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Abstract. In this article, we introduce the notion of frame multiresolution analysis (FMRA) of band-
limited functions on locally compact Abelian (LCA) groups and derive certain conditions under which the
subspaces V j = span

{
D jTλϕ : λ ∈ Λ

}
, j ∈ Z, where ϕ̂(ω) = χK(ω), ω ∈ Ĝ,K ⊂ Ĝ, constitutes an FMRA

for L2(G). Subsequently, we construct the corresponding wavelet frames of both the dyadic and arbitrary
dilations on LCA groups. Nevertheless, all the results are braced with illustrative examples.

1. Introduction

Doubtlessly, wavelets have grabbed the attention of scientific, engineering, and research communities with
their wide range of applications and lucid mathematical framework in such a way that they are now
considered now as a nucleus of shared aspirations and ideas [1, 2]. The most valuable and widely-used
algorithm for constructing orthonormal wavelet basis for L2(Rn) is the multiresolution analysis (MRA)
developed by Mallat [3] in the framework of time-frequency analysis. Over the last two decades, many
lucubrations and extensions have been witnessed in the literature to harness the advantages of an MRA. For
instance, biorthogonal MRA, vector-valued MRA, Riesz MRA, generalized MRA, non-uniform MRA and so
on [4–7]. In particular, Benedetto and Li [8] considered the dyadic frame multiresolution analysis of L2(R)
with a single scaling function and successfully applied the theory in the analysis of narrow band signals.
Later on, Yu [9] extended the results of Benedetto and Li’s theory of FMRA to higher dimensions with
arbitrary integral expansive matrix dilations and has established the necessary and sufficient conditions to
characterize semi-orthogonal multiresolution analysis frames for L2(Rn).

Parallel developments in the construction of orthonormal wavelets have also been witnessed in the
realm of abstract settings at an exponential rate. For instance, For example, Dahlke [10] constructed
orthonormal wavelet basis on LCA groups by employing the generalized B-splines and self-similar tiles.
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Kamyabi-Gol and Tousi [11, 12] investigated the conditions under which a function generates an MRA
on a locally compact Abelian group using the theory of spectral functions and shift-invariant spaces.
Subsequently, Yang and Taylor [13] established the concept of an MRA on non-abelian locally compact
groups G with no regularity or decay requirements on the scaling and built the Haar-like wavelet bases for
L2(G). Bownik and Jahan [14] built an MRA on compact Abelian groups using epimorphism as a dilation
operator and characterize the scaling sequences of such an MRA for Lp(G), 1 ≤ p < ∞. Recently, Kumar
and Satyapriya [15] developed the theory of frame multiresolution analysis (FMRA) on LCA groups and
studied certain aspects of multiresolution subspaces

{
V j : j ∈ Z

}
which offer quantitative conditions for the

construction of an FMRA for L2(G). The key characteristic of this innovative approach is that the collection{
ϕ(x − λ) : λ ∈ Λ

}
is no longer an orthonormal basis for the core subspace V0 but rather a frame for V0,

making it useful for a variety of signal processing applications.

As is well known that most signals in practice are band-limited in nature and a complete representation
of these signals requires frequency analysis that is restricted to prescribed bands, resulting in the band-
limited wavelets. The band-limited wavelets are constructed via the conventional MRA approach by
choosing the scaling functions to be band-limited [16]. Some popular band-limited refinable functions and
wavelets include the orthonormal Shannon’s and Meyer’s scaling functions and wavelets. Apart from
the construction of orthonormal and band-limited wavelets together with their allies, much attention has
been paid to the construction of wavelet frames or framelets which are not only easy to construct but also
provide a suitable platform to obtain perfect reconstruction of a given signal in situations where redundancy,
robustness, over-sampling, and irregular sampling play a role [17]. One of the commonly used method to
construct wavelet frames is through an FMRA [18]. For instance, Zhang [19] showed that the number of
generators in wavelet frames associated with FMRA is determined completely by the frequency domain
of FMRAs. Similarly, Atreasa et al.[20] constructed many examples on compactly supported framelets
when FMRAs extend into general MRAs. Zhang [21] established an explicit characterization of band-
limited FMRAs in frequency domain. Recently, Kumar et al.[22, 23] have developed a novel method for the
construction of wavelet frames on LCA groups via an FMRA and even formulated certain conditions for
an FMRA in L2(G) to admit that a single function ψ ∈W0 can generate a wavelet frame for W0.

In this article, we continue our investigation on the formulation of FMRA of band-limited signals over
LCA groups. More precisely, we establish several conditions under which the subspaces V j = span

{
D jTλϕ :

λ ∈ Λ
}
, j ∈ Z, where ϕ̂(ω) = χK(ω), ω ∈ Ĝ,K ⊂ Ĝ forms an FMRA for L2(G). We next build the relevant

wavelet frames for both the dyadic and arbitrary dilations on LCA groups, and all of the results are
supported with examples.

The remainder of the article is organized as follows: Section 2, is devoted to the exposition of the
preliminaries such as the notion of uniform lattices, annihilator, automorphism and the Fourier transforms
on LCA groups. Section 3 explicitly deals with the construction of an FMRA of band-limited functions for
L2(G). In Section 4, we present an explicit procedure for the construction of wavelet frames in L2(G) with
several illustrative examples.

