can be written as triangular invertible matrix and so o is linear.
Now, if 6(&) = 6, Then (k) = 0(&k) = 0 = (& — (1 + 9)&k-1 + 9&k—2) = 0Vk e N. = T is injective.

Let the sequence &, be given by

k .
k-i+1

where (1) is an arbitrary sequence in 7. i.e for every G > 0, there exists K € ¥ () such that g, > G, Vk¢€
n

K € F(J). Then, we obtain Vgén =3y (—1)kq(§) i)qén_k = 1),. Which implies for every G > 0, there exists
k=0

K e F(I)such that Vi& > G, Vke KeF(I).

Thus,

(Vgék) € I, and so (&) € I;[Vg, | - llc,] and I, are bijective.
Similarly, we can prove for I;[Vs, | llc,], for,1<0<oco. O
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We state the following result without proofs.
Lemma 2.18. The following inclusions hold and are strict.
1) I c IV -lled € TIV2 - lle,
2) I cILIVA N lle] € T3V Nl - lle,]-

Theorem 2.19. The following spaces are BK-spaces equipped with their respective norms:

(1) The space I, (1 < p < oo0) is BK-space with the norm

1/p
||5||z;,=[ Y ||csk||f;:2] :

keKeF (I)

(2) The spaces I, I, and I, are BK-spaces with the norm

Ellr, = sup lI&le,
keKeF (1)

Proof. Let, ||E" — &z, is T—convergent to 0,asn — oo, n € K € ¥ (I).
Then, for given € > 0,

“5” - 5”]'; <g, vn € K € 7:(])/

= sup |I& —&lle, <é, VneKeF (),
keKefF (1)

= I&; —&lle, <&, VneKeF ()
Therefore, ||E — &Ekllc, is T— convergent to 0, as ntends to0,VYn € K€ F(Z) O

Since the newly defined sequence spaces IZ[Vg, [l - ||¢2],I3[V§, Il llc,], and I;[Vé, Il - llc,] are isomorphic to the
BK-spaces I, Iy, and I, it follows that T;[V3, |- lic,], Z5[V3, Il - lic,], and T5,[VE, |1 - lic,] are also BK-spaces.

We present the following theorems without proof.

Theorem 2.20. The sequence space 1 ;[V%, I llc,], (1 £ p < o0) are BK-space with the norm

1/p
||5||];[V§,||.||C2] = [ Z ISk = (1 + g) k-1 — 45k2||f;2] .

keKeF (1)

Theorem 2.21. Let Vﬁék = & — (1 + q)&k-1 + q&k—2 be the second-order g-difference operator. Then the following
sequence spaces are BK-spaces with their respective norms:

(1) For1 < p < oo, the sequence space I;[Vé, Il - llc,] is a BK-space under the norm

1/p
||5||J;[v§,||.||cz] = [ Z Ik — (1 + q)Ek-1 + qék_zllfézJ .

keKeF (I)
(2) The sequence space I;[Vg, I llc,], IZ[V%, Il - llc,] and I*G[Vg, || - llc,] are BK-spaces under the norm

||£||[;,[v§,\|‘||“:2] = sup |[[& — (1 +g)k-1 + gék-2lle,-
keKeF (1)



T. Deb, B. C. Tripathy / Filomat 40:1 (2026), 355-370 369
Remark 2.22. The sequence spaces I ;[Vg, II-llc,1, (0 < p < 1) are not BK-space, but quasi norm space with the norm

1/p

Il vz e, tomp = | Y, Nk — (1 + &1 — gically,
keKefF (1)

Example 2.23. Let the bicomplex sequence & = (&) be defined by
= kl—a(l +iy—ip—j), forallkeNN,

where 0 < a < % and 0 < p < 1. Then the quasi-norm

1/p

€N 75 w2 e, 1 0sp<1 = Z ||5k (I + @&k - qgk—zllzz

keKeF(I)

is finite, since each term in the summation is of the form &, where C is a constant in Cy, and the series ¥, 2 converges
due to ap < 1. Thus, & € I;[Vg, Il llc,]-

However, since the functional defined for 0 < p < 1 does not satisfy the triangle inequality, it is not a norm.
Therefore, the space I;[Vﬁ, I - llc,] is a quasi-normed space but not a BK-space.

3. Conclusion

This paper defines second-order quantum difference sequence spaces over bi-complex numbers and
examines their BK-space structure, symmetry, inclusion relations, and isomorphisms with classical -
convergent spaces. A matrix representation of the operator ny is provided, and counterexamples highlight
contradictions in specific inclusion cases. The study advances understanding of quantum difference se-
quence spaces and sets the stage for future research.
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