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Chains of time-dependent 3D matrices and applications to encryption
systems

Bobomurad A. Narkuziev?, M. Victoria Velasco®*

?Kimyo International University in Tashkent, Department of Exact Sciences, Shota Rustaveli street, 156, 100121 Tashkent, Uzbekistan
b Departamento de Andlisis Matemdtico, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain

Abstract. This paper deals with chains of time-dependent 3D matrices and their applications. We introduce
the 3D rotation-chain 2 X 2 x 2 and describe the properties of each 3D matrix in this chain after identifying
it with the non-associative algebra that it defines. To this end, we characterize when the algebra associated
with a 3D matrix of dimension 2 X 2 X 2 is associative, commutative, has a unit (or a one-sided unit), or
is a division algebra, respectively. Based on the properties of the 3D rotation-chain 2 X 2 x 2 we develop
algorithms for encryption and decryption processes.

1. Introduction

The aim of this paper is to study chains of time-dependent 3D matrices with applications in encryption
systems. Examples of such chains, centered on 3D rotation matrices of dimension 2x2 X2, are provided and
used to illustrate a robust method for developing time-dependent encryption and decryption algorithms.
Consequently, this approach, after some minor adaptations, can be applied to time-based encryption
processes, such as the creation of temporary encryption keys, temporary access tokens, and programmed
encryption systems, among others [1} 18, 33]].

Three-dimensional matrices, commonly referred to as 3D matrices, are mathematical structures that
extend the concept of two-dimensional matrices (which have rows and columns) to three dimensions.
Therefore, a 3D matrix consists of elements arranged in a three-dimensional grid, where each element is
identifiable using three indices. The dimension of a 3D matrix is typically described as m X n X p, where m
represents the number of rows (height), n the number of columns (width) and p the number of layers
(depth).

In Cryptography, 3D matrices are employed for complex data transformations, adding layers of com-
plexity to enhance the security of ciphers [23] 28]. Furthermore, 3D matrices are widely recognized as
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essential tools in several scientific fields [29] including Physics (for tensor calculus and space simulations
[24]), Computer Graphics (for manipulating 3D models through operations such as translation, rotation,
and scaling [11]]), and Data Science (especially in Machine Learning for managing multi-dimensional data
sets [9]). In Virtual Reality and Augmented Reality, 3D matrices are crucial for creating and managing
3D environments [6]. In Computer Vision, they are utilized for tasks such as object recognition, 3D re-
construction, and motion tracking [35]. This usage facilitates the understanding and interpretation of the
structure of a 3D environment from 2D images [10]. In Medical Imaging, 3D matrices help reconstruct
3D models from 2D slices [31], while in Meteorology and geophysics they enable visualization of complex
3D phenomena [32]. The focus here is on cubic matrices (i.e., 3D matrices with dimension n X n X n).
This preference arises from the fact that such matrices can be considered as n-dimensional algebras (not
necessarily associative), allowing the use of algebraic tools to enhance our model. This aspect is crucial in
the algorithms we develop here, particularly where the multiplication of two elements is involved. It is
also worth noting that an asymmetric 3D matrix of dimension m X n X p can be treated as a cubic matrix of
dimension s := max{m, n, p} by filling the unoccupied spaces in the s X s X s block with zeros.

We will pay special attention to 3D rotation matrices, as already mentioned. Rotation matrices are useful
in various fields of science [7], including Computer graphics [2], Neural Networks [36] and Transformers
[30], and of course in Cryptography [14]. Indeed, in data security, a basic idea is to represent data in matrix
form and then apply various mathematical operations to encrypt or decrypt the data. Thus, the concept
of rotating (or shifting) data elements is a common encryption technique. Moreover, the strength of a
cryptographic algorithm often depends on the complexity of solving certain matrix problems [8], which is
further increased by introducing time-dependence, as we do here. In summary, although 3D matrices and
rotation matrices are more commonly associated with Computer Graphics, they also play a significant role
in the field of Cryptography.

The paper is structured as follows: Section 2 focuses on characterizing the algebraic properties of the
two-dimensional algebra determined by a 3D matrix of dimension 2 X 2 X 2. In this context, we explore
properties including associativity, commutativity, the existence of a unit and one-sided units, as well as the
criteria for being a division algebra. These characterizations are exclusively dependent on the 3D matrix
that defines the multiplication of the given algebra.

In Section 3, we introduce the notion of a time-dependent chain of 3D matrices (Definition , and
show an illustrative example called the 3D rotation-chain 2 x 2 x 2 (Definition [3.3). After describing all
the algebras associated with the cubic matrices of this particular time-dependent chain of 3D matrices, we
classify them and present their algebraic properties based on the results of Section 2. Finally, we outline
double-key and triple-key encryption and decryption algorithms, making use of the algebraic properties
previously discussed.

2. Algebras associated to a 3D matrix of dimensionn X n X n

Throughout this paper, K denotes either the field of real numbers, IR, or the field of complex numbers,
C. Formally, a 3D matrix of dimension n X m X p is a collection of elements w; € K wherei = 1,2,...,n,
j=1,2,..,m and k = 1,2, ..., p. Therefore, each element in the matrix is identified by its three indices, i, j
and k, which correspond to the matrix’s three dimensions. In this context: n denotes the number of rows
in each 2D matrix slice along the first dimension, m represents the number of columns in each 2D matrix
slice along the second dimension, and p denotes the number of these 2D matrix slices arranged along the
third dimension. Thus, a 3D matrix, M, of dimension n X m X p is uniquely determined by p 2D matrices,
My, ..., M, each of dimension 1 X m, that is My := (w;j);j wherei=1,2,...,n,and j=1,2,...,m, and we write
M = (My]...|M,).