2. Preliminaries and Fourier Analysis on LCA Groups

This section starts with a brief overview of locally compact Abelian groups, followed by some preliminary
results concerning Fourier transforms on LCA groups, which serve as the foundation for the development
of semi-orthogonal wavelet frames for L2(G). The definition and characterizations of frames in Hilbert
spaces are presented towards the culmination of the section.

2.1. Basics of LCA Groups

A group G equipped with a Hausdorff topology is called an LCA group, if it is metrizable, locally compact
and can be written as a countable union of compact sets. The set of real number R, integers Z, unit disk
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T and ZN (the integers modulo N) are some prominent examples of LCA groups. These groups along
with their higher dimensional variants, are called elementary LCA groups. Moreover, the family of all
continuous homomorphisms from the LCA group G to the circle group T = {z ∈ C : |z| = 1} is denoted by Ĝ
and also constitutes an LCA group under a suitable topology and the composition

(ω + ω′)(x) = ω(x)ω′(x), x ∈ G, ω, ω′ ∈ Ĝ. (1)

This group is often referred as the dual group of G and its elements are called the characters of Ĝ. It is

well-known that the double-dual group ̂̂G = G and as such ω(x) can be interpreted as either the action of
ω ∈ Ĝ on x ∈ G or the action of x ∈ G on ω ∈ Ĝ. For the sake of brevity, we shall use the following notation:

(ω, x) = ω(x), x ∈ G, ω ∈ Ĝ. (2)

2.2. Fourier Analysis on LCA Groups

Let µG and µĜ be the Haar measures on LCA groups G and Ĝ, respectively. Based on the Haar measure,

we define the spaces Lp(G) and Lp(Ĝ), 1 ≤ p ≤ ∞ in the usual way. The Fourier transform of any arbitrary
function f ∈ L1(G) is defined by

F : L1(G)→ C0(Ĝ), F ( f )(ω) =
∫

G
f (x) (ω, x) dµG(x), (3)

where C0(Ĝ) denotes the space of all continuous functions on Ĝ vanishing at infinity. For the sake of our
convenience, we will also use the notation f̂ to denote the Fourier transform of the function f .

It is worth noticing that for a fixed Haar measure dµG(x), there exits a Haar measure dµĜ(x) on Ĝ
called the normalized Plancherel measure, such that the Fourier transform (3) is an isometric transform on
L1(G)∩ L2(G), and hence, it can be extended uniquely to a unitary isomorphism from L2(G) onto L2(Ĝ) [24].
Therefore, each f ∈ L1(G) with F ( f )(ω) ∈ L1(Ĝ) can be reconstructed via the following formula:

f (x) =
∫

Ĝ
f̂ (ω)(ω, x) dµĜ(ω), x ∈ G. (4)

Moreover, the Parseval’s formula corresponding to (3) reads〈
f , 1

〉
=

∫
G

f (x) 1(x) dµG(x) =
∫

Ĝ
f̂ (ω) 1̂(ω) dµĜ(ω) =

〈
f̂ , 1̂

〉
. (5)

For typographical convenience, we shall denote the Haar measures dµG and dµĜ by dx and dω, respectively.
For y ∈ G, the generalized translation operator is defined by

Ty : L2(G)→ L2(G), Ty f (x) = f (x − y), x ∈ G. (6)

Likewise, the generalized dilation operator D in L2(G) can be defined via the dilative automorphism
introduced by Dahlke [10]. An automorphism α : G → G is said to be dilative if there exists N ∈ N such
that K ⊆ αn(U), ∀n ≥ N, where K is any compact set in G and U is an open neighbourhood at the origin.
Therefore, for a dilative automorphism α, the dilation operator D : L2(G)→ L2(G) is defined by

D f (x) = δ(α)1/2 f
(
α(x)

)
, x ∈ G, (7)

where δ(α) is a positive constant such that∫
G

f (x) dx = δ(α)
∫

G
f
(
α(x)

)
dx. (8)
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Moreover, the induced automorphism α̂ of Ĝ is given by(
α̂(ω), x

)
=

(
ω, α(x)

)
, x ∈ G, ω ∈ Ĝ. (9)

Subsequently, the dilation operatorD : L2(Ĝ)→ L2(Ĝ) can be defined by

DF(ω) = δ(α)1/2 F(α̂(ω)). (10)

2.3. Lattices and Fundamental Domains in LCA Groups

A uniform lattice in an LCA group G is a discrete subgroupΛ for which the quotient group G/Λ is compact.
In addition to this, we shall also assume that α(Λ) ⊆ Λ. Corresponding to the lattice Λ, an annihilator Λ⊥

is defined by

Λ⊥ =
{
ω ∈ Ĝ : (x, ω) = 1, x ∈ Λ

}
. (11)

It is easy to verify that the annihilator Λ⊥ is also a lattice in Ĝ and α̂
(
Λ⊥

)
⊂ Λ⊥, whenever α(Λ) ⊂ Λ. For

the classical case G = R, we have Λ = Λ⊥ = Z. Therefore, the inclusion α(Λ) ⊂ Λ always holds for the
automorphism x 7→ 2x as α(Λ) = 2Z. Nevertheless, it is pertinent to mention that a lattice Λ in G can be
used to obtain a splitting of the group G and Ĝ into disjoint cosets [25].

