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Abstract. In this article, we introduce the notion of frame multiresolution analysis (FMRA) of band-
limited functions on locally compact Abelian (LCA) groups and derive certain conditions under which the
subspaces V; = spﬁ{DWﬂ) A€ A}, j € Z, where (f)(a)) = xx(w),w € E,K C E, constitutes an FMRA
for L2(G). Subsequently, we construct the corresponding wavelet frames of both the dyadic and arbitrary
dilations on LCA groups. Nevertheless, all the results are braced with illustrative examples.

1. Introduction

Doubtlessly, wavelets have grabbed the attention of scientific, engineering, and research communities with
their wide range of applications and lucid mathematical framework in such a way that they are now
considered now as a nucleus of shared aspirations and ideas [1, 2]. The most valuable and widely-used
algorithm for constructing orthonormal wavelet basis for L*(R") is the multiresolution analysis (MRA)
developed by Mallat [3] in the framework of time-frequency analysis. Over the last two decades, many
lucubrations and extensions have been witnessed in the literature to harness the advantages of an MRA. For
instance, biorthogonal MRA, vector-valued MRA, Riesz MRA, generalized MRA, non-uniform MRA and so
on [4-7]. In particular, Benedetto and Li [8] considered the dyadic frame multiresolution analysis of L?(IR)
with a single scaling function and successfully applied the theory in the analysis of narrow band signals.
Later on, Yu [9] extended the results of Benedetto and Li’s theory of FMRA to higher dimensions with

arbitrary integral expansive matrix dilations and has established the necessary and sufficient conditions to
characterize semi-orthogonal multiresolution analysis frames for L*(IR").

Parallel developments in the construction of orthonormal wavelets have also been witnessed in the
realm of abstract settings at an exponential rate. For instance, For example, Dahlke [10] constructed
orthonormal wavelet basis on LCA groups by employing the generalized B-splines and self-similar tiles.
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Kamyabi-Gol and Tousi [11, 12] investigated the conditions under which a function generates an MRA
on a locally compact Abelian group using the theory of spectral functions and shift-invariant spaces.
Subsequently, Yang and Taylor [13] established the concept of an MRA on non-abelian locally compact
groups G with no regularity or decay requirements on the scaling and built the Haar-like wavelet bases for
L*(G). Bownik and Jahan [14] built an MRA on compact Abelian groups using epimorphism as a dilation
operator and characterize the scaling sequences of such an MRA for LP(G),1 < p < co. Recently, Kumar
and Satyapriya [15] developed the theory of frame multiresolution analysis (FMRA) on LCA groups and

studied certain aspects of multiresolution subspaces {V]- 1je Z} which offer quantitative conditions for the
construction of an FMRA for L?(G). The key characteristic of this innovative approach is that the collection
{qi)(x -A):Ae A} is no longer an orthonormal basis for the core subspace Vj but rather a frame for V),
making it useful for a variety of signal processing applications.

Asis well known that most signals in practice are band-limited in nature and a complete representation
of these signals requires frequency analysis that is restricted to prescribed bands, resulting in the band-
limited wavelets. The band-limited wavelets are constructed via the conventional MRA approach by
choosing the scaling functions to be band-limited [16]. Some popular band-limited refinable functions and
wavelets include the orthonormal Shannon’s and Meyer’s scaling functions and wavelets. Apart from
the construction of orthonormal and band-limited wavelets together with their allies, much attention has
been paid to the construction of wavelet frames or framelets which are not only easy to construct but also
provide a suitable platform to obtain perfect reconstruction of a given signal in situations where redundancy,
robustness, over-sampling, and irregular sampling play a role [17]. One of the commonly used method to
construct wavelet frames is through an FMRA [18]. For instance, Zhang [19] showed that the number of
generators in wavelet frames associated with FMRA is determined completely by the frequency domain
of FMRAs. Similarly, Atreasa et al.[20] constructed many examples on compactly supported framelets
when FMRAs extend into general MRAs. Zhang [21] established an explicit characterization of band-
limited FMRAs in frequency domain. Recently, Kumar et al.[22, 23] have developed a novel method for the
construction of wavelet frames on LCA groups via an FMRA and even formulated certain conditions for
an FMRA in L%(G) to admit that a single function 1) € Wy can generate a wavelet frame for Wj.

In this article, we continue our investigation on the formulation of FMRA of band-limited signals over
LCA groups. More precisely, we establish several conditions under which the subspaces V; = span{Df Trop:

A€ A}, j € Z, where q?)(a)) = xx(w),w € E,K c G forms an FMRA for L*(G). We next build the relevant
wavelet frames for both the dyadic and arbitrary dilations on LCA groups, and all of the results are
supported with examples.

