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Abstract. The main focus of this paper is to address the computational challenges associated with portfolio
optimization in a hybrid uncertainty (Uncertain-Random) environment. Considering the fact that investors
consider different subjective criteria for choosing their portfolio, in this research in presenting the models,
we have used different criteria such as skewness and kurtosis of the distribution of stock return variables,
which can be very effective in investors decision-making.

The paper assumes that the total return can be characterized as a hybrid uncertain variable and investigates
the problem of optimal portfolio selection under uncertain randomness.

The initial step involves defining the skewness and kurtosis of certain random variables, followed by the
derivation of several important properties in specific distributions. These findings enable the transformation
of models into deterministic forms and the establishment of uncertain random mean-variance-skewness-
kurtosis optimization models for portfolio selection, thereby eliminating the need for investors to make
subjective decisions.

Furthermore, the paper proposes the use of a capable artificial neural network that is globally convergent
and stable to solve the obtained model. A numerical simulation result demonstrates the efficiency of the
neural network in solving the portfolio optimization problem. The work done can be applied to solve
real-life portfolio selection problems with better accuracy.

1. Introduction

The main goal in the realm of optimal portfolio selection theory is to maximize investors’ profits by
meticulously selecting investments that align with their preferences from a variety of potential options.
Initially, the portfolio selection problem was founded upon Markowitz’s mean-variance model [34], and
numerous studies were conducted to optimize portfolios based on these two aspects of the return distri-
bution. However, subsequent research demonstrated that relying solely on average and variance criteria
is insufficient for achieving the optimal portfolio allocation. Factors such as skewness and kurtosis have
proven to be highly influential and decisive in this regard [1, 2, 4, 9, 10, 12, 13, 18, 20-23, 29, 33, 42, 45]. As
a result of these findings, researchers have recently shifted their focus towards higher-order moments.
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Traditionally, it was believed that security returns adhered to a stochastic nature, and probability theory
was considered the most powerful tool for selecting an optimal portfolio. However, it is evident that
the effectiveness of security efficiency is influenced by various factors, such as social, political, economic,
and particularly psychological factors. Recent studies have shown that short-term security returns are
not accurately reflected by historical data alone. Empirical evidence demonstrates that the distribution
of underlying asset returns displays higher peaks and heavier tails compared to the normal probability
distribution, highlighting the insufficiency of relying solely on the first two moments. To address these
challenges, researchers have explored the use of fuzzy variables as securities returns in numerous studies,
such as [11, 24, 35]. However, the utilization of fuzzy variables has revealed certain paradoxes, as high-
lighted by Liu and Huang [14, 25]. Consequently, the field of uncertain theory has garnered significant
attention, with many researchers incorporating Liu’s uncertain measurement theory into portfolio selection
models [6, 7, 15-17, 37, 39, 46].

In many scenarios, investors are confronted with hybrid uncertainty, wherein emerging markets lacking
sufficient historical data coexist with markets possessing adequate historical data. In this situation, in the
absence of adequate historical data, we show security returns by uncertain variables and other security
returns will show by random variables, in other words, random returns may appear with uncertain returns
at the same time. Currently, several researchers are studying on uncertain random portfolio optimization,
such as [5, 31, 32, 36, 40, 41, 44], and some studies applied skewness with respect to portfolio optimiza-
tion in hybrid uncertain spaces [8, 43]. But they have not considered the fourth moment in their studies.
In this article, our attempt to fill this gap is finding kurtosis in uncertain random environment to study
mean-variance-skewness-kurtosis portfolio optimization model.

The initial step involves validating the uncertain stochastic model within the context of chance theory

for portfolio selection, wherein both stochastic and uncertain returns are taken into account simultaneously.
By leveraging the fact that certain security returns closely align with their true frequency distribution, while
others do not, the portfolio can be optimized effectively. Additionally, taking into account the asymmetry
and distinct kurtosis of financial assets, it is classified as a hybrid uncertain skewness and also examines
kurtosis when dealing with random uncertain variables. Furthermore, we incorporate skewness-kurtosis
into the mean-variance model in the presence of an uncertain random environment, thereby establishing
a mean-variance-skewness-kurtosis uncertain random optimal portfolio selection model. The portfolio
optimization problem can be addressed by formulating the hybrid uncertain MVSK model. This model
allows for the simultaneous consideration of accounting return, risk, skewness, and kurtosis, providing a
comprehensive understanding of the portfolio’s performance. To solve this problem, an artificial neural
network (NN) is proposed. By utilizing the NN, the efficiency of the portfolio selection model can be
demonstrated through an illustrative example.
The structure of the paper is as follows. Section 2 provides a review of essential concepts related to uncertain
and uncertain-random variables. Section 3 focuses on the examination and validation of skewness and
kurtosis in two specific types of uncertain random returns. Moving on to section 4, various models for
portfolio selection are presented, emphasizing mean-variance-skewness-kurtosis considerations. In section
5, a dynamic system model is introduced to address the portfolio selection model derived earlier, and an
illustrative example is employed to showcase the effectiveness of the proposed neural network model.
Finally, Section 6 concludes the paper by presenting some final remarks.

