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bDepartamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain

Abstract. This paper deals with chains of time-dependent 3D matrices and their applications. We introduce
the 3D rotation-chain 2 × 2 × 2 and describe the properties of each 3D matrix in this chain after identifying
it with the non-associative algebra that it defines. To this end, we characterize when the algebra associated
with a 3D matrix of dimension 2 × 2 × 2 is associative, commutative, has a unit (or a one-sided unit), or
is a division algebra, respectively. Based on the properties of the 3D rotation-chain 2 × 2 × 2 we develop
algorithms for encryption and decryption processes.

1. Introduction

The aim of this paper is to study chains of time-dependent 3D matrices with applications in encryption
systems. Examples of such chains, centered on 3D rotation matrices of dimension 2×2×2, are provided and
used to illustrate a robust method for developing time-dependent encryption and decryption algorithms.
Consequently, this approach, after some minor adaptations, can be applied to time-based encryption
processes, such as the creation of temporary encryption keys, temporary access tokens, and programmed
encryption systems, among others [1, 18, 33].

Three-dimensional matrices, commonly referred to as 3D matrices, are mathematical structures that
extend the concept of two-dimensional matrices (which have rows and columns) to three dimensions.
Therefore, a 3D matrix consists of elements arranged in a three-dimensional grid, where each element is
identifiable using three indices. The dimension of a 3D matrix is typically described as m × n × p,where m
represents the number of rows (height), n the number of columns (width) and p the number of layers
(depth).

In Cryptography, 3D matrices are employed for complex data transformations, adding layers of com-
plexity to enhance the security of ciphers [23, 28]. Furthermore, 3D matrices are widely recognized as
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essential tools in several scientific fields [29] including Physics (for tensor calculus and space simulations
[24]), Computer Graphics (for manipulating 3D models through operations such as translation, rotation,
and scaling [11]), and Data Science (especially in Machine Learning for managing multi-dimensional data
sets [9]). In Virtual Reality and Augmented Reality, 3D matrices are crucial for creating and managing
3D environments [6]. In Computer Vision, they are utilized for tasks such as object recognition, 3D re-
construction, and motion tracking [35]. This usage facilitates the understanding and interpretation of the
structure of a 3D environment from 2D images [10]. In Medical Imaging, 3D matrices help reconstruct
3D models from 2D slices [31], while in Meteorology and geophysics they enable visualization of complex
3D phenomena [32]. The focus here is on cubic matrices (i.e., 3D matrices with dimension n × n × n).
This preference arises from the fact that such matrices can be considered as n-dimensional algebras (not
necessarily associative), allowing the use of algebraic tools to enhance our model. This aspect is crucial in
the algorithms we develop here, particularly where the multiplication of two elements is involved. It is
also worth noting that an asymmetric 3D matrix of dimension m × n × p can be treated as a cubic matrix of
dimension s := max{m,n, p} by filling the unoccupied spaces in the s × s × s block with zeros.

We will pay special attention to 3D rotation matrices, as already mentioned. Rotation matrices are useful
in various fields of science [7], including Computer graphics [2], Neural Networks [36] and Transformers
[30], and of course in Cryptography [14]. Indeed, in data security, a basic idea is to represent data in matrix
form and then apply various mathematical operations to encrypt or decrypt the data. Thus, the concept
of rotating (or shifting) data elements is a common encryption technique. Moreover, the strength of a
cryptographic algorithm often depends on the complexity of solving certain matrix problems [8], which is
further increased by introducing time-dependence, as we do here. In summary, although 3D matrices and
rotation matrices are more commonly associated with Computer Graphics, they also play a significant role
in the field of Cryptography.

The paper is structured as follows: Section 2 focuses on characterizing the algebraic properties of the
two-dimensional algebra determined by a 3D matrix of dimension 2 × 2 × 2. In this context, we explore
properties including associativity, commutativity, the existence of a unit and one-sided units, as well as the
criteria for being a division algebra. These characterizations are exclusively dependent on the 3D matrix
that defines the multiplication of the given algebra.

In Section 3, we introduce the notion of a time-dependent chain of 3D matrices (Definition 3.1), and
show an illustrative example called the 3D rotation-chain 2 × 2 × 2 (Definition 3.3). After describing all
the algebras associated with the cubic matrices of this particular time-dependent chain of 3D matrices, we
classify them and present their algebraic properties based on the results of Section 2. Finally, we outline
double-key and triple-key encryption and decryption algorithms, making use of the algebraic properties
previously discussed.

2. Algebras associated to a 3D matrix of dimension n × n × n

Throughout this paper, K denotes either the field of real numbers, R, or the field of complex numbers,
C. Formally, a 3D matrix of dimension n × m × p is a collection of elements ωi jk ∈ K where i = 1, 2, ...,n,
j = 1, 2, ...,m, and k = 1, 2, ..., p. Therefore, each element in the matrix is identified by its three indices, i, j
and k, which correspond to the matrix’s three dimensions. In this context: n denotes the number of rows
in each 2D matrix slice along the first dimension, m represents the number of columns in each 2D matrix
slice along the second dimension, and p denotes the number of these 2D matrix slices arranged along the
third dimension. Thus, a 3D matrix, M, of dimension n × m × p is uniquely determined by p 2D matrices,
M1, ...,Mp, each of dimension n×m, that is Mk := (ωi jk)i j where i = 1, 2, ...,n, and j = 1, 2, ...,m, and we write
M = (M1|...|Mp).

The set of all 3D matrices of dimension n×m×p is a linear space equipped with the standard operations
of addition and scalar multiplication. Thus, if A = (ai jk), B = (bi jk), and if λ ∈ K, then A+B := (ai jk+ bi jk) and
λA := (λai jk).

From now on we will deal with 3D matrices of dimension n × n × n and we assign a name to them.
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Definition 2.1. A cubic matrix of dimension n is a 3D matrix of dimension n × n × n with entries inK. The set of
all n-dimensional cubic matrices is denoted by Cn.

The reason we focus on the class Cn is due to the fact that, when considering an n-dimensional linear
spaceAwith a predetermined basis B = {e1, ..., en}, each 3D matrix M ∈ Cn determines a multiplication inA
that endows A with an algebra structure (not necessarily associative). This fact significantly enriches our
study.