The set of all 3D matrices of dimension n X m X p is a linear space equipped with the standard operations
of addition and scalar multiplication. Thus, if A = (a;%), B = (b;), and if A € K, then A + B := (a; + b;j) and
AA = (/\El,']'k).

From now on we will deal with 3D matrices of dimension n X n X n and we assign a name to them.
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Definition 2.1. A cubic matrix of dimension n is a 3D matrix of dimension n X n X n with entries in K. The set of
all n-dimensional cubic matrices is denoted by €,,.

The reason we focus on the class €, is due to the fact that, when considering an n-dimensional linear
space A with a predetermined basis B = {e, ..., ¢,}, each 3D matrix M € ¢, determines a multiplication in A
that endows A with an algebra structure (not necessarily associative). This fact significantly enriches our
study.

We recall that a multiplication on a linear space A is a bilinear map (4,b) — ab, from A x A to A.
It’s important to note that the algebra A does not need to be associative as the associative property of the
product is not required (only bilinearity is assumed).

In relation to the basis B = {ey, ..., ¢,}, a multiplication in A is defined by the structure constants wi
given by the equalities

n
67‘6]‘ = Z wijkek. (1)
k=1

The bilinear map 7t; : A X A —K determined the equalities by i (e;, €j) = wij, for every i,j =1,...,n, is the
projection of the product of A over the subspace generated by ¢, for every k = 1, ..., n. The matrix associated
to 1 with respect to the basis Bis

w11k 0 Wink
My =
Wyl " Wynk

Thus, the multiplication A X A — A given by (1)) can be identified with the cubic matrix M = (M| - - |M,,)
where My = (1i(e;, €)))i j=1,. » Withk =1, n.
Conversely, every cubic matrix M = (M;]...M,) where M; = (a)ijk)i,jzl__.m fork = 1,--- ,n, defines a

n
multiplication in A given by the equalities eie; := Y, w;jrex.
k=1

We conclude in this way that, fixed an n-dimensional linear space A and a basis B = {ey, ..., €4}, every
multiplication in A is one to one determined a matrix in ¢, and vice versa.

In this paper, we focus on matrices in €,. The main goal of this section is to characterize the properties of a
2-dimensional algebra based on the cubic matrix that defines its multiplication, relative to a predetermined
basis. We address the next subsection to this purpose.

2.1. 3D matrices of dimension 2 X 2 X 2 and their associated algebras
From now on, a matrix M € €, given by

[ w111 @121

w112 wm]
€

w211 W21 | W12 W22
will also be denoted by M = (M;|M;) where
w111 @121 w112 W122
M = [ ] and M, = [ ] (2)
w211 W1 w212 W22

In what follows, consider a fixed 2-dimensional vector space A over K and a basis B = {e1, e2}. Then, as
already mentioned, every cubic matrix in €, defines a multiplication in A. More precisely, if 2 = a1e; + azes
and b = Bie1 + Baey, then ab = y1e1 + Y26, where y1 and y; are determined by

w111 @121 B1
EE P 19
w11 W1 B2

w112 W12 B1
(o o) oo )52
w212 W B2

V1,

Y2
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In this way, A becomes an algebra that we denote by Ay in order to refer to the cubic matrix that determines
its product.

We recall Ay has a left unit (respectively, a right unit) if there exists u € Ap such that ua = a,
(respectively, au = a), for every a € Apm.

We say that u € Ay is a unit for Ay if u is both, a left and a right unit.

If uy is a left unit of Ay and if uy is a right unit of Ap, then up = u1up = uy, and therefore, this element
is a unit for Ay. This also proves that if it exists, the unit of Ay must be unique.

Remark 2.2. Let Ay be the algebra associated to the matrix M = (M1|My) given in (2), with respect to the basis
B = {e1, e2}. Then Ay is commutative if and only if My = M1 and M, = M;.
Theorem 2.3. Let Ay be the algebra associated to the matrix M = (M;|M,), given in , with respect to the basis
B = {e1, e2}. Then, Ay is associative if and only if the following equalities are satisfied, fori,j = 1,2,

w11 W12 wi11 W21
M; = M; ) (3)
W1 W22 Wiz Wi

Proof. The algebra Ay is associative, if and only if (eie;)ex = ei(ejex) for every i, j k = 1,2, which means that
the following equalities are satisfied fori = 1, 2.

(ere)er = eileer), (ere)ex = eq(eier) (4)
(e2ei)er = ealeier), (exei)er = ex(ejen),
Setting

T T
a; =3( w11 W12 )/bi =i( W21 W22 )/Ci I=( Wil Wiz ) ,d; 2=( w1 Wi ) ,
and v] = ( 1 0 ), ol = ( 0 1 ), the equalities (4) can be written as
CliMjl)l = 'UlTM]'Ci,' a,'M]'ZJQ = U{M]'di; biMjl)l = U;M]'Ci,' b,‘M]'Uz = ZJ;M,d,
for j = 1,2. Consequently,
w11 W12 10
M; -
W21 Wiz 01
a,‘M]'U1 aiijz U{M]'Ci T)Ide,‘
biijl b,’MjZ)z B ngjc,- U;M]'di

10 ] ( Wil W1 ]
= M; ,
01 Wiz Win

which proves the result. [J

Corollary 2.4. Let Ay be the algebra associated with the matrix M = (M1|My). Then, Ay is an associative and
commutative algebra if and only if M is given by

M:[abaﬁ)’
bclp y

where a,b,c,a, B,y € Kand the following conditions are satisfied:

ac=0bp; detM; =pc—yb, detM,=ab-ap. (5)
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Proof. By Theorem the commutativity of Ay means that the matrices M; and M, are symmetric.
Moreover, the equalities in (5) follow directly from equation (3) in Theorem[2.3] [

Our next goal is to characterize the existence of a unit in Ay. To this end, we study first the existence of
left and right units.