2. Preliminaries

Consider I' be a non-empty set, and define the o -algebra L be a collection of all the events © € L over I'.
It could be defined a function that assigns to each event © the belief degree M{©}, signifying our belief in
the occurrence of ©. Liu [26] offered the following five axioms, in order to define uncertain measure in an
axiomatic form, to ensure that the number M{©} is not arbitrary and has special mathematical properties;
1: (Normality axiom) M(I') =1 ;
2: (Monotonicity axiom) M(®1) < M(®;,) every where ©; C O, ;
3: (Duality axiom) M(®) + M(©°) = 1 for every event ©;
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4: (Subadditivity axiom) For each sequence of events {®;} that can be counted, we have

M(O @) < i M@©))
j=1 j=1

Definition 2.1. [27]. The set function M which satisfies the above axioms, is called an uncertain measure.

Definition 2.2. [27]. Consider T be a non-empty set, the o-algebra L be a collection of all the events over I, and M
be an uncertain measure according to the above definition, the triple (I', L, M) is named an uncertain space.

5: (Product Measure Axiom) [27]. Let the triple (I'y, Ly, M) for k = 1,2,...,n, whereI' = I'y X I'; X ... and
L =L; X L, X ... be uncertainty spaces, then it satisfyed in

M(ﬁ ) < K Mi(©)
k=1 k=1

Where Oy, are arbitrary events and chosen from Ly for k = 1,2, ..., n, respectively.

Definition 2.3. [27]. The uncertainty distribution for an uncertain variable such as 1 is defined by function
® : R — [0,1] that ®(x) = M{n < x}. Note that, if e and o be real numbers and o > 0 Then the distribution of
normal uncertain variable is

(e — 1)

(1) = (1+ exp(W))1, T€eR, (1)

For convenience, it is denoted by n ~ N(e,0), and also the distribution of linear uncertain variable is denoted by
n ~ L(a, B) where o < f and it’s introduced as follows

1, if T>8
O(t) =4 (t—-a)/(B—a), if a<t<p (2)
0, if T<a.

Theorem 2.4. [28] Let @1, Dy, ..., D, be uncertainty distributions of independent uncertain variables 11,12, ..., Mu,
respectively. If f(t1,to, ..., tn) be increasing strictly. Then

n=f(N, N2, s ), 3)

is an uncertain variable with uncertainty distribution

W)= sup (min®t)), teR, (4)

f(tl,tz,...,t;z):t 1<i<n
and following inverse function
W) = f[CDl_l(a), q)gl(a), ...,q),;l(oc)], (5)
Where @1 (a), @, (a), ..., @, () are unique for each a € (0,1).

Definition 2.5. [26]. The expected value of an uncertain variable 1) is defined by

00 O
Eln] = j; Min = ridr — f Min < ridr, (6)

while at least one of the above integrals be finite.
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Theorem 2.6. [28]. Let ay and ay be real numbers and 17 and n, be uncertain variables which them expected values
are finite and they are independent, then

Elain: + axna] = aE[m] + a2E[n2]. )

Definition 2.7. [30] Let (T, P, Pr) be a probability space and (I', L, M) an uncertainty space. The product (I', L, M) x
(T, P, Pr) is called a chance space. Now if the uncertain random event © be in L X P, Then the chance measure of © is
defined as

1
Ch[@®] = f Priw € QOIM{y € T|(y, w) € ®} = r}dr.
0

Definition 2.8. [30] An hybrid uncertain variable n) is a function from (I, L, M) X (I, P, Pr) to the set of real numbers,
which called uncertain random variable. i.e. 1 for any Borel set B is an event in L X P. For any x € R, it’s chance
distribution is specified by ®(x) = Ch{n < x}.