We recall that a multiplication on a linear space A is a bilinear map (a, b) → ab, from A × A to A.
It’s important to note that the algebra A does not need to be associative as the associative property of the
product is not required (only bilinearity is assumed).

In relation to the basis B = {e1, ..., en}, a multiplication in A is defined by the structure constants ωi jk
given by the equalities

eie j =

n∑
k=1

ωi jkek. (1)

The bilinear map πk : A×A→K determined the equalities by πk(ei, e j) = ωi jk, for every i, j = 1, ...,n, is the
projection of the product ofA over the subspace generated by ek, for every k = 1, ...,n. The matrix associated
to πk with respect to the basis B is

Mk =


ω11k · · · ω1nk
...

. . .
...

ωn1k · · · ωnnk


Thus, the multiplicationA×A → A given by (1) can be identified with the cubic matrix M = (M1| · · · |Mn)
where Mk = (πk(ei, e j))i, j=1,··· ,n with k = 1, · · · ,n.

Conversely, every cubic matrix M = (M1|...|Mn) where Mk = (ωi jk)i, j=1...n, for k = 1, · · · ,n, defines a

multiplication inA given by the equalities eie j :=
n∑

k=1
ωi jkek.

We conclude in this way that, fixed an n-dimensional linear space A and a basis B = {e1, ..., en}, every
multiplication inA is one to one determined a matrix in Cn, and vice versa.

In this paper, we focus on matrices inC2.The main goal of this section is to characterize the properties of a
2-dimensional algebra based on the cubic matrix that defines its multiplication, relative to a predetermined
basis. We address the next subsection to this purpose.

2.1. 3D matrices of dimension 2 × 2 × 2 and their associated algebras
From now on, a matrix M ∈ C2 given by

M =

 ω111 ω121

ω211 ω221

∣∣∣∣∣∣ ω112 ω122

ω212 ω222

 ∈ C2

will also be denoted by M = (M1|M2) where

M1 :=

 ω111 ω121

ω211 ω221

 and M2 :=

 ω112 ω122

ω212 ω222

 . (2)

In what follows, consider a fixed 2-dimensional vector spaceA overK and a basis B = {e1, e2}. Then, as
already mentioned, every cubic matrix in C2 defines a multiplication inA. More precisely, if a = α1e1 +α2e2
and b = β1e1 + β2e2, then ab = γ1e1 + γ2e2 where γ1 and γ2 are determined by(

α1 α2

)  ω111 ω121

ω211 ω221

  β1

β2

 = γ1,

(
α1 α2

)  ω112 ω122

ω212 ω222

  β1

β2

 = γ2.
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In this way,A becomes an algebra that we denote byAM in order to refer to the cubic matrix that determines
its product.

We recall AM has a left unit (respectively, a right unit) if there exists u ∈ AM such that ua = a,
(respectively, au = a), for every a ∈ AM.

We say that u ∈ AM is a unit forAM if u is both, a left and a right unit.
If u1 is a left unit ofAM and if u2 is a right unit ofAM, then u2 = u1u2 = u1, and therefore, this element

is a unit forAM. This also proves that if it exists, the unit ofAM must be unique.

Remark 2.2. Let AM be the algebra associated to the matrix M = (M1|M2) given in (2), with respect to the basis
B = {e1, e2}. ThenAM is commutative if and only if M1 =MT

1 and M2 =MT
2 .

Theorem 2.3. Let AM be the algebra associated to the matrix M = (M1|M2), given in (2), with respect to the basis
B = {e1, e2}. Then,AM is associative if and only if the following equalities are satisfied, for i, j = 1, 2, ω1i1 ω1i2

ω2i1 ω2i2

 M j =M j

 ωi11 ωi21

ωi12 ωi22

 . (3)

Proof. The algebraAM is associative, if and only if (eie j)ek = ei(e jek) for every i, j, k = 1, 2, which means that
the following equalities are satisfied for i = 1, 2.

(e1ei)e1 = e1(eie1), (e1ei)e2 = e1(eie2) (4)
(e2ei)e1 = e2(eie1), (e2ei)e2 = e2(eie2),

Setting

ai =:
(
ω1i1 ω1i2

)
, bi =:

(
ω2i1 ω2i2

)
, ci :=

(
ωi11 ωi12

)T
, di :=

(
ωi21 ωi22

)T
,

and vT
1 =

(
1 0

)
, vT

2 =
(

0 1
)
, the equalities (4) can be written as

aiM jv1 = vT
1 M jci; aiM jv2 = vT

1 M jdi; biM jv1 = vT
2 M jci; biM jv2 = vT

2 M jdi.

for j = 1, 2. Consequently,

 ω1i1 ω1i2

ω2i1 ω2i2

 M j

 1 0

0 1

 =
=

 aiM jv1 aiM jv2

biM jv1 biM jv2

 =  vT
1 M jci vT

1 M jdi

vT
2 M jci vT

2 M jdi

 =
=

 1 0

0 1

 M j

 ωi11 ωi21

ωi12 ωi22

 ,
which proves the result.

Corollary 2.4. Let AM be the algebra associated with the matrix M = (M1|M2). Then, AM is an associative and
commutative algebra if and only if M is given by

M =

 a b

b c

∣∣∣∣∣∣ α β

β γ

 ,
where a, b, c, α, β, γ ∈ K and the following conditions are satisfied:

αc = bβ; det M1 = βc − γb, det M2 = αb − aβ. (5)
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Proof. By Theorem 2.2, the commutativity of AM means that the matrices M1 and M2 are symmetric.
Moreover, the equalities in (5) follow directly from equation (3) in Theorem 2.3.

Our next goal is to characterize the existence of a unit inAM. To this end, we study first the existence of
left and right units.

Theorem 2.5. Let AM be the algebra associated to the matrix M = (M1|M2) given in (2), with respect to the basis
B = {e1, e2}. Set

vT
1 :=

(
1 0

)
, vT

2 :=
(

0 1
)

and uT :=
(

u1 u2

)T
.

(i) If det M1 , 0, then AM has a left unit u = u1e1 + u2e2 if and only if MT
2 (MT

1 )−1v1 = v2, in which case
uT = (M−1

1 )Tv1.

(ii) If det M2 , 0, then AM has a left unit u = u1e1 + u2e2 if and only if MT
1 (MT

2 )−1v2 = v1, in which case
uT = (MT

2 )−1v2.