Theorem 2.5. Let Ay be the algebra associated to the matrix M = (My|M,) given in (2), with respect to the basis
B = {eq,ep}. Set
T
vszz( 1 0 ),v%::( 01 )anduTzz( o U ) )
(i) If det My # 0, then Ay has a left unit u = wiey + uzey if and only if M (M]) vy
ul = Moy
(i) If detM, # 0, then Ay has a left unit u = wiey + uzey if and only if M{(M7) vy = vy, in which case
ul = (M) o,

(iil) If det My = det M, = 0, then Ay has a left unit if and only if either assertion (a) or (b) is satisfied where:

vy, in which case

w1 0|0 wmx o~ o wi ) o — )
(@M= with M = satisfying that det M # 0. In this case, we have
w010 W w1 W2
that u = urey + uger with ut = M~Y(vy + vy) is the unique left unit of Ap.
a 0
b)M = ( b o ‘ 0 ]with a? +b* # 0. Then, every u = uyeq + ugey satisfying that auy + bu, = 11is a left

unit for Ay

Proof. Suppose that u = uye; + uye; is a left unit of Ay with respect to the matrix M = (M;|M;) € €,. Then
ue; = ¢; for i = 1,2. This means that

MTM1”01 = 1,‘ uTszl = 0,' MTMl”Oz = 0,‘ MTMQUQ =1. (6)

Therefore, it follows that

T T
[a)m wlﬂ](”l]_(l} [wuz 0)122)(“1]_(0] "
w11 W1 115 0) w2 W) Uy 1)
Consequently:
(i) If det My # 0, then Ay has a left unit if and only if M (M) 01 = v,.

(ii) If det M, # 0, then Ay has a left unit if and only if MlT(Mg)‘lvz =71.
(iii) If det M; = det M, = 0, then from (6) it follows that

w121 = W1 = w112 = w12 = 0.
(Indeed, otherwhise the system (/) has no solution). Moreover, either
W111W22 — W11 w122 # 0
and hence
-1
Uy w111 @11 1
= 7
up w122 W2 1
or, otherwise, wi11wa2 — winw1 = 0 and consequently w111 = w1z = 4, and wy11 = Wy = b. In this last

case, Ay has a unit if and only if a% + b? # 0 and then, every u = uje + upe; satisfying that auq + bu, = 11is
a left unit for Ay;. O
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Theorem 2.6. Let Ay be the algebra associated with the matrix M = (M1|My) given in ([2), with respect to the basis
B = {e1, ep}. Set

T
vlT::( 1 0 ),vgzz( 01 )anduTzz( Uy Up ) .
() If detM; # O, then Ay has a right unit u = uje; + uzep if and only szzMIlvl = vy, in which case
ul = M 1o,.
1

(ii) If detM, # O, then Ay has a right unit u = uje; + uzey if and only if MlMglvz = 11, in which case
= M_l’l)z.
2

(iii) If det My = det My = 0, then Am has a right unit if and only if either assertion (a) or (b) is satisfied where:

ul

w1 wizn |0 0 — w111 w121 | — )
@M = and M = is such that  detM # 0. In this case,
0 0 o wm W12 W2
U = ujer + uge where u’ = M~ (vq + vy) is the unique right unit of Ap.
a b|0 O
by M = 0 0 with a? + b*> # 0. In this case, every u = uiey + upey satisfying auy +buy = lisa
a
right unit for Apm.

Proof. The proof of this theorem is similar to the proof of Theorem[2.5 [
Corollary 2.7. Let Ay be the algebra associated to the matrix M = (M1|My), with respect to the basis B = {ej, ).
Then A has a unit if and only if My = M1, My = M] and one of the following assertions is satisfied:

T

(i) detM; # 0 and M2M1‘1211 = vy, in which case u = ujey + upey is the unit of Apr, where ul .= ( Uy U ) is
given by u” = M;'v;.

T

(ii) det M, # 0 and MlMglvz = vy, in which case u = uje1 + uyey is the unit of Apr, where ul .= ( Uy Up )
is given by u” = M;'v,.

Consequently, if detMy # 0 and detM, # 0, then Ay has a unit if and only if My = M, My = M} and
Mo = M;l

1“1 2 ©2-
(iil) If det My = 0 = det My = 0, then Ap has a unit if and only if

a 010 0
M = (8)
[o o‘o b]

with ab # 0, in which case u = 1e, + je; is the unit of Ap.

Proof. Suppose that det M; # 0. From Theorem [2.5(i) and Theorem [2.6(i) the unique possible left (respec-
tively right) unit for Ay is u = uje; + use; where, if

T
uT::(ul uz)

then, u” = (M])'v; (respectively, u” = M;'v;). Consequently, a necessary condition for the existence of a
unit is

MI1711 = (M{)7101 .

From this last equality we obtain that M; = M]. Moreover, according to the mentioned theorems, for the
existence of a unit we also need that

MMy o = My(MI) ™oy = 0,.
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Therefore, (M, — Mg )Milvl = 0 and we deduce that M, = Mg . Consequently, a necessary condition for the
existence of a unit in Ay, is that M1 = M] and M, = M in which case, u” = M;'v; is both a left and a right
unit if and only if MZMI101 = v,. This proves (i).