Notice that n + C and nC are uncertain random variables, if C be an uncertain variable and 1 be a random variable.

Definition 2.9. Assume that E indicated the operator of expected value such as defined in [30] and 1 be an uncertain
random variable and E[n] be finite. the Skewness and kurtosis of 1 is defined as

S[nl = El(n - Eln)*] (8)
and

K[n] = El(n - E[nD)*] ©)

Theorem 2.10. Consider n as a hybrid uncertain variable possessing a finite expected value denoted as E[n]. Addi-
tionally, let O represent the chance distribution associated with 1. Then

Sl = f (n - E[7] o), (10)

0

and

K[l = f (n - El])*do(), (1)

(o]

Proof. You can find the proof of part 1 in [43]. Now for proofing the Kurtosis formula, assume that E[n] = e
is the finite expected value of 7. From definition (2.9)

KInl = E[(n - Eln)*]

+00 0
- f Chi(n — e)* > x}dx — f Chi(n — e)* < x}dx
0 _

(o)

+00 0
= f Chin—e> %}dx—f Chin — e < Vx}dx
0 —00

00

+00 0
= f Chin > Vx + e}dx — f Chin < Vx + e}dx
0 —

Now let ¥/x + ¢ = z,50 x = (z — ¢)* and we have
fo - Chin > Vx + e}dx — f ’ Chin < Vx +e}dx = f ” Chi{n > z}d(z — e)* - f Ch{n < z}d(z - e)*
- [T a-vee-ot- [ oie-or
= f +m(z —e)*dd(z) + f e (z — e)*dD(z)

= f +Oo(z —¢)*dd(z).

(o8]
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In the result the kurtosis is

K[l = f (n - El7])*do), (12)

(o]

O

Theorem 2.11. Let a and b be arbitrary real numbers and the expected value of an uncertain random variable 1 be
finite, then

Slan + b] = a*S[n], (13)
and

K[an + b] = a*K[n], (14)
Proof. We know that E[ax + b] = aE[x] + b. It follows from definition (2.9) that

Slan + bl = El(an + b — (@E[n] + b))’ = a’E[(n — Em))*] = a°S[n], (15)
and

Klan + b] = El(an + b — @E[n] + b))*] = a*E[(n ~ E(m))*] = a*Kn]. (16)
The theorem is proved. [

In prooving of next theorems two integrals are used, which are stated as following remarks.

Remark 2.12.
k1
- zr((kil);, k>-1,¢c>0,
2
Ao gy =1 @i _ 17
fo Ton 2, k=2m,c>0, (17)
%, k=21’}’l+1,C>0.

Remark 2.13. (Sommerfeld formula)
Following integral vanishes for odd k, but for even k

+00 . e/\ +00 . eA
Lo A (eA+1)2dA=2f0 A (6A+1)2d/\
+00 0
=2 f ALY AR x|+ 1)(-1)* e
DN |
s ) +00 )
=2 (-1)* f Afe i dA

X 1)i+1
=2(k!)Z( 12 (18)
i=1

3. Explanation of the problem

In this section, the situation of uncertainty and randomness is assumed, which will be called hybrid
uncertainty; and the skewness and kurtosis of uncertain random returns will be discussed.

Consider a financial market which has m number of risky securities with adequate historical evidence
and n number of new securities which have inadequate historical evidence. Investors prefer to allocate
their wealth among these assets.



F. Omidi et al. / Filomat 40:1 (2026), 75-92 80

In the remain of paper we use of following symbols: (i=1,2,..,m. j=1,2,..,n.)
7; is a random variable which shows the return of the ith risky security with sufficient historical data in
future.
A is the expected value of ;.
A= (A1, A, AT s expected vector of random variable 7.
o;j is the covariance of n; and n;.
Y. = (0ij)mxm is the covariance matrix of 7.
Cj is an uncertain variable which shows the return of the jth new risky seurity with inadequate historical
data in the future.
v} is the expected value of C;.
6?2 is the variance of uncertain return of i
x; is the holding proportion of ith security, which have adequate historical evidences.
yj is the holding proportion of jth new security, which have inadequate historical evidences.
; is the distribution of random return 7; in the probability space.
yj is the distribution of uncertain return (; in uncertainty space.
x = (x1,X2, ..., Xp) " is the portfolio vector of existing securities.
n=1,m.-. nm)T is the vector of random returns of existing securities.
y =1 Y2 yn)T is the portfolio vector of newly listed securities.
C=(C1,Cy, ..., Cu)T is the vector of securities with uncertain returns.
(T, yT) = (X1, X2, X3eee) Xty Y1, Y25 o yn)T is the portfolio vector of all demandant risky securities.
So

ux,y;n,0) = xTn + yTC =x11 + X2 + o + Xl + Y1C1 + 1200 + o+ 41, C.

where xTn and yC respectively are portfolio total returns of existing securities with adequate historical
data and securities which are newly listed. x”1 is a random variable and y’( is an uncertain variable.