Lemma 2.1. [25] Let Λ be a lattice in an LCA group G. Then the following hold:

(i). There exists a Borel measurable relatively compact set Q ⊆ G such that

G =
⋃
λ∈Λ

(λ + Q), (λ + Q) ∩ (λ′ + Q) = ∅, for λ , λ′; λ, λ′ ∈ Λ. (12)

(ii). There exists a Borel measurable relatively compact set S ⊆ Ĝ such that

Ĝ =
⋃
ω∈Λ⊥

(ω + S), (ω + S) ∩ (ω′ + S) = ∅, for ω , ω′; ω,ω′ ∈ Λ⊥. (13)

The sets Q and S appearing in (12) and (13) are called a fundamental domains or the tiles associated with
the lattices Λ and Λ⊥, respectively.

We now discuss the periodic functions on G. For a given set H ⊂ G, a function f : G→ C is said to be
H-periodic if

f (x + h) = f (x), ∀ x ∈ G, h ∈ H. (14)

In particular, if we take H = Λ, then by virtue of Λ-periodicity of the functions defined on G, we can
determine the space L2(G/Λ). Similarly, we can define Λ⊥-periodic functions on Ĝ and hence, the space
L2(Ĝ/Λ⊥) can be determined accordingly [15, 26]. If we assume that G = R andΛ = Z, then both the quotient
spaces L2(G/Λ) and L2(Ĝ/Λ⊥) can be identified with the space L2(T). Note that a function F ∈ L2(Ĝ/Λ⊥) if
and only if there exists a sequence {cλ}λ∈Λ ∈ l2(Λ) such that [15]

F(ω) =
∑
λ∈Λ

cλ(ω, λ), ∀ ω ∈ Ĝ. (15)

The Λ⊥-periodic extension of any set H ⊂ Ĝ is defined by

P(H) =
⋃
γ∈Λ⊥

(γ +H). (16)
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Then, we observe that

α̂
(
P(H

)
=

⋃
γ∈Λ⊥

(
α̂(γ) + α̂(H)

)
and α̂

(
P(H)

)
, P

(
α̂(H)

)
.

Before proceeding further, we make an assumption that (Λ, α) is a scaling system on G, i.e., Λ and α satisfy
α(Λ) ⊂ Λ [13, 15]. Consequently, the pair (Λ⊥, α̂) will also be a scaling system on Ĝ. Therefore, the quotient
groups Λ/α(Λ) and Λ⊥/α̂(Λ⊥) are both finite and have cardinality equal to δα. Note that the fundamental
domain Q associated with the scaling system (Λ, α) is self-similar if

Q =
⋃
γ∈Λ f

(
α−1(γ) + α−1(Q)

)
, (17)

where Λ f is the complete set of quotient representatives of α(Λ) in Λ [10, 13, 27]. From here onwards, we
shall assume thatQ andS are both self-similar fundamental domains in G and Ĝ, respectively. Nevertheless,
we assume that the quotient groups Λ/α(Λ) and Λ⊥/α̂(Λ⊥) have the representations [27]:

Λ/α(Λ) =
{
α(Λ)

}
∪

{
λ j + α(Λ) : 1 ≤ j ≤ δα − 1

}
,

Λ⊥/α̂(Λ⊥) =
{
α̂(Λ⊥)

}
∪

{
γ j + α̂(Λ⊥) : 1 ≤ j ≤ δα − 1

}
.

The terms λ j and γ j satisfy the relation [9]:

δα−1∑
j=0

(
ω j, λk − λl

)
=

δα, k = l
0, k , l

; ω j = α̂
−1(γ j), 0 ≤ j ≤ δα − 1. (18)

2.4. Frames on LCA Groups

By considering the lattice Λ as a countable index set, we introduce the notion of frame for the space L2(G).
For a detailed study on frames and related topics, we refer to [25].

Definition 2.2. A family
{

fλ : λ ∈ Λ
}

is called a frame for L2(G) if there exist positive constants 0 < A ≤ B < ∞
such that

A
∥∥∥ f

∥∥∥2
≤

∑
λ∈Λ

∣∣∣∣〈 f , fλ
〉∣∣∣∣2 ≤ B

∥∥∥ f
∥∥∥2
, ∀ f ∈ L2(G). (19)

The numbers A and B are called lower and upper frame bounds, respectively. A tight frame refers to the
case when A = B, and a Parseval frame refers to the case when A = B = 1 [25]. The frame is exact if it ceases
to be a frame whenever any single element is deleted. In most cases, it is extremely strenuous to determine
the existence of A and B or to verify whether the family

{
fλ : λ ∈ Λ

}
constitutes a frame or not.

In wavelet analysis, the family family {Tλϕ : λ ∈ Λ} consisting of translates of a single function
ϕ ∈ L2(G) is of utmost importance and will constitute a frame for its closed linear span if [25, 28]

A ≤
∑
γ∈Λ⊥

∣∣∣ϕ̂(ω − γ)
∣∣∣2 ≤ B, ∀ ω ∈

{
ω ∈ Ĝ :

∑
γ∈Λ⊥

|ϕ̂(ω − γ)|2 , 0
}
. (20)

We culminate this subsection by introducing the Paley-Wiener spaces in L2(G). The Paley-wiener space
PWG(K) associated with the set K ⊂ Ĝ is given by

PWG(K) =
{

f ∈ L2(G) : f̂ (ω) = 0, ∀ ω ∈ Kc
}
. (21)
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3. Frame Multiresolution Analysis of Band-limited Functions in L2(G)

In this section, firstly we shall recall the definition of frame multiresolution analysis (FMRA) on LCA
groups. Then, we present an explicit construction scheme for how to construct an FMRA in L2(G) by first
choosing an appropriate scaling function ϕ(x) and obtaining core subspace V0 by taking the linear span of
integer translates of ϕ(x). The other spaces V j, j ∈ Z can be generated as the scaled versions of V0.