The remainder of the article is organized as follows: Section 2, is devoted to the exposition of the
preliminaries such as the notion of uniform lattices, annihilator, automorphism and the Fourier transforms
on LCA groups. Section 3 explicitly deals with the construction of an FMRA of band-limited functions for
L*(G). In Section 4, we present an explicit procedure for the construction of wavelet frames in L?(G) with
several illustrative examples.

2. Preliminaries and Fourier Analysis on LCA Groups

This section starts with a brief overview of locally compact Abelian groups, followed by some preliminary
results concerning Fourier transforms on LCA groups, which serve as the foundation for the development
of semi-orthogonal wavelet frames for L>(G). The definition and characterizations of frames in Hilbert
spaces are presented towards the culmination of the section.

2.1. Basics of LCA Groups

A group G equipped with a Hausdorff topology is called an LCA group, if it is metrizable, locally compact
and can be written as a countable union of compact sets. The set of real number IR, integers Z, unit disk
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T and Zy (the integers modulo N) are some prominent examples of LCA groups. These groups along
with their higher dimensional variants, are called elementary LCA groups. Moreover, the family of all

continuous homomorphisms from the LCA group G to the circle group T = {z € C : |z| = 1} is denoted by G
and also constitutes an LCA group under a suitable topology and the composition

(@ +@)x) = w@x) @' (), x€G o €C. (1)

This group is often referred as the dual group of G and its elements are called the characters of G. Itis

well-known that the double-dual group G = G and as such w(x) can be interpreted as either the action of
@ € Gonx € G or the action of x € G on w € G. For the sake of brevity, we shall use the following notation:

(@,%) = w(x), x€GwekC. )
2.2. Fourier Analysis on LCA Groups

Let yg and pg be the Haar measures on LCA groups G and G, respectively. Based on the Haar measure,

we define the spaces LF(G) and U’(E), 1 < p < o0 in the usual way. The Fourier transform of any arbitrary
function f € L}(G) is defined by

7110 = GO, F(w) = [ 00D dict), ©)
where Co(G) denotes the space of all continuous functions on G vanishing at infinity. For the sake of our

convenience, we will also use the notation f to denote the Fourier transform of the function f.

It is worth noticing that for a fixed Haar measure dug(x), there exits a Haar measure duz(x) on G
called the normalized Plancherel measure, such that the Fourier transform (3) is an isometric transform on

LY(G) N L*(G), and hence, it can be extended uniquely to a unitary isomorphism from L?(G) onto LZ(E) [24].
Therefore, each f € L}(G) with .7 (f)(w) € L}(G) can be reconstructed via the following formula:

() = faﬂw)(w, X)duz(w), xeG. @

Moreover, the Parseval’s formula corresponding to (3) reads

(f.9)= fcﬂx)ﬁduc(x) = f@ﬂw)Mdua(a)) =(f.9) ©

For typographical convenience, we shall denote the Haar measures dpig and dug by dx and dw, respectively.
For y € G, the generalized translation operator is defined by

T, :L*%G) — LXG), T,f(x)=f(x—-y), x€G. (6)

Likewise, the generalized dilation operator D in L*(G) can be defined via the dilative automorphism
introduced by Dahlke [10]. An automorphism a : G — G is said to be dilative if there exists N € IN such
that K € a(U), Yn > N, where K is any compact set in G and U is an open neighbourhood at the origin.
Therefore, for a dilative automorphism «, the dilation operator D : L%(G) — L*(G) is defined by

Df() = 5@ f(a(), x€G, 7)

where 0(a) is a positive constant such that

fG Fx)dx = 6(a) fG fla))dx. 8)
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Moreover, the induced automorphism & of Gis given by
(4(@),x) = (0, a(x)), xeGweb. 9)

Subsequently, the dilation operator D : L%(G) — L2(G) can be defined by
DF(w) = 5(a)' F(@(w)). (10)

2.3. Lattices and Fundamental Domains in LCA Groups

A uniform lattice in an LCA group G is a discrete subgroup A for which the quotient group G/A is compact.
In addition to this, we shall also assume that a(A) € A. Corresponding to the lattice A, an annihilator A*+
is defined by

A =lweG:(xw)=1,xeA]. (11)

It is easy to verify that the annihilator A+ is also a lattice in G and &(Al) c At, whenever a(A) c A. For

the classical case G = R, we have A = A*t = Z. Therefore, the inclusion a(A) C A always holds for the
automorphism x — 2x as a(A) = 2Z. Nevertheless, it is pertinent to mention that a lattice A in G can be

used to obtain a splitting of the group G and G into disjoint cosets [25].
Lemma 2.1. [25] Let A be a lattice in an LCA group G. Then the following hold:
(i). There exists a Borel measurable relatively compact set Q C G such that

G= U(/\ +Q), A+QNW +Q =0, for A #A; AN €A (12)
AeA

(ii). There exists a Borel measurable relatively compact set S C G such that

G=J@+8), @+ +8)=0, forw # w'; w0 €A™ (13)
weA+

The sets Q and S appearing in (12) and (13) are called a fundamental domains or the tiles associated with
the lattices A and A*, respectively.