Similar to those in Qin [40] and Zhai et al.[43] researches, the following remarks have been used in this
manuscript.

Remark 3.1. : The probability density function of random vector n which has a multivariate normal distribution,
defined as follow

Py(2) = 1 o~ 3EA T E-A).

V@m)"Z|

Remark 3.2. : For any Borel set Bj of real numbers,in the sense of uncertain measure, the uncertain returns
Ci,j=1,2,...,k, are independent.

k k
M{(ig; e B} = \ Mig; e B)
=1 =1

Where A is the minimum operatot.

According to remark (3.1), ATx = A1 + x40 + ...+ XAy is that expected value and X Tx = Z;’llzlilxﬂjo,-j

is variance and o(x) = VxTXx and the probability density function is as follow

1 _ (w-ATx)2
[ 202 (x, . ]-9
YOS e )

Based on remark (3.2) and using linearity feature of the expected value

E[u(x, y;n,01 = Elx"n] + E[y"Cl = x"A + y"v (20)
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Now from theorem (2.10) follows that the skewness and kurtosis are

+00

S[ue, v, O] = f 1= (T2 + )P, 1)

00

and

Klu(x, y;1,0)] = I [u— (x"A + y"v)[*dD(u). (22)

o0

where the chance distribution of i(x, y; 1, {) denotes by ®(u) and defined as

ow = [ yu- g, 23)

00

Theorem 3.3. Assume that C; € L(aj,f;), j=1,2,...,n be a linear uncertain variable then

By —a'y

; 4)

Varlu(x, y;1,0)] = 0*(x) +

Proof. Note that from properties of uncertain variables y'1 has linear uncertain distribution as follow and
BTy —a'yy’

2
z—aly
ply—aly
I}, represent the indictor function of set {.}.

Therefore

its expected value is

(@) = Iopry) + X Narysaspry) )

+00 _ T
D(u) = I (I{u—w>ﬁTy} + w X I{aTysu—wgﬁTy})\y(w)dw

o - Bly—a'y
1 u—pTy _M 1 u-ay w— (u ta y) (w - /\T(X))z
= 202w - w-w 220 g (6
‘/2_”0<X>f ‘ © T Vorow) fu—m BTy —aTy w20

So the Variance is

+0o T T
Varlu(x, y;n,0) = f - W) + TP o)
+00 u—aly T T 2 7(w_AT(x))2
) \/E(ﬁTy a’y)o(x) f f Ty [ W@ + %)] e 2000 dwdu
) I Al C) iy gy T
= 202(x) [ —(AT ] Jind
\/E(ﬁTy_ “Ty)a(x) f ‘ ( w+aly ! ( (x) * 2 ) M) w
(w = AT(x))?
1 f+00 ‘BTy_aTy . ) _22—()
- [ +(w—A(x)) e o°X)  dw
V2mo(x) 4
- [03(x)\/2_n+ Vara(o Y =2y ]
 \2ro(x) 4
T,, _ AT
= o2+ EY0Y -
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Theorem 3.4. Assume that Cj € N(ej, 6), j=1,2,...,n be a normal uncertain variable then

Varlu(x, y;1, O = 6*(x) +3(5Ty)? (28)

Proof. Note that from properties of uncertain variables y’C has also a normal uncertain distribution as
follow and it’s expected value is e’ y.

n(ely - 2)
Y@ =(1+e V3T ) (29)
Then
R(ET]/— U+ w) (w — AT(X))z
_ 1 e V36T -1, 202(x
d(u) = 1 y ™) qw. 30
(W) \/z_m(x)ﬁ (1+e yle w (30)

So the Variance is

Var[u(x, y;n, 0] = f [u- (/\T(x) + eTy)]deD(u)

nw—-u+ely) mw-u+ely)