Following is the formal definition of a frame multiresolution analysis on LCA groups.

Definition 3.1. [15] A frame multiresolution analysis of L2(G) is a sequence of closed subspaces
{
V j : j ∈ Z

}
of

L2(G) satisfying the following properties:

(a). V j ⊆ V j+1, for all j ∈ Z;

(b).
⋃

j∈Z V j is dense in L2(G) and
⋂

j∈Z V j =
{
0
}
;

(c). f (·) ∈ V j if and only if f (α(·)) ∈ V j+1 for all j ∈ Z;

(d). the function ϕ ∈ V0 such that the collection Tλ f (·) = f (· − λ) ∈ V0, for all λ ∈ Λ;

(e). the sequence
{
Tλϕ(·) = ϕ(· − λ) : λ ∈ Λ

}
is a frame for the subspace V0.

The function ϕ appearing in (e) is called as the scaling function of an FMRA, where as the subspaces V j’s
are known as approximation spaces. An MRA is an FMRA in which the term ”frame” is replaced by an
”orthonormal basis” in condition (e).

We start the process of construction of an FMRA on G by choosing an appropriate function ϕ ∈ L2(G)
such that the family {Tλϕ : λ ∈ Λ} of its Λ-translates forms a frame sequence. Define a function ϕ on G via
its Fourier transform by

ϕ̂(ω) = χK(ω), ω ∈ Ĝ, (22)

where χK is the indicator function or the characteristic function of K ⊂ Ĝ given by

χK(ω) =

1, ω ∈ K
0, ω < K

.

We now define the subspaces V j by

V j = span
{
D jTλϕ : λ ∈ Λ

}
, j ∈ Z. (23)

We observe that the subspaces
{
V j : j ∈ Z

}
satisfies the conditions (c)-(e) of the Definition 3.1 and also

satisfies the intersection property trivially. The first and foremost task is to choose the set K such that the
family {Tλϕ : λ ∈ Λ} is a frame sequence. The following lemma solves our purpose.

Lemma 3.2. Let K ⊂ Ĝ be non-empty and let ϕ be defined by (22). Then, the family
{
Tλϕ : λ ∈ Λ

}
of Λ-translates

of ϕ constitutes a frame for L2(G) if

K ⊆
L⋃
ℓ=1

(
ξℓ + S

)
, for some ξℓ ∈ Λ⊥, 1 ≤ ℓ ≤ L. (24)



R. Kumar et al. / Filomat 40:1 (2026), 103–120 109

Proof. At the outset, we show that ϕ ∈ L2(G) and, then we prove that Λ-translates of ϕ forms a frame
sequence. We have∥∥∥ϕ∥∥∥2

=
∥∥∥ϕ̂∥∥∥2

=

∫
Ĝ

∣∣∣ϕ̂(ω)
∣∣∣2 dω =

∫
K

dω.

Since
(
ξℓ + S

)
∩

(
ξℓ′ + S

)
= ∅, 1 ≤ ℓ , ℓ′ ≤ L and µĜ(S) < ∞, so we can write

∫
K

dω ≤
L∑
ℓ=1

∫
S

dω = L dµĜ(S) < ∞,

which implies that ||ϕ||2 < ∞ and, hence, ϕ ∈ L2(G). Moreover, for any ω ∈ Ĝ, we note that∑
γ∈Λ⊥

∣∣∣ϕ̂(ω + γ)
∣∣∣2 = ∑

γ∈Λ⊥

χ(γ+K)(ω).

Then, we see that

1 ≤
∑
γ∈Λ⊥

χ(γ+K)(ω) ≤ L < ∞,

for allω ∈
{
ω ∈ Ĝ :

∑
γ∈Λ⊥
|ϕ̂(ω+γ)|2 , 0

}
. Therefore, by virtue of (20), we conclude that the family {Tλϕ : λ ∈ Λ}

constitutes a frame for L2(G).

For the sake of brevity, we denote

Φ(ω) =
∑
γ∈Λ⊥

∣∣∣ϕ̂(ω + γ)
∣∣∣2 , and N =

{
ω ∈ Ĝ : Φ(ω) = 0

}
. (25)

Remark 3.3. It is pertinent to mention that condition (24) implies that µĜ(K) < ∞, however, one can not relax the

assumption (24) to µĜ(K) < ∞ because if we take K =
∞⋃

n=0

(
n,n + 1

(n+1)2

)
as a subset of the Euclidean space R and µR

as the Lebesgue measure on R, then µR(K) < ∞, but the family of translates
{
Tλϕ : λ ∈ Λ

}
given (22) does not form

a frame for L2(G) as the function Φ corresponding to ϕ is not bounded above.

We now investigate the remaining two conditions for being an FMRA for L2(G), that is; the density
condition and the nested property of the subspaces V j, j ∈ Z. In the following lemma, we derive conditions
under which it holds.

Lemma 3.4. Let
{
V j : j ∈ Z

}
be the subspaces of L2(G) as defined in (23) and let ϕ belongs to L2(G) such that the

system of translates {Tλϕ : λ ∈ Λ} is a frame for V0. Assume that K ⊂ Ĝ is such that (24) holds. Then,

(i). If the subspaces V j are nested, then K ⊆ α̂(K).

(ii). If K ⊆ α̂(K) is such that P
(
α̂−1(K)

)
∩ P

(
K\α̂−1(K)

)
= ∅, then V j are nested.