To prove (ii) suppose that det M, # 0. Similarly, we obtain that M; = MlT and M, = M; are necessary
conditions for the existence of a unit for Ay, and also that u = uqeq +upe; is a unit for Ay, where u” = M; Lo,
if and only if MlMglvz =10.

Particularly, if detM; # 0 and detM, # 0, then it follows straightforwardly that Ay has a unit if and
only if My = MT, M, = M}, and M;'v; = M;'0,.

Finally, note that if detM; = 0 = detM,, then the only way to simultaneously satisfy assertion (iii) in
Theorem 2.5 and Theorem [2.6]is that assertion (b) be satisfied in both results. This means that M is of the
type (8) and, therefore, u = %el + %ez is the unit of Ap;. O

Theorem 2.8. Let Ay be the algebra associated to the matrix M = (M;|M,), with respect to the basis B = {e1, e2}.
Then Awm is an associative and commutative algebra with a unit if and only if one of the following conditions is
satisfied:

a b|O0 0
M= with b # 0 and det My # 0. In this case, the unit of Ap is given by
b c|o =M
U= L(ce — bey)
T detM;
—det M 0 a ﬁ
(i) M := [ S 0 ' g ) with B # 0 and det M, # 0. In this case, the unit of Aw is given by
14
— ;(_ + )
u= detM, pe1 + aey).
a b|-bA —cA .
(iii) M = P ,fora,b,c,d, A € K, with (ac — b*)(bd + ¢?) # 0, and A = —%. In this case,
the unit of Ay is given by
U= ;(ce — bey)
B detM1 ! 2
a 00 0
(ivyM = 0 0 ) with ab # 0. In this case, the unit of A is given by
u= 1e + 1e
A
Proof. Since M = (M;|M,) defines the product of Ay by Corollary 2.4 we have
a a B
M = (MiIM>) =
b c|p vy
where
ac = bp )
det M1 = ﬁc - ‘)/b/
detM, = ab-ap,
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Case 1. detM; # 0 and detM, = 0.
Case1.1. If =0, theny # 0,b # 0 and a = 0, therefore, y = %. This means that

a b 0 0
M = withb #0, and M, = .
! b ¢ 2 0 —detM dethl

Since the equality Mle‘lvl = v, holds we obtain, from Corollary that the unit of Ay is given by
U = gz (cer — bey).

Case 1.2. If B # 0, then a # 0 and y # 0 as f*> = ay because det M, = 0. Since ac = bp, by @, we have
thatif b = 0, then ¢ = 0 and det M; = 0, a contradiction. Therefore, b # 0 and hence g = 4. Consequently,

OzdetMZ:ab_a‘B:ab_aTac =_adeth1 ?&0’

a contradiction.
Case 2. detM; = 0 and det M, # 0.
Case 2.1If b = 0 then, a # 0 and § # 0. Consequently, b = % and

detM; = ﬁC - )/b = ﬁC - 7/% = %(ﬁ2 — a)/) =0.
Thereforec = 0and a = %. Hence,
a ‘8 —det M, 0
M, = , with g # 0and M; = p :
4 0 0

In this case, ul = M;lvz so that u = #Mz(—ﬁel + aey) is the unit of Ay,.

Case2.2. b #0.

Case 2.2.1. If « = 0 then § = 0 as ac = bp by () and thus det M, = 0, a contradiction.
Case 2.2.2 If a # 0 then, since § = 97, it follows that

ac

OidetMZ:ab—a[B:ab—ab

= %(b2 —ac) =0,

a contradiction.
Case 3. detM; # 0 and det M, # 0. Then, in order to have a unit, we need that Ml‘lvl = Mglvz so that

1 c -b)(1 1 y B[O
detMi{ =b o J{ 0 ) detMa| g o J{ 1
and it follows that @« = —Aband = —Ac with A = detM; - (. Setting d := 3—/,

det M,
a b
M =
b ¢

—-bA  —cA
—cA dr )

: _ detMp _ _ 12 bd+c? _ 3 bd+c? _ _ac-b? . ses .
Since A = 35 = A e A we havethat1 = -AZ% A Thus, A = —{75. Moreover, since the unit is defined

by the equality M;'v; = M,"v;, we conclude that such a unit is u = #Ml(cel — bey).
Case 4. If det M; = 0 = det M, then, according with Corollary 2.7] a necessary and sufficient condition
for Ay to have a unit is that

a 0]0 0
M=
[OOOb]

with ab # 0. In this case u = e; + }e, is the unit of Ap. O
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We recall that a division algebra is an algebra equipped with a unit, in which every nonzero element
has an inverse. For non-associative algebras the notion of an invertible element is a delicate matter (see
[20,134]). Next we characterize when a real algebra Ay is an associative and commutative division algebra.

Theorem 2.9. Let Ay be an algebra over R, whose multiplication with respect to the basis B = {e1, e5} is given by
the cubic matrix M = (M;|M,), where My and M, are real matrices of dimension 2 X 2. Then, Ay is an associative,
commutative division algebra if and only if

a b
M=

b (10)

—bA  —cA
—cA dr )

ora,b,c,d, A € R, where (ac — b?)(bd + ¢?) £0, A = —2=L and
f

T bd+c2’
(ad + be)* < 4(b? — ac)(bd + 3).