) m \/éj_‘oo j:oo [M - (AT(x) + eT]/)]z (1 +e \/géTy )726’ ‘/§5Ty

(w- AT(x))?
xe  20%)  gwdu
(w2 @r @ -utely)
i 2
6Tya(x) \/7]‘ C202(y) j:w [u - (AT(x) + eTy)] (1+e V3oTy )2
nw —u+e'y)
Xe \/_(ST dudw. 1)

T

—u+el o
M ydt and using remarks (2.12, 2.13), then

By changing variable \/§6Ty to t we obtain du = —
1 A 36"y 9Py, e
B 2 y y e
Var[u(x, y;n,0)] = Voot f e 200 [(w-ATx)?+ 2w - ATx) —t+t——; ] (1+et)2dtdw
(w — ATx)?
__1 " 20200 ~ ATx)? 4 35T y))d
«/Ea(x)f ‘ [(@=A"x)" +3(0"y) ldw
= [03(x) V27 + 3(8" y)?0(x) V271]
27w(x)
= 0?(x) + 3(5"y)*. (32)
O

Theorem 3.5. Assume that C; € L(aj,f)),j = 1,2, ...,n be a linear uncertain variable, then

Slulx, y;n, 01 =0, (33)
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and

T, _ T,N\2
Kla(x,yin, 01 = 300 + 02 EL oIy Lgry _amyp

83

(34)

Proof. From that y'C is a linear uncertain variable using the operational law of uncertain variables the

Ty — 2T1)2
expected value is w and the uncertainty distribution is as follows:
z—aly

YO Fryary

X I{aTyszsﬁTy} + I{zzﬁTy}

I} ) represent the indictor function of set {.}.
So

o u—(w+aly)
D(u) = Ioo (ﬁTy——ocTy X I{aTysu,wSﬁry} + I{LHuzﬁTy})‘I’(w)dw

(w - AT(x) (w - AT(x)?

u=p'y - u—-a'y . _ T, cm———— 7
= ! f e 20%(x) g — ! f w‘e 20%(%) 4y
V2mo(x) J- V2no(x) Ju-pry  By—a'y

So the Kurtosis is

+00

Klu(x, v;1,0)] = f [w - (AT

—00

T T
+ %)14(1@(”)
. (w = AT(x)*

T, 1% _
%W)] 2200 dudy

1 +oo  mu—aly
V21 (BTy — aTy)o(x) Ioa jl,:—ﬁTy
. o @N@P Ty s g T
- 20%() [ _ar ] Y
\/Z_ﬂ(ﬁTy - aTy)O_(x) - ‘ (jz:hLaTy ! ( (X) " 2 ) M) w
1 +00 7(ZU - /\T(X))z (ﬁTy aTy)2
= 2(72(.7() _ 2T 4 T 2 -
V2ro(x) f_w ‘ (@ =A"0))" + (W - A7(x)) —

By changing variable w — AT(x) to t and using remark (2.12), we obtain

[u —(AT(x) +

l T, T N4
+ 55 BTy —a"y) o

tZ

1 +00 _—— T, _ ~T.)2 1
KluCe,y:n, 01 = N f e 202(x) (t4+tzw+%(ﬁTy—aTy)4)dt

Ty, — ~T1))2
— 304(X) +O'2(x)(ﬁ y 2(1 y) + %(ﬁT]/—OZTy)4-

proofing of skewness can be find in [43]. O

Theorem 3.6. Assume that Cj € N(ej, 6;) for j = 1,2,...,n be a normal uncertain variable, then

S[u(x, y;n,01=0,

and

Kl 51,001 = 30%() + 187 yP?(@) + 207"

(35)

(36)

(37)

(38)

(39)

(40)
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Proof. From that y'C is a normal uncertain variable using the operational law of uncertain variables the
expected value is e’ y and the uncertainty distribution is as follows:

n(ey -2)
v =01+ 6\/5—5T3/)_1 (41)
Then
L Telymutn) @ AT
D) = \/2_7:0(3() I A+e  V3OTY )1, 20200 gy (42)

So the Kurtosis is

Klu(x, ;1,01 = I [u— (AT(x) + eTy)*dD(u)

(o)

(w —u+e'y)

) m \/gf:o f:o [” - (AT@) + eT]/)r (1+e V3oTy )2

n(w - u-+ eTy) (ZU _ AT(X))Z
X e V3oTy e_ 20%(%)  dwdu

W= TP rw=u+ely)
6Tyo'(x) \/7f - 202 x) f [M _ (/\T(X) + ETy)]4 (1 +e \/§6Ty )_2
rw=u+ly)

we V3TV gudw. (43)