We now discuss the periodic functions on G. For a given set H C G, a function f : G — C is said to be
H-periodic if

fix+h)=f(x), YxeGheH. (14)
In particular, if we take H = A, then by virtue of A-periodicity of the functions defined on G, we can
determine the space L?(G/A). Similarly, we can define A*-periodic functions on G and hence, the space

L2(6 /A*) canbe determined accordingly [15, 26]. If we assume that G = Rand A = Z, then both the quotient

spaces L*(G/A) and L*(G/A*) can be identified with the space L%(T). Note that a function F € L(G/A") if
and only if there exists a sequence {cp} ea € I?(A) such that [15]

F(w) = Zc;\(a), 1), VYweG. (15)
AeA

The A+-periodic extension of any set H C G is defined by

PH) = | )y +H). (16)

YEAL
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Then, we observe that

a(P(H) = U(&()/)+&(H)) and a(P(H)) # P(a(H)).

YEAL

Before proceeding further, we make an assumption that (A, ) is a scaling system on G, i.e., A and «a satisfy

a(A) € A[13,15]. Consequently, the pair (A*, @) will also be a scaling system on G. Therefore, the quotient
groups A/a(A) and A*/a(A*) are both finite and have cardinality equal to 0,. Note that the fundamental
domain Q associated with the scaling system (A, a) is self-similar if

Q= (@' +a"@), (17)

YEAf

where A¢ is the complete set of quotient representatives of a(A) in A [10, 13, 27]. From here onwards, we

shall assume that Q and S are both self-similar fundamental domains in G and G, respectively. Nevertheless,
we assume that the quotient groups A/a(A) and A+/a(A+) have the representations [27]:

Ala(A) = {a(A)} U {)\]- +a(A):1< <0, - 1},
AH/a(A) = {aan)fuly;+aat) 1< <6, -1,

The terms A; and y; satisfy the relation [9]:

001
< Sa) k=1 N ,
Z(wj,)\k—)\l):{o‘” Lel wj =& (), 0<j<6,—1. (18)
=0 ’

2.4. Frames on LCA Groups

By considering the lattice A as a countable index set, we introduce the notion of frame for the space L*(G).
For a detailed study on frames and related topics, we refer to [25].

Definition 2.2. A family { faiide A} is called a frame for L*(G) if there exist positive constants 0 < A < B < oo
such that

Al < Y e ) <

AEA

Y f € LX(G). (19)

The numbers A and B are called lower and upper frame bounds, respectively. A tight frame refers to the
case when A = B, and a Parseval frame refers to the case when A = B = 1 [25]. The frame is exact if it ceases
to be a frame whenever any single element is deleted. In most cases, it is extremely strenuous to determine

the existence of A and B or to verify whether the family { fitde A} constitutes a frame or not.

In wavelet analysis, the family family {Th¢ : A € A} consisting of translates of a single function
¢ € L*(G) is of utmost importance and will constitute a frame for its closed linear span if [25, 28]

A< Y [p@-n[<B VoelweG: Y 1d@-y)P #0). 20)

YEAL YEAL

We culminate this subsection by introducing the Paley-Wiener spaces in L*(G). The Paley-wiener space
PW¢(K) associated with the set K C G is given by

PWe(K) = {f € [2(G) : fw) =0, Y w € K}, 1)
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3. Frame Multiresolution Analysis of Band-limited Functions in L%(G)

In this section, firstly we shall recall the definition of frame multiresolution analysis (FMRA) on LCA
groups. Then, we present an explicit construction scheme for how to construct an FMRA in L*(G) by first
choosing an appropriate scaling function ¢(x) and obtaining core subspace Vj by taking the linear span of
integer translates of ¢(x). The other spaces Vj, j € Z can be generated as the scaled versions of V.

Following is the formal definition of a frame multiresolution analysis on LCA groups.
Definition 3.1. [15] A frame multiresolution analysis of L*(G) is a sequence of closed subspaces {Vj tjE Z} of
L*(G) satisfying the following properties:
@). Vi C Vi, forall je Z;
(b). Ujez V; is dense in L*(G) and ez V; = {0};
(©). f(-) € Vjifand only if f(a(-)) € Vjy1 forall j € Z;
(d). the function ¢ € Vo such that the collection TAf(-) = f(- —A) € Vo, forall A € A;

(e). the sequence {T,\¢)(-) =¢(--A):Ae A} is a frame for the subspace V.

The function ¢ appearing in (e) is called as the scaling function of an FMRA, where as the subspaces V’s
are known as approximation spaces. An MRA is an FMRA in which the term ”frame” is replaced by an
”orthonormal basis” in condition (e).