(iii) If det M1 = det M2 = 0, thenAM has a left unit if and only if either assertion (a) or (b) is satisfied where:

(a) M =

 ω111 0

ω211 0

∣∣∣∣∣∣ 0 ω122

0 ω222

 with M̃ =

 ω111 ω122

ω211 ω222

T

satisfying that det M̃ , 0. In this case, we have

that u = u1e1 + u2e2 with uT = M̃−1(v1 + v2) is the unique left unit ofAM.

(b) M =

 a 0

b 0

∣∣∣∣∣∣ 0 a

0 b

 with a2 + b2 , 0. Then, every u = u1e1 + u2e2 satisfying that au1 + bu2 = 1 is a left

unit forAM.

Proof. Suppose that u = u1e1 + u2e2 is a left unit ofAM with respect to the matrix M = (M1|M2) ∈ C2. Then
uei = ei for i = 1, 2. This means that

uTM1v1 = 1; uTM2v1 = 0; uTM1v2 = 0; uTM2v2 = 1. (6)

Therefore, it follows that

 ω111 ω121

ω211 ω221

T  u1

u2

 =  1

0

 ;

 ω112 ω122

ω212 ω222

T  u1

u2

 =  0

1

 . (7)

Consequently:
(i) If det M1 , 0, thenAM has a left unit if and only if MT

2 (MT
1 )−1v1 = v2.

(ii) If det M2 , 0, thenAM has a left unit if and only if MT
1 (MT

2 )−1v2 = v1.
(iii) If det M1 = det M2 = 0, then from (6) it follows that

ω121 = ω221 = ω112 = ω212 = 0.

(Indeed, otherwhise the system (7) has no solution). Moreover, either

ω111ω222 − ω211ω122 , 0

and hence u1

u2

 =  ω111 ω211

ω122 ω222

−1  1

1

 ,
or, otherwise, ω111ω222 − ω122ω211 = 0 and consequently ω111 = ω122 = a, and ω211 = ω222 = b. In this last
case,AM has a unit if and only if a2 + b2 , 0 and then, every u = u1e1 + u2e2 satisfying that au1 + bu2 = 1 is
a left unit forAM.
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Theorem 2.6. LetAM be the algebra associated with the matrix M = (M1|M2) given in (2), with respect to the basis
B = {e1, e2}. Set

vT
1 :=

(
1 0

)
, vT

2 :=
(

0 1
)

and uT :=
(

u1 u2

)T
.

(i) If det M1 , 0, then AM has a right unit u = u1e1 + u2e2 if and only if M2M−1
1 v1 = v2, in which case

uT =M−1
1 v1.

(ii) If det M2 , 0, then AM has a right unit u = u1e1 + u2e2 if and only if M1M−1
2 v2 = v1, in which case

uT =M−1
2 v2.

(iii) If det M1 = det M2 = 0, thenAM has a right unit if and only if either assertion (a) or (b) is satisfied where:

(a) M =

 ω111 ω121

0 0

∣∣∣∣∣∣ 0 0

ω212 ω222

 and M̃ =

 ω111

ω212

ω121

ω222

 is such that det M̃ , 0. In this case,

u = u1e1 + u2e where uT = M̃−1(v1 + v2) is the unique right unit ofAM.

(b) M =

 a b

0 0

∣∣∣∣∣∣ 0 0

a b

 with a2 + b2 , 0. In this case, every u = u1e1 + u2e2 satisfying au1 + bu2 = 1 is a

right unit forAM.

Proof. The proof of this theorem is similar to the proof of Theorem 2.5.

Corollary 2.7. LetAM be the algebra associated to the matrix M = (M1|M2), with respect to the basis B = {e1, e2}.
ThenAM has a unit if and only if M1 =MT

1 ,M2 =MT
2 and one of the following assertions is satisfied:

(i) det M1 , 0 and M2M−1
1 v1 = v2, in which case u = u1e1 + u2e2 is the unit ofAM, where uT :=

(
u1 u2

)T
is

given by uT =M−1
1 v1.

(ii) det M2 , 0 and M1M−1
2 v2 = v1, in which case u = u1e1 + u2e2 is the unit ofAM, where uT :=

(
u1 u2

)T

is given by uT =M−1
2 v2.

Consequently, if det M1 , 0 and det M2 , 0, then AM has a unit if and only if M1 = MT
1 , M2 = MT

2 and
M−1

1 v1 =M−1
2 v2.

(iii) If det M1 = 0 = det M2 = 0, thenAM has a unit if and only if

M =

 a 0

0 0

∣∣∣∣∣∣ 0 0

0 b

 (8)

with ab , 0, in which case u = 1
a e1 +

1
b e2 is the unit ofAM.

Proof. Suppose that det M1 , 0. From Theorem 2.5(i) and Theorem 2.6(i) the unique possible left (respec-
tively right) unit forAM is u = u1e1 + u2e2 where, if

uT :=
(

u1 u2

)T

then, uT = (MT
1 )−1v1 (respectively, uT = M−1

1 v1). Consequently, a necessary condition for the existence of a
unit is

M−1
1 v1 = (MT

1 )−1v1.

From this last equality we obtain that M1 = MT
1 . Moreover, according to the mentioned theorems, for the

existence of a unit we also need that

M2M1
−1v1 =MT

2 (MT
1 )−1v1 = v2.
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Therefore, (M2 −MT
2 )M−1

1 v1 = 0 and we deduce that M2 = MT
2 . Consequently, a necessary condition for the

existence of a unit inAM is that M1 =MT
1 and M2 =MT

2 in which case, uT =M−1
1 v1 is both a left and a right

unit if and only if M2M−1
1 v1 = v2. This proves (i).

To prove (ii) suppose that det M2 , 0. Similarly, we obtain that M1 = MT
1 and M2 = MT

2 are necessary
conditions for the existence of a unit forAM, and also that u = u1e1+u2e2 is a unit forAM,where uT =M−1

2 v2,
if and only if M1M−1

2 v2 = v1.
Particularly, if det M1 , 0 and det M2 , 0, then it follows straightforwardly that AM has a unit if and

only if M1 =MT
1 ,M2 =MT

2 , and M−1
1 v1 =M−1

2 v2.
Finally, note that if det M1 = 0 = det M2, then the only way to simultaneously satisfy assertion (iii) in

Theorem 2.5 and Theorem 2.6 is that assertion (b) be satisfied in both results. This means that M is of the
type (8) and, therefore, u = 1

a e1 +
1
b e2 is the unit ofAM.