T

T
_ o
nw-utey) Y 4t and using remark (2.12, 2.13), then

By changing variable —— =% to twe have du = =
. R .
Klp(x, y;n,0)] = vz—;m f e 20%(x) f . [w - 2N )] Ty
L @=ATp
= «/% Sl O [ = A7) + 1867y P @ - AT @) + T2 6Ty e (44)
By changing variable w — A7(x) to f we obtain
oo £
Kptyn 0= 5= | 202<X>[ 180Ty + 0Ty
= 30*(x) + 18(6" y)*c 2(x)+ (5T ) (45)

proofing of skewness can be find in [43]. O
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4. Portfolio Selection Problem

A mean variance skewness-kurtosis model for selecting optimal portfolio problems in uncertain random
environment and its equivalent models will be represented in this section. Assume that1,, and 1, beam and
n-dimensional row vectors, respectively which all of the elements are 1. Generally, an investor considers a
preset credibility level 9 and skewness desired level ¢ and kurtosis level x and then requests to minimize
the investment risk for finding the suitable portfolio. Hence, the selection of an optimal hybrid uncertain
portfolio can be expressed as a mean-variance-skewness-kurtosis model as follow:

minimize Var[u(x,y;n,0)] = Var[x"n+y'(] (46)

Elu(x, y;1,0l = Elx'n +y'C] 2 9,
Slux, ;0,01 = SIx"'n+y'Cl > o,

subject to§ K[u(x, ;1,01 = KlxTn + y'C] < x,
Ux+1ly=1,

x>0, y=0.

The main purpose behind the utilization of this model is to minimize the potential risks, while 9 representing
the minimum anticipated return on investment that investors are willing to embrace and g is the admissible
skewness level and « is the maximum kurtosis level that can be tolerated. Alternatively, another optimal
portfolio can be one which maximize expected return on the limitation that the skewness is rather than or
equal to the admissible level and the risk does not surpass the predefined risk threshold @ and kurtosis
does not exceed a preset level « in advance.

maximize E[u(x,y;n, 0] =E [xTn + yTC] (47)

Var[u(x, y;1,0] = Varlx'n + y" (] < o,

SluCx, y;n, Ol = SIxTn+ y' ] > o,
subject to{ K[u(x, y;n,0)] = KlxTn+y'C] < x,

Ux+1ly=1,

x>0, y=>0.

This optimization problem can be formulated in some other different kinds, such as maximizing skewness
or minimizing kurtosis or multi-objective nonlinear programming model as

maximize E[u(x,y :n,0)] = E[x'n+y'C]
maximize S[u(x,y: n,0)] = S[xTn + y'(]
minimize Var[u(x,y: n,0)] = Var[xTn + y'(]
minimize K[u(x,y:1,0)] = Klx'n+y'(]

1Ix+1ly =1,

n

subject to{ %y >0.

In order to solve this problem, consider w;,i = 1,2, 3,4 be positive real numbers which indicate the weights
of the four appropriated objectives, and w; € [0, 1], so this multi-objective model can be transformed into a
single-objective optimization model as

minimize w; Var[u(x, y;n, Q)] — woE[u(x, y; 1, O] — wsS[u(x, y; 1, O] + waK[u(x, y; 1, O)]

Tx+1ly=1,

n

subject to{ x>0, 1> 0.

Note that if x* be an optimal solution of model (48), it will also be a pareto optimal solution of multi-objective
nonlinear model (48).
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Theorem 4.1. Let n;,i = 1,2,...,m be a linear random variable and C; € L(aj,B;) for j = 1,2,...,n be a linear
uncertain variable. Then model (46) can be changed to the crisp equivalent as following form

Bly—a'y

minimize ¢(x) + 1

(48)

A+ yTSE >,
T, _ T2
309 + 020 LI 4 Lty Tyt <
0<0,
Ux+1ly=1,
x>0, y=0.

