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Sharp constants for Hausdorff-type operators on power-weighted local
Morrey-type spaces
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Abstract. In this paper, we give the necessary and sufficient conditions for the boundedness of two
Hausdorff-type operators on power-weighted local Morrey-type spaces. Meanwhile, the corresponding
sharp constants are also obtained. As applications, the sharp estimates for the fractional Hardy operator and
its adjoint operator, the weighted Hardy-Littlewood average operator and the weighted Cesaro operator
on power-weighted local Morrey-type spaces are established.

1. Introduction

In this paper, we consider the following two Hausdorff-type operators:

O
Hono = [ (L oy o
and
Hos100 = | -5 oy, ®

where x € R", @ are nonnegative measurable functions on R" and 0 < § < n.
The operator Hgp, named as the n-dimensional Hausdorff operator, was initially introduced by Andersen
in [4]. Another n-dimensional Hausdorff operator Hgo was introduced by Chen et al. [10]. Hop, as the

fractional version of ‘7—(?;0, was defined by Lin and Sun in [21]. The boundedness and sharp estimates for

the above mentioned Hausdorff-type operators and some related operators have been intensively studied;
see [5, 11, 16, 23-25, 27, 28] and the references therein.
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Recently, the necessary and sufficient conditions for the boundedness of Ho given by (1) on local
Morrey-type spaces have been obtained by Burenkov and Liflyand in [6] (see also [8]). In 2023, An et al. [3]
further established the boundedness and sharp constants for Hausdorff-type operators of different forms

including % on local Morrey-type spaces. Here, the local Morrey-type space was introduced in [7]; see
also [1,17,18]. Let0 < p,q < oo and 0 < A < oco. The local Morrey-type space LM;,‘,[](]R”) is the set of all
measurable functions f on IR” for which

1
“ (N fll@ony \ dr)’
I lean, = (fo (—r’\ -] <

L ller o,y
flleagy,, = sup =—7—— < e
>0

if g < 00, and

if g = co. When p = oo, we have to make some ordinary modifications. Here and in what follows, B(0, r) is
the open ball with center at the origin and radius r. The space LMQ,OO(]R”) is just the central Morrey space
(see [2]). If A = 0, then LM} ,(R") = LP(R").

As is well known, the weighted theory is an important branch in harmonic analysis. Power weight, as
the simplest weight, plays a key role in the weighted estimates for some average operators. Inspired by
the definition of the local Morrey-type space, we provide the corresponding power-weighted version as
follows. Here and hereafter, we do not consider the case p = oo since it does not make much sense. Let
0<p<oo,0<g<oo,a€Rand 0 <A < oo. The power-weighted local Morrey-type space LMQ,’;‘ (IR") is the
set of all measurable functions f on R" satisfying

1
q
J < 00

1\19
1l ppte = f _(f FPlyid )
f LMy ( 0 (rA B07) fWIPlyl*dy
1 p
1l =Sup7(f If<y>|ﬂ|y|f*dy) <o
e >0 T B(O,7)

1
when g = co. Similar to the proof of [7, Lemma 1] (see also [18]), we find that the space LMQ’“(IR”) is not

A
trivial, in the sense that LMQ,'E‘,Y (R") # ©, if and only if

|2

when g < o0, and

A>0ifg<oco and A20ifg=o00, 3

where © is the set of all functions equivalent to 0 on IR".

This paper is organized as follows. In Section 2, we obtain the necessary and sufficient conditions for the
Hausdorff-type operators given by (1) and (2) on power-weighted local Morrey-type spaces, and calculate
the operator norms by constructing suitable radial testing functions. As applications, we establish the
sharp estimates for the fractional Hardy operator and its adjoint operator, the weighted Hardy-Littlewood
average operator and the weighted Cesaro operator on power-weighted local Morrey-type spaces in Section
3.

Throughout this paper, w, denotes the area of $"1 (the unit sphere in R" centered at the origin), and v,
is the volume of the unit ball in IR"”. For a measurable set E, |E| and xg represent the Lebesgue measure and
the characteristic function of E, respectively. Given 1 < p < oo, p’ denotes the conjugate index of p, that is,
1/p+1/p’ =1forl <p <oo,and 1" = co.

2. Main results

Theorem 2.1. Assume that ® is a nonnegative, measurable and radial function. Let 1 < p < 00,1 < q < oo and let

(3) be satisfied. Let 0 < p <n, a,y € Rsatisfy p = <. Then Hayp is bounded from LM (R") to LM, (R"), that
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is,
||7{<1),ﬁ(f)”LM2,év < C”f”LMQ;;;r Vfe LMAa(]Rn)

for some nonnegative constant C if and only if

< Pt
C®,1=wnf V() dt < oo.
0

t/\—%ﬁ-l

Moreover, if Cp1 < oo, then

—
e gll pgpe oy iaaty ey = Coon-

Proof. We first consider the “if” part. By using polar coordinates,

IXI

7’{q>/5(f)(x) f f = ﬁ f(ry )do(y')dr

L oo

where i’ € $"! and do(y’) is the induced Lebesgue measure on $"!.

43

Noting that 1 < p < coand = a%, by applying Minkowski’s inequality and Holder’s inequality, we

have

(L(O,r)

p 1/p
|x|”ﬁ+ydx)

Haspeof 1vas) = I
I (L-l(f Mf('if' f

S

o L

7t

1/p
y o) 4
|x|PP* dx) do(y’ )) ﬂm

1/p cD(t)

ﬁ+1 it

|x|Pﬁ+dedo<y ))

1/p
ot
Fo)l |y|“dy) PO T

We now devide g into two cases: 1 < g < co and g = .
If 1 < g < oo, then it follows from the Minkowski’s inequality that for any A > 0,

~ ® v aN ar)
— Pl r
”W@,ﬁ(f)”LMA'VSw”( f r‘“[ f [ f fol |y|“dy] () —] —]
A 0 0 B(0,%) r
o [ oo q/pd 1/q
r
o ["([r(f rorvea] %
0 0 B(0,%) r
1/9
00 00 q/p
1 P d_r
< wy fo [ fo —(g)qﬁ( fB (o,;>|f(y’| 1yl dy) -

()t

< D(t

< [ <Dl
0 f 2

q)(t)t y+n dt

vy dt
t
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If g = oo, then for any A > 0, there holds

o 1/p . "
1 p 7dt 1 ) _Adt
_ @ ) b oy ® :
7, (fs<o,;>|f(y)| lyl y] (tt fo —(g)A [ fB 0 F@)| 1yl y] Ot t

0
< a.
= fo A_J’pﬂﬂdt”f RV

t

By taking the supremum over r > 0, we obtain

—~ e (t)
Pl <0 [ <20l

Now we turn to the “only if” part. To show Cg; < oo, we also consider g for two cases: 1 < g < o and
q = Q.

Case 1: 1 < g < o0. For any A > 0 and sufficiently small € > 0, we choose a real number 6 depending on
€ (to be chosen later) satisfying 0 < 6 + “Tf" < A. Take

F5(x) = IxP xqpegs1) () 4)

By an estimate similar to [3, P. 1140], we obtain

0o 1 s qlp
Il foll? a—f r_q_(f ||p+ad) dr
f LMy 1 1<lyl<r Y Y

q/p
S U p(l41, 1% 1),
n+pd+a n+pd+a \p n+pd+a p

where we have used the definition of the Beta function given by

1 00 a-1
t
B(a,b) = t"‘ll—tb‘ldt=f LT
(@) fo 4= o (L+ipt

fora,b > 0. This implies f; € LMA /7 (R"). By polar coordinates, Hag 8(fs) can be represented as

Fos = [ [ (5ot ar Gk

||
= wy|x**P f (NP,
0

Noting that § = —, we have

00 x| P q/p
II‘H(pﬁ(fa)llq = Zf i (f (f q’(f)téﬁldt) le”(mﬁ)”’dX) dr
0 |x|<r 0
> w) f ) yaA-l f f
el e l<|x|<r \ VO
el ) 7 oo ‘ q/p
=|w, f D)0 Pt f priAl ( f |x|”b+“dx) dr.
0 el e l<x|<r

p q/p
@(t)t‘é‘ﬁ‘ldt] |x|r’<6+ﬁ>+7dx] dr
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Similar to the estimate of (5), we have

- alp o

o A= atn
f 0 ( f |x|po+adx) dr = - FHgI
el e l<|x|<r .

—~— : q -
”(]'{CD,ﬁ(fb)”LM,\,y > (a)n f:

PA

Thus,

q
—5-p- A=t
Dyt 1dt] el-o=5tay f5|||ZM2§.
Case 2: g = co. We consider two cases: A > 0and A = 0.
Let A >0and 1 < p < co. Take f; as in (4). By the condition 0 < 6 + £ < A, it is easy to verify that

p
1/p
I foll ppre = sup rA (f |y|”‘5*“dy)
i r>1 1<|yl<r
1/p
= (&) sup r—/\ (rP6+a+n _ 1)1/P
n+pd+a 1
Wy 1p n+pd+a p /\p—n_p5_an+éﬁ<
= o
n+pd+a Ap—n—pd—-a Ap ,
which yields f; € LM} (R"). Thus, by using = 22, we get
[ Haog(f)ll, 00 = wnsupr™ f f DOt PO dx
e >0 [x|<r [JO
el 4 1/p
> w, sup rt f f OO PG |xP+dx
r>e-1 e l<lx|<r [JO

-1

1/p
Wy f O(t)t 0P dt sup r~ ( f lepé*“dx)
0 r>e1 e l<|x|<r

-1

“n f OO0t T foll g

If A = 0, notice that LM%,(R") = L}(R"), where

1/p
LZ(R">={f:||f||L¢=( f If(x)lplxl“dx) <oo}.
RVI

For suffficiently small € > 0, we choose

£o(0) = ™ " x ey (x) for 1 < p < oo

Then

w Up
n

a = = | — < 0
T A (pe) ,

45

(6)

which means f, € LMS:‘;‘O(IR”). Moreover, by an argument similar to the estimates for the case A > 0, we

have

-1

—~ nty _
[Hopfllyer > @ f (B dt - €l fell e
; | :
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Combining Cases 1 and 2, taking 6 = A — “P# — €, we obtain

—~

Q75— ”WCD/ﬁ(f(S)”LM}W

(T e
) LMM (R )—)LMM (R™) ||f5”LM/\fY

-1

> eSw, f DT
0

-1

> () wn f o
€

where f; stands for fs or f. as defined above in different cases.

Letting € — 0%, we arrive at Cgp 1 < o0 and ||7’/E/|| > Co1. This, together with the upper
g , B , g PP

LM (R —LM,7 (R")
estimates, yields that the constant Cg,1 is just the operator norm of Hg,g from LMA “(]R”) to LM/\ oA ; (R"). O

Theorem 2.2. Assume that ® is a nonnegative measurable function. Let 1 <p < 00,1 < g <00, ¢ € R, and let (3)
be satisfied. Then Hey is bounded on LMA “(]R”) that is,

[Ho(Dllagie < Cllfllage,  Vf € LMyZ (R

for some nonnegative constant C if and only if

Cq),z = f %d}/ < 00,
R |y|

Moreover, if Cpp < oo, then

||7—{‘D||LM;);(R”)—>LM£/;‘,’(]R”) = Cd),Z-

Proof. We first consider the “if” part. Since 1 < p < oo, it follows from Minkowski’s inequality that

( [ pratnel |x|“dx) . ( [ ) f(—)dy le‘*dx)
B(0,r) BO7) |[Jre 1Yl lyl
14 1/p
X )
< “dx d
fﬂ (fOr) f(|y|) h ) [y
1/p
a 2@y)
:f(f |f(7~‘p|d] — =y
R | JB(0, lyl” 7
If 1 < g < oo, by applying Minkowski’s inequality again, we obtain

. Ip q 1/q
Aa —A s ad Md ﬂ
1o (Nllzags s[ fo r [ fR ” [ f o |f@) Izl z] = b
00 alp
—4A P dr
= fn (f ’ [fB(o,lgl) )f(Z)| l dz] r

(y)
= atn || || /‘“‘
>[IR” |y|A f LM

\y\

1/q
D(y)

m
yl"
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If g = oo, then we have
1/p
o O(y)
f@)| Il dZ] ﬁdy
7) yl™

1/p
1 Pt Oy) 1
e UB(O,m'f ks dz] = e () U(

O(y)

By taking the supremum over r > 0, we get

”qu(f)”LM/‘go < f A;Zz ”f”LM" Q.
= Jreyl

Now, we proceed to the “only if” part and show that the constant Cq is the operator norm of He on
LM’\ 7 (R™). As before, we consider the cases 1 < g < co and q = oo, respectively.
Case 1: 1 < g < oo. For 6 satisfying 0 < § + < ‘”” < A, by taking f; as in (4), we have

alp A
e L g2, )
n+pd+a n+pd+a \p n+pd+a p

On the other hand,

Ip
© W), ’
o (f)I x—fﬂ“(f f ) ar
alfo LMy 0 wi<r [Jiyi<il Y™ w5
o qlp
> f At ( f f q)(yl ) dr
el el<x<r [Jyl<e? |y|”+
) q 0o q/p
= (f —(yzsdy) f raA-l (f |x|”‘5+“dx) dr
lyl<e! |y|”+ el e l<|x|<r

D(y) )q (A-5-a21)
= dy| e ML
(fM Mok ol

Case 2: q = co. If A > 0, then we have

< 00

Wn )”p( n+pé+a )1/”(Ap—n—p6—a)"ﬂ’&b+“

I follage :(n+p6+a Ap—n—-pd—-a Ap

and

1/p
|x|pb+adx)

ool = supr™ ( f
|x|<r

f (y)
70 i<t [Y1° o
_ (y)

> supr A f f
r>ePl ( el<x<r |Jyl<e |y|b+”

:f (y) dy- GA—é—%”fé”LMQ;;,
Y

lyi<et [Ylo*"

1/p
| |p6+adx)

If A = 0, then some similar estimates can be obtained by taking f. as in (6).
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Taking 6 = A - — € where € > 0 is suffficiently small, it follows from Cases 1 and 2 that

Hq{ili(fé)HLM;};;

IH Il gt gt > ——ee—
LMy ROSLMERD = £l e
=X f DY)yl "y
lyl<e™t

> (¢°)’ Oy)y ™ "y,

e<|yl<e!

where f; stands for fs or f. as defined above in different cases.
Letting € — 0%, we finish the proof of Theorem 2.2. [J

3. Applications

E — E — —
By choosing ®(x) as the radial functions v;; 1|x|ﬁ‘" X(1,00)([x]) and vy, ! Xo,([x]) in (2), then He g reduces to
the n-dimensional fractional Hardy operator g and its adjoint operator H 5 respectively, where

1
H, = dy, R"\ {0
M = o fwf W)y, xeRAL)
and )
ﬂ;f@):fl SOy cew

v [B(O, [y

It is well known that Hardy-type operators are basic average operators in harmonic analysis. For the studies
on Hjz and ‘HI;, we refer the reader to [12-14, 19, 20, 22, 26].

By using Theorem 2.1, we have the following results.

Corollary 3.1. Let 1 <p < 00,1 < g < oo and let (3) be satisfied. Let 0 < p <n, a,y € Rsatisfy p = = y and let
np+Ap—a—n>0. Then forany f € LMM(]R”)
gy < Vi ot g
Moreover, ; ,
Pl =¥ iy —a
Corollary 3.2. Let 1 < p < 00,1 < q < oo and let (3) be satisfied. Let 0 < p < n, a,y € Rsatisfy p = =L and let

y+n—Ap>0. Then forany f € LM;,‘;(]R”),

. P
I Mgy < Vi = W g

Moreover,
£ np
Il agte oy oy ey = Vi y+n-Ap

Remark 3.3. In fact, the condition p = % in Corollaries 3.1 and 3.2 is also necessary for the corresponding
boundedness by using a dilation method. We leave the details to the interested reader.
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Let ¢ : [0,1] — [0, o0) be a measurable function. If we take

D(y) = (@aly) ™ Sy w1 W)

in (1), then Hp becomes the weighted Hardy-Littlewood average operator studied in [9, 29], which is given
by

1
HN = [ ptfeom, xer.

By taking
D(y) = @ Iyl PUyDx0<iyi<1 (V)
in (1), we obtain the weighted Cesaro operator G, considered in [15], which is defined by

GolH) = fo 1 of ()ran xewr

As consequences of Theorem 2.2, we get the following results:

Corollary 3.4. Let 1 < p < 00,1 < q < oo, let (3) be satisfied and let a« € R. Then Hy is bounded on LMQ,’;‘ (R™),
that is,
o (Dllpgge < Clifllpgye Vf € LM (RY)

for some nonnegative constant C if and only if

1
f Pt dt < oo
0

Moreover, if fol qb(t)tA‘anﬂdt < oo, then

a

1
_ A
IHo Il agta ey agder ey = fo ¢ v dt.

Corollary 3.5. Let 1 < p < 00,1 < g < o0, let (3) be satisfied and let a € R. Then Gy is bounded on LMQ,’;'(IR"),
that is,
IGo(Allppgis < Cllfllpagpe,  Vf € LM (R

for some nonnegative constant C if and only if

1
f PO L < oo
0

(L Ak
Moreover, if [ p(t)t MG < oo, then
! A
Aoty
||G(¢)||LM;),';(R”)4)LMQ::‘(]I{Y[) =£ (P(t)t 4 dt.
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