Theorem 2.8. Let AM be the algebra associated to the matrix M = (M1|M2), with respect to the basis B = {e1, e2}.
Then AM is an associative and commutative algebra with a unit if and only if one of the following conditions is
satisfied:

(i) M =

 a b

b c

∣∣∣∣∣∣ 0 0

0 −det M1
b

 with b , 0 and det M1 , 0. In this case, the unit ofAM is given by

u =
1

det M1
(ce1 − be2).

(ii) M :=

 −det M2
β 0

0 0

∣∣∣∣∣∣ α β

β γ

 with β , 0 and det M2 , 0. In this case, the unit ofAM is given by

u =
1

det M2
(−βe1 + αe2).

(iii) M =

 a b

b c

∣∣∣∣∣∣ −bλ −cλ

−cλ dλ

 , for a, b, c, d, λ ∈ K , with (ac − b2)(bd + c2) , 0, and λ = − ac−b2

bd+c2 . In this case,

the unit ofAM is given by

u =
1

det M1
(ce1 − be2).

(iv) M =

 a 0

0 0

∣∣∣∣∣∣ 0 0

0 b

 with ab , 0. In this case, the unit ofAM is given by

u =
1
a

e1 +
1
b

e2.

Proof. Since M = (M1|M2) defines the product ofAM by Corollary 2.4, we have

M = (M1|M2) =

 a b

b c

∣∣∣∣∣∣ α β

β γ


where

αc = bβ (9)
det M1 = βc − γb,
det M2 = αb − aβ,
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Case 1. det M1 , 0 and det M2 = 0.
Case 1.1. If β = 0, then γ , 0, b , 0 and α = 0, therefore, γ = −det M1

b . This means that

M1 =

 a b

b c

 with b , 0, and M2 =

 0 0

0 −det M1
b

 .
Since the equality M2M−1

1 v1 = v2 holds we obtain, from Corollary 2.7, that the unit of AM is given by
u = 1

det M1
(ce1 − be2).

Case 1.2. If β , 0, then α , 0 and γ , 0 as β2 = αγ because det M2 = 0. Since αc = bβ, by (9), we have
that if b = 0, then c = 0 and det M1 = 0, a contradiction. Therefore, b , 0 and hence β = αc

b . Consequently,

0 = det M2 = αb − aβ = αb −
αac
b
= −α

det M1

b
, 0,

a contradiction.
Case 2. det M1 = 0 and det M2 , 0.
Case 2.1 If b = 0 then, a , 0 and β , 0. Consequently, b = αc

β and

det M1 = βc − γb = βc − γ
αc
β
=

c
β

(β2
− αγ) = 0.

Therefore c = 0 and a = −det M2
β . Hence,

M2 =

 α β

β γ

 , with β , 0 and M1 =

 −det M2
β 0

0 0

 .
In this case, uT =M−1

2 v2 so that u = 1
det M2

(−βe1 + αe2) is the unit ofAM.
Case 2.2. b , 0.
Case 2.2.1. If α = 0 then β = 0 as αc = bβ by (9) and thus det M2 = 0, a contradiction.
Case 2.2.2 If α , 0 then, since β = αc

b , it follows that

0 , det M2 = αb − aβ = αb − a
αc
b
=
α
b

(b2
− ac) = 0,

a contradiction.
Case 3. det M1 , 0 and det M2 , 0. Then, in order to have a unit, we need that M−1

1 v1 =M−1
2 v2 so that

1
det M1

 c −b

−b a

  1

0

 = 1
det M2

 γ −β

−β α

  0

1


and it follows that α = −λb and β = −λc with λ = det M2

det M1
, 0. Setting d := γλ ,

M =

 a b

b c

∣∣∣∣∣∣ −bλ −cλ

−cλ dλ

 .
Since λ = det M2

det M1
= −λ2 bd+c2

det M1
, we have that 1 = −λ bd+c2

det M1
. Thus, λ = − ac−b2

bd+c2 . Moreover, since the unit is defined
by the equality M−1

1 v1 =M−1
2 v2,we conclude that such a unit is u = 1

det M1
(ce1 − be2).

Case 4. If det M1 = 0 = det M2 then, according with Corollary 2.7, a necessary and sufficient condition
forAM to have a unit is that

M =

 a 0

0 0

∣∣∣∣∣∣ 0 0

0 b


with ab , 0. In this case u = 1

a e1 +
1
b e2 is the unit ofAM.
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We recall that a division algebra is an algebra equipped with a unit, in which every nonzero element
has an inverse. For non-associative algebras the notion of an invertible element is a delicate matter (see
[20, 34]). Next we characterize when a real algebraAM is an associative and commutative division algebra.

Theorem 2.9. Let AM be an algebra over R, whose multiplication with respect to the basis B = {e1, e2} is given by
the cubic matrix M = (M1|M2), where M1 and M2 are real matrices of dimension 2 × 2. Then,AM is an associative,
commutative division algebra if and only if

M =

 a b

b c

∣∣∣∣∣∣ −bλ −cλ

−cλ dλ

 , (10)

for a, b, c, d, λ ∈ R, where (ac − b2)(bd + c2) , 0, λ = − ac−b2

bd+c2 , and

(ad + bc)2 < 4(b2
− ac)(bd + c2).

Proof. Since the algebra AM that we are considering is associative, commutative and has a unit, we have
thatAM has to satisfy one of the assertions (i) − (iv) stated in the Theorem 2.8.

Assertions (i), (ii), or (iv) correspond to an associative, commutative algebra with a unit that is not a
division algebra. This is because e1 (in cases (i) and (iv)) and e2 (in cases (ii) and (iv)) are not invertible
elements inAM. Consequently, we conclude thatAM satisfies (iii) so that M is like (10), for a, b, c, d, λ ∈ R,
where (ac − b2)(bd + c2) , 0 and λ = − ac−b2

bd+c2 .
To prove thatAM is a division algebra, let a = a1e1+a2e2 be any nonzero element ofAM and a−1 = xe1+ye2

be its inverse. If the unit is given by u = u1e1 + u2e2 then, sinceAM is commutative, we have that aa−1 = u
which means that(

a1 a2

)  a b

b c

  x

y

 = u1 and
(

a1 a2

)  −bλ −cλ

−cλ λd

  x

y

 = u2. (11)

If we set

c11 := a1a + a2b, c12 := a1b + a2c, c21 := −a1bλ − a2cλ, c22 := −a1cλ + a2λd, (12)

then the system (11) can be written as c11x + c12y = u1

c21x + c22y = u2.
(13)

Let C :=

 c11 c12

c21 c22

. Then,

det C = c11c22 − c12c21 =

= a2
1λ(b2

− ac) + a2
2λ(bd + c2) + a1a2λ(ad + bc) =

= −a2
1λdet M1 − a2

2
det M2
λ + a1a2(ad + bc)λ.