Proof. Assume that the sequence of subspaces
{
V j : j ∈ Z

}
is nested. Then, it is quite evident that

ϕ ∈ V0 ⊂ V1, so there exists sequence {cλ}λ∈Λ ∈ l2(Λ) such that

ϕ(x) =
∑
λ∈Λ⊥

cλDTλϕ(x), ∀ x ∈ G.
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The above relation can be recast in the Fourier domain as

ϕ̂
(
α̂(ω)

)
= F(ω) ϕ̂(ω), ∀ ω ∈ Ĝ,

where F ∈ L2(Ĝ/Λ⊥). This means that

χα̂−1(K)(ω) = F(ω)χK(ω), ∀ ω ∈ Ĝ.

We observe that if ω < K, then w < α̂−1(K). This means that α̂−1(K) ⊆ K and thus K ⊆ α̂(K).

Let K be a subset of α̂(K) such that P(α̂−1(K)) ∩ P(K\α̂−1(K)) = ∅. Define a function m0 by

m0(ω) =

1, ω ∈ P(α̂−1(K))
0, ω ∈ P(K\α̂−1(K))

. (26)

Clearly, m0(ω) is Λ⊥-periodic, bounded, and satisfies

ϕ̂(α̂(ω)) = m0(ω)ϕ̂(ω), ∀ ω ∈ Ĝ. (27)

Then, for any f ∈ V0, there exist some F2 ∈ L2(Ĝ/Λ⊥) such that f̂ (ω) = F2(ω)ϕ̂(ω), ∀ω ∈ Ĝ.Equivalently, we
can write

f̂ (α̂(ω)) = H(ω) ϕ̂(ω), where H(ω) = F2(α̂(ω))m0(ω), ∀ ω ∈ Ĝ.

Clearly, H(ω) ∈ L2(Ĝ/Λ⊥) which implies that f ∈ V1. Thus, V0 ⊂ V1, which in turn implies that V j ⊂ V j+1,
for all j ∈ Z as the dilation operator D is a unitary operator on L2(G).

The function m0(ω) appearing in (26) is called the two scale symbol or the refinement mask. Note that
the functions m0(ω) and Φ(ω) can be expressed as

Φ(ω) =
∑
γ∈Λ⊥

χ(γ+K)(ω), m0(ω) = χP(α̂−1(K))(ω), ∀ ω ∈ Ĝ,

and have the following relationship:

Φ
(
α̂(ω)

)
=

δα−1∑
j=0

∣∣∣m0(ω − ω j)
∣∣∣2Φ(ω − ω j). (28)

It only remains to prove the density condition of an FMRA for L2(G). We shall use the already established
results of [15] for this purpose.

Lemma 3.5. Let
{
V j : j ∈ Z

}
be the subspaces of L2(G) as defined in (23) and let ϕ ∈ L2(G) defined via (22) be such

that the system of translates {Tλϕ : λ ∈ Λ} forms a frame for V0. If there exists a neighbourhood of 0 ∈ Ĝ contained
in K, then

⋃
j∈Z V j is dense in L2(G).

Proof. Let U be any neighbourhood of 0 ∈ Ĝ such that U ⊆ K. Then, ϕ̂(ω) , 0 on U as the function ϕ is
defined via (22). By applying same strategy as employed in [15], it is easy to show that

⋃
j∈Z V j is dense in

L2(G).

We now sum up all the conditions required to be imposed on the set K so that the function ϕ defined
via (22) generates an FMRA for L2(G).
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Theorem 3.6. Let
{
V j : j ∈ Z

}
be the subspaces of L2(G) as defined in (23) and let K ⊂ Ĝ. Assume that the following

hold:

(i). There exist some integer L > 0 such that

K ⊆
L⋃
ℓ=1

(ξℓ + S), for some ξℓ ∈ Λ⊥, 1 ≤ ℓ ≤ L. (24)

(ii). K ⊆ α̂(K) and P(α̂−1(K)) ∩ P(K\α̂−1(K)) = ∅.

(iii). There exist an open neighbourhood U of 0 ∈ Ĝ such that U ⊆ K.

Then, the function ϕ as defined by (22) generates an FMRA {V j : j ∈ Z} for L2(G)

Now from onwards, we shall assume that the set K satisfies all the properties of Theorem 3.6.

Theorem 3.7. Letϕ ∈ L2(G) be defined via (22) and let
{
V j : j ∈ Z

}
be an FMRA for L2(G). Then, V j ⊆ PWG(α̂ j(K)),

for each j ∈ Z. Furthermore, V0 = PWG(K), whenever K ⊆ S.

Proof. At the outset, we claim that V0 ⊆ PWG(K). To do so, we assume that f ∈ V0, then there exist some
F ∈ L2(Ĝ/Λ⊥) such that f̂ (ω) = F(ω)ϕ̂(ω), ∀ω ∈ Ĝ. Hence, f̂ (ω) = 0 for every ω < K, which in turn implies
that f ∈ PWG(K). Therefore, it follows that V0 ⊆ PWG(K). Next, we claim that D(PWG(K)) = PWG(α̂(K)).
Let f ∈ D(PWG(K)). This means that f̂ (α̂(ω)) = 0, for all ω < K. Hence, it follows that f ∈ PWG(α̂(K)). The
converse can also be traced on the similar lines. Thus, we conclude that V j ⊆ PWG(α̂ j(K)), for all j ∈ Z.