We start the process of construction of an FMRA on G by choosing an appropriate function ¢ € L*(G)
such that the family {Ta¢ : A € A} of its A-translates forms a frame sequence. Define a function ¢ on G via
its Fourier transform by

(@) = xx(), weG, (22)
where xy is the indicator function or the characteristic function of K ¢ G given by

1, weKkK
0, we¢K’

Xx(@) = {
We now define the subspaces V; by
Vj=5pan{D'Typ: A€ A}, jeZ. (23)

We observe that the subspaces {Vj 1] € Z} satisfies the conditions (c)-(e) of the Definition 3.1 and also
satisfies the intersection property trivially. The first and foremost task is to choose the set K such that the
family {T ¢ : A € A} is a frame sequence. The following lemma solves our purpose.

Lemma 3.2. Let K C G be non-empty and let ¢ be defined by (22). Then, the family {T,\d) A€ A} of A-translates
of ¢ constitutes a frame for L*(G) if

L
Kc U(Eg + S), forsome &g € A*, 1< < L. (24)
=1
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Proof. At the outset, we show that ¢ € L*(G) and, then we prove that A-translates of ¢ forms a frame
sequence. We have

-

Since (ch + S) N (cfg, + S) =0,1<(¢#{¢ <Land F‘E(S) < 00, SO wWe can write

¢

2= o) do = | dw.
ol bfdo= | o

L

dw < fda):Ld ~(S) < oo,

which implies that ||| < o and, hence, ¢ € L?(G). Moreover, for any w € G, we note that

Y p@+9f = Y xogen(@).

YEAL yEAL

Then, we see that

1< ZX()/+K)(CL)) <L <oo,

yeAL

forallw € {a) €G: Y |q3((u+)/)|2 * 0}. Therefore, by virtue of (20), we conclude that the family {Th¢ : A € A}
yEAL
constitutes a frame for L2(G). [J

For the sake of brevity, we denote

2, and N={w€a:®(w)=0}. (25)

D) = Y |b@+7)

YEAL

Remark 3.3. It is pertinent to mention that condition (24) implies that i=(K) < oo, however, one can not relax the

assumption (24) to uz(K) < oo because if we take K = nL—Jo (n, n+ m) as a subset of the Euclidean space R and ur

as the Lebesgue measure on R, then ur(K) < oo, but the family of translates {TA(p VS A} given (22) does not form
a frame for L*(G) as the function @ corresponding to ¢ is not bounded above.

We now investigate the remaining two conditions for being an FMRA for L*(G), that is; the density
condition and the nested property of the subspaces V, j € Z. In the following lemma, we derive conditions
under which it holds.

Lemma 3.4. Let {V]- S Z} be the subspaces of L*(G) as defined in (23) and let ¢ belongs to L*(G) such that the
system of translates {T ¢ : A € A} is a frame for V. Assume that K C G is such that (24) holds. Then,

(). If the subspaces V; are nested, then K C &(K).

(ii). IfK € &(K) is such that P(&‘l(K)) N P(K\a?‘l(K)) = 0, then V; are nested.

Proof. Assume that the sequence of subspaces {V]- 1] € Z} is nested. Then, it is quite evident that
¢ € Vy C Vq, so there exists sequence {c)}ren € I?(A) such that

o(x) = Z eADTyp(x), Y xeG.

AeAL
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The above relation can be recast in the Fourier domain as
$(&(@) = F@) $(), Yw <G,

where F € L2(G/A%). This means that
Xaao(@) = F@)xx(@), ¥ w €G.

We observe that if w ¢ K, then w ¢ &~ (K). This means that &' (K) € K and thus K € &(K).
Let K be a subset of &(K) such that P(&~!(K)) N P(K\a&"'(K)) = 0. Define a function n by

1, e P@a'(K))
= . 2
() {o, w € P(K\a"'(K)) 26)
Clearly, my(w) is A*-periodic, bounded, and satisfies
d(@(w)) = mo(@)P(w), ¥ w €G. 27)

Then, for any f € V), there exist some F; € LZ(E/AL) such that f (w) = Fz(w)qf)(a)), Yo € a.Equivalently, we
can write

f(éz(a))) = H(w) (]B(a)), where H(w) = Fz(&(w))mp(w), Y w € G.

Clearly, H(w) € Lz(a/Al) which implies that f € V1. Thus, Vo C V1, which in turn implies that V; C V4,
for all j € Z as the dilation operator D is a unitary operator on L*(G). [

The function my(w) appearing in (26) is called the two scale symbol or the refinement mask. Note that
the functions m(w) and P(w) can be expressed as

W) = Y Xoro@),  mo(@) = Xpai(@), ¥ w €G,
yEAL

and have the following relationship:

0a—1

o(a@) = Y [mo@ - ) @ - w)). (28)

j=0

It only remains to prove the density condition of an FMRA for L*(G). We shall use the already established
results of [15] for this purpose.