(14)

The condition det C , 0 is necessary and sufficient for the system to have a unique solution. (If the solution
is not unique, thenAM contains divisors of zero, which implies thatAM is not a division algebra). We study
when (13) has a unique solution by considering the following cases:

Case 1. a1 , 0 and a2 = 0. Then the unique solution of (13) is given by(
x y

)
=

(
λcu1+bu2
a1 det M2

−
bλu1+au2
a1 det M2

)
.
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Case 2. a1 = 0 and a2 , 0. Then the unique solution of (13) is given by(
x y

)
=

(
−λdu1+cu2
a2 det M1

−
λcu1+bu2
a2 det M1

)
.

Case 3. a1 , 0 and a2 , 0. Then (13) has a unique solution if det C , 0. If we fix a2, then det C = 0 if and
only if

−a2
1 det M1 + a2

2(bd + c2) + a1a2(ad + bc) = 0. (15)

This equation always has a real solution unless the discriminant is negative, that is

a2
2(ad + bc)2 + 4a2

2 det M1(bd + c2) < 0.

Consequently,

(ad + bc)2 < 4(b2
− ac)(bd + c2),

In this case, the inverse of a = a1e1 + a2e2 is given by a−1 = xe1 + ye2 where

(
x y

)
=

( c22u1−c12u2
det C

−c21u1+c11u2
det C

)
,

with ci j (for i, j = 1, 2) and det C determined by (12) and (14), respectively.

Remark 2.10. That there are no complex division algebras of dimension 2 is very well known [13], as finite-
dimensional division algebras over an algebraically closed field F are isomorphic to F (note that C has dimension 1 as
a complex algebra). In the above proof we obtain a justification of this fact. Indeed, since the equation (15) always
has a solution in C, it follows that the associative and commutative algebraAM is not a division algebra.

3. Chains of time-dependent 3D matrices

When working with time-dependent 3D matrices, it is advisable to select models where the temporal
dependency is consistent. Drawing inspiration from Markov chain processes [5], we introduce below the
notion of a chain of 3D matrices. These are time-dependent cubic matrices whose temporal dependency is
robust, as guaranteed by the Chapman-Kolmogorov equation. For this purpose, we need to establish the
product of two 3D-matrices in Cn.

There are many standard multiplication operations for cubic matrices (see [3, 17, 19]) that endow the
linear space Cn with the structure of an algebra. Particularly, in [3], the authors identifiy 15 associative
multiplication rules for cubic matrices giving rise to five non-isomorphic associative algebras.

In this paper, we will consider in Cn the algebraic structure derived from the following multiplication:
Given A = (ai jk) and B = (bi jk) in Cn we define multiplication of A and B as the matrix A ∗ B ∈ Cn given by

A ∗ B := (ci jr)i, j,r where ci jr =

n∑
k=1

ai jkbkjr, with i, j, r = 1, · · · ,n. (16)

In the case of matrices A = (ai jk) and B = (bi jk) in C2, the above multiplication is A ∗ B = (C1|C2) where

C1 : =
(

a111b111 + a112b211 a121b121 + a122b221
a211b111 + a212b211 a221b121 + a222b221

)
(17)

C2 : =
(

a111b112 + a112b212 a121b122 + a122b222
a211b112 + a212b212 a221b122 + a222b222

)
.

That is, A ∗ B := (ci jr)i, j,r with i, j, r = 1, 2, where a1 j1 a1 j2

a2 j1 a2 j2

  b1 j1 b1 j2

b2 j1 b2 j2

 =  c1 j1 c1 j2

c2 j1 c2 j2

 , j = 1, 2. (18)
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Definition 3.1. Let a, b ∈ R+0 with a < b. We define a chain of 3D matrices in Cn, associated to the time-range
[a, b], as a family of cubic matrices overK = R

CH
n,∗
[a,b] := {M[s,t]

∈ Cn : a ≤ s < t ≤ b}

satisfying the Chapman-Kolmogorov equation, which means that

M
[s,t] =M[s,τ]

∗M
[τ,t], (19)

for all a ≤ s < τ < t ≤ b, where ∗ is a predefined product of cubic matrices in Cn.
We extend this definition straightforwardly to the case of a time interval given by [a,+∞] (as well as forK = C).

As said before, the product ∗ that we will consider in this work is (16).
Constructing examples of chains of 3D matrices is challenging, even in dimension 2. In fact, to define a

chain CHn,∗
[a,b] := {M[s,t]

∈ C2 : a ≤ s < t ≤ b},where the matrices

M
[s,t] =

 c[s,t]
111 c[s,t]

121

c[s,t]
211 c[s,t]

221

∣∣∣∣∣∣ c[s,t]
112 c[s,t]

122

c[s,t]
212 c[s,t]

222

 ∈ C2,

satisfy the Chapman-Kolmogorov equation with respect to the product (16), it is necessary that the following
equations derived from (19) be satisfied:

c[s,t]
i jr = c[s,τ]

i j1 c[τ,t]
1 jr + c[s,τ]

i j2 c[τ,t]
2 jr , i, j, r = 1, 2.

If we consider the four equations with j = 1, the unknowns in them do not participate in the other four
equations with j = 2. Therefore, the equations for j = 1 and j = 2 are independent. Hence it suffices to
solve the system only for j = 1. Denote a[s,t]

ir = c[s,t]
i1r to obtain the following system:

a[s,t]
11 = a[s,τ]

11 a[τ,t]
11 + a[s,τ]

12 a[τ,t]
21

a[s,t]
12 = a[s,τ]

11 a[τ,t]
12 + a[s,τ]

12 a[τ,t]
22

a[s,t]
21 = a[s,τ]

21 a[τ,t]
11 + a[s,τ]

22 a[τ,t]
21

a[s,t]
22 = a[s,τ]

21 a[τ,t]
12 + a[s,τ]

22 a[τ,t]
22 .