For any 1 ∈ PWG(K), we observe that 1̂(ω) = 0, ∀ω < S. Therefore, there exist a sequence {cλ}λ∈Λ ∈ l2(Λ)
such that [15, 26]

1̂(ω) =
∑
λ∈Λ

cλ(ω, λ)χS(ω), ∀ ω ∈ Ĝ.

Using the fact that χK · χS = χK and 1̂ = 1̂ · χK, we have

1̂(ω) =
∑
λ∈Λ

cλ(ω, λ)ϕ̂(ω),

which further implies that 1 ∈ V0 and hence, we conclude that V0 = PWG(K), whenever K ⊆ S. This
completes the proof of Theorem 3.7.

4. FMRA Wavelet Frames over LCA Groups: Construction and Examples

In this section, firstly we shall present a detailed procedure for the construction of FMRA based wavelet
frames in L2(G) and then present several illustrative examples.

4.1. FMRA Wavelet Frames with Dyadic Dilations

In this subsection, we construct wavelet frames with dyadic dilations from a given FMRA
{
V j : j ∈ Z

}
. For

the case of dyadic dilations, the constant δα appearing in (7) is equal to 2 and the quotient groups Λ/α(Λ)
and Λ⊥/α̂(Λ⊥) are supposed to have the following representation [22]:

Λ/α(Λ) =
{
α(Λ), λ0 + α(Λ)

}
, Λ⊥/α̂(Λ⊥) =

{
α̂(Λ⊥), γ0 + α̂(Λ⊥)

}
.

Besides, we can write ω0 = α̂−1(γ0), (ω0, λ0) = −1 [? ], so that the relation (28) boils down to

Φ
(
α̂(ω)

)
=

∣∣∣m0(ω)
∣∣∣2Φ(ω) +

∣∣∣m0(ω + ω0)
∣∣∣2Φ(ω + ω0)
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where m0(ω) is the two-scale symbol associated with the scaling function of an FMRA.

Let W j denote the orthogonal complement of the subspace V j in V j+1. Then, property (c) of the
Definition 3.1 implies that the sequence of subspaces

{
W j : j ∈ Z

}
is pairwise orthogonal and satisfies

L2(G) =
⊕
j∈Z

W j. (29)

Moreover, it is easy to verify that these subspaces also satisfies the scaling property; that is,

W j =
{

f ∈ L2(G) : f
(
α− j(·)

)
∈W0

}
. (30)

Therefore, in order to construct wavelet frames for L2(G) via FMRA, all we need is to find functions ψ1, ψ2
in L2(G) such that their Λ-translates form a frame for W0 or equivalently, we can say that the family{
D jTλψℓ : j ∈ Z, λ ∈ Λ, ℓ = 1, 2

}
constitutes a frame for L2(G).

We now define the functions ψ1, ψ2 in L2(G) by

ψℓ(α̂(ω)) = Fℓ(ω) ϕ̂(ω), ℓ = 1, 2, ∀ ω ∈ Ĝ (31)

where F1,F2 ∈ L∞(Ĝ/Λ⊥). Then, our task reduces to find suitable functions F1 and F2 in L∞(Ĝ/Λ⊥). We
decompose the entire space Ĝ into several disjoint subspaces as:

P
(0) = P(K)c

∩ P(ω0 + K)c, P(1) = P(K) ∩ P(ω0 + K)c,

P
(2) = P(K)c

∩ P(ω0 + K), P(12) = P(K) ∩ P(ω0 + K).

The set P(12) can further be splited into

P
(12)
1 =P(12)

∩

(
P(α̂−1(K)) ∪ P(ω0 + α̂

−1(K))
)c
,

P
(12)
2 =P(12)

∩

(
P(α̂−1(K)) ∪ P(ω0 + α̂

−1(K))
)

Therefore, a possible choice for the functions F1(ω) and F2(ω) [? ] could be

F1(ω) =


Tω0

(
m0Φ

)
(ω)(ω, λ0), ω ∈ P(12)

2

1, ω ∈ P(12)
1

1, ω ∈ P(1),m0(ω) = 0
0, otherwise,

(32)

F2(ω) =

(ω, λ0), ω ∈ P(12)
1

0, otherwise.
(33)

After clubbing, we obtain

F1(ω) =χA1 (ω) +
(∑
γ∈Λ⊥

χ(γ+ω0+K)(ω)
)
(ω, λ0)χB1 (ω),

F2(ω) =(ω, λ0)χC1 (ω);

where

A1 =P(K) ∩ P(α̂−1(K))c
∩

(
P(ω0 + K)c

∪ P(ω0 + α̂
−1(K)c)

)
,

B1 =P(K) ∩ P(ω0 + K) ∩ P(ω0 + α̂
−1(K)),

C1 =P(K) ∩ P(ω0 + K) ∩ P(α̂−1(K))c
∩ P(ω0 + α̂

−1(K))c.
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Hence, relation (31) becomes

ψ̂1(ω) =χA2 (ω) +
(∑
γ∈Λ⊥

χ(α̂(γ)+γ0+α̂(K))(ω)
)
(α̂−1(ω), λ0)χB2 (ω),

ψ̂2(ω) =(α̂−1(ω), λ0)χC2 (ω),

where

A2 = α̂(K) ∩ α̂(A1), B2 = α̂(K) ∩ α̂(B1) and C2 = α̂(K) ∩ α̂(C1).