Lemma 3.5. Let |V : j € Z} be the subspaces of L>(G) as defined in (23) and let ¢ € L*(G) defined via (22) be such
j+] p

that the system of translates {Ty¢ : A € A} forms a frame for V. If there exists a neighbourhood of 0 € G contained
in K, then \Jjez V; is dense in L*(G).

Proof. Let U be any neighbourhood of 0 € G such that U C K. Then, $(w) # 0 on U as the function ¢ is
defined via (22). By applying same strategy as employed in [15], it is easy to show that ez V is dense in
LXG). O

We now sum up all the conditions required to be imposed on the set K so that the function ¢ defined
via (22) generates an FMRA for L(G).



R. Kumar et al. / Filomat 40:1 (2026), 103-120 111

Theorem 3.6. Let {Vj 1je Z} be the subspaces of L*(G) as defined in (23) and let K C G. Assume that the following
hold:

(i). There exist some integer L > 0 such that

L
K¢ U(& +8), forsome& e AY, 1< <L. (24)
=1

(ii). K € &(K) and P(&"1(K)) N P(K\a"}(K)) = 0.
(iii). There exist an open neighbourhood U of 0 € G such that U C K.
Then, the function ¢ as defined by (22) generates an FMRA{V; : j € Z} for L*(G)

Now from onwards, we shall assume that the set K satisfies all the properties of Theorem 3.6.

Theorem 3.7. Let ¢ € L*(G) be defined via (22) and let {Vj j€ Z} bean FMRA for L*(G). Then, V; € PW¢(d/(K)),
for each j € Z. Furthermore, Vi = PW¢(K), whenever K C S.

Proof. At the outset, we claim that Vy € PW¢(K). To do so, we assume that f € V), then there exist some
F e Lz(a//\l) such that f (w) = F(a))(i)(a)), Vo eG. Hence, f(w) = 0 for every w ¢ K, which in turn implies
that f € PW¢(K). Therefore, it follows that Vo € PW¢(K). Next, we claim that D(PWg(K)) = PWg(a(K)).
Let f € D(PW¢(K)). This means that f(éz(a))) =0, for all w ¢ K. Hence, it follows that f € PWg(&(K)). The
converse can also be traced on the similar lines. Thus, we conclude that V; C PW¢(&/(K)), for all j € Z.

Forany g € PWg(K), we observe that g{w) = 0, Y w ¢ S. Therefore, there exist a sequence {c)} e € 2(A)
such that [15, 26]

Fw) = Zc/\(w, Mxs(@), Y w € G.

AeA

Using the fact that xx - xs = xxk and g = 7- xx, we have

Fw) = Y (@ M),

AeA

which further implies that g € Vy and hence, we conclude that Vy = PW(K), whenever K € S. This
completes the proof of Theorem 3.7. [
4. FMRA Wavelet Frames over LCA Groups: Construction and Examples

In this section, firstly we shall present a detailed procedure for the construction of FMRA based wavelet
frames in L?(G) and then present several illustrative examples.

4.1. FMRA Wavelet Frames with Dyadic Dilations

In this subsection, we construct wavelet frames with dyadic dilations from a given FMRA {Vj 1j€ Z}. For
the case of dyadic dilations, the constant 6, appearing in (7) is equal to 2 and the quotient groups A/a(A)
and A*+/a&(A*) are supposed to have the following representation [22]:

Aa(A) = {a(A), Ao+ a(A)),  A*/a(A*) = {a(Ab), 7o + a(AH)),
Besides, we can write wy = &~ (yp), (wo, Ag) = =1 [? ], so that the relation (28) boils down to

CI)(&(a))) = |m0(w))2(l)(a)) + |mo(cu + w0)|2(l>(a) + wo)
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where mg(w) is the two-scale symbol associated with the scaling function of an FMRA.

Let W; denote the orthogonal complement of the subspace V; in V1. Then, property (c) of the
Definition 3.1 implies that the sequence of subspaces {Wj 1j€ Z} is pairwise orthogonal and satisfies

12c) = Pw,. (29)
j€Z
Moreover, it is easy to verify that these subspaces also satisfies the scaling property; that is,
W; ={f € L3(G) : fa7i()) € W). (30)

Therefore, in order to construct wavelet frames for LZ(G) via FMRA, all we need is to find functions 1, i
in L?(G) such that their A-translates form a frame for Wy or equivalently, we can say that the family

{DjT;\lpg cje€Z,AEN L= 1,2} constitutes a frame for L2(G).
We now define the functions 11, 1, in L?(G) by
(@) = Fo(w) dw), €=1,2, Vo eG (31)

where Fi,F, € L“(@/Al). Then, our task reduces to find suitable functions F; and F; in L“(E/AL). We
decompose the entire space G into several disjoint subspaces as:

PO = P(K)° N P(wp + K), PV = P(K) N P(wy + K)",

PO = P(K)° N P(wo + K), P = P(K) N P(wy + K).
The set P2 can further be splited into

P =p12 0 (P@a~(K) U P(wo + &7 (K))) ,
P2 =P12 0 (P~ (K)) U P(wo + &7 (K)))

Therefore, a possible choice for the functions F1(w) and Fx(w) [? ] could be

T (D) (@)(w, Ao), @ € PY

(12)
Fi(@) =" e 32
1, w € PY, my(w) =0
0, otherwise,
A (12)
Fy(w) =] @00 @B (33)
0, otherwise.