Proof. Since the algebra Ay that we are considering is associative, commutative and has a unit, we have
that Ay has to satisfy one of the assertions (i) — (iv) stated in the Theorem 2.8

Assertions (i), (ii), or (iv) correspond to an associative, commutative algebra with a unit that is not a
division algebra. This is because e; (in cases (i) and (iv)) and e, (in cases (ii) and (iv)) are not invertible
elements in Ay Consequently, we conclude that Ay satisfies (iii) so that M is like , fora,b,c,d, A € R,

where (ac — b?)(bd + %) # 0 and A = &=

T bd+crt
To prove that Ay, is a division algebra, leta = a;¢; +a,¢, be any nonzero element of Ay and a~! = xe; +ye;

be its inverse. If the unit is given by u = uye; + ue; then, since Ay is commutative, we have that ar ' =u
which means that

(@ )(b b]{y]z and (@ )(:bj ;;)[y} an

If we set
€11 := @a + asb, c1p := b + axc, cp1 := —a1bA — axcA, ¢ = —aicA + arAd, (12)

then the system (I1)) can be written as

{ C11X +C2Y = Uy (13)

21X + ClY = Up.

C11 C12

Let C := (
€1 €2

]. Then,

detC = ciic0 — ci2001 =
= B2 A(b? — ac) + a3A(bd + ¢*) + mapAad + be) = (14)

= —a?AdetM; — a2 + 4105 (ad + bo) M.

The condition det C # 0 is necessary and sufficient for the system to have a unique solution. (If the solution
is not unique, then Ay contains divisors of zero, which implies that Ay is not a division algebra). We study
when has a unique solution by considering the following cases:

Case 1. a; # 0 and a, = 0. Then the unique solution of is given by

x _ Acuj+buy  _ bAug+aup
y - a det M a det M, :




B. A. Narkuziev, M. V. Velasco / Filomat 40:1 (2026), 23-40 32

Case 2. 41 = 0 and a, # 0. Then the unique solution of (13) is given by

x _ —Aduj+cuy  _ Acug+bup
y - a, det My a det My ‘

Case 3. a; # 0and a, # 0. Then has a unique solution if detC # 0. If we fix a5, then detC = 0 if and
only if

—a% detM; + ag(bd +¢%) + ayas(ad + be) = 0. (15)
This equation always has a real solution unless the discriminant is negative, that is

a%(ud +bc)? + 411% det M;(bd + %) < 0.
Consequently,

(ad + be)* < 4 — ac)(bd + 3),

In this case, the inverse of a = aje1 + aze; is given by al =xe; + ye> where

(r y)=( gl —apron ),
with ¢;; (for i, j = 1,2) and det C determined by and , respectively. [J

Remark 2.10. That there are no complex division algebras of dimension 2 is very well known [13l], as finite-
dimensional division algebras over an algebraically closed field IF are isomorphic to [F (note that C has dimension 1 as
a complex algebra). In the above proof we obtain a justification of this fact. Indeed, since the equation always
has a solution in C, it follows that the associative and commutative algebra Ay is not a division algebra.

3. Chains of time-dependent 3D matrices

When working with time-dependent 3D matrices, it is advisable to select models where the temporal
dependency is consistent. Drawing inspiration from Markov chain processes [5], we introduce below the
notion of a chain of 3D matrices. These are time-dependent cubic matrices whose temporal dependency is
robust, as guaranteed by the Chapman-Kolmogorov equation. For this purpose, we need to establish the
product of two 3D-matrices in €,,.

There are many standard multiplication operations for cubic matrices (see [3} [17, [19]) that endow the
linear space €, with the structure of an algebra. Particularly, in [3]], the authors identifiy 15 associative
multiplication rules for cubic matrices giving rise to five non-isomorphic associative algebras.

In this paper, we will consider in €, the algebraic structure derived from the following multiplication:
Given A = (i) and B = (b;) in €, we define multiplication of A and B as the matrix A = B € ¢, given by

n
A *B = (cijp)ijr wherec;j, = Zaijkbkjr, withi, jr=1,---,n (16)
k=1

In the case of matrices A = (4;) and B = (b;j) in €, the above multiplication is A * B = (C;|C;) where

c, o= a111b111 + a112b211 A121b121 + 1226201 (17)
ar11b111 + a212bo11  A221bi21 + A220b01

C, : = a111b112 + 41120212 A121b120 + 1220020
a211b112 + A212b212  A201b122 + 2206202

Thatis, A * B := (cij)i jr with i, j,r = 1,2, where

mjp mp \( bip bip cjp o Cip
[ fINaY ][ no by ]:( oy ) i—12 a8)
a1 azp J\ b1 bopp Cj1 Co2
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Definition 3.1. Let a,b € R} with a < b. We define a chain of 3D matrices in €,, associated to the time-range

[a,b], as a family of cubic matrices over K = R
C‘H'[;’*b] =M e, :a<s<t<b)
satisfying the Chapman-Kolmogorov equation, which means that
Mt = Al o pfiot]) (19)

forall a <s <1t <t< b, wherexis apredefined product of cubic matrices in €,,.
We extend this definition straightforwardly to the case of a time interval given by [a, +oc0] (as well as for K = C).

