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Abstract. In this paper, we give the necessary and sufficient conditions for the boundedness of two
Hausdorff-type operators on power-weighted local Morrey-type spaces. Meanwhile, the corresponding
sharp constants are also obtained. As applications, the sharp estimates for the fractional Hardy operator and
its adjoint operator, the weighted Hardy–Littlewood average operator and the weighted Cesàro operator
on power-weighted local Morrey-type spaces are established.

1. Introduction

In this paper, we consider the following two Hausdorff-type operators:

HΦ( f )(x) =
∫
Rn

Φ(y)
|y|n

f
(

x
|y|

)
dy (1)

and

H̃Φ,β( f )(x) =
∫
Rn

Φ( x
|y| )

|y|n−β
f (y)dy, (2)

where x ∈ Rn, Φ are nonnegative measurable functions on Rn and 0 ≤ β < n.
The operatorHΦ, named as the n-dimensional Hausdorff operator, was initially introduced by Andersen

in [4]. Another n-dimensional Hausdorff operator H̃Φ,0 was introduced by Chen et al. [10]. H̃Φ,β, as the
fractional version of H̃Φ,0, was defined by Lin and Sun in [21]. The boundedness and sharp estimates for
the above mentioned Hausdorff-type operators and some related operators have been intensively studied;
see [5, 11, 16, 23–25, 27, 28] and the references therein.
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Recently, the necessary and sufficient conditions for the boundedness of HΦ given by (1) on local
Morrey-type spaces have been obtained by Burenkov and Liflyand in [6] (see also [8]). In 2023, An et al. [3]
further established the boundedness and sharp constants for Hausdorff-type operators of different forms
including H̃Φ,0 on local Morrey-type spaces. Here, the local Morrey-type space was introduced in [7]; see
also [1, 17, 18]. Let 0 < p, q ≤ ∞ and 0 ≤ λ < ∞. The local Morrey-type space LMλ

p,q(Rn) is the set of all
measurable functions f on Rn for which

∥ f ∥LMλp,q =

(∫
∞

0

(
∥ f ∥Lp(B(0,r))

rλ

)q dr
r

) 1
q

< ∞

if q < ∞, and

∥ f ∥LMλp,∞ = sup
r>0

∥ f ∥Lp(B(0,r))

rλ
< ∞

if q = ∞. When p = ∞, we have to make some ordinary modifications. Here and in what follows, B(0, r) is
the open ball with center at the origin and radius r. The space LMλ

p,∞(Rn) is just the central Morrey space
(see [2]). If λ = 0, then LM0

p,∞(Rn) = Lp(Rn).
As is well known, the weighted theory is an important branch in harmonic analysis. Power weight, as

the simplest weight, plays a key role in the weighted estimates for some average operators. Inspired by
the definition of the local Morrey-type space, we provide the corresponding power-weighted version as
follows. Here and hereafter, we do not consider the case p = ∞ since it does not make much sense. Let
0 < p < ∞, 0 < q ≤ ∞, α ∈ R and 0 ≤ λ < ∞. The power-weighted local Morrey-type space LMλ,α

p,q (Rn) is the
set of all measurable functions f on Rn satisfying

∥ f ∥LMλ,αp,q
=

∫ ∞

0

 1
rλ

(∫
B(0,r)
| f (y)|p|y|αdy

) 1
p


q
dr
r


1
q

< ∞

when q < ∞, and

∥ f ∥LMλ,αp,∞
= sup

r>0

1
rλ

(∫
B(0,r)
| f (y)|p|y|αdy

) 1
p

< ∞

when q = ∞. Similar to the proof of [7, Lemma 1] (see also [18]), we find that the space LMλ,α
p,q (Rn) is not

trivial, in the sense that LMλ,α
p,q (Rn) , Θ, if and only if

λ > 0 if q < ∞ and λ ≥ 0 if q = ∞, (3)

where Θ is the set of all functions equivalent to 0 on Rn.
This paper is organized as follows. In Section 2, we obtain the necessary and sufficient conditions for the

Hausdorff-type operators given by (1) and (2) on power-weighted local Morrey-type spaces, and calculate
the operator norms by constructing suitable radial testing functions. As applications, we establish the
sharp estimates for the fractional Hardy operator and its adjoint operator, the weighted Hardy–Littlewood
average operator and the weighted Cesàro operator on power-weighted local Morrey-type spaces in Section
3.

Throughout this paper, ωn denotes the area of Sn−1 (the unit sphere in Rn centered at the origin), and νn
is the volume of the unit ball in Rn. For a measurable set E, |E| and χE represent the Lebesgue measure and
the characteristic function of E, respectively. Given 1 ≤ p < ∞, p′ denotes the conjugate index of p, that is,
1/p + 1/p′ = 1 for 1 < p < ∞, and 1′ = ∞.

2. Main results

Theorem 2.1. Assume that Φ is a nonnegative, measurable and radial function. Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞ and let
(3) be satisfied. Let 0 ≤ β < n, α, γ ∈ R satisfy β = α−γp . Then H̃Φ,β is bounded from LMλ,α

p,q (Rn) to LMλ,γ
p,q (Rn), that
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is,

∥H̃Φ,β( f )∥LMλ,γp,q
≤ C∥ f ∥LMλ,αp,q

, ∀ f ∈ LMλ,α
p,q (Rn)

for some nonnegative constant C if and only if

CΦ,1 = ωn

∫
∞

0

Φ(t)

tλ−
γ+n

p +1
dt < ∞.

Moreover, if CΦ,1 < ∞, then

∥H̃Φ,β∥LMλ,αp,q (Rn)→LMλ,γp,q (Rn) = CΦ,1.

Proof. We first consider the “if” part. By using polar coordinates,

H̃Φ,β( f )(x) =
∫
∞

0

∫
Sn−1

Φ
(
|x|
r

)
r1−β f (ry′)dσ(y′)dr

=

∫
∞

0

∫
Sn−1

f
(
|x|
t

y′
)

dσ(y′)|x|β
Φ(t)
tβ+1 dt,

where y′ ∈ Sn−1 and dσ(y′) is the induced Lebesgue measure on Sn−1.
Noting that 1 ≤ p < ∞ and β = α−γ

p , by applying Minkowski’s inequality and Hölder’s inequality, we
have (∫

B(0,r)

∣∣∣∣H̃Φ,β( f )(x)
∣∣∣∣p |x|γdx

)1/p

=

(∫
B(0,r)

∣∣∣∣∣∫ ∞

0

∫
Sn−1

f
(
|x|
t

y′
)

dσ(y′)
Φ(t)
tβ+1 dt

∣∣∣∣∣p |x|pβ+γdx
)1/p

≤

∫
∞

0

∫
Sn−1

(∫
B(0,r)

∣∣∣∣∣ f (
|x|
t

y′
)∣∣∣∣∣p |x|pβ+γdx

)1/p

dσ(y′)

 Φ(t)
tβ+1 dt

≤ ω1/p′
n

∫
∞

0

(∫
Sn−1

∫
B(0,r)

∣∣∣∣∣ f (
|x|
t

y′
)∣∣∣∣∣p |x|pβ+γdxdσ(y′)

)1/p
Φ(t)
tβ+1 dt

= ωn

∫
∞

0

∫
B(0, rt )

∣∣∣ f (y)
∣∣∣p |y|αdy

1/p

Φ(t)t
γ+n

p
dt
t
.

We now devide q into two cases: 1 ≤ q < ∞ and q = ∞.
If 1 ≤ q < ∞, then it follows from the Minkowski’s inequality that for any λ > 0,

∥H̃Φ,β( f )∥LMλ,γp,q
≤ ωn

∫ ∞

0
r−qλ

∫ ∞

0

∫
B(0, rt )

∣∣∣ f (y)
∣∣∣p |y|αdy

1/p

Φ(t)t
γ+n

p
dt
t


q

dr
r


1/q

≤ ωn

∫
∞

0

∫ ∞

0
r−qλ

∫
B(0, rt )

∣∣∣ f (y)
∣∣∣p |y|αdy

q/p
dr
r


1/q

Φ(t)t
γ+n

p
dt
t

≤ ωn

∫
∞

0


∫
∞

0

1(
r
t

)qλ

∫
B(0, rt )

∣∣∣ f (y)
∣∣∣p |y|αdy

q/p
dr
r


1/q

Φ(t)t
γ+n

p −λ
dt
t

≤ ωn

∫
∞

0

Φ(t)

tλ−
γ+n

p +1
dt∥ f ∥LMλ,αp,q

.
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If q = ∞, then for any λ ≥ 0, there holds

1
rλ

∫
∞

0

∫
B(0, rt )

∣∣∣ f (y)
∣∣∣p |y|αdy

1/p

Φ(t)t
γ+n

p
dt
t
=

∫
∞

0

1(
r
t

)λ
∫

B(0, rt )

∣∣∣ f (y)
∣∣∣p |y|αdy

1/p

Φ(t)t
γ+n

p −λ
dt
t

≤

∫
∞

0

Φ(t)

tλ−
γ+n

p +1
dt∥ f ∥LMλ,αp,∞

.

By taking the supremum over r > 0, we obtain

∥H̃Φ,β( f )∥LMλ,γp,∞
≤ ωn

∫
∞

0

Φ(t)

tλ−
γ+n

p +1
dt∥ f ∥LMλ,αp,∞

.

Now we turn to the “only if” part. To show CΦ,1 < ∞, we also consider q for two cases: 1 ≤ q ≤ ∞ and
q = ∞.

Case 1: 1 ≤ q < ∞. For any λ > 0 and sufficiently small ϵ > 0, we choose a real number δ depending on
ϵ (to be chosen later) satisfying 0 < δ + α+n

p < λ. Take

fδ(x) = |x|δχ{|x|>1}(x). (4)

By an estimate similar to [3, P. 1140], we obtain

∥ fδ∥
q

LMλ,αp,q
=

∫
∞

1
r−qλ−1

(∫
1<|y|<r

|y|pδ+αdy
)q/p

dr

=

(
ωn

n + pδ + α

)q/p 1
n + pδ + α

B
(

q
p
+ 1,

qλ
n + pδ + α

−
q
p

)
< ∞,

(5)

where we have used the definition of the Beta function given by

B(a, b) =
∫ 1

0
ta−1(1 − t)b−1dt =

∫
∞

0

ta−1

(1 + t)a+b
dt

for a, b > 0. This implies fδ ∈ LMλ,α
p,q (Rn). By polar coordinates, H̃Φ,β( fδ) can be represented as

H̃Φ,β( fδ)(x) =
∫
∞

0

∫
Sn−1

fδ
(
|x|
t

y′
)

dσ(y′)|x|β
Φ(t)
tβ+1 dt

= ωn|x|δ+β
∫
|x|

0
Φ(t)t−δ−β−1dt.

Noting that β = α−γp , we have

∥H̃Φ,β( fδ)∥
q

LMλ,γp,q

= ωq
n

∫
∞

0
r−qλ−1

∫
|x|<r

(∫
|x|

0
Φ(t)t−δ−β−1dt

)p

|x|p(δ+β)+γdx

q/p

dr

≥ ωq
n

∫
∞

ϵ−1
r−qλ−1

∫
ϵ−1<|x|<r

∫ ϵ−1

0
Φ(t)t−δ−β−1dt

p

|x|p(δ+β)+γdx


q/p

dr

=

ωn

∫ ϵ−1

0
Φ(t)t−δ−β−1dt

q ∫
∞

ϵ−1
r−qλ−1

(∫
ϵ−1<|x|<r

|x|pδ+αdx
)q/p

dr.
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Similar to the estimate of (5), we have∫
∞

ϵ−1
r−qλ−1

(∫
ϵ−1<|x|<r

|x|pδ+αdx
)q/p

dr = ϵ
(
λ−δ− α+n

p

)
q
∥ fδ∥|

q

LMλ,αp,q
.

Thus,

∥H̃Φ,β( fδ)∥
q

LMλ,γp,q

≥

ωn

∫ ϵ−1

0
Φ(t)t−δ−β−1dt

q

ϵ
(
λ−δ− α+n

p

)
q
∥ fδ∥|

q

LMλ,αp,q
.

Case 2: q = ∞. We consider two cases: λ > 0 and λ = 0.
Let λ > 0 and 1 ≤ p < ∞. Take fδ as in (4). By the condition 0 < δ + α+n

p < λ, it is easy to verify that

∥ fδ∥LMλ,αp,∞
= sup

r>1
r−λ

(∫
1<|y|<r

|y|pδ+αdy
)1/p

=

(
ωn

n + pδ + α

)1/p

sup
r>1

r−λ
(
rpδ+α+n

− 1
)1/p

=

(
ωn

n + pδ + α

)1/p (
n + pδ + α

λp − n − pδ − α

)1/p (
λp − n − pδ − α

λp

) λ
n+pδ+α

< ∞,

which yields fδ ∈ LMλ,α
p,∞(Rn). Thus, by using β = α−γp , we get

∥H̃Φ,β( fδ)∥LMλ,γp,∞
= ωn sup

r>0
r−λ

∫
|x|<r

∣∣∣∣∣∣
∫
|x|

0
Φ(t)t−δ−β−1dt

∣∣∣∣∣∣
p

|x|p(δ+β)+γdx

1/p

≥ ωn sup
r>ϵ−1

r−λ
∫
ϵ−1<|x|<r

∣∣∣∣∣∣∣
∫ ϵ−1

0
Φ(t)t−δ−β−1dt

∣∣∣∣∣∣∣
p

|x|pδ+αdx


1/p

= ωn

∫ ϵ−1

0
Φ(t)t−δ−β−1dt sup

r>ϵ−1

r−λ
(∫
ϵ−1<|x|<r

|x|pδ+αdx
)1/p

= ωn

∫ ϵ−1

0
Φ(t)t−δ−β−1dt · ϵλ−δ−

α+n
p ∥ fδ∥LMλ,αp,∞

.

If λ = 0, notice that LM0,α
p,∞(Rn) = Lp

α(Rn), where

Lp
α(R

n) =

 f : ∥ f ∥Lp
α
=

(∫
Rn
| f (x)|p|x|αdx

)1/p

< ∞

 .
For suffficiently small ϵ > 0, we choose

fϵ(x) = |x|−
α+n

p −ϵχ{|x|>1}(x) for 1 ≤ p < ∞. (6)

Then

∥ fϵ∥LM0,α
p,∞
= ∥ fϵ∥Lp

α
=

(
ωn

pϵ

)1/p

< ∞,

which means fϵ ∈ LM0,α
p,∞(Rn). Moreover, by an argument similar to the estimates for the case λ > 0, we

have

∥H̃Φ,β( fϵ)∥LM0,γ
p,∞
≥ ωn

∫ ϵ−1

0
Φ(t)t

n+γ
p −1dt · ϵϵ∥ fϵ∥LM0,α

p,∞
.
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Combining Cases 1 and 2, taking δ = λ − α+n
p − ϵ, we obtain

∥H̃Φ,β∥LMλ,αp,q (Rn)→LMλ,γp,q (Rn) ≥

∥H̃Φ,β( fδ)∥LMλ,γp,q

∥ fδ∥LMλ,αp,q

≥ ϵϵωn

∫ ϵ−1

0
Φ(t)t−λ+

γ+n
p +ϵ−1dt

≥ (ϵϵ)2 ωn

∫ ϵ−1

ϵ
Φ(t)t−λ+

γ+n
p −1dt,

where fδ stands for fδ or fϵ as defined above in different cases.
Letting ϵ→ 0+, we arrive at CΦ,1 < ∞ and ∥H̃Φ,β∥LMλ,αp,q (Rn)→LMλ,γp,q (Rn) ≥ CΦ,1. This, together with the upper

estimates, yields that the constant CΦ,1 is just the operator norm of H̃Φ,β from LMλ,α
p,q (Rn) to LMλ,γ

p,q (Rn).

Theorem 2.2. Assume that Φ is a nonnegative measurable function. Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞, α ∈ R, and let (3)
be satisfied. ThenHΦ is bounded on LMλ,α

p,q (Rn), that is,

∥HΦ( f )∥LMλ,αp,q
≤ C∥ f ∥LMλ,αp,q

, ∀ f ∈ LMλ,α
p,q (Rn)

for some nonnegative constant C if and only if

CΦ,2 =
∫
Rn

Φ(y)

|y|λ−
α+n

p +n
dy < ∞.

Moreover, if CΦ,2 < ∞, then
∥HΦ∥LMλ,αp,q (Rn)→LMλ,αp,q (Rn) = CΦ,2.

Proof. We first consider the “if” part. Since 1 ≤ p < ∞, it follows from Minkowski’s inequality that(∫
B(0,r)

∣∣∣HΦ( f )(x)
∣∣∣p |x|αdx

)1/p

=

(∫
B(0,r)

∣∣∣∣∣∣
∫
Rn

Φ(y)
|y|n

f
(

x
|y|

)
dy

∣∣∣∣∣∣p |x|αdx
)1/p

≤

∫
Rn

(∫
B(0,r)

∣∣∣∣∣∣ f
(

x
|y|

)∣∣∣∣∣∣p |x|αdx
)1/p
Φ(y)
|y|n

dy

=

∫
Rn

∫
B
(
0, r
|y|

) ∣∣∣ f (z)
∣∣∣p |z|αdz


1/p
Φ(y)

|y|n−
α+n

p
dy.

If 1 ≤ q < ∞, by applying Minkowski’s inequality again, we obtain

∥HΦ( f )∥LMλ,αp,q
≤


∫
∞

0
r−qλ


∫
Rn

∫
B
(
0, r
|y|

) ∣∣∣ f (z)
∣∣∣p |z|αdz


1/p
Φ(y)

|y|n−
α+n

p
dy


q

dr
r


1/q

≤

∫
Rn


∫
∞

0
r−qλ

∫
B
(
0, r
|y|

) ∣∣∣ f (z)
∣∣∣p |z|αdz


q/p

dr
r


1/q
Φ(y)

|y|n−
α+n

p
dy

=

∫
Rn

Φ(y)

|y|λ−
α+n

p +n
dy∥ f ∥LMλ,αp,q

.
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If q = ∞, then we have

1
rλ

∫
Rn

∫
B
(
0, r
|y|

) ∣∣∣ f (z)
∣∣∣p |z|αdz


1/p
Φ(y)

|y|n−
α+n

p
dy =

∫
Rn

1(
r
|y|

)λ
∫

B
(
0, r
|y|

) ∣∣∣ f (z)
∣∣∣p |z|αdz


1/p

Φ(y)

|y|λ−
α+n

p +n
dy

≤

∫
Rn

Φ(y)

|y|λ−
α+n

p +n
dy∥ f ∥LMλ,αp,∞

.

By taking the supremum over r > 0, we get

∥HΦ( f )∥LMλ,αp,∞
≤

∫
Rn

Φ(y)

|y|λ−
α+n

p +n
dy∥ f ∥LMλ,αp,∞

.

Now, we proceed to the “only if” part and show that the constant CΦ,2 is the operator norm of HΦ on
LMλ,α

p,q (Rn). As before, we consider the cases 1 ≤ q < ∞ and q = ∞, respectively.
Case 1: 1 ≤ q < ∞. For δ satisfying 0 < δ + α+n

p < λ, by taking fδ as in (4), we have

∥ fδ∥
q

LMλ,αp,q
=

(
ωn

n + pδ + α

)q/p 1
n + pδ + α

B
(

q
p
+ 1,

qλ
n + pδ + α

−
q
p

)
< ∞.

On the other hand,

∥HΦ( fδ)∥
q

LMλ,αp,q
=

∫
∞

0
r−qλ−1

(∫
|x|<r

∣∣∣∣∣∣
∫
|y|<|x|

Φ(y)
|y|n+δ

dy

∣∣∣∣∣∣p |x|pδ+αdx
)q/p

dr

≥

∫
∞

ϵ−1
r−qλ−1

(∫
ϵ−1<|x|<r

∣∣∣∣∣∣
∫
|y|<ϵ−1

Φ(y)
|y|n+δ

dy

∣∣∣∣∣∣p |x|pδ+αdx
)q/p

dr

=

(∫
|y|<ϵ−1

Φ(y)
|y|n+δ

dy
)q ∫ ∞

ϵ−1
r−qλ−1

(∫
ϵ−1<|x|<r

|x|pδ+αdx
)q/p

dr

=

(∫
|y|<ϵ−1

Φ(y)
|y|n+δ

dy
)q

ϵ
(
λ−δ− α+n

p

)
q
∥ fδ∥

q

LMλ,αp,q
.

Case 2: q = ∞. If λ > 0, then we have

∥ fδ∥LMλ,αp,∞
=

(
ωn

n + pδ + α

)1/p (
n + pδ + α

λp − n − pδ − α

)1/p (
λp − n − pδ − α

λp

) λ
n+pδ+α

< ∞

and

∥HΦ( fδ)∥LMλ,αp,∞
= sup

r>0
r−λ

(∫
|x|<r

∣∣∣∣∣∣
∫
|y|<|x|

Φ(y)
|y|δ+n dy

∣∣∣∣∣∣p |x|pδ+αdx
)1/p

≥ sup
r>ϵ−1

r−λ
(∫
ϵ−1<|x|<r

∣∣∣∣∣∣
∫
|y|<ϵ−1

Φ(y)
|y|δ+n dy

∣∣∣∣∣∣p |x|pδ+αdx
)1/p

=

∫
|y|<ϵ−1

Φ(y)
|y|δ+n dy · ϵλ−δ−

α+n
p ∥ fδ∥LMλ,αp,∞

.

If λ = 0, then some similar estimates can be obtained by taking fϵ as in (6).
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Taking δ = λ − α+n
p − ϵwhere ϵ > 0 is suffficiently small, it follows from Cases 1 and 2 that

∥HΦ∥LMλ,αp,q (Rn)→LMλ,αp,q (Rn) ≥

∥HΦ( fδ)∥LMλ,αp,q

∥ fδ∥LMλ,αp,q

≥ ϵϵ
∫
|y|<ϵ−1

Φ(y)|y|−λ+
α+n

p +ϵ−ndy

≥ (ϵϵ)2
∫
ϵ<|y|<ϵ−1

Φ(y)|y|−λ+
α+n

p −ndy,

where fδ stands for fδ or fϵ as defined above in different cases.
Letting ϵ→ 0+, we finish the proof of Theorem 2.2.

3. Applications

By choosing Φ(x) as the radial functions ν
β
n−1
n |x|β−nχ(1,∞)(|x|) and ν

β
n−1
n χ(0,1)(|x|) in (2), then H̃Φ,β reduces to

the n-dimensional fractional Hardy operatorHβ and its adjoint operatorH ∗β respectively, where

Hβ f (x) =
1

|B(0, |x|)|1−
β
n

∫
|y|<|x|

f (y)dy, x ∈ Rn
\ {0}

and

H
∗

β f (x) =
∫
|y|>|x|

f (y)

|B(0, |y|)|1−
β
n

dy, x ∈ Rn.

It is well known that Hardy-type operators are basic average operators in harmonic analysis. For the studies
onHβ andH ∗β, we refer the reader to [12–14, 19, 20, 22, 26].

By using Theorem 2.1, we have the following results.

Corollary 3.1. Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞ and let (3) be satisfied. Let 0 ≤ β < n, α, γ ∈ R satisfy β = α−γp and let

np + λp − α − n > 0. Then for any f ∈ LMλ,α
p,q (Rn),

∥Hβ( f )∥LMλ,γp,q
≤ ν

β
n
n

np
np + λp − α − n

∥ f ∥LMλ,αp,q
.

Moreover,

∥Hβ∥LMλ,αp,q (Rn)→LMλ,γp,q (Rn) = ν
β
n
n

np
np + λp − α − n

.

Corollary 3.2. Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞ and let (3) be satisfied. Let 0 ≤ β < n, α, γ ∈ R satisfy β = α−γp and let

γ + n − λp > 0. Then for any f ∈ LMλ,α
p,q (Rn),

∥H
∗

β( f )∥LMλ,γp,q
≤ ν

β
n
n

np
γ + n − λp

∥ f ∥LMλ,αp,q
.

Moreover,

∥H
∗

β∥LMλ,αp,q (Rn)→LMλ,γp,q (Rn) = ν
β
n
n

np
γ + n − λp

.

Remark 3.3. In fact, the condition β = α−γ
p in Corollaries 3.1 and 3.2 is also necessary for the corresponding

boundedness by using a dilation method. We leave the details to the interested reader.
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Let ϕ : [0, 1]→ [0,∞) be a measurable function. If we take

Φ(y) = (ωn|y|)−1ϕ(|y|−1)χ{|y|>1}(y)

in (1), thenHΦ becomes the weighted Hardy–Littlewood average operator studied in [9, 29], which is given
by

Hϕ( f )(x) =
∫ 1

0
ϕ(t) f (tx)dt, x ∈ Rn.

By taking
Φ(y) = ωn

−1
|y|−n+1ϕ(|y|)χ{0<|y|<1}(y)

in (1), we obtain the weighted Cesàro operator Gϕ considered in [15], which is defined by

Gϕ( f )(x) =
∫ 1

0
ϕ(t) f

(x
t

)
t−ndt, x ∈ Rn.

As consequences of Theorem 2.2, we get the following results:

Corollary 3.4. Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞, let (3) be satisfied and let α ∈ R. Then Hϕ is bounded on LMλ,α
p,q (Rn),

that is,
∥Hϕ( f )∥LMλ,αp,q

≤ C∥ f ∥LMλ,αp,q
, ∀ f ∈ LMλ,α

p,q (Rn)

for some nonnegative constant C if and only if ∫ 1

0
ϕ(t)tλ−

α+n
p dt < ∞.

Moreover, if
∫ 1

0 ϕ(t)tλ−
α+n

p dt < ∞, then

∥Hϕ∥LMλ,αp,q (Rn)→LMλ,αp,q (Rn) =

∫ 1

0
ϕ(t)tλ−

α+n
p dt.

Corollary 3.5. Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞, let (3) be satisfied and let α ∈ R. Then Gϕ is bounded on LMλ,α
p,q (Rn),

that is,
∥Gϕ( f )∥LMλ,αp,q

≤ C∥ f ∥LMλ,αp,q
, ∀ f ∈ LMλ,α

p,q (Rn)

for some nonnegative constant C if and only if∫ 1

0
ϕ(t)t−λ+

α+n
p −ndt < ∞.

Moreover, if
∫ 1

0 ϕ(t)t−λ+
α+n

p −ndt < ∞, then

∥Gϕ∥LMλ,αp,q (Rn)→LMλ,αp,q (Rn) =

∫ 1

0
ϕ(t)t−λ+

α+n
p −ndt.
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