After clubbing, we obtain
Fi(@) =, (@) + () Xpsans10(@))(@, Ao)xs, (@),
YEAL
Fy(w) =(w, Ao)xc, (w);
where
Ay =P(K) N P&~} (K))* 0 (P(wo + K)* U Py + a7 (K))),
By =P(K) N P(wp + K) N P(wy + & 1(K)),
C1 =P(K) N P(wy + K) N P(a"1(K))° N P(wg + &~ 1(K))".
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Hence, relation (31) becomes
01@) =x0a,@) + (Y Xaororamoy @)@ @), Ao)xn, @),
yEAL
§2(w) =07 (@), Ao, (@),
where
Ay =a(K)Nna(A1), Ba=a(K)NnaB;) and C; = a(K)Na(Cy).
It is pertinent to mention that only one function i(x) can generate a wavelet frame for the space W, provided

50(112) = (0. This condition has also been thoroughly investigated in [22].

We now demonstrate our theory with the aid of some illustrative examples on the Euclidean group IR
and R?. Example 4.1 deals in itself with multiple cases, where in some cases, only one function is required
to generate wavelet frames, while in others, two functions are required to generate the wavelet frame.

Example 4.1. Let G = R be the group of real numbers with Haar measure

uo(B) = L duc),

where B is any Borel set in G and dug(x) = dx. Let A = Z be the uniform lattice in R and the map a : x — x?
as a dilative automorphism on R. Then, we observe that the map x e x o € R acts as a continuous

character on the group R, and hence the dual group R of R can be identified with R itself. As a consequence,
we have A+ = A and & = a. Besides, the set S = [0, 1) with uc(S) = 1, acts as a self similar fundamental

domain for both R and R. Therefore, a suitable representation of the quotient group A/a(A) can be obtained
via

Aa(N) = A*[a(AY) = 2)2Z. = (27,1 + 2Z}.
For the set K = [-y,y), y € R, we discuss the following cases:
Case 1: Assume that 1/3 < y < 1/2. Then, we observe that
K< (0+8)U(-1+38)), with S =[0,1).

Clearly, &(K) = [-2y,2y) and hence, K C &(K). Also, we see that P(4™1(K)) N P(K\&"!(K)) = 0. Note that
$(w) # 0 on any neighbourhood of 0 € R, so if we define the subspaces V, j € Z via (23), then we shall get
a function ¢(x) of the form (22) which generates an FMRA for L*(G). Subsequently, the function ®(w) and
the associated two-scale symbol my(w) takes the form

D(w) = Z Xwnrky(@),  mo(w) = Xp@a-1 k@), Y w € G.
nez.

We now partition the set G = R as discussed above to obtain

PO = U([n,n+%—y)U[n+%+y,n+1)), P = U(n+[y,1—]/)),
nez

nez

12 _ y E_Z)[ 1.y _z))
Pl _U([n+2,n+2 5 Un+2+2,n+1 )

1 y\y [1 vy 1 vy y 1
(e (5w g)vlz-2)e[t-vg e g)ofi-2249)
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Wavelet g4

|

1
|
|
|

Figure 1: Scaling function ¢ and the corresponding wavelet functions ¢; and ¢;, when y = 0.4 (Case 1).

Finally, we define the functions Fy, F, € L%(T) via the relations (32) and (33) to get
V1(@) = x8,(@),  Pa(w) = & xp, ()
where By = [-2y,-y)U[y,2y)and B, = [-1+y,—-y) U[y, 1 — y).

Case 2: Let 1/4 < y < 1/3. This can be dealt with in a similar manner as that of Case 1 with a slight
difference in the representation of the intervals involved.

Case 3: For y < 1, the set pgn) becomes a null set, and hence, we require only one function ¢ to generate a
wavelet frame for L*(R). An explicit representation of such function 1 is given by

$(w) = x5, (@), where By = [-2y,—y) U [y, 2y).

Figure 2: Scaling function ¢ and the corresponding wavelet functions ¢; and 1, when y = 0.2 (Case 3).

Case 4: For the case y = 1/2, we shall obtain only one wavelet ¢ of the form

A ; -1 1

Y(w) = €™ xp,(w); where B3 = [—1, 7) U [E' 1).
Case 5: For the case y > 2/3, P(a71(K)) N P(K\a@™'(K)) # 0. Therefore, we shall not get an FMRA for L*(RR)
via the procedure discussed above.