(20)

The complete set of solutions of the system (20) has not yet been fully determined. However, a broad class
of solutions exists, as explored in [4, 12, 16, 21, 22, 25, 26]. In the next result, we present a particular solution
for (20) taken from [15].

Remark 3.2. The matrices M[s,t] given by

M[s,t] =

 cos(t − s) cos(t − s)

− sin(t − s) sin(t − s)

∣∣∣∣∣∣ sin(t − s) − sin(t − s)

cos(t − s) cos(t − s)

 , (21)

for s, t ∈ R+0 with s < t, define a chain

CH
2,∗
[0,+∞[ := {M[s,t] : 0 ≤ s < t < +∞},

of 3D matrices in C2 (withK = R) with respect to the product given by (17).

To make a direct reference to the chain provided by Remark 3.2, we introduce the following definition.

Definition 3.3. We define the 3D rotation chain of dimension 2 × 2 × 2 as the 3D chain

CH
2,rot
[0,+∞[ := {M[s,t] : 0 ≤ s < t < +∞}

of matrices in C2 (withK = R) defined by the matrices M[s,t] given in (21), with the matrix product in C2 determined
by (17).

Our next goal is to study the properties of the algebras associated with the cubic matrices that determine
the 3D rotation chain of dimension 2 × 2 × 2.
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3.1. The rotation chain of dimension 2
As previously mentioned, fixed a 2-dimensional linear spaceAwith a basis B = {e1, e2}, every matrix

M =

 a111 a121

a211 a221

∣∣∣∣∣∣ a112 a122

a212 a222

 ∈ C2

defines a product inA. In fact, if a = α1e1 + α2e2 and b = β1e1 + β2e2 then ab = γ1e1 + γe2 where

γ1 = (α1, α2)

 a111 a121

a211 a221

  β1

β2

 ; (22)

γ2 = (α1, α2)

 a112 a122

a212 a222

  β1

β2

 .
This product endowsAwith the structure of an algebra that does not need to be associative.

The 3D rotation-chain is given by the family

CH
2,rot
[0,+∞[ := {M[s,t] : 0 ≤ s < t < +∞},

where

M[s,t] =

 cos(t − s) cos(t − s)

− sin(t − s) sin(t − s)

∣∣∣∣∣∣ sin(t − s) − sin(t − s)

cos(t − s) cos(t − s)

 .
The algebras A[0,t] associated to the matrices M[0,t]

∈ CH
2,rot
[0,+∞[, for t ∈ R+0 , have been described in [27].

Since

M
[0,t] =

 cos(t) cos(t)

− sin(t) sin(t)

∣∣∣∣∣∣ sin(t) − sin(t)

cos(t) cos(t)

 ,
we obtain that, having fixed the basis B = {e1, e2}, the multiplication table ofA[0,t] is given by

e1e1 = c111e1 + c112e2 = cos te1 + sin te2,

e1e2 = c121e1 + c122e2 = cos te1 − sin te2,

e2e1 = c211e1 + c212e2 = − sin te1 + cos te2,

e2e2 = c221e1 + c222e2 = sin te1 + cos te2.

In order to describe these algebras for every t ∈ R+0 , we introduce the following notation.
Notation. Considering fixed a 2-dimensional vector spaceA overRwith basis B = {e1, e2}, let us denote

byA+0 ,A1,A2,A+cos t, andA−cos t, the real algebras associated, respectively, with the following cubic matrices:

M
+
0 =

 0 0

−1 1

∣∣∣∣∣∣ 1 −1

0 0

 , M1 =

 1 1

0 0

∣∣∣∣∣∣ 0 0

1 1

 ,
M2 =


√

2
2

√
2

2
√

2
2 −

√
2

2

∣∣∣∣∣∣ −
√

2
2

√
2

2
√

2
2

√
2

2

 ,
M
+
cos t =

 cos t cos t

−

√

1 − cos2 t
√

1 − cos2 t

∣∣∣∣∣∣
√

1 − cos2 t −

√

1 − cos2 t

cos t cos t

 and

M
−

cos t =

 cos t cos t
√

1 − cos2 t −

√

1 − cos2 t

∣∣∣∣∣∣ −
√

1 − cos2 t
√

1 − cos2 t

cos t cos t

 .
The proof of the following result is derived from [27, Theorem 3].



B. A. Narkuziev, M. V. Velasco / Filomat 40:1 (2026), 23–40 35

Theorem 3.4. The algebrasA[0,t] associated to the matrices M[0,t], for t ∈ R+0 , in the 3D rotation chain of dimension
2, are the following ones:

A
[0,t] �



A1, i f t ∈ {πk : k ∈ I}

A
+
0 , i f t ∈ {π2 + πk : k ∈ I}

A2, i f t ∈ { 3π4 + πk : k ∈ I}

A
+
cos t, i f t ∈

⋃
k∈I(πk; π2 + πk)

A
−

cos t, i f t ∈
⋃

k∈I((
π
2 + πk;π + πk) \ { 3π4 + πk})

where I = {0, 1, 2, ...}.

The essence of the theorem can be more clearly visualized in Figure 1.

Figure 1: The partition of the time set {(0, t) : 0 ≤ t} corresponding to the classification of the algebrasA[0,t], with t ≥ 0 in the rotation
chain.

Our goal now is to describe the algebraic properties of the algebras A[0,t], with t ≥ 0, in order to use
them in encryption-decryption purposes.

From a direct application of the theorems and corollaries in Section 2 we obtain the result presented in
the following table, where

uα := αe1 + (1 − α)e2, for α ∈ R, u =
1
√

2
(e1 + e2) and ũ =

1
2 cos t

(e1 + e2).