subject to

Proof. Since, all of uncertain variables are linear in this mean that (; € L(aj, B)) for j = 1,2,...,n, y'Cis a

linear uncertain variable too. Moreover, the expected value have obtained as E[u(x, y;1,C)] = xT/\ +y" - iat

and the variance Var[u(x, y;7,0)] = o*(x) + Fly-aly y oy

Ty— 2
Klu(x ;1,01 = 304(x) + ﬂ:ow
(46), the theorem will be proved. [J

and the skewness S[u(x, y;7,C)] = 0 and the kurtosis

1
*+ 30 —(BTy — aTy)*. Substituting the above formulas into model

Theorem 4.2. Let n; for i = 1,2,...,m be a normal random variable and C; € N(e;, 6;) for j = 1,2,...,n be a normal
uncertain variable. Then model (46) can be changed into the crisp equivalent form as follow

minimize ¢(x) + ?)((STy)2 (49)

xTA+yTe> 9,
4 T, )2 2 189 1 4
30%(x) + 18(6" y)*o”(x) + ?(6 YLK,
subject to 0<0,
Ux+1ly=1,
x>0, y>0.
Proof. Since, all of uncertain variables are normal, in this mean that C; € N(ej, 6;) for j = 1,2,...,n, yTC is a

normal uncertain variable too. Moreover, the expected value have obtained as E[u(x, y;7,0)] = xTA + ye
and the variance Var[u(x, y;1,0)] = o2(x) + 3((5Ty)2 and the skewness S[u(x, y;1,C)] = 0 and the kurtosis

Klu(x, y;1,0)] = 30*(x) + 18(6Ty)%0%(x) + 1%(6%)4. Substituting the above formulas into model (46), the

theorem will be proved. [

5. A dynamic system model

Since this portfolio selection programming model is a geometric programming problem, so we explain
a brief of geometric program which is in the form

min Fy(x) (50)
s.t.
Fix) <1, (k=1,2,..,m), (51)
Gx=1 (@E=12..,D. (52)
where Fys are posynomial for k = 0,1, ...,m in the mean of a real valued function F of x which it’s form is
K
F(x) = ) o x> ..x"

k=1
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where g; € R and each ¢ is positive.

A geometric programming with using logarithmic transformation of variables x;, w; = log(x;) (so x; = e”) can
be transformed to a nonlinear convex optimization problem. So the transformation optimization problem
is as follow

min logF(e") (53)
s.t.
logFe(e”) <0, (k=1,2,..,m), (54)
logGy(e”) =0, (p=1,2,..10), (55)
which is a convex nonlinear programming problem. thus we consider following model
min f(w) (56)
s.t.
g(w) <0, (57)
h(w) = 0, (58)

where w € R", f : R" = R, g(w) = (g1(w), g2(w), ..., gm(w))" is an m-dimensional vector-valued continuous
function of n variables, and the functions f, g1, ..., g, are assumed to be convex and twice differentiable,
h(w) = Aw — b, A € R™, rank(A) = 1 (0 < I < n) and b € R". according to [19, 38] and using standard
optimization techniques, the above model transform into a nonlinear dynamic system.

Theorem 5.1. [3] An optimal solution of (56)-(58) is w € R" if and only if there exist u* € R™ and v* € R such a
way that (w*' ,u", 0" )7 satisfies the following KKTY system

u >0, gw) <0, h(w*) =0,
Vf (w*) + Vg(w*) u* + Vi(w)Tv* =0, (59)
h(w*) = 0.

w* is a KKT point of (56)-(58 and (', v*" )T is corresponding to w* and called the Lagrangian multiplier vector.

Theorem 5.2. [3]If f and gi, k = 1,2, ..., m all be convex, w* will be an optimal solution of (56)-(58), if and only if
w* be a KKT point of (56)-(58).

Now, let w(.), u(.) and o(.), to be variables which are time dependent. Purpose is to construct a dynamic
system which is continuous-time and settle down to the KKT point of the problem (56)-(58) and it’s dual. A
recurrent neural network model is suggested for solving model (56)-(58) and its dual, which its dynamical
equation is as follows:

dw

T —(Vf(w) + Vg(w)" (u + g(w))* + Vi(w)'v), (60)

du .

i (u+gw))" —u, (61)

do

i h(w), (62)
with an initial point (wg, uf, v})"

—(Vf(w) + Vgw) (u + g(w))* + Vh(w)Tv)

Cy) = (u+g(w)*" —u : (63)
h(w)

DKarush-Kuhn-Tucker
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Thus neural network (60)-(62) can be written as:

dy

E - TC(]/ )/ (64)

y(to) = Yo (65)
The stability and convergence of this network have been proven in [38].