Remark 4.2. It is worth noticing that for the Haar wavelet, we always choose the scaling function ¢ with compact

support, whereas, in our above example, we have taken the Fourier transform ¢(w) to be of compact support. Besides,
the Haar wavelet can’t be considered as a wavelet in Paley Weiner spaces.
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Figure 3: Scaling function ¢ and the corresponding wavelet 1), when y = 0.5 (Case 4).

Example 4.3. Let G = R? be an LCA group with the standard Haar measure

W(®B) = f fg dx; dxs,

where 8 C R? is a Borel set. Define a map

AL+ o el ]

As the eigenvalues of the matrix M are strictly greater than 1, so it is easy to conclude that the automorphism

a on G is dilative with A(a) = 2. Since the dual group G of G is R? with the same measure (. Therefore, the
action of a character w € IR? on an element x € IR? can be defined by (w, x) = ¢?™“*, where w - x represents
the usual dot product in R?. It is worth noticing that with the choice of the uniform lattice A = Z X Z, both

the uniform lattices A and A+ become equal. Consequently, the dilative automorphism & on G takes the

form
&([wl]) =M [wl] , where M= [ 0 2]
() w7 -1 0

We observe that M = M, the transpose of the matrix M. Assume that the quotient group A*/&(A*) has the
following representation:

A+ _JAaraL 1 AfAL
W = {Q(A ), [0] + OZ(A )} .
Then, the set S = [—%, %] X [—%, %] will act as a self-similar tile for G. Define a set K ¢ R2 by
11 11
k=[-zalx|-z5l
and subsequently define a function ¢ € L*(G) via the relation (23). Then, we have the following observations:

(i). Equation (24) holds for K ¢ Swith L = 1.

w? 0)1/2

471 (K) = —%, }1] X [—1 1] cK

(). fw = [Zi] € K, then &4 '(w) = M [wl] = [—wz ] Subsequently, we have
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Note that (w + &~ 1(K)) N (@ + &~ (K)) = 0, whenever w # @. A similar result hold for the set K\a~!(K). Thus,
we conclude that P(éz‘1 (K)) N P(K\&‘l(K)) =0.
(iii). The function ¢ does not vanish on any neighbourhood of 0 € G.

Therefore, if we define the subspaces V, j € Z via (23), then we shall obtain the function ¢ appearing in
(iii) to generates an FMRA for L*(R?). Moreover, an application of Theorem 3.7 implies that, for each j € Z,

Vi =PWg (&/(K)). Finally, we divide the space G = R? into disjoint subspaces as

Ul o)== W)

PO — U ([’Z] + [8] + K) and P12 =0.

mmnez. 2

m
n

e[k

Evidently, after some straightforward calculations, we obtain

(w) = xp,(w), where By = [—% }L] X [% %]

4.2. FMRA Wavelet Frames with Arbitrary Dilations

This subsection is entirely devoted to the construction of FMRA-based wavelet frames associated with
arbitrary dilations. Although, we have studied such constructions in our recent work [22, 23], however,
here our intention is to develop the theory for band-limited functions on locally compact abelian groups.
More precisely, our aim is to show that the family

[DITape:jez, A en1<<6,) (34)
associated with the band-limited scaling function ¢(x) defined by (22) forms a frame for L*(G).

We consider the functions i, in the Fourier domain as

Pe(w) = me@)Plw), Yo €G, 1 < <8, (35)

where m; € Lz(a//\). Then, our motive shall be to find such functions m(w) so that cf) = xk. In analogy
with the precious case, we begin with the decomposition of the space G as

P =

8a—1 c 81
Up(wj + d‘l(K))] and Py = UP(a)]- +a7'(K));

j=0 j=0

We further decompose the sets £y and Py into even smaller and disjoint sets as

P = (hlP(a)]’+K)C ﬂPN’ p{\]: 5ﬁp(w].+[<) ﬂPN/
=0 =

ﬂsoN, <6,—1,

s (e
i=1

J#ji

{D‘;]hjz._.j[ _ [ﬁp(wﬁ + K)) ﬂ [ﬂp(a}j +K)°
i=1

J#Ji

(\Pr, €00,

L. 14
wPN = Plw, + a7 (K) N [ﬂp(wf,. - K)] n

i=1

ﬂP(a)]- + K)C], l<m<e¢.

J#Ji



R. Kumar et al. / Filomat 40:1 (2026), 103-120 117

As is known that the choice of the functions m,, 1 < £ < 6, — 1 is of utmost importance. As pointed in [23],
the choice of the functions m,’s is quite trivial if any one of the following conditions is satisfied:

(1). we 7)?\]
(). w € ST, i o, je 0

—~— jij2 i

(iii). w € Sy , Jujae e #0.