As said before, the product * that we will consider in this work is .
Constructing examples of chains of 3D matrices is challenging, even in dimension 2. In fact, to define a
chain C?’('[Z*h] = (M € €, : a < s < t < b}, where the matrices

(st [st] [st]  [st]

s | Gr G2 | G2 Gz
MEH = e @,,

Aot sl | dstl sl

a1 o1 G G

satisfy the Chapman-Kolmogorov equation with respect to the product (I6), it is necessary that the following
equations derived from (19) be satisfied:

[s4] _ s lnt] o sl [7i] S
cijr = ci],1 cljr + ci],2 C2jr , i,j,r=1,2.
If we consider the four equations with j = 1, the unknowns in them do not participate in the other four

equations with j = 2. Therefore, the equations for j = 1 and j = 2 are independent. Hence it suffices to
[s,t]

solve the system only for j = 1. Denote al[f’t] = ¢,y to obtain the following system:
o =
)= s ol .
o=
o = )

The complete set of solutions of the system has not yet been fully determined. However, a broad class
of solutions exists, as explored in [4,[12}[16} 21} 22, [25]26]. In the next result, we present a particular solution
for (20) taken from [15].

Remark 3.2. The matrices M*! given by

Al cos(t—s) cos(t—s) | sin(t—s) —sin(t—s) 1)
| - sin(t —s) sin(t—s) | cos(t—s) cos(f —s) ’
fors,t € R with s < t, define a chain

Cq_{z,* —— {M[S/t] : O S s < t < +OO},

[0,+00[ *7
of 3D matrices in €, (with K = R) with respect to the product given by (I7).
To make a direct reference to the chain provided by Remark .2} we introduce the following definition.
Definition 3.3. We define the 3D rotation chain of dimension 2 X 2 X 2 as the 3D chain

sz,rot — {M[S,t] :0<s<t<+oo}

[0,+00[ "™
of matrices in €, (with K = R) defined by the matrices M1 given in , with the matrix product in €, determined
by (7).

Our next goal is to study the properties of the algebras associated with the cubic matrices that determine
the 3D rotation chain of dimension 2 X 2 X 2.
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3.1. The rotation chain of dimension 2
As previously mentioned, fixed a 2-dimensional linear space A with a basis B = {ej, 5}, every matrix

a1z 4122
€ @2

a111 4121
a2 a2

a1 a1

defines a product in A. In fact, if a = aje; + aze; and b = f1e1 + ez then ab = y1eq + ye, where

aimn - M1 B1
71 = (a,a) ; (22)
a1 a1 B2
aiy M B1
Y2 = (a1,a) .
a2 A B2

This product endows A with the structure of an algebra that does not need to be associative.
The 3D rotation-chain is given by the family

CH o =AM - 0 <5 < £ < +o0),

where

o] ( cos(t—s) cos(t—s)

sin(t —s) —sin(t —s) )

—sin(t —s) sin(t—s) | cos(t—s) cos(t—s)

The algebras A associated to the matrices M1 € Cﬂ[zérfm[, for t € R}, have been described in [27].
Since
cos(t)  cos(t)
—sin(t) sin(t)

MO — sin(t) —sin(t)
) cos(t)  cos(t)

we obtain that, having fixed the basis B = {ej, 5}, the multiplication table of Al g given by

€161 = C111€1 + C11262 = coste; + sintey,
€162 = C1p1€1 + C12062 = cos te; — sin te,
€61 = (1161 + Co10€2 = —sintey + cos tey,
€26y = C1€1 + Coxney = sintey + cos tes.

In order to describe these algebras for every t € RY, we introduce the following notation.
Notation. Considering fixed a 2-dimensional vector space A over R with basis B = {e;, e}, let us denote

by ﬂg S Ay Ao, AL, and A, the real algebras associated, respectively, with the following cubic matrices:
0 0|1 -1 1 110 O
M = , M= ,
-1 110 0 0 0|1 1
N2 N2 _N2 A2
M=| 2 2 2 2 ,
Tle _e| 2w
2 2 2 2
cost cost V1-cos?t —V1-cost
:ost = and
—-V1-cos®t V1 -cos?t cos t cost

cost cost
M_ =
cot V1-cos?t —V1-cos?t

The proof of the following result is derived from [27, Theorem 3].

—V1-cos?t V1-cos?t ]

cost cost
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Theorem 3.4. The algebras A associated to the matrices M, for t € R, in the 3D rotation chain of dimension
2, are the following ones:

A, if tenk: kel

Ay, if te{f+mk:kell
AN = A, if te{Z +nk:kel)

Alosr 1f t € Uger(rik; 5 + mk)

A if 1€ Ura((§ + mk; 0+ 7k) \ {5 + 7k}

where I ={0,1,2,...}.

The essence of the theorem can be more clearly visualized in Figure

v

Figure 1: The partition of the time set {(0, ) : 0 < t} corresponding to the classification of the algebras A%, with ¢ > 0 in the rotation
chain.

Our goal now is to describe the algebraic properties of the algebras A, with t > 0, in order to use
them in encryption-decryption purposes.

From a direct application of the theorems and corollaries in Section 2 we obtain the result presented in
the following table, where

1 —
Uy :=aer+ (1 —a)e, forae R, u=—(1+e)andu =

1
V2 2cost

:713 :?11 :712 :?1:65t
Associativity | No Yes Yes No No
Commutativity | No No Yes No No

Left unit No No u No No

(e1 + e2).