It is pertinent to mention that only one functionψ(x) can generate a wavelet frame for the space W0 provided
P

(12)
1 = ∅. This condition has also been thoroughly investigated in [22].

We now demonstrate our theory with the aid of some illustrative examples on the Euclidean group R
and R2. Example 4.1 deals in itself with multiple cases, where in some cases, only one function is required
to generate wavelet frames, while in others, two functions are required to generate the wavelet frame.

Example 4.1. Let G = R be the group of real numbers with Haar measure

µG(B) =
∫
B

dµG(x),

whereB is any Borel set in G and dµG(x) = dx. LetΛ = Z be the uniform lattice inR and the map α : x 7→ x2

as a dilative automorphism on R. Then, we observe that the map x 7→ e2πixω, x, ω ∈ R acts as a continuous
character on the groupR, and hence the dual group R̂ ofR can be identified withR itself. As a consequence,
we have Λ⊥ = Λ and α̂ = α. Besides, the set S = [0, 1) with µG(S) = 1, acts as a self similar fundamental
domain for bothR and R̂. Therefore, a suitable representation of the quotient groupΛ/α(Λ) can be obtained
via

Λ/α(Λ) = Λ⊥/α̂(Λ⊥) = Z/2Z =
{
2Z, 1 + 2Z

}
.

For the set K = [−y, y), y ∈ R, we discuss the following cases:

Case 1: Assume that 1/3 < y < 1/2. Then, we observe that

K ⊆
(
(0 + S) ∪ (−1 + S)

)
, with S = [0, 1).

Clearly, α̂(K) = [−2y, 2y) and hence, K ⊆ α̂(K). Also, we see that P(α̂−1(K)) ∩ P(K\α̂−1(K)) = ∅. Note that
ϕ̂(ω) , 0 on any neighbourhood of 0 ∈ R, so if we define the subspaces V j, j ∈ Z via (23), then we shall get
a function ϕ(x) of the form (22) which generates an FMRA for L2(G). Subsequently, the function Φ(ω) and
the associated two-scale symbol m0(ω) takes the form

Φ(ω) =
∑
n∈Z

χ(n+K)(ω), m0(ω) = χP(α̂−1(K))(ω), ∀ ω ∈ Ĝ.

We now partition the set Ĝ = R as discussed above to obtain

P
(1) =

⋃
n∈Z

([
n,n +

1
2
− y

)
∪

[
n +

1
2
+ y,n + 1

))
, P(2) =

⋃
n∈Z

(
n +

[
y, 1 − y

))
,

and

P
(12)
1 =

⋃
n∈Z

([
n +

y
2
,n +

1
2
−

y
2

)
∪

[
n +

1
2
+

y
2
,n + 1 −

y
2

))
,

P
(12)
2 =

⋃
n∈Z

(
n +

([1
2
− y,

y
2

)
∪

[1
2
−

y
2
, y

)
∪

[
1 − y,

1
2
+

y
2

)
∪

[
1 −

y
2
,

1
2
+ y

)))
.
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Figure 1: Scaling function ϕ and the corresponding wavelet functions ψ1 and ψ2, when y = 0.4 (Case 1).

Finally, we define the functions F1,F2 ∈ L2(T) via the relations (32) and (33) to get

ψ1(ω) = χB1 (ω), ψ2(ω) = eπiωχB2 (ω)

where B1 = [−2y,−y) ∪ [y, 2y) and B2 = [−1 + y,−y) ∪ [y, 1 − y).

Case 2: Let 1/4 < y ≤ 1/3. This can be dealt with in a similar manner as that of Case 1 with a slight
difference in the representation of the intervals involved.

Case 3: For y ≤ 1
4 , the set P(12)

1 becomes a null set, and hence, we require only one function ψ to generate a
wavelet frame for L2(R). An explicit representation of such function ψ is given by

ψ̂(ω) = χB1 (ω), where B1 = [−2y,−y) ∪ [y, 2y).

-10 -5 0 5 10

-0.2

0.0

0.2

0.4

Figure 2: Scaling function ϕ and the corresponding wavelet functions ψ1 and ψ2 when y = 0.2 (Case 3).

Case 4: For the case y = 1/2, we shall obtain only one wavelet ψ of the form

ψ̂(ω) = eπiωχB3 (ω); where B3 =
[
−1,
−1
2

)⋃[1
2
, 1

)
.

Case 5: For the case y > 2/3, P(α̂−1(K)) ∩ P(K\α̂−1(K)) , ∅. Therefore, we shall not get an FMRA for L2(R)
via the procedure discussed above.

Remark 4.2. It is worth noticing that for the Haar wavelet, we always choose the scaling function ϕ with compact
support, whereas, in our above example, we have taken the Fourier transform ϕ̂(ω) to be of compact support. Besides,
the Haar wavelet can’t be considered as a wavelet in Paley Weiner spaces.
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Figure 3: Scaling function ϕ and the corresponding wavelet ψ, when y = 0.5 (Case 4).

Example 4.3. Let G = R2 be an LCA group with the standard Haar measure

µ(B) =
"
B

dx1 dx2,

where B ⊆ R2 is a Borel set. Define a map

α

([
x1
x2

])
=M

[
x1
x2

]
, where M =

[
0 −1
2 0

]
.