For each case, we consider m; = my = --- = ms, = 0, and discuss the remaining cases one by one. For the
case w € PV, we choose

me(w) = (w, Ae-1), 1< €< 0,.

Similarly, for the case w € Pﬁjz"j ‘, we take j,, = 0, for some 1 < m < ¢. Since the values of the functions m,
1 < ¢ <6, —1 are interdependent, as such we have listed these values in the form of a Table 1 given below.

H P;:]fZ"‘fl ‘ ~wj, + p{\llfl'“jl ‘ - ‘ . ‘ —wj + P}j\}jz'“jl
n 1 0 U 0
"o 0 1 A 0
m 0 0 A 1
M 0 0 P R 0
s, 0 0 0

Table 1: Choice of variable for the case w € 73’;\1]]'2"']" , j1=0.

~]1]2/[

Likewise, the possible choice of the functions m,, 1 < € < 6,, when 1w € Py , j1 = 01is listed in Table 2.
H 17’;;}11]2'"][ —wj, 1 5;;;11112'"]! —wj, i;;]mzw ) ‘ ‘ —wj Sgglmmz
m B, 1 0 AU B 0
1y B, 0 1 AU 0
Me—q B]'(, 0 0 A 1
My 0 0 0 AU B 0
ms, 0 0 0 0

P
Table 2: Choice of m;s on the set 150;\]]1]2 / ,j1=0

For each 1 <i < -1, the terms B;,,, appearing in Table 2, are given via

-1
Bj., = = Xcin (w) [ Z X()’+wji+1+1<)(w)] [ Z X()/+K)((U)] ’

YEAL YEAL
Cin =P(@7}(K)) N P(wj,, + & (K)).
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Thus, we conclude that the wavelet functions ¢;, 1 <7 < §, can now be defined via (35).

Example 4.4. Let G = R be the group of real numbers with A = Z as a uniform lattice and let a : x + 3x be the

dilative automorphism on G. Then, we observe that R = R,At = A =Zand & = a. We choose S = [0,1) as the
fundamental domain associated with the lattice Z. in R. Then, S = [0, 1) can be also represented as

1
Clearly, S is self-similar with respect to @ and Z. Assume that K = P; U (—P;), where P; = % U [2n,2n + 1]
n=0
and —P; = {-x : x € P}. Define ¢(x) € L*(G) via the relation (22) and the subspace V; = PWs(o/(K)), j € Z.
Then, we observe that
(). KcSU(-1+3S8);
1
(ii). a"Y(K) = P, U (=P;); where 27P, = |J [2n,2n + 1], and hence, @ '(K) C K;
n=0

(iii). P(@1(K)) N P(K\a"1(K)) = 0;
(iv). Any open neighbourhood U of 0 satisfying 9U C [-1, 1], also satisfies U C K.

Thus, we conclude that the set K satisfies all the properties listed in Theorem 3.6 and therefore, we can claim
that the function ¢ generates an FMRA for L%(R).

Figure 4: The scaling function ¢.

Note that the partitioning of set G will lead us to know that:

(). P{\r is an empty set;

@i). P, = U (n + (% LZJ [3n+1,3n+ 2]));
nez n=0
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(iii). Further partitioning is possible

1 4
on+1 6n+2 —~—01 2n 2n+1
01 _ onr- onre s arrT
Pn _U[”+[U[ 7 27 ]]]’PN U+ nuo[zf 27 ] /
n#2

nez. n=0 nez.
fren+1 6n+2 02 Boron on+1
02 _ D _ fidd
Pn _U["+[U[ 27 27 ]]]’PN = U+ U[27’ 27 ]
nez n=3 nez n=9

n#ll

— 01 — 01
Moreover, the intervals corresponding to n = 0,1 for Py are ¢y whereas the intervals corresponding

— 02 — 02
ton =9,10 for Py are Py . Besides, they have the following relationship:

— 01 1 —02 —0n 2 —01
oPn =_§+PN , oPn =—§+ 1PN

Since the set SDL = 0, so only two functions ¢ and 1, are enough to generate a wavelet frame for L*(R).

As we know that the periodic functions m;(w) and m;(w) are essential for defining the generators 1 (x) and
Y>(x) which can be derived by making use of Tables 1 and 2. Explicitly, the restriction of m;(w) and m;(w)
on S = [0, 1) is given by

ml(w) = XB, (w)/ Ti’lg(a)) = XB, (w)/
1 1
where By = 2—7([1,2] U[6,91U[18,19]U[20,21]), B, = 2—7([19,201 U [25,26]).
Consequently, the wavelet functions ¢1(x) and 1»(x) in the Fourier domain takes the form

1) = xc, (@), Pa(w) = xc,(w),

where

Figure 5: Wavelet functions i, and ;.
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