A

cost

Right unit No u, u mn mn
Unit No No u No No

Regarding the determinants of layers M; and M, in M = (M;|M;) where M is the cubic matrix defining
the product of the corresponding algebra, we have the following information:

Mo M My M

cos t

/\1;65t
det M 0 0 -1 sin(2t) —sin(2t)
detM, | 0 0 -1 sin(2t) —sin(2t)

We summarize this information in the following result.
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Theorem 3.5. Let CHZ" | := {MI1: 0 < s < t < 400} be the 3D rotation chain of dimension 2 x 2 x 2. Let A0

[0,40of -
be the algebra associated with the cubic matrix MI°!, for every t € R} Then:

(i) AN has a unit if and only if t € {3 + mk : k € I} with I = N U {0}, in which case A = A,.
(ii) Ay is an associative and commutative division algebra whose unit is given by u = —=(e; + e;). Moreover, the
8 8 Y A

-1 _ _®

inverse of a nonzero element a = aje1 + aze; € Ay is given by a~' = 4

e1 + 5—6s.
2,2 7. 2
aj+a; aj+a;

3.2. Encrypting and decrypting with the 3D rotation chain

This subsection presents the use of algebraic properties of the algebras associated with the 3D rotation
chain to develop time-dependent encryption and decryption algorithms. We will not provide a specific
algorithm, but rather a general procedure for constructing algorithms based on predefined functions.
Depending on these functions, different algorithms can be obtained under the same framework.

In A =R*we prefix a basis B = {ey, e2}. Then, every 3D matrix of dimension 2 X2 X2 uniquely determines
a multiplication in R?, endowing R? with the structure of an algebra (non necessarily associative). In
particularly, this holds for every matrix of the 3D rotation chain C?‘([Z(’{i;[ = (M 10 < s <t < +o0} where
M is given by (21).

More precisely, our interest lies in the time-dependent two-dimensional algebras A*! obtained by
considering in IR? the products associated to the cubic matrices MI®!! with t > 0, given by

MO [ﬁ’i] 5%] c[ﬁ’;] cllg’;] cos(t)  cos(t) | sin(t) —sin(t)
| 0, 0, on | . .
0[21;] gzil gl;] C[zzé] —sin(t) sin(f) | cos(t) cos(t)

Thus, the product of a = ae; + fey, and b = ye; + Oey, in the algebra A is given by ab = Ae; + e, where,
according with [22),

[0,¢] [0,¢] [0,] [0¢]

c c y c c y
m - Y21 112 Y

(a0, ) = A and (a, ) =u.
Jon Ll Jdon ol || s
211 221 212 222

The proposed encryption model works as follows. We consider that Alice has an input token represented
by a vector a := (a, ) € R2. Therefore, associated with Alice’s information, we have the vector a = ae; + Bes.

On the other hand, Bob (who encodes Alice’s information) knows a predefined function denoted by
b:R§ — R?\{0, 0}. Note that there are no conditions on b except that

b(t) # (0,0), for every t > 0.
Consequently, associated with b(t) = (b1(t), by(t)) € R?, we have the element
b(t) = by(Her + by(t)er € ACH.
When Alice requests access to the encryption system managed by Bob, she inputs her data a = ae; + fe;

into the system at a specific instant of time t. A double first encryption of a = (a, ) is then obtained as
follows:

[0,t] [0,t]
G G
(@, B) = (uj(t), u5(t)), (23)
04 0]
11 S
[0,¢] [0,t]
c c
121 S
(a,B) = (Vi(t), Vi(t).
C[Ort] C[Ort]

221 222



B. A. Narkuziev, M. V. Velasco / Filomat 40:1 (2026), 23-40 37
To decrypt this double encryption of a = ae; + fe; (equivalently, of («, §)), we consider another algebra
that is well-behaved, since the algebra A% used for encryption may be poorly behaved. To this end,

note that for all s € {%” +nn:nelNU {0}}, the corresponding algebra A] coincides with the algebra Ay,

which is the unique well-behaved algebra in the 3D rotation chain. Specifically, A% = A, is the only

associative and commutative division algebra. Consequently, for the decryption process, it is advisable

to address the decryption problem to these concrete algebras. To achieve this, it is unnecessary for Alice

to interact with the system again, as such intervention could introduce synchronization issues. Indeed,

the Chapman-Kolmogorov equation allows us to obtain an algebra A% for s = 3 + nm with s > t and
t_3

n € N U {0} (for instance, set n = E(; — 3) + 1if t > 31 and n = 0 otherwise, where E denotes the floor

function). Since M » Ml*s] = MI%] according with (18), we have that

[0,t] [0,t] [.5] [t,s] [0,5] [0,5]
1 S w G2 | | Gn G
04 04 sl sl 051 [0s]
G S 21 o Gt G
Hence, by defining
an A
a a -— a a d
(wl (S)/ 'Z/UZ(S)) - (l/ll(t), uz(t)) an
C[t’S] C[t’S]
21 G2
[t,s] [t,s]
121 S
(] (s), x5(s)) = (v](t), v3(H))
disl bl
01 O

we have that

C[O,SI C[O’S]
1 G 3 . . d
(Ck, ﬁ) 0] 0] - (wl (S)/ wz(s)) an
G G2
[0,s] [0,5]
c c
121 S
(a,B) = (¥(5),x5())
051 [0s]
Co1 O

and it follows that, in the algebra AlS] the product of ae; + fe, and bi(s)er + ba(s)e; is given by the vector
c’(s) = c1(s)ey + ca(s)ez, where

w](s)b1(s) + x{(s)b2(s) and
wy(5)b1(s) + x5(5)a(s).

c1(s)
ca(s)

Since A% is an associative and commutative division algebra and b(s) is nonzero, c¢(s) can be easily
decrypted. In fact, if - denotes the product in Al’*], then we have that

A(s)-b(s)™ =@ -b(s)-bs) L =a-(b(s)-b(s)) =a-es) =a.
More precisely, since b(s) € Al0s] and b(s) # 0, by Theorem we obtain

-1 _ bZ(S)
b(s) T Re+Re

bi(s) .
b2(s) + b(s)
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Therefore
C[O,s] C[O,s] ; bz(S)z
111 121 bi(s)+b5(s)
a = (ci(s),c2(5) 100 | nd
[0,5] [0,5] bi(s)
G111 S P (5)+b2(s)
C[O,s] C[O,s] . bz(s)2
112 122 b1 (s)+b5(s)
B = (@©),c) e
[0,5] [0,5] bi(s)
G120 Com P (s)+b2(s)
as desired.