As the eigenvalues of the matrix M are strictly greater than 1, so it is easy to conclude that the automorphism
α on G is dilative with ∆(α) = 2. Since the dual group Ĝ of G is R2 with the same measure µ. Therefore, the
action of a character ω ∈ R2 on an element x ∈ R2 can be defined by (ω, x) = e2πiω·x, where ω · x represents
the usual dot product in R2. It is worth noticing that with the choice of the uniform lattice Λ = Z×Z, both
the uniform lattices Λ and Λ⊥ become equal. Consequently, the dilative automorphism α̂ on Ĝ takes the
form

α̂

([
ω1
ω2

])
= M̃

[
ω1
ω2

]
, where M̃ =

[
0 2
−1 0

]
We observe that M̃ =MT, the transpose of the matrix M. Assume that the quotient group Λ⊥/α̂(Λ⊥) has the
following representation:

Λ⊥

α̂(Λ⊥)
=

{
α̂(Λ⊥),

[
1
0

]
+ α̂(Λ⊥)

}
.

Then, the set S =
[
−

2
3 ,

1
3

]
×

[
−

1
3 ,

2
3

]
will act as a self-similar tile for Ĝ. Define a set K ⊂ R2 by

K =
[
−

1
2
,

1
4

]
×

[
−

1
4
,

1
8

]
,

and subsequently define a functionϕ ∈ L2(G) via the relation (23). Then, we have the following observations:

(i). Equation (24) holds for K ⊂ Swith L = 1.

(ii). If ω =
[
ω1
ω2

]
∈ K, then α̂−1(ω) = M̃−1

[
ω1
ω2

]
=

[
−ω2
ω1/2

]
. Subsequently, we have

α̂−1(K) =
[
−

1
8
,

1
4

]
×

[
−

1
4
,

1
8

]
⊂ K.
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Note that (ω+ α̂−1(K))∩ (ω̃+ α̂−1(K)) = ∅, whenever ω , ω̃. A similar result hold for the set K\α̂−1(K). Thus,
we conclude that P

(
α̂−1(K)

)
∩ P

(
K\α̂−1(K)

)
= ∅.

(iii). The function ϕ̂ does not vanish on any neighbourhood of 0 ∈ Ĝ.

Therefore, if we define the subspaces V j, j ∈ Z via (23), then we shall obtain the function ϕ appearing in
(iii) to generates an FMRA for L2(R2). Moreover, an application of Theorem 3.7 implies that, for each j ∈ Z,
V j = PWG(α̂ j(K)). Finally, we divide the space Ĝ = R2 into disjoint subspaces as

P
(0) =

⋃
m,n∈Z

([
m
n

]
+ S\

(
K ∪

([
0
1
2

]
+ K

)))
, P(1) =

⋃
m,n∈Z

([
m
n

]
+ K

)
,

P
(2) =

⋃
m,n∈Z

([
m
n

]
+

[
0
1
2

]
+ K

)
and P

(12) = ∅.

Evidently, after some straightforward calculations, we obtain

ψ̂(ω) = χB4 (ω), where B4 =
[
−

1
2
,

1
4

]
×

[1
8
,

1
2

]
.

4.2. FMRA Wavelet Frames with Arbitrary Dilations

This subsection is entirely devoted to the construction of FMRA-based wavelet frames associated with
arbitrary dilations. Although, we have studied such constructions in our recent work [22, 23], however,
here our intention is to develop the theory for band-limited functions on locally compact abelian groups.
More precisely, our aim is to show that the family{

D jTλψℓ : j ∈ Z, λ ∈ Λ, 1 ≤ ℓ ≤ δα
}

(34)

associated with the band-limited scaling function ϕ(x) defined by (22) forms a frame for L2(G).

We consider the functions ψℓ in the Fourier domain as

ψ̂ℓ(ω) = mℓ(ω) ϕ̂(ω), ∀ ω ∈ Ĝ, 1 ≤ ℓ ≤ δα, (35)

where mℓ ∈ L2(Ĝ/Λ). Then, our motive shall be to find such functions mℓ(ω) so that ϕ̂ = χK. In analogy
with the precious case, we begin with the decomposition of the space Ĝ as

PN =

δα−1⋃
j=0

P(ω j + α̂
−1(K))


c

and P̃N =

δα−1⋃
j=0

P
(
ω j + α̂

−1(K)
)

;

We further decompose the sets PN and P̃N into even smaller and disjoint sets as

P
0
N =

δα−1⋂
j=0

P(ω j + K)c

⋂PN, P
f
N =

δα−1⋂
j=0

P(ω j + K)

⋂PN,

P
j1 j2··· jℓ
N =

 ℓ⋂
i=1

P(ω ji + K)

⋂
⋂

j, ji

P(ω j + K)c

⋂PN, ℓ ≤ δα − 1,

P̃N
j1 j2··· jℓ

=

 ℓ⋂
i=1

P(ω ji + K)

⋂
⋂

j, ji

P(ω j + K)c

⋂ P̃N, ℓ ≤ δα,

mP̃N
j1 j2··· jℓ

= P(ω jm + α̂
−1(K)) ∩

 ℓ⋂
i=1

P(ω ji + K)

 ∩
⋂

j, ji

P(ω j + K)c

 , 1 ≤ m ≤ ℓ.
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As is known that the choice of the functions mℓ, 1 ≤ ℓ ≤ δα − 1 is of utmost importance. As pointed in [23],
the choice of the functions mℓ’s is quite trivial if any one of the following conditions is satisfied:

(i). ω ∈ P0
N

(ii). ω ∈ S j1 j2··· jℓ
N , j1, j2, · · · , jℓ , 0

(iii). ω ∈ S̃N
j1 j2··· jl

, j1, j2, · · · , