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Abstract.
The existence and asymptotic behavior of positive increasing solutions of the cyclic second-order non-

linear difference system

∆(pi(n)|∆xi(n)|αi−1∆xi(n)) = qi(n)|xi+1(n + 1)|βi−1xi+1(n + 1), i = 1,N,

are studied, where xN+1 = x1, and the sequences pi = pi(n) and qi = qi(n) are positive for all n ∈ N, while
the constants αi and βi, i = 1,N, are positive and satisfy the sublinearity condition α1α2 · · ·αN > β1β2 · · · βN.
We consider two types of positive increasing solutions: those converging to a positive constant and those
diverging to infinity, whose associated quasi-differences tend to a positive constant. For both classes of
solutions, necessary and sufficient conditions for existence are established using fixed point methods. In
addition, under the assumption that the coefficient sequences are regularly varying, we investigate positive
increasing solutions for which both the solution components and their quasi-differences tend to infinity. In
this case, the corresponding existence conditions are also derived, along with precise asymptotic formulas,
based on the theory of discrete regular variation.

1. Introduction

In recent decades, difference equations have emerged as a powerful tool for modeling and solving
problems across various fields, including statistics, engineering, natural and social sciences. This progress
has been achieved through advancements in digital computing, which have enabled their application to
diverse systems such as electrical circuits, mechanical structures, heat transfer, and wave filters.

This paper is devoted to the analysis of the following cyclic second-order nonlinear system of difference
equations

∆(pi(n)|∆xi(n)|αi−1∆xi(n)) = qi(n)|xi+1(n + 1)|βi−1xi+1(n + 1), (SE)

where i = 1,N, xN+1 = x1, n ∈N, under the following assumptions:
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Both authors are supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia −

Grant Number 51-03-137/2025-03/ 200124.
* Corresponding author: Aleksandra B. Kapešić
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(a) The constants αi and βi, i = 1,N are positive and satisfies the inequality

α1α2 · . . . · αN > β1β2 · . . . · βN;

(b) The real sequences pi = {pi(n)} and qi = {qi(n)} are positive;

(c) All the sequences pi, i = 1,N simultaneously satisfy either

Si =

∞∑
n=1

1
pi(n)1/αi

< ∞. (I)

or

Si =

∞∑
n=1

1
pi(n)1/αi

= ∞, (II)

In the case of condition (I), the following notation will be used

πi(n) =
∞∑

k=n

1
pi(k)1/αi

, i = 1,N, (1.1)

while if condition (II) holds, we use the following notation

Pi(n) =
n−1∑
k=1

1
pi(k)1/αi

, i = 1,N. (1.2)

System (SE) is classified as sublinear, superlinear, or half-linear depending on whether the product
condition in (a) is a strict inequality (sublinear), an opposite inequality (superlinear), or an equality (half-
linear).

The qualitative analysis of the second-order Emden-Fowler type differential equation(
p(t)|x′(t)|α−1x′(t)

)′
± q(t)|x(t)|β−1x(t) = 0,

(see [7, 8, 32, 49] and monographs [13, 25]) and its discrete analog

∆(p(n)|∆x(n)|α−1∆x(n)) ± q(n)|x(n + 1)|β−1x(n + 1) = 0,

(see [9–12] and monographs [1, 3]) serves as the foundation for the research of cyclic second-order systems of
difference equations (SE) . This equations have been the subject of extensive research concerning existence,
uniqueness, and oscillatory behavior of their solutions.

The qualitative analysis of second-order nonlinear difference equations has also been extended to two-
dimensional first-order and second-order nonlinear systems [4, 19, 26, 28, 38], as well as to symmetric and
close-to-symmetric systems [42–44, 46]. As a continuation of the study some periodic difference equations,
an investigation of cyclic second-order systems was proposed and conducted in [15], and later it was
continued in some works dealing with both cyclic and close-to-cyclic systems (see, e.g., [27, 36, 37, 39–
41, 45, 47], in addition to the already cited references). Systems of the form (SE) are beneficial for modeling
numerical methods in heat and fluid transfer in layered materials equations, such as cylindrical thermal
insulation or geological structures.

In the continuous case, cyclic systems of differential equations were studied by Jaroš and Kusano [16–
18] and Řehák [33], while the asymptotic analysis of cyclic second-order difference systems remains less
explored, with notable work by Kapešić [20] and Kapešić and Manojlović [23].

The primary objective of this study is to establish a comprehensive classification of positive increasing
solutions, which is the foundation for a deeper understanding of the solution space. The second objective
focuses on identifying the necessary and sufficient conditions under which various types of positive in-
creasing solutions can exist. Finally, the most complex and demanding objective involves deriving precise
asymptotic formulas for these solutions.

When N is even, the obtained results can be applied to cyclic systems of N first-order difference equations.
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2. Classification of positive decreasing solutions

By a solution of (SE) , we refer to a vector sequence

x = (x1, x2, . . . , xN) ∈ NR × . . . × NR, xi = {xi(n)}n∈N

where NR = { f | f : N → R}, whose components xi = {xi(n)}n∈N, i = 1,N satisfy (SE) . In the following
analysis, we will focus on the behavior of the sequences xi for sufficiently large values of n, i.e., n ≥ n0,
for some n0 ∈ N. To formalize this, we introduce the notation Nn0R = { f | f : Nn0 → R}, whereNn0 = {n ∈
N

∣∣∣ n ≥ n0}.
A solution x is termed nonoscillatory if all its components are eventually of one sign. Because of the

sign condition on the coefficients, if one component is nonoscillatory, all components are nonoscillatory
and eventually monotone, and therefore they have a limit. A nonoscillatory solution is considered positive
if all its components are eventually positive. Our primary objective is to investigate the existence and
asymptotic behavior of positive increasing solutions of (SE) , that is, solutions whose components are
eventually positive and increasing, i.e., satisfying

xi(n) > 0, ∆xi(n) > 0, for n ≥ n0, i = 1,N. (2.1)

Let us denote byIS the set of all solutions of (SE) whose components are eventually positive and increasing.
For every component of any solution x of (SE) , let us denote by x[1]

i =
{
x[1]

i (n)
}

its quasi-difference, x[1]
i (n) =

pi(n)|∆xi(n)|α−1∆xi(n), i = 1,N. From (2.1), for xi, i = 1,N, one of the following two cases holds:

(i) lim
n→∞

xi(n) = ki, ki > 0 or (ii) lim
n→∞

xi(n) = ∞,

while for x[1]
i , i = 1,N, one of the following two cases holds:

(iii) lim
n→∞

x[1]
i (n) = ci > 0 or (iv) lim

n→∞
x[1]

i (n) = ∞.

If (I) holds, then in the case when (iii) holds, we have that there exists m0 ∈ N such that x[1]
i (n) ≤ ci,n ≥ m0

for i = 1,N. Therefore, it follows that

xi(n) ≤ xi(m0) + c
1
αi
i

n−1∑
k=m0

1

pi(k)
1
αi

, i = 1,N.

From the last inequality, letting n → ∞, we conclude that only (i) may hold for some positive constants
ki, i = 1,N. Accordingly, if (ii) holds, it is concluded that only (iv) may hold.

If (II) holds, since x[1]
i , i = 1,N are increasing, then there exist m0 ∈N such that pi(n)∆xi(n)αi ≥ x[1]

i (m0),n ≥
m0, implying that

xi(n) ≥ xi(m0) + x[1]
i (m0)

1
αi

n−1∑
k=m0

1

pi(k)
1
αi

, i = 1,N.

Letting n→∞, we conclude that only (ii) may hold.
This leads to the following classification of a positive increasing solution: if (I) holds each component xi

of positive increasing solution x satisfies:

(SI) limn→∞ xi(n) = limn→∞ x[1]
i (n) = ∞,

(AC) limn→∞ xi(n) = ki > 0 ⇔ xi(n) ∼ ki, n→∞,

while if (II) holds each component xi of positive increasing solution x satisfies either (SI) or
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(P) limn→∞ xi(n) = ∞, limn→∞ x[1]
i (n) = ci > 0

where the following asymptotic relation has been used

f (n) ∼ 1(n), n→∞ ⇔ lim
n→∞

f (n)
1(n)

= 1,

Using Stolz-Cesaro Theorem (see Theorem 4.5), if (II) holds, solutions satisfying (SI) and (P) can be charac-
terized as

(SI2) xi(n) ≻ Pi(n), n→∞, (P) xi(n) ∼ ωi Pi(n), n→∞, ωi = c1/αi
i ,

and if (I) holds, solution satisfying (SI) can be characterized as

(SI1) xi(n) ≻ πi(n), n→∞,

where the following asymptotic relation has been used

f (n) ≻ 1(n), n→∞ ⇔ lim
n→∞

f (n)
1(n)

= ∞.

Solutions of type (AC) and (P) are termed primitive solutions, while those of type (SI1) and (SI2) are known
as strongly increasing. Section 5 establishes some necessary and sufficient conditions for the existence of
primitive solutions. On the other hand, deriving necessary and sufficient conditions for the existence and
precise asymptotic representations of strongly increasing solutions is generally more challenging. Thus, in
Section 6, we limit our investigation to cases where the system coefficients are regularly varying sequences
in order to solve this problem, and we focus on regularly varying strongly increasing solutions of (SE) .

3. Regularly Varying Sequences

The theory of regularly varying sequences, often called Karamata sequences (see [24]), was developed
during the seventies by Galambos, Seneta and Bojanić in [6, 14]. However, until the appearance of the paper
of Matucci and Rehak [29], the connection between regularly varying sequences and difference equations
was not considered. In this paper, as well as in the following ones [30, 31, 34, 35], the theory of regularly
varying sequences is further developed and applied in the asymptotic analysis of linear and half-linear
difference equations of the second-order, giving necessary and sufficient conditions for the existence of
regularly varying solutions of these equations. After this, further development of the discrete theory of
regular variation and its application to nonlinear difference equations of type Emden-Fowler type can be
found in [21].

This section presents basic definitions and properties of regularly varying sequences that will be utilized
to establish the main results of this paper. For a thorough discussion of regular variation, the reader is
referred to Bingham et al. [5].

There are two main approaches in the basic theory of regularly varying sequences: the approach due to
Karamata [24], based on a definition that can be understood as a direct discrete counterpart of elegant and
straightforward continuous definition (Definition 3.1), and the approach due to Galambos and Seneta [14],
based on purely sequential definition (Definition 3.2). Bojanić and Seneta have shown in [6] the equivalence
of these two definitions.

Definition 3.1. (Karamata [24]) A positive sequence y = {y(k)}, k ∈N is said to be regularly varying of index
ρ ∈ R if

lim
k→∞

y([λ k])
y(k)

= λρ for ∀λ > 0,

where [n] denotes the integer part of n.
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Definition 3.2. (Galambos and Seneta [14]) A positive sequence y = {y(k)},n ∈ N is said to be regularly
varying of index ρ ∈ R if there exists a positive sequence {α(k)} satisfying

lim
k→∞

y(k)
α(k)

= C, 0 < C < ∞ lim
k→∞

k
∆α(k − 1)
α(k)

= ρ .

If ρ = 0, then y is said to be slowly varying. The sets of regularly varying sequences with index ρ and
slowly varying sequences are denoted RV(ρ) and SV, respectively.

The concept of normalized regularly varying sequences was introduced by Matucci and Rehak in [30],
where they also offered a modification of Definition 3.2, i.e., they proved that the second limit in Definition
3.2 can be replaced with

lim
k→∞

k
∆α(k)
α(k)

= ρ .

Definition 3.3. A positive sequence y = {y(k)}, k ∈N is said to be normalized regularly varying of index ρ ∈ R
if it satisfies

lim
k→∞

k∆y(k)
y(k)

= ρ.

If ρ = 0, then y is called a normalized slowly varying sequence.

In what follows, NRV(ρ) and NSV will be used to denote the set of all normalized regularly varying
sequences of the index ρ and the set of all normalized slowly varying sequences.

Typical examples are:

{log k} ∈ NSV, {kρ log k} ∈ NRV(ρ), {1 + (−1)k/k} ∈ SV \ NSV .

In order to present results for a system of difference equations, we need to define a regularly varying
vector x ∈ NR × . . . × NR, where NR = { f | f :N→ R}.

Definition 3.4. A vector x ∈ NR × . . . × NR, x = ({x1(n)}, . . . , {xN(n)}) is said to be regularly varying of index
(ρ1, ρ2, . . . , ρN) if xi = {xi(n)} ∈ RV(ρi) for i = 1,N. If all ρi are positive (or negative), then x is called a regularly
varying vector sequence of positive (or negative) index (ρ1, ρ2, . . . , ρN). The set of all regularly varying vectors of
index (ρ1, ρ2, . . . , ρN) is denoted by RV(ρ1, ρ2, . . . , ρN).

Various necessary and sufficient conditions for a sequence of positive numbers to be regularly varying
have been established (see [6, 14, 29, 30]). Consequently, any of these can define a regularly varying
sequence. The one that is the most important is the following Representation theorem (see [6, Theorem 3]),
while some other representation formula for regularly varying sequences was established in [30, Lemma
1].

Theorem 3.1. (Representation theorem) A positive sequence {y(k)}, k ∈N is said to be regularly varying of index
ρ ∈ R if and only if there exists sequences {c(k)} and {δ(k)} such that

lim
k→∞

c(k) = c0 ∈ (0,∞) and lim
k→∞

δ(k) = 0,

and

y(k) = c(k) kρ exp

 k∑
i=1

δ(i)
i

 .
In [6], a very useful embedding theorem was proved, which gives possibility of using continuous theory

in developing. However, as noted in [6], such development is not generally straightforward and sometimes
far from a simple imitation of arguments for regularly varying functions.
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Theorem 3.2. (Embedding Theorem) If positive sequence y = {y(n)} is regularly varying of index ρ ∈ R, then
function Y(t) defined on [0,∞) by Y(t) = y([t]) is a regularly varying function of index ρ. Conversely, if a positive
function Y(t), t ∈ [0,∞) is a regularly varying of index ρ, then a positive sequence {y(k)}, y(k) = Y(k), k ∈ N is
regularly varying of index ρ.

Next, we state some important properties of RV sequences helpful in developing the asymptotic
behavior of solutions of (SE) in the subsequent sections (for more properties and proofs, see [6, 29]).

Theorem 3.3. The following properties hold:

(i) y ∈ RV(ρ) if and only if y(k) = kρ l(k), where l = {l(k)} ∈ SV.

(ii) Let x ∈ RV(ρ1) and y ∈ RV(ρ2). Then, xy ∈ RV(ρ1 + ρ2), x + y ∈ RV(ρ), ρ = max{ρ1, ρ2} and
1/x ∈ RV(−ρ1).

(iii) If y ∈ RV(ρ), then limk→∞
y(k + 1)

y(k)
= 1.

(iv) If l ∈ SV and l(k) ∼ L(k), k→∞, then, L ∈ SV.

(v) If l ∈ SV, then for any ε > 0,

lim
k→∞

kεl(k) = ∞, lim
k→∞

k−εl(k) = 0,

(vi) If y ∈ RV(ρ), then {k−σy(k)} is eventually increasing for each σ < ρ and {k−µy(k)} is eventually decreasing for
each µ > ρ.

The following theorem can be seen as the discrete analog of Karamata’s integration theorem and plays a
central role in proving the main results of this paper. Proof of this Theorem can be found in [21]. Also,
some parts of this theorem’s proof can be found in [6] and [34].

Theorem 3.4. Let l = {l(n)} ∈ SV.

(i) If α > −1, then lim
n→∞

1
nα+1l(n)

n∑
k=1

kαl(k) =
1

1 + α
;

(ii) If α < −1, then lim
n→∞

1
nα+1l(n)

∞∑
k=n

kαl(k) = −
1

1 + α
;

(iii) If
∞∑

k=1

l(k)
k
< ∞, then S⋆(n) =

∞∑
k=n

l(k)
k
, S⋆ ∈ SV and lim

n→∞

S⋆(n)
l(n)

= ∞;

(iv) If
∞∑

k=1

l(k)
k
= ∞, then S⋆(n) =

n∑
k=1

l(k)
k
, S⋆ ∈ SV and lim

n→∞

S⋆(n)
l(n)

= ∞ .

Remark 3.1. It is easy to see, because of Theorem 3.3-(iii) and Theorem 3.4-(i), that for l ∈ SV, if α > −1,
we have

n−1∑
k=1

kαl(k) ∼
(n − 1)α+1l(n − 1)

α + 1
∼

nα+1l(n)
α + 1

∼

n∑
k=1

kαl(k), n→∞,

and since limn→∞
∑n−1

k=1 kαl(k) = ∞, we also get

n∑
k=n0

kαl(k) ∼
n∑

k=1

kαl(k), n→∞.
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If limn→∞
∑n

k=1 k−1l(k) = ∞, we have

n∑
k=n0

k−1l(k) ∼
n∑

k=1

k−1l(k), n→∞.

4. Basic concepts

This section introduces the fundamental notation and statements essential for proving the main results
presented in subsequent sections.

Fixed-point methods will be used to establish the existence of solutions. The following two fixed-point
theorems will serve as the primary tools throughout the paper.

Theorem 4.1. (Knaster-Tarski fixed point theorem [2]) Let X be a partially ordered Banach space with ordering
≤ . Let M be a subset of X with the following properties: the infimum of M belongs to M and every nonempty subset
of M has a supremum which belongs to M. Let F : M→ M be an increasing mapping, i.e. x ≥ y implies F x ≥ F y.
Then F has a fixed point in M.

Theorem 4.2. (Schauder-Tychonoff fixed point theorem [2]) Let S be a closed, convex, nonempty subset of a
locally convex topological vector space X. Let T be a continuous mapping from S to itself, such that TS is relatively
compact. Then T has a fixed point.

We will apply the following theorem to prove that the appropriately constructed operator T is continu-
ous.

Theorem 4.3. (Discrete Lebesgue’s dominated convergence theorem [1] ) Let {a(m)(k)} be a double real
sequence, a(m)(k) ≥ 0 for m, k ∈ N such that limm→∞ a(m)(k) = A(k), for every k ∈ N. Assume that the series∑
∞

k=1 a(m)(k) is totally convergent, that is, there exists a sequence {α(k)} such that a(m)(k) ≤ α(k) for all m, k ∈N with∑
∞

k=1 α(k) < ∞. Then, the series
∑
∞

k=1 A(k) converges and

lim
m→∞

∞∑
k=1

a(m)(k) =
∞∑

k=1

A(k).

To apply the Schauder-Tychonoff fixed point theorem, the relatively compactness of the set TS must be
verified, and for that purpose, the following statement will be used. This theorem represents a discrete
version of the Arzela-Ascoli theorem, known as the Cheng-Patula theorem (see [12]).

Theorem 4.4. A bounded, uniformly Cauchy subset Ω of l∞ is relatively compact.

The Stolz-Cesaro Theorem will be used to prove the regularity of solutions. For completeness, we recall
the following variant (see [48]).

Theorem 4.5. If f = { f (n)} is a strictly increasing sequence of positive real numbers, such that limn→∞ f (n) = ∞,
then for any sequence 1 = {1(n)} of positive real numbers one has the inequalities:

lim inf
n→∞

∆ f (n)
∆1(n)

≤ lim inf
n→∞

f (n)
1(n)

≤ lim sup
n→∞

f (n)
1(n)

≤ lim sup
n→∞

∆ f (n)
∆1(n)

.

In particular, if the sequence {∆ f (n)/∆1(n)} has a limit, then

lim
n→∞

f (n)
1(n)

= lim
n→∞

∆ f (n)
∆1(n)

. (4.1)
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In Section 6, analyzing the regularly varying solutions of the system with regularly varying coefficients,
we assume pi ∈ RV(λi), qi ∈ RV(µi), i = 1,N and express them as follows:

pi(n) = nλi li(n), qi(n) = nµi mi(n), li,mi ∈ SV, i = 1,N, (4.2)

while components of the regularly varying solution x ∈ RV(ρ1, ρ2, . . . , ρN) of the observed system are
expressed in the form

xi(n) = nρiξi(n), ξi ∈ SV, i = 1,N. (4.3)

We also assume that all sequences pi, i = 1,N satisfy either (I) or (II). Condition (I) is satisfied if and only if
index of regularity λi satisfies either

λi > αi, (4.4)

or

λi = αi and Si =

∞∑
n=1

n−1li(n)−
1
αi < ∞. (4.5)

If (4.4) holds, using Theorem 3.4, the following asymptotic relation is obtained for the sequence πi = {πi(n)}
defined by (1.1):

πi(n) ∼
αi

λi − αi
n
αi−λi
αi li(n)−

1
αi , n→∞, (4.6)

implying that πi ∈ RV
(
αi−λi
αi

)
. Condition (II) is satisfied if and only if either

λi < αi, (4.7)

or

λi = αi and Si =

∞∑
n=1

n−1li(n)−
1
αi = ∞, (4.8)

Using Theorem 3.4, if (4.7) holds, the following asymptotic relation is obtained for the sequence Pi = {Pi(n)}
defined by (1.2):

Pi(n) ∼
αi

αi − λi
n
αi−λi
αi li(n)−

1
αi , n→∞, (4.9)

implying that Pi ∈ RV
(
αi−λi
αi

)
.

Also, to simplify notation we denote AN = α1α2 · . . . · αN, BN = β1β2 · . . . · βN and use matrix

M =



1 β1

α1

β1β2

α1α2
. . .

β1β2·...·βN−2

α1α2·...·αN−2

β1β2·...·βN−1

α1α2·...·αN−1
β2β3·...·βN

α2α3·...·αN
1 β2

α2
. . .

β2β3·...·βN−2

α2α3·...·αN−2

β2β3·...·βN−1

α2α3·...·αN−1
β3β4·...·βN

α3α4·...·αN

β3·...·βNβ1

α3·...·αNα1
1 . . .

β3β4·...·βN−2

α3α4·...·αN−2

β3β4·...·βN−1

α3α4·...·αN−1
...

...
...

. . .
...

...
βN−1βN

αN−1αN

βN−1βNβ1

αN−1αNα1

βN−1βNβ1β2

αN−1αNα1α2
. . . 1 βN−1

αN−1
βN

αN

βNβ1

αNα1

βNβ1β2

αNα1α2
. . .

βNβ1·...·βN−2

αNα1·...·αN−2
1


, (4.10)

whose elements will be denoted by M = (Mi j). In fact, the i−th row of (Mi j) is obtained by shifting the vector(
1,
βi

αi
,
βiβi+1

αiαi+1
, . . . ,

βiβi+1 · . . . βi+(N−2)

αiαi+1 · . . . αi+(N−2)

)
, αN+ j = α j, βN+ j = β j, j = 1,N − 2
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(i − 1)−times to the right cyclically, so that the lower triangular elements Mi j, i > j, satisfy the relation

Mi jM ji =
β1β2 · . . . · βN

α1α2 · . . . · αN
, i > j, i = 2,N.

It is easy to see that elements of matrix M satisfy for i = 1,N, j = 1,N

Mi+1,i
βi

αi
=

BN

AN
, Mi+1, j

βi

αi
=Mi j for j , i, MN+1, j =M1, j. (4.11)

The next matrix also plays an important role in the proof of the main results:

A =



1 −
β1

α1
0 . . . 0 0

0 1 −
β2

α2
. . . 0 0

...
...

. . .
...

...
...

...
. . .

...
...

0 0 0 . . . 1 −
βN−1

αN−1

−
βN

αN
0 0 . . . 0 1


. (4.12)

Since,

det(A) = 1 −
β1β2 · . . . · βN

α1α2 · . . . · αN
> 0 ,

the matrix A is invertible, and its inverse matrix is given by

A−1 =
AN

AN − BN
M . (4.13)

Throughout the text, n ≥ n0 means that n is sufficiently large so that n0 need not be the same at each
occurrence.

5. Existence of primitive increasing solutions

The classification itself directly reveals the asymptotic behavior of primitive solutions. In the following
theorems, using fixed-point theory, we establish the necessary and sufficient conditions for the existence of
solutions of type (AC) and (P1) of the system (SE) with arbitrary coefficients satisfying (b).

Theorem 5.1. Let (I) holds. The system (SE) has a solution x ∈ IS in which every component satisfies (AC) if and
only if

J1
i =

∞∑
n=2

 1
pi(n)

n−1∑
k=1

qi(k)


1
αi

< ∞, i = 1,N. (5.1)

Proof. The ”only if” part: Let x = (x1, x2, . . . , xN) be an eventually positive and increasing solution of (SE) in
which every component satisfies (AC). Then, there exist n0 ∈ N such that li = xi(n0) ≤ xi(n) ≤ ki, n ≥ n0,

i = 1,N. Summing the equations of (SE) first from n0 to n − 1, and then from n0 to m, we get for i = 1,N

xi(m) − xi(n0) =
m∑

n=n0

 1
pi(n)

x[1]
i (n0) +

n−1∑
k=n0

qi(k)xi+1(k + 1)βi




1
αi

≥ l
βi
αi
i+1

m∑
n=n0

 1
pi(n)

n−1∑
k=n0

qi(k)


1
αi

.
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As xi(m), is bounded for m ≥ n0, the last inequality implies that the partial sums of the series J1
i , i = 1,N,

are bounded, from which we conclude that condition (5.1) holds.
The ”if” part: Suppose that (5.1) holds. Then, there exists n0 > 1 such that

∞∑
k=n0

 1
pi(k)

k−1∑
s=n0−1

qi(s)


1
αi

< 1, i = 1,N. (5.2)

Denote with Ln0 the space of all vectors x = (x1, x2, . . . , xN), such that xi = {xi(n)} ∈ Nn0R, i = 1,N are
bounded. Then, Ln0 is a Banach space endowed with the norm

||x|| = max
1≤i≤N

{
sup
n≥n0

|xi(n)|
}
. (5.3)

Set

Λ1 =
{

x ∈ Ln0

∣∣∣∣ ci

2
≤ xi(n) ≤ ci, n ≥ n0, i = 1,N

}
, (5.4)

where ci, i = 1,N are positive constants such that

ci ≥ 2c
βi
αi
i+1, i = 1,N, cN+1 = c1. (5.5)

Define operators Fi : Nn0R→ Nn0R by

Fix(n) =
ci

2
+

n−1∑
k=n0

 1
pi(k)

k−1∑
s=n0−1

qi(s)x(s + 1)βi


1/αi

, n > n0, i = 1,N, (5.6)

and define the mapping Θ : Λ1 → Ln0 by

Θ(x1, x2, . . . , xN) =
(
F1x2,F2x3, . . . ,FNxN+1

)
, xN+1 = x1. (5.7)

We will show that Θ has a fixed point by using the Schauder-Tychonoff fixed point theorem. Namely,
the operator Θ has the following properties:

(i) Θ maps Λ1 into itself: Let x ∈ Λ1. Then, using (5.2), (5.4), (5.5) and (5.6), we see that

ci

2
≤ Fixi+1(n) ≤

ci

2
+ c

βi
αi
i+1

n−1∑
k=n0

 1
pi(k)

k−1∑
s=n0−1

qi(s)


1
αi

≤
ci

2
+

ci

2
= ci,

for i = 1,N and n > n0.

(ii) Θ is continuous: Let εi > 0, i = 1,N and {x(m)
}m∈N =

{
(x(m)

1 , x(m)
2 , . . . , x(m)

N )
}

m∈N
, be a sequence in Λ1 which

converges to x = (x1, x2, . . . , xN) as m→∞. Since, Λ1 is closed, x ∈ Λ1. The rest of the proof does not depend
on i, so let i ∈ {1, 2, . . . ,N} be arbitrary fixed. For every n > n0, we have∣∣∣Fix

(m)
i+1(n) − Fixi+1(n)

∣∣∣
≤

n−1∑
k=n0

1

pi(k)
1
αi

∣∣∣∣∣∣∣∣
 k−1∑

s=n0−1

qi(s)x(m)
i+1(s + 1)βi


1
αi

−

 k−1∑
s=n0−1

qi(s)xi+1(s + 1)βi


1
αi

∣∣∣∣∣∣∣∣
=

n−1∑
k=n0

a(m)
i (k).
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Since

a(m)
i (k) ≤

 1
pi(k)

k−1∑
s=n0−1

qi(s)x(m)
i+1(s + 1)βi


1
αi

+

 1
pi(k)

k−1∑
s=n0−1

qi(s)xi+1(s + 1)βi


1
αi

≤ 2c
βi
αi
i+1

 1
pi(k)

k−1∑
s=n0−1

qi(s)


1
αi

,

(5.8)

the assumption (5.1) implies that series
∑
∞

k=n0
a(m)

i (k) is totally convergent. Also, limm→∞ a(m)
i (k) = 0, so that

a discrete analogue of the Lebesgue dominated convergence theorem (Theorem 4.3) yields

lim
m→∞

sup
n≥n0

∣∣∣Fix
(m)
i+1(n) − Fixi+1(n)

∣∣∣ = 0.

Therefore, ||Θx(m)
−Θx|| → 0 as m→∞, i.e. Θ is continuous.

(iii) Θ(Λ1) is relatively compact: To show this, by Theorem 4.4, it is sufficient to show that Θ(Λ1) is
uniformly Cauchy in the topology of Ln0 . For x ∈ Λ1 and m > n > n0 we have

|Fixi+1(m) − Fixi+1(n)| =

∣∣∣∣∣∣∣∣
m−1∑
k=n

 1
pi(k)

k−1∑
s=n0−1

qi(s)xi+1(s + 1)βi


1
αi

∣∣∣∣∣∣∣∣
≤

m−1∑
k=n

1

pi(k)
1
αi

 k−1∑
s=n0−1

qi(s)xi+1(s + 1)βi


1
αi

≤ c
βi
αi
i+1

m−1∑
k=n

 1
pi(k)

k−1∑
s=n0−1

qi(s)


1
αi

.

According to the assumption (5.1), it follows that Θ(Λ1) is uniformly Cauchy.
Therefore, all the hypotheses of the Schauder-Tychonoff fixed point theorem are fulfilled, implying the

existence of a fixed point x ∈ Λ1 of the mapping Θ, which satisfies

xi(n) =
ci

2
+

n−1∑
k=n0

 1
pi(k)

k−1∑
s=n0−1

qi(s)xi+1(s + 1)βi


1
αi

, n ≥ n0, i = 1,N.

It is clear that x is a positive increasing solution of (SE) whose all components tend to constants. □

In order to prove the existence of a solution of type (P) for the system (SE) , we consider the system

∆

(
1

qi(n)1/βi
|∆yi(n)|

1
βi
−1
∆yi(n)

)
=

1

pi+1(n + 1)
1

αi+1

|yi+1(n + 1)|
1

αi+1
−1yi+1(n + 1), (RSE)

where i = 1,N, yN+1 = y1, n ∈ N. This system is of the same type as the original one, but its coefficients
are obtained by interchanging pi(n) with qi(n)−1/βi , and qi(n) with pi+1(n + 1)−1/αi+1 , i = 1,N. So, the system
(RSE) is referred as the reciprocal system of the system (SE) (see [9]). If x = (x1, x2, . . . , xN) is a solution of
the system (SE) , then the vector y = x[1] = (x[1]

1 , x
[1]
2 , . . . , x

[1]
N ), whose components are the quasi-differences

of the components of x, is a solution of the system (RSE) . Moreover,

x ∈ IS ⇐⇒ y ∈ IS.
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Theorem 5.2. Let (II) holds. The system (SE) has a solution x ∈ IS in which every component satisfies (P) if and
only if

J2
i =

∞∑
n=1

qi(n)

 n∑
k=1

1
pi+1(k)1/αi+1


βi

< ∞, i = 1,N. (5.9)

Since the series J2
i , i = 1,N for the system (SE) plays the same role as the series J1

i , i = 1,N for the system
(RSE) (and vice versa), the proof of the theorem follows by applying Theorem 5.1 to the reciprocal system
(RSE) .

6. Asymptotic behavior of strongly increasing regularly varying solutions

Strongly increasing solution of (SE) of type (SI1) as well as of type (SI2) is the solution of the system

xi(n) = ai +

n−1∑
k=n0

 1
pi(n)

bi +

k−1∑
s=n0−1

qi(s)xi+1(s + 1)βi




1
αi

, i = 1,N (6.1)

for some constant n0 ∈ N,n0 > 1 and ai = xi(n0) > 0, bi = x[1]
i (n0 − 1) ≥ 0. In view of (SI), the strongly

increasing solution is required to satisfy

∞∑
n=n0

qi(n)xi+1(n + 1) = ∞, i = 1,N. (6.2)

To solve the system of equations (6.1) with (6.2) in the class of regularly varying sequences we will analyse
the system of asymptotic relations

xi(n) ∼
n−1∑
k=n0

 1
pi(k)

k−1∑
s=n0−1

qi(s)xi+1(s + 1)βi


1
αi

, n→∞ i = 1,N. (6.3)

which can be regarded as an approximation of the system (6.1). Our objective in this section is to provide
the necessary and sufficient conditions for the existence of regularly varying solutions of this system with
positive indices of regularity. We exclude slowly varying solutions from our analysis in this section, due to
computational complexity.

To accomplish the goal, coefficients pi and qi are assumed to be regularly varying sequences. Accordingly,
we use the expressions (4.2) for pi and qi, while for the components xi of the solution vector x of (SE) , we
utilize the expression (4.3).

6.1. Regularly varying solutions of the system (6.3)

The solution of the problem of determining the necessary and sufficient conditions for the system of
asymptotic relations (6.3) to have a regularly varying solution x of the positive regularity index (ρ1, ρ2, . . . , ρN)
in the case (I) is given by the following Theorem.

Theorem 6.1. Let pi ∈ RV(λi), qi ∈ RV(µi), i = 1,N and suppose that (I) holds. The system of asymptotic relations
(6.3) has a regularly varying solution x ∈ RV(ρ1, ρ2, . . . , ρN) with ρi > 0, i = 1,N if and only if

N∑
j=1

Mi j
α j − λ j + µ j + 1

α j
> 0 , (6.4)
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in which case ρi are given by

ρi =
AN

AN − BN

N∑
j=1

Mi j
α j − λ j + µ j + 1

α j
, i = 1,N (6.5)

and the asymptotic behavior of any such solution is governed by the unique formula

xi(n) ∼


N∏

j=1

n
α j+1

α j p j(n)
−

1
α j q j(n)

1
α j

D j


Mi j


AN

AN−BN

, n→∞, i = 1,N (6.6)

with D j, j = 1,N given by

D j =
(
λ j − α j + α jρ j

) 1
α j ρ j, j = 1,N. (6.7)

Proof. The ’only if’ part: Let x ∈ RV(ρ1, ρ2, . . . , ρN) with all ρi > 0 be a solution of (6.3). Then, by Theorem
3.3 - (v) and (vi) we have that all components of the solution x satisfies (2.1) and that limn→∞ xi(n) = ∞,
i = 1,N. Since x[1]

i , i = 1,N are positive and increasing it follows that

(a) lim
n→∞

x[1]
i (n) = ci > 0 or (b) lim

n→∞
x[1]

i (n) = ∞.

From classification, we see that case (a) implies that limn→∞ xi(n) = const., that is xi ∈ SV, which is
impossible. Thus, for x[1]

i , i = 1,N we have that (b) holds.
Using (4.2) and (4.3), we obtain for all i = 1,N

n−1∑
k=n0−1

qi(k)xi+1(k + 1)βi ∼

n−1∑
k=n0−1

kµi+βiρi+1 mi(k)ξi+1(k)βi , n > n0. (6.8)

Then, (b) implies that µi + βiρi+1 ≥ −1, i = 1,N. If the equality holds for some i, then from (6.8) we obtain 1
pi(n)

n−1∑
k=n0−1

qi(k)xi+1(k + 1)βi


1
αi

∼ n−
λi
αi li(n)−

1
αi Ki(n)

1
αi , n→∞, (6.9)

where

Ki(n) =
n−1∑

k=n0−1

k−1mi(k)ξi+1(k)βi , Ki ∈ SV.

Summing (6.9) from n0 to n − 1 we get

xi(n) ∼
n−1∑
k=n0

 1
pi(k)

k−1∑
s=n0−1

qi(s)xi+1(s + 1)βi


1
αi

∼

n−1∑
k=n0

k−
λi
αi li(k)−

1
αi Ki(k)

1
αi , n→∞. (6.10)

Since xi(n) → ∞,n → ∞, it must be −λi
αi
≥ −1, i.e. λi ≤ αi. On the other hand, (I) is satisfed so that either

(4.4) or (4.5) holds. Therefore, it must be λi = αi, i.e. xi ∈ SV, contradicting with the assumption ρi > 0.
Accordingly, in (6.8) µi + βiρi+1 > −1 for all i and application of Theorem 3.4 gives 1

pi(n)

n−1∑
k=n0−1

qi(k)xi+1(k + 1)βi


1
αi

∼
n
−λi+µi+βiρi+1+1

αi li(n)−
1
αi mi(n)

1
αi ξi+1(n)

βi
αi

(µi + βiρi+1 + 1)
1
αi

, (6.11)
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as n→∞. Summing (6.11) from n0 to n − 1 and using (6.3) we have that

xi(n) ∼
n−1∑
k=n0

k
−λi+µi+βiρi+1+1

αi li(k)−
1
αi mi(k)

1
αi ξi+1(k)

βi
αi

(µi + βiρi+1 + 1)
1
αi

, i = 1,N. (6.12)

Since xi(n)→∞, n→∞, from (6.12) we conclude that (−λi+µi+βiρi+1+1)/αi ≥ −1, i = 1,N.All inequalities
should be strict, because if the equality holds for some i, it leads to the contradiction that xi ∈ SV.

Applying Theorem 3.4, from (6.12) we get

xi(n) ∼
n
−λi+µi+βiρi+1+1

αi
+1li(n)−

1
αi mi(n)

1
αi ξi+1(n)

βi
αi

(µi + βiρi+1 + 1)
1
αi

(
−λi+µi+βiρi+1+1

αi
+ 1

) , n→∞, i = 1,N. (6.13)

From the previous relation, since xi ∈ RV(ρi), i = 1,N, we see that

ρi =
−λi + µi + βiρi+1 + 1

αi
+ 1, i = 1,N, ρN+1 = ρ1 (6.14)

which is equivalent to a linear cyclic system of equations

ρi −
βi

αi
ρi+1 =

αi − λi + µi + 1
αi

, i = 1,N, ρN+1 = ρ1. (6.15)

The matrix of the system (6.15) is given by (4.12). As shown in Section 4, the matrix A is invertible, implying
that the system (6.15) has the unique solution (ρ1, . . . , ρN). Using (4.13), we derive that these ρi are given
explicitly by (6.5). It is obvious that ρi > 0, i = 1,N if and only if (6.4) holds. Using (4.2) and (4.3) we can
transform (6.13) in the form

xi(n) ∼
n
αi+1
αi pi(n)−

1
αi qi(n)

1
αi xi+1(n)

βi
αi

Di
, n→∞, (6.16)

where Di, i = 1,N are given by (6.7). It is easy to obtain from (6.16) that each component xi of RV solution
x satisfies the explicit asymptotic formula (6.6).

The ’if’ part: Suppose now that (6.4) holds. Define ρi with (6.5) and sequences Xi, i = 1,N, by

Xi(n) =


N∏

j=1

n
α j+1

α j p j(n)
−

1
α j q j(n)

1
α j

D j


Mi j


AN

AN−BN

, i = 1,N. (6.17)

where D j are given by (6.7). We will show that sequences Xi, i = 1,N, satisfy the system of asymptotic
relations (6.3), for arbitrary n0 ∈ N \ {1}, where XN+1 = X1. Clearly, Xi ∈ RV(ρi), i = 1,N, so it can be
represent as

Xi(n) = nρiχi(n), i = 1,N, (6.18)

where

χi(n) =


N∏

j=1

 l j(n)
−

1
α j m j(n)

1
α j

D j


Mi j


AN

AN−BN

, i = 1,N.
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Using (6.4) and (6.5) we have that ρi > 0, i = 1,N. From ”the only if” part we conclude that (ρ1, . . . , ρN),with
ρi given by (6.5), is the unique solution of the linear cyclic system of equations (6.15) (or equivalent (6.14)).
In order to apply Theorem 3.4, it must hold that µi + ρi+1βi > −1, i = 1,N. From the fact ρi > 0 and (6.14) we
have

µi + ρi+1βi = (ρi − 1)αi + λi − 1 > −αi + λi − 1 ≥ −1.

Therefore, using (6.14) and applying Theorem 3.4, we obtain 1
pi(n)

n−1∑
s=n0−1

qi(s)Xi+1(s + 1)βi


1
αi

∼
nρi−1li(n)−

1
αi mi(n)

1
αi χi+1(n)

βi
αi

(αiρ + λi − αi)
1
αi

, n→∞,

and

n−1∑
k=n0

 1
pi(k)

k−1∑
s=n0−1

qi(s)Xi+1(s + 1)βi


1
αi

∼
nρi li(n)−

1
αi mi(n)

1
αi χi+1(n)

βi
αi

Di
, n→∞. (6.19)

Using relation (4.11) for matrix elements Mi j, the right hand side of the relation (6.19) can be transformed
as follows

li(n)−
1
αi mi(n)

1
αi

Di
χi+1(n)

βi
αi =

li(n)−
1
αi mi(n)

1
αi

Di


N∏

j=1

 l j(n)
−

1
α j m j(n)

1
α j

D j


Mi+1, j

βi
αi


AN

AN−BN

=


N∏

j=1

 l j(n)
−

1
α j m j(n)

1
α j

D j


Mi j


AN

AN−BN

= χi(n), i = 1,N, χN+1 = χN ,

so from (6.19), we obtain that Xi, i = 1,N satisfy (6.3). □
Next we consider the case (II). Since (II) holds if and only if (4.7) or (4.8) is satisfied, we will distinguish

two cases. Namely, in the following two theorems we establish necessary and sufficient conditions for the
existence of a solution x of the system of asymptotic relations (6.3), with an index (ρ1, ρ2, . . . , ρN) such that
ρi >

αi−λi
αi
, i = 1,N if (4.7) holds, and such that ρi > 0 if (4.8) holds. In both theorems, the precise asymptotic

behavior of the solutions will be determined.

Theorem 6.2. Let pi ∈ RV(λi), qi ∈ RV(µi), i = 1,N. Suppose (4.7) holds. The system of asymptotic relations
(6.3) has a regularly varying solution x ∈ RV(ρ1, ρ2, . . . , ρN) with ρi >

αi−λi
αi
, i = 1,N if and only if

N∑
j=1

Mi j

(
µ j + 1
α j

+
β j(α j+1 − λ j+1)

α jα j+1

)
> 0, i = 1,N (6.20)

holds, where αN+1 = α1, λN+1 = λ1, in which case ρi are uniquely determined by (6.5) and the asymptotic behavior of
any such solution is governed by the unique formulas (6.6) where D j, j = 1,N are given by (6.7).

Proof. The ”only if” part: Let x ∈ RV(ρ1, ρ2, . . . , ρN) with all ρi >
αi−λi
αi

be a solution of (6.3). Then, all xi satisfy

(2.1) by Theorem 3.3 - (vi). Since indices of regularity of xi/Pi, i = 1,N are greater then zero, from Theorem
3.3 - (v),we have that limn→∞ xi(n)/Pi(n) = ∞ and limn→∞ xi(n) = ∞, implying that limn→∞ x[1]

i (n) = ∞.As in
the previous Theorem, we obtain (6.8), which due to (6.2) implies that µi + βiρi+1 ≥ −1, i = 1,N. If for some i
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equality holds, then we have (6.9) and (6.10), which using the Theorem 3.4 and assumption λi < αi, i = 1,N
gives

xi(n) ∼
αi

αi − λi
n
αi−λi
αi li(n)−

1
αi Ki(n)

1
αi ,n→∞.

This implies that ρi =
αi−λi
αi
, which is a contradiction. Therefore, µi + βiρi+1 > −1 for i = 1,N. Proceeding

exactly as in the proof of Theorem 6.1, we obtain that for each component xi of the solution x, (6.12) holds.
Since xi(n)→∞, n→∞, from (6.12) we conclude that (−λi+µi+βiρi+1+1)/αi ≥ −1, i = 1,N.All inequalities
should be strict because the equality for some i would imply that 0 < µi + βiρi+1 + 1 = λi − αi, which is
impossible. Therefore, (−λi + µi + βiρi+1 + 1)/αi > −1, i = 1,N. Applying Theorem 3.4, from (6.12) we get
(6.13). The relation (6.13) implies that ρi, i = 1,N, satisfy (6.14) i.e. ρi, i = 1,N, will be determined as a
unique solution of the linear cyclic system (6.15). Thus, ρi, i = 1,N are given explicitly by (6.5). Let us
denote di = ρi −

αi−λi
αi
, i = 1,N. Then, the system (6.15) becomes

di −
βi

αi
di+1 =

µi + 1
αi
+
βi(αi+1 − λi+1)

αiαi+1
, i = 1,N, dN+1 = d1. (6.21)

Matrix of the system (6.21) is given by (4.12). Since A is nonsingular matrix, the system (6.21) has a unique
solution di, i = 1,N, where

di =

N∑
j=1

Mi j

(
µ j + 1
α j

+
β j(α j+1 − λ j+1)

α jα j+1

)
, i = 1,N. (6.22)

Using that ρi >
αi−λi
αi

if and only if di > 0, we conclude that the condition (6.20) is satisfied. Like in the
proof of the previous Theorem, transformation of the asymptotic relation (6.13) gives that each xi satisfies
the asymptotic relation (6.6).

The ”if” part: Suppose now that (6.20) holds, define ρi and Di with (6.5) and (6.7), respectively, and let
Xi ∈ RV(ρi), i = 1,N be sequences defined with (6.17). That Xi, i = 1,N, satisfy the system of asymptotic
relations (6.3) can be verified as in the proof of previous Theorem. The regularity indices ρi, i = 1,N of Xi
are the unique solution of the linear cyclic system (6.15), which is equivalent to the system (6.21). Thus,
the assumption (6.20) implies that solutions di, i = 1,N, of the system (6.21) are positive, implying that
ρi > (αi − λi)/αi, i = 1,N. □

Theorem 6.3. Let pi ∈ RV(λi), qi ∈ RV(µi), i = 1,N. Suppose (4.8) holds. The system of asymptotic relations
(6.3) has a regularly varying solution x ∈ RV(ρ1, ρ2, . . . , ρN) with ρi > 0, i = 1,N if and only if

N∑
j=1

Mi j
µ j + 1
α j

> 0, i = 1,N (6.23)

in which case ρi are uniquely determined by

ρi =
AN

AN − BN

N∑
j=1

Mi j
µ j + 1
α j

, i = 1,N (6.24)

and the asymptotic behavior of any such solution is governed by the unique formulas (6.6) with D j =
(
α jρ

α j+1
j

)1/α j
, j =

1,N.
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Proof. The ”only if” part: Suppose that the system (6.3) has a solution x = (x1, . . . , xN) ∈ RV(ρ1, . . . , ρN),
with ρi > 0, i = 1,N. Due to fact that Pi ∈ SV, for all i = 1,N, index of regularity of xi/Pi is ρi > 0.
Thus, from Theorem 3.3 - (v), we have that limn→∞ xi(n)/Pi(n) = ∞ and limn→∞ xi(n) = ∞, implying that
limn→∞ x[1]

i (n) = ∞. Using (4.2) and (4.3), we obtain (6.8), which due to (6.2) implies that µi + βiρi+1 ≥ −1,
i = 1,N.As previously all inequalities are strict, because if equality holds for some i, then (6.10) implies that
xi ∈ SV, which is a contradiction. Therefore, with µi + βiρi+1 > −1, i = 1,N, application of Theorem 3.4 to
(6.8) gives (6.11) and since xi(n)→ ∞, n→ ∞, it must be (−λi + µi + βiρi+1 + 1)/αi ≥ −1, i = 1,N. If equality
holds for any i, then µi + βiρi+1 = −1, which is impossible. Thus, (−λi + µi + βiρi+1 + 1)/αi > −1, i = 1,N.
Summing (6.11) from n0 to n − 1 and using Theorem 3.4, we get (6.13). Using assumption λi = αi, i = 1,N,
from (6.13) we obtain the following cyclic system

ρi −
βi

αi
ρi+1 =

µi + 1
αi

, i = 1,N, ρN+1 = ρ1. (6.25)

Matrix of the system (6.25) is given by (4.12), and therefore, the system has a unique solution ρi, i = 1,N
given by (6.24). All ρi are positive if and only if (6.23) holds. Proceeding exactly as in the proof of the
Theorem 6.1, we conclude that the asymptotic behavior of regularly varying solution x is given by (6.6),

with D j =
(
α jρ

α j+1
j

)1/α j
, j = 1,N.

The ”if” part: The proof of the ”if” part of the Theorem is the same as the proof of Theorem 6.1. □

6.2. Regularly varying solutions of the system (SE)
Now, we proceed to the main results of this section. The following three theorems provide the necessary

and sufficient conditions for the system (SE) with regularly varying coefficients pi and qi to have a strongly
increasing regularly varying solution of of positive indices.

Theorem 6.4. Let pi ∈ RV(λi) and qi ∈ RV(µi), i = 1,N. Suppose that (I) holds. The system (SE) possesses a
solution x ∈ RV(ρ1, ρ2, . . . , ρN) with ρi > 0, i = 1,N, if and only if (6.4) holds, in which case ρi are given by (6.5)
and the asymptotic behavior of any such solution x is governed by the unique formula (6.6), with D j, j = 1,N given
by (6.7).

Theorem 6.5. Let pi ∈ RV(λi) and qi ∈ RV(µi), i = 1,N. Suppose (4.7) holds. The system (SE) possesses a solution
x ∈ RV(ρ1, ρ2, . . . , ρN) with ρi >

αi−λi
αi
, i = 1,N, if and only if (6.20) holds, in which case ρi are given by (6.5) and

the asymptotic behavior of any such solution x is governed by the unique formula (6.6), with D j, j = 1,N given by
(6.7).

Theorem 6.6. Let pi ∈ RV(λi) and qi ∈ RV(µi), i = 1,N. Suppose (4.8) holds. The system (SE) possesses a solution
x ∈ RV(ρ1, ρ2, . . . , ρN) with ρi > 0, i = 1,N, if and only if (6.23) holds, in which case ρi are given by (6.24) and the

asymptotic behavior of any such solution x is governed by the unique formula (6.6), with D j =
(
α jρ

α j+1
j

)1/α j
, j = 1,N.

We remark that the ”only if” parts of these theorems follow immediately from the corresponding parts
of Theorem 6.1, Theorem 6.2 and Theorem 6.3.

Proof of the ”if” part of Theorem 6.4: Suppose (6.4) is satisfied. Let we define the sequences Xi =

{Xi(n)} ∈ RV(ρi) by (6.17), where D j for j = 1,N are given by (6.7). As we have shown in the proof of the
Theorem 6.1, Xi, i = 1,N satisfy the system of asymptotic relations (6.3), implying that there exists n1 > n0
such that

n−1∑
k=n0

 1
pi(k)

k−1∑
s=n0−1

qi(s)Xi+1(s + 1)βi


1
αi

≤ 2Xi(n), n > n1, i = 1,N. (6.26)



A. B. Kapešić, J. V. Manojlović / Filomat 40:1 (2026), 51–73 68

As regularly varying function of positive index is asymptotic to an increasing sequence, we may assume,
without loss of generality, that Xi is eventually increasing. It is possible to choose n2 > n1 + 1 so large that

n−1∑
k=n0

 1
pi(k)

k−1∑
s=n0−1

qi(s)Xi+1(s + 1)βi


1
αi

≥
1
2

Xi(n), n ≥ n2, i = 1,N. (6.27)

Let we choose positive constants ci and Ci so that

ci ≤
1
2

c
βi
αi
i+1, Ci ≥ 4C

βi
αi
i+1, i = 1,N, cN+1 = c1, CN+1 = C1. (6.28)

An example of such choices is

ci =
(1

2

) AN
AN−BN

∑N
j=1 Mi j

, Ci = 4
AN

AN−BN

∑N
j=1 Mi j (6.29)

for i = 1,N. Clearly ci ≤ 1 ≤ Ci. Constants ci and Ci can be chosen so that

2ciXi(n2) ≤ CiXi(n1), i = 1,N, (6.30)

because these constants are independent of Xi as well as of the choice of n1 and n2.

Consider the spaceΥn1 of all vectors x = (x1, x2, . . . , xN), xi ∈
Nn1R, i = 1,N, such that {xi(n)/Xi(n)}, i = 1,N

are bounded. Then, Υn1 is a Banach space with the norm

||x|| = max
1≤i≤N

{
sup
n≥n1

∣∣∣∣∣ xi(n)
Xi(n)

∣∣∣∣∣} .
Further,Υn1 is partially ordered, with the usual pointwise ordering≤: For x,y ∈ Υn1 , x ≤ y means xi(n) ≤ yi(n)
for all n ≥ n1 + 1 and i = 1,N. Define the subset X ⊂ Υn1 with

X =
{

x ∈ Υn1

∣∣∣∣ ciXi(n) ≤ xi(n) ≤ CiXi(n), n > n1, i = 1,N
}
. (6.31)

It is easy to see that for any x ∈ X, the norm of x is finite and that for any subset B ⊂ X, infB ∈ X and
supB ∈ X. Define the operators Fi : Nn1R→ Nn1R by

Fix(n) = bi +

n−1∑
k=n0

 1
pi(k)

k−1∑
s=n0−1

qi(s)x(s + 1)βi


1
αi

, n ≥ n1, i = 1,N, (6.32)

where bi are positive constants such that

ciXi(n2) ≤ bi ≤
1
2

CiXi(n1), i = 1,N, (6.33)

and define the mapping Φ : X → Υn1 by

Φ(x1, x2, . . . , xN) =
(
F1x2,F2x3, . . . ,FNxN+1

)
, xN+1 = x1. (6.34)

We will show that Φ has a fixed point by using Theorem 4.1. Namely, the operator Φ has the following
properties:

(i) Φ maps X into itself: Let x ∈ X. Then, using (6.26)-(6.34), we see that

Fixi+1(n) ≤
1
2

CiXi(n1) + C
βi
αi
i+1

n−1∑
k=n0

 1
pi(k)

k−1∑
s=n0−1

qi(s)Xi+1(s + 1)βi


1
αi

≤
1
2

CiXi(n1) + 2C
βi
αi
i+1Xi(n) ≤

1
2

CiXi(n) +
1
2

CiXi(n) = CiXi(n)
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for n > n1 and

Fixi+1(n) ≥ bi ≥ ciXi(n2) ≥ ciXi(n), for n1 < n < n2,

Fixi+1(n) ≥ c
βi
αi
i+1

n−1∑
k=n0

 1
pi(k)

k−1∑
s=n0−1

qi(s)Xi+1(s + 1)βi


1
αi

≥
1
2

c
βi
αi
i+1Xi(n) ≥ ciXi(n), n ≥ n2.

This shows that Φx ∈ X, that is, Φ is a self-map on X.

(ii) Φ is increasing, i.e. for any x,y ∈ X, x ≤ y implies Φx ≤ Φy.

Thus, all the hypotheses of Theorem 4.1 are fulfilled implying the existence of a fixed point x ∈ X of Φ,
which satisfies

xi(n) = Fixi+1(n) = bi +

n−1∑
k=n0

 1
pi(k)

k−1∑
s=n0−1

qi(s)xi+1(s + 1)βi


1
αi

, n > n1,

for i = 1,N. This shows that x ∈ X is a positive and increasing solution of system (SE) .
It remains to verify that x ∈ RV(ρ1, ρ2, . . . , ρN). We define

ui(n) =
n−1∑
k=n0

 1
pi(k)

k−1∑
s=n0−1

qi(s)Xi+1(s + 1)βi


1
αi

, i = 1,N,

and put

ri = lim inf
n→∞

ui(n)
xi(n)

, Ri = lim sup
n→∞

ui(n)
xi(n)

.

Using (6.31) and

ui(n) ∼ Xi(n), n→∞, i = 1,N, (6.35)

it follows that 0 < ri ≤ Ri < ∞, i = 1,N. Using Theorem 4.5 we obtain

ri ≥ lim inf
n→∞

∆ui(n)
∆xi(n)

= lim inf
n→∞

(
1

pi(n)

∑n−1
k=n0−1 qi(k)Xi+1(k + 1)βi

) 1
αi(

1
pi(n)

∑n−1
k=n0−1 qi(k)xi+1(k + 1)βi

) 1
αi

= lim inf
n→∞


∑n−1

k=n0−1 qi(k)Xi+1(k + 1)βi∑n−1
k=n0−1 qi(k)xi+1(k + 1)βi


1
αi

=

lim inf
n→∞

∑n−1
k=n0−1 qi(k)Xi+1(k + 1)βi∑n−1
k=n0−1 qi(k)xi+1(k + 1)βi


1
αi

≥

(
lim inf

n→∞

qi(n)Xi+1(n + 1)βi

qi(n)xi+1(n + 1)βi

) 1
αi

= lim inf
n→∞

(
Xi+1(n + 1)
xi+1(n + 1)

) βi
αi

= r
βi
αi
i+1

where (6.35) has been used in the last step. Thus, ri satisfies the cyclic system of inequalities

ri ≥ r
βi
αi
i+1, i = 1,N, rN+1 = r1. (6.36)

If we take the upper limits instead of the lower limits, we are led to the cyclic system of inequalities

Ri ≤ R
βi
αi
i+1, i = 1,N, RN+1 = R1. (6.37)
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From (6.36) and (6.37) we easily see

ri ≥ r
β1β2 ...βN
α1α2 ...αN
i , Ri ≤ R

β1β2 ...βN
α1α2 ...αN
i ,

whence, because of the hypothesis β1β2 . . . βN/α1α2 . . . αN < 1, we find that ri ≥ 1 and Ri ≤ 1, i = 1,N. It
follows therefore that ri = Ri = 1 i.e. limn→∞ ui(n)/xi(n) = 1 for i = 1,N. Combined this with (6.35) implies
that xi(n) ∼ ui(n) ∼ Xi(n) as n→∞,which shows that each xi is a regularly varying sequence of index ρi > 0.
Thus, the proof of the ”if” part of Theorem 6.5 is completed. □

The ”if” part of the Theorem 6.5 and the Theorem 6.6, can be proved in essentially the same way as the
”if” part of the Theorem 6.4.

Application. Obtained results can be applied to the well-known second-order difference equation of
Thomas-Fermy type

∆(p(n)|∆x(n)|α−1∆x(n)) = q(n)|x(n + 1)|β−1x(n + 1), (6.38)

with p ∈ RV(λ) and q ∈ RV(µ),which has been studied in [21, 22]. As a direct consequence of Theorem 6.4
and Theorem 6.5, we have Theorem 3.1 from [21]. However, in the existing literature the case p ∈ RV(α)
has not been considered, due to the calculation difficulty. For that reason, as a consequence of Theorem 6.4
and Theorem 6.6, we obtain a new result for the equation (6.38) with p ∈ RV(α).

Theorem 6.7. Let p ∈ RV(α) and q ∈ RV(µ). The equation (6.38) possesses a regularly varying solution of index
ρ > 0 if and only if µ > −1, in which case ρ is given by

ρ =
µ + 1
α − β

, (6.39)

and the asymptotic behavior of any such solution x is governed by the unique formula

x(n) ∼
[

nα+1p(n)−1q(n)
αρα+1

] 1
α−β

, n→∞.

The following examples illustrates the results obtained in this section.

Example 6.1. Consider the following cyclic system of difference equations

∆
(
n3(log n)2(∆x1(n))2

)
=

γ1(n)
n2(log n)2 (x2(n + 1))2

∆
(
n2 log n(∆x2(n))

3
2

)
= γ2(n)n3(log n)5(x1(n + 1))

1
2 , n ≥ 2,

where γ1(n) and γ2(n) are positive real-valued sequences such that limn→∞ γ1(n) = δ1 and limn→∞ γ2(n) = δ2.
From this system, we see that α1 = 2, α2 = 3/2, β1 = 2, β2 = 1/2, {p1(n)} ∈ RV(3), {p2(n)} ∈ RV(2),
{q1(n)} ∈ RV(−2), and {q2(n)} ∈ RV(3). Also, A2 = 3 > 1 = B2 and the matrix M is

M =
(
1 1
1
3 1

)
.

Since, λ1 > α1 and λ2 > α2 we conclude that condition (I) holds. Also,

For i = 1 :
N∑

j=1

M1 j
α j − λ j + µ j + 1

α j
=

4
3
> 0

For i = 2 :
N∑

j=1

M2 j
α j − λ j + µ j + 1

α j
= 2 > 0,
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so condition (6.4) holds. Therefore, according to Theorem 6.4 we conclude that the considered system has
a (strongly increasing) RV−solution of index (ρ1, ρ2) = (2, 3). The asymptotic behavior of components x1
and x2 of such a solution are

x1(n) ∼
δ3/4

1 δ2

63/2 · 57/4
n2 log n, n→∞, x2(n) ∼

δ1/4
1 δ2

21/2 · 33/2 · 55/4
n3(log n)3, n→∞.

If

γ1(n) = ψ1(n) log n(log(n + 1))2

(
(n + 2)4(log(n + 2))2

n + 1
(
1 − ψ1(n + 1)

)2
− n3(log n)2 (

1 − ψ1(n)
)2
)
,

γ2(n) =
n2(n + 1)1/2(

ψ2(n)
)5/3 (

ψ2(n + 1)
)3/2

(
1 − ψ2(n + 1)

) 3
2 −

(n + 1)7/2(log(n + 1))4

n(log n)4

(
1 − ψ2(n)

) 3
2 ,

where

ψ1(n) =
( n

n + 1

)2 log n
log(n + 1)

, ψ2(n) =
(

n log n
(n + 1) log(n + 1)

)3

,

then δ1 = 20, δ2 = 15
√

3 and the system has the exact solution

(x1(n), x2(n)) =
(
n2 log n,n3(log n)3

)
∈ RV(2, 3).

Example 6.2. Consider the difference equation

∆
(
n3 log n(∆x(n))3

)
= γ(n)n(log n)3(x(n + 1))2, n ≥ 2, (6.40)

where γ(n) is positive real-valued sequence such that limn→∞ γ(n) = δ. In this equation, α = 3, β = 2,
{p(n)} ∈ RV(3), and {q(n)} ∈ RV(1).

Since µ = 1 > −1, by Theorem 6.7 we conclude that equation (6.40) has a (strongly increasing)
RV−solution of index ρ = 2. The asymptotic behavior of such a solution is

x(n) ∼
δ

48
n2(log n)2, n→∞.

If

γ(n) =
(n + 1)5(log(n + 1))3

n(log n)3

(
1

ψ(n + 1)
− 1

)3

−
n2(n + 1)2(log(n + 1))2

(log n)2

(
1 − ψ(n)

)3 ,

where

ψ(n) =
(

n log n
(n + 1) log(n + 1)

)2

,

then δ = 48 and equation (6.40) has the exact solution x(n) = n2(log n)2
∈ RV(2).
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[46] S. Stević, B. Iričanin, Z. Šmarda, Solvability of a close to symmetric system of difference equations, Electr. J. Differ. Equ., Vol. 2016, No.

159 (2016), 1–13.
[47] A. Stoikidis, G. Papaschinopoulos, Study of a cyclic system of difference equations with maximum, Electron. J. Qual. Theory Differ.

Equ. 2020, No. 39, 1–14.
[48] O. Stolz, Uber die grenzwerte der quotienten, Math. Ann., Vol. 15 (1879), 556–559.
[49] T. Tanigawa, Existence and asymptotic behavior of positive solutions of second order quasilinear differential equations, Adv. Math. Sci.

Appl., Vol. 9 (1999), 907–938.