A
+
0 A1 A2 A

+
cos t A

−

cos t

Associativity No Yes Yes No No

Commutativity No No Yes No No

Left unit No No u No No

Right unit No uα u ũ ũ

Unit No No u No No

Regarding the determinants of layers M1 and M2 in M = (M1|M2) where M is the cubic matrix defining
the product of the corresponding algebra, we have the following information:

M
+
0 M1 M2 M

+
cos t M

−

cos t

det M1 0 0 −1 sin(2t) − sin(2t)

det M2 0 0 −1 sin(2t) − sin(2t)

We summarize this information in the following result.
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Theorem 3.5. Let CH2,rot
[0,+∞[ := {M[s,t] : 0 ≤ s < t < +∞} be the 3D rotation chain of dimension 2 × 2 × 2. LetA[0,t]

be the algebra associated with the cubic matrix M[0,t], for every t ∈ R+0 . Then:
(i)A[0,t] has a unit if and only if t ∈ { 3π4 + πk : k ∈ I} with I =N ∪ {0}, in which caseA[0,t] = A2.
(ii)A2 is an associative and commutative division algebra whose unit is given by u = 1

√
2
(e1 + e2).Moreover, the

inverse of a nonzero element a = a1e1 + a2e2 ∈ A2 is given by a−1 = a2

a2
1+a2

2
e1 +

a1

a2
1+a2

2
e2.

3.2. Encrypting and decrypting with the 3D rotation chain

This subsection presents the use of algebraic properties of the algebras associated with the 3D rotation
chain to develop time-dependent encryption and decryption algorithms. We will not provide a specific
algorithm, but rather a general procedure for constructing algorithms based on predefined functions.
Depending on these functions, different algorithms can be obtained under the same framework.

InA =R2 we prefix a basis B = {e1, e2}. Then, every 3D matrix of dimension 2×2×2 uniquely determines
a multiplication in R2, endowing R2 with the structure of an algebra (non necessarily associative). In
particularly, this holds for every matrix of the 3D rotation chain CH2,rot

[0,+∞[ := {M[s,t] : 0 ≤ s < t < +∞} where
M[s,t] is given by (21).

More precisely, our interest lies in the time-dependent two-dimensional algebras A[0,t] obtained by
considering in R2 the products associated to the cubic matrices M[0,t] with t ≥ 0, given by

M[0,t] :=

 c[0,t]
111 c[0,t]

121

c[0,t]
211 c[0,t]

221

∣∣∣∣∣∣ c[0,t]
112 c[0,t]

122

c[0,t]
212 c[0,t]

222

 =
 cos(t) cos(t)

− sin(t) sin(t)

∣∣∣∣∣∣ sin(t) − sin(t)

cos(t) cos(t)

 .
Thus, the product of a = αe1 + βe2, and b = γe1 + δe2, in the algebraA[0,t] is given by ab = λe1 + µe2 where,
according with (22),

(α, β)

 c[0,t]
111 c[0,t]

121

c[0,t]
211 c[0,t]

221


 γδ

 = λ and (α, β)

 c[0,t]
112 c[0,t]

122

c[0,t]
212 c[0,t]

222


 γδ

 = µ.
The proposed encryption model works as follows. We consider that Alice has an input token represented

by a vector a := (α, β) ∈ R2. Therefore, associated with Alice’s information, we have the vector a = αe1 + βe2.
On the other hand, Bob (who encodes Alice’s information) knows a predefined function denoted by

b : R+0 → R
2
\{0, 0}. Note that there are no conditions on b except that

b(t) , (0, 0), for every t ≥ 0.

Consequently, associated with b(t) = (b1(t), b2(t)) ∈ R2, we have the element

b(t) = b1(t)e1 + b2(t)e2 ∈ A
[0,t].

When Alice requests access to the encryption system managed by Bob, she inputs her data a = αe1 + βe2
into the system at a specific instant of time t. A double first encryption of a = (α, β) is then obtained as
follows:

(α, β)

 c[0,t]
111 c[0,t]

112

c[0,t]
211 c[0,t]

212

 = (ua
1(t),ua

2(t)), (23)

(α, β)

 c[0,t]
121 c[0,t]

122

c[0,t]
221 c[0,t]

222

 = (va
1(t), va

2(t)).
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To decrypt this double encryption of a = αe1 + βe2 (equivalently, of (α, β)), we consider another algebra
that is well-behaved, since the algebra A[0,t] used for encryption may be poorly behaved. To this end,
note that for all s ∈

{
3π
4 + nπ : n ∈N ∪ {0}

}
, the corresponding algebraA[0,s] coincides with the algebraA2,

which is the unique well-behaved algebra in the 3D rotation chain. Specifically, A[0,s] = A2 is the only
associative and commutative division algebra. Consequently, for the decryption process, it is advisable
to address the decryption problem to these concrete algebras. To achieve this, it is unnecessary for Alice
to interact with the system again, as such intervention could introduce synchronization issues. Indeed,
the Chapman-Kolmogorov equation allows us to obtain an algebra A[0,s] for s = 3π

4 + nπ with s > t and
n ∈ N ∪ {0} (for instance, set n = E( t

π −
3
4 ) + 1 if t ≥ 3π

4 , and n = 0 otherwise, where E denotes the floor
function). Since M[0,t]

∗M[t,s] =M[0,s], according with (18), we have that c[0,t]
1i1 c[0,t]

1i2

c[0,t]
2i1 c[0,t]

2i2


 c[t,s]

1i1 c[t,s]
1i2

c[t,s]
2i1 c[t,s]

2i2

 =
 c[0,s]

1i1 c[0,s]
1i2

c[0,s]
2i1 c[0,s]

2i2

 .
Hence, by defining

(wa
1(s),wa

2(s)) := (ua
1(t),ua

2(t))

 c[t,s]
111 c[t,s]

112

c[t,s]
211 c[t,s]

212

 and

(xa
1(s), xa

2(s)) := (va
1(t), va

2(t))

 c[t,s]
121 c[t,s]

122

c[t,s]
221 c[t,s]

222

 ,
we have that

(α, β)

 c[0,s]
111 c[0,s]

112

c[0,s]
211 c[0,s]

212

 = (wa
1(s),wa

2(s)) and

(α, β)

 c[0,s]
121 c[0,s]

122

c[0,s]
221 c[0,s]

222

 = (xa
1(s), xa

2(s))

and it follows that, in the algebraA[0,s], the product of αe1 + βe2 and b1(s)e1 + b2(s)e2 is given by the vector
ca(s) = c1(s)e1 + c2(s)e2,where

c1(s) = wa
1(s)b1(s) + xa

1(s)b2(s) and
c2(s) = wa

2(s)b1(s) + xa
2(s)b2(s).

Since A[0,s] is an associative and commutative division algebra and b(s) is nonzero, c(s) can be easily
decrypted. In fact, if · denotes the product inA[0,s], then we have that

ca(s) · b(s)−1 = (a · b(s)) · b(s)−1 = a · (b(s) · b(s)−1) = a · e(s) = a.

More precisely, since b(s) ∈ A[0,s] and b(s) , 0, by Theorem 3.5, we obtain

b(s)−1 =
b2(s)

b2
1(s) + b2

2(s)
e1 +

b1(s)
b2

1(s) + b2
2(s)

e2.
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Therefore

α = (c1(s), c2(s))

 c[0,s]
111 c[0,s]

121

c[0,s]
211 c[0,s]

221




b2(s)
b2

1(s)+b2
2(s)

b1(s)
b2

1(s)+b2
2(s)

 and

β = (c1(s), c2(s))

 c[0,s]
112 c[0,s]

122

c[0,s]
212 c[0,s]

222




b2(s)
b2

1(s)+b2
2(s)

b1(s)
b2

1(s)+b2
2(s)

 ,
as desired.

Regarding this model, we make the following observations to emphasize that we are not providing a
single algorithm but rather a general procedure from which multiple algorithms can be derived.

Remarks about the model.
(i) Each fixed basis in R2 induces a distinct encryption process based on the same approach.
(ii) Similarly, every function b : R+0 → R

2
\{0, 0} defines a different encryption process, and we can take

advantage of this fact to improve the process.
(iii) When dealing with the encryption and decryption of input tokens represented by vectors of length

n, the vector can be partitioned into pairs (xi, xi+1), or the 3D rotation chain can be replaced by one of higher
dimension, thereby extrapolating the method presented here.

(iv) Alice’s code a = αe1 + βe2 can be replaced by a time-dependent vector code as follow.
Consider a mapping h : R2

× R+0 → R
2 such that, for every t ∈ R+0 , the function ht : R2

→ R2 defined
by ht(α, β) := h((α, β), t) is bijective. Then, the encryption process can be strengthened by introducing
ht(α, β) = (αt, βt) as Alice’s time-dependent code instead of (α, β).

Such a function h is easy to construct. For instance, if f , 1 : R → R are functions that do not vanish
simultaneously at the same point t ∈ R+0 , then the function h : R2

×R+0 → R
2 defined by

h((α, β); t) = ( f (t)α + 1(t)β, f (t)β − 1(t)α),

satisfies the required property. Indeed, if ht(α, β) := h((α, β), t) = (αt, βt) then,

(α, β) =
(

f (t)αt − 1(t)βt

f 2(t) + 12(t)
,
1(t)αt + f (t)βt

f 2(t) + 12(t)

)
. (24)

In this case, to decrypt Alice’s code we first obtain ht(a) = (αt, βt) from the equality ht(a) = c(s) ∗ b(s)−1,
and then recover a = (α, β) from ht(a) = (αt, βt).

3.3. Algorithms.

In this section, we present encryption and decryption algorithms that implement the procedure described
above. We begin with the simplest version (which ignors Remark (iv)).

Preliminaries:
(a) Define a function b : R+0 → R

2
\{0, 0}.

(b) Provide Alice with a vector a = (α, β) ∈ R2.

For encryption:
(c) Determine the instant of time t at which Alice requests encryption.
(d) Compute s > t such that s = 3π

4 + nπ, for some integer n, (such an s always exists).
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(e) Determine the double encryption (ua
1(t),ua

2(t)) and (va
1(t), va

2(t)) according to

(α, β)

 cos(t) sin(t)

− sin(t) cos(t)

 = (ua
1(t),ua

2(t)),

(α, β)

 cos(t) − sin(t)

sin(t) cos(t)

 = (va
1(t), va

2(t)).

For decryption:
(h) Determine ca(s) = (c1(s), c2(s)) by computing

(ua
1(t),ua

2(t))

 cos(s − t) sin(s − t)

− sin(s − t) cos(s − t)

 = (wa
1(s),wa

2(s)),

(va
1(t), va

2(t))

 cos(s − t) − sin(s − t)

sin(s − t) cos(s − t)

 = (xa
1(s), xa

2(s)),

then define c1(s) = wa
1(s)b1(s) + xa

1(s)b2(s) and c2(s) = wa
2(s)b1(s) + xa

2(s)b2(s).
(i) Recover a = (α, β) using the formula a = cs(a) ∗ b(s)−1. That is,

α = (c1(s), c2(s))

 cos(s) cos(s)

− sin(s) sin(s)




b2(s)
b2

1(s)+b2
2(s)

b1(s)
b2

1(s)+b2
2(s)

 and

β = (c1(s), c2(s))

 sin(s) − sin(s)

cos(s) cos(s)




b2(s)
b2

1(s)+b2
2(s)

b1(s)
b2

1(s)+b2
2(s)

 .
Algorithm for triple encryption:
For a triple encryption of a = (α, β), according to Remark (iv), replace steps (a), (e), and (i), in the

algorithm above with the modified counterparts (a-bis), (e-bis), and (i-bis) below, respectively.
(a-bis). Define b : R+0 → R

2
\{0, 0} and h : R2

×R+0 → R
2 satisfying that the mapping ht : R2

→ R2 given
by ht(a) := h(a, t) is bijective for every t ∈ R+0 .

(To obtain the above algoritm take ht as the identity on R2, so that ht(a) := a for every t ∈ R+0 , and every
a ∈ R2).

(e-bis). Determine the encryption ht(a) = (αt, βt) and its corresponding double encryption, given by
(ua

1(t),ua
2(t)) and (va

1(t), va
2(t)), according to (23). Thus,

(αt, βt)

 cos(t) sin(t)

− sin(t) cos(t)

 = (ua
1(t),ua

2(t))

(αt, βt)

 cos(t) − sin(t)

sin(t) cos(t)

 = (va
1(t), va

2(t)).

(i-bis). Determine ht(a) = (αt, βt) using the formula ht(a) = cs(a) ∗ b(s)−1. Therefore,

αt = (c1(s), c2(s))

 cos(s) cos(s)

− sin(s) sin(s)




b2(s)
b2

1(s)+b2
2(s)

b1(s)
b2

1(s)+b2
2(s)

 and
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βt = (c1(s), c2(s))

 sin(s) − sin(s)

cos(s) cos(s)




b2(s)
b2

1(s)+b2
2(s)

b1(s)
b2

1(s)+b2
2(s)

 .
Finally, we recover a = (α, β) from ht(a) = (αt, βt), as in (24).
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