Regarding this model, we make the following observations to emphasize that we are not providing a
single algorithm but rather a general procedure from which multiple algorithms can be derived.

Remarks about the model.

(i) Each fixed basis in IR? induces a distinct encryption process based on the same approach.

(i) Similarly, every function b : R} — R?\{0, 0} defines a different encryption process, and we can take
advantage of this fact to improve the process.

(iii) When dealing with the encryption and decryption of input tokens represented by vectors of length
n, the vector can be partitioned into pairs (x;, xi+1), or the 3D rotation chain can be replaced by one of higher
dimension, thereby extrapolating the method presented here.

(iv) Alice’s code a = ae; + Be, can be replaced by a time-dependent vector code as follow.

Consider a mapping  : R* x R} — R? such that, for every t € R}, the function /; : R? — R? defined
by hi(a, B) = h((a, ), t) is bijective. Then, the encryption process can be strengthened by introducing
he(a, B) = (a4, Br) as Alice’s time-dependent code instead of («, f8).

Such a function / is easy to construct. For instance, if f,g : R — R are functions that do not vanish
simultaneously at the same point ¢ € R}, then the function / : R? X R} — RR? defined by

h((a, B); 1) = (f(Ba + g(DB, f()B — g(t)av),
satisfies the required property. Indeed, if h:(a, B) := h((a, B), ) = (as, Bt) then,

far —gOpr g(H)a: + f(HP:
O+ " A +g20 )

(@, p) = ( (24)

In this case, to decrypt Alice’s code we first obtain /;(a) = (a;, ) from the equality hi(a) = c(s) * b(s)~?,
and then recover a = (a, f) from h;(a) = (a, ).

3.3. Algorithms.

In this section, we present encryption and decryption algorithms that implement the procedure described
above. We begin with the simplest version (which ignors Remark (iv)).

Preliminaries:
(a) Define a function b : R} — IR*\{0,0}.
(b) Provide Alice with a vector a = (a, B) € R%.

For encryption:
(c) Determine the instant of time t at which Alice requests encryption.
(d) Compute s > t such that s = 3 + nr, for some integer 7, (such an s always exists).
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(e) Determine the double encryption (u{(t), u3(t)) and (vf(#), v5(t)) according to

(i (8), u5(D)),

= (1), %5(#).

(h) Determine ¢“(s) = (c1(s), c2(s)) by computing

cos(t)  sin(t)
(@, p)
—sin(t) cos(t)
cos(t) —sin(f)
(a, B)
sin(t)  cos(t)
For decryption:
cos(s — t)
(uy(£), u3(t))
—sin(s — f)
cos(s — t)
(@ (), %5(8))
sin(s — t)

sin(s — £)
cos(s — £) i

—sin(s — £)

cos(s — £) i

(wi(s), w5(5)),

(x}(5), X5(5)),

then define ci(s) = w{(s)bi1(s) + x{(s)b2(s) and ca(s) = wi(s)b1(s) + x5(s)ba(s).
(i) Recover a = (a, ) using the formula a = ¢5(a) * b(s) ™. That is,

S
Il

=
Il

(c1(s), 2(5))

(c1(s), c2(s))

Algorithm for triple encryption:
For a triple encryption of a = (a, ), according to Remark (iv), replace steps (a), (e), and (i), in the

algorithm above with the modified counterparts (a-bis), (e-bis), and (i-bis) below, respectively.

ba(s)
cos(s)  cos(s) b%(z) :b)%(s) nd

. . 1(S

—sin(s) sin(s) RE+2E
. . by(s)

sin(s) —sin(s) RE+H20
bi(s)

cos(s)  cos(s) RE+2E

39

(a-bis). Define b : R — R*\{0,0} and & : R* x R* — IR? satisfying that the mapping h; : R* — R? given
by h(a) := h(a, t) is bijective for every t € R].
(To obtain the above algoritm take /; as the identity on IR?, so that 1(a) := a for every t € R}, and every

a € R?).

(e-bis). Determine the encryption h:(a) = (a, f) and its corresponding double encryption, given by
(u(1), u3(t)) and (v(t), v§(t)), according to (23). Thus,

(at, Br)

(atr ,Bt)

cos(t) sin(t)
—sin(f) cos(t)
cos(t) —sin(t)

sin(f)  cos(t)

(wi(t), u5(1)

(©1(5), 5(0)).

(i-bis). Determine h;(a) = (o, B;) using the formula f;(a) = ¢s(a) * b(s)™!. Therefore,

ar = (c1(8), c2(s)) [

cos(s)

—sin(s) sin(s)

bi(s)

by(s)
cos(s) ] PO+20

and

b3(s)+b3(s)
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. . ba(s)
sin(s) —sin(s) b%(s)ZTSbg@)

Bt = (c1(s), ca(s)) )
cos(s)  cos(s) PO+E26)

Finally, we recover a = (a, f) from h(a) = (a1, B), as in (24).
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