Example 5.3. Suppose that there is 9 stocks which the monthly return of 5 existing securities is the natural logarithm
of the price ratio for two consecutive months and assume that there are 4 new stocks which their monthly return
rates are estimated by experienced experts and they are Linear uncertain variables. Table 1 represents the returns of
5 existing stocks and the simulated expected values of 4 newly listed stocks. The covariance matrix of the return of
5 existing stocks is calculated and indicated in Table 2. An investor would like to create an optimal portfolio, and he
wishes to minimize variance, which is accepted as risk, So solving model 48 to obtain the optimal portfolio is the main
concern.

Table 1: data of securities.

stocks X1 X2 X3 X4 X5 X6 X7 X X9
L(1.2,15) | L(1.8,2) | L(2.2,2.7) | L(2.5,3.5)
expected value | 0.45 | 0.30 | 1.26 | 0.61 | 0.24 1.35 1.9 2.45 3

Table 2: The sample covariance matrix of the 5 stocks.

075 032 039 032 0.38
032 0.68 026 003 0.34
039 026 057 028 0.26
032 0.03 028 063 024
038 034 026 024 1.58

Consider that in investor’s mind, the minimum expected return that can accept is 2.5, and the kurtosis is not allowed
to exceed 2. then the model 48 will be as follows:

By —a'y

minimize o?(x) + 1

(66)

a+f
XA+ yT5E > 25,

Ty — 2T1)2
B0t(0) + 020 ELEY L Lgry i<
subject to 2 80
0<0,
Ux+1ly=1,
x,y = 0.

By using of introduced NN in last section and solving this model, the investor’s capital should be assigned in line
with the optimal solution x* = (0,0,0,0,0,0,0,0.9090,0.0909). The corresponding minimum risk is 0.1363. Figure
1 and figure 2 show that the paths of this NN, regardless of the initial point chosen, convergence will ultimately lead
to the optimal solution of the problem.
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x8

x9

x1=x2=x3=x4=x5=x6=x7

Figure 1: Transient behavior of x;s fori =1,2,...,9

x8

x9

Xx1=x2=x3=x4=x5=x6=x7

Figure 2: Transient behaviors of x(t ) of the porposed neural network with various initial points

89
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6. Managerial Insights

The managerial insights contemplated from the solution of the portfolio optimization problem are placed
as follows:

To get higher returns, an investor has to concede higher risk; it is not possible to earn profit without
taking risk.

For an investor whom the minimum expected return that can accept is 2.5, and the kurtosis is not
allowed to exceed 2, this models can be formed and solved for find the best portfolio according to
mental investors preferences. If he wants to keep the risk of investment at the minimum level, the
policy of investment would be as follows: 90/9 % in stock 8 and 9/09 % in stock 9. For such an
investment, the minimum risk is 0.1363.

Further, using the proposed model of portfolio optimization, it is also possible to find the investment
strategy of an investor who can specify his or her target(s) about return expectancy, risk, skewness
and kurtosis tolerance, in between their respective pessimistic and ideal values.

The proposed artificial neural network, is one of the best models for solving optimization problems
because it’s Lyapunov stable and globally covergent to unique optimal solution with any initial point.
Also it do parallel calculations so is very fast and it can be used in real situations that investors have
many cases for choose that make big optimization problems which must be solved.

The limitations of the proposed model are:

For an investor who wants to adopt an intermediate policy between maximizing total expected return
and minimizing total risk that is not crisply defined, the determination of the optimal portfolio is not
possible.

With the increase in skewness values of the return distribution from negative to positive values, the
variance of the return decreases, but the total expected return may not increase. and so on about
increase or decreasing of kurtosis.

Striking a balance between return, risk, Skewness and kurtosis is possible by the proposed method
only when it is crisply defined.

7. Conclusion

In this manuscript, the consideration is given to the fact that the investor’s ability to select securities
and assets is influenced by the availability of historical data or not. While certain securities and assets have
sufficient historical data, others may have invalid or inadequate data. As a result, it is deemed that the
returns on these assets can be characterized as hybrid uncertain or uncertain random variables.

The concepts of skewness and kurtosis are incorporated into the framework of chance theory to analyze
uncertain random variables by some theorems and proofing them and described an uncertain random
model with respect to meanvarianceskewness-kurtosis for optimal portfolio selection.

So portfolios are formed according to investor preferences with applying of higher moments in uncertain
random environment. The obtained model is a nonlinear geometric model that an efficient dynamic artificial
neural network model is proposed for solving this model. The results obtained through the development
of models for portfolio selection problems with uncertain random returns will hold substantial value in the
disciplines of financial mathematics and economics, serving both theoretical advancements and practical
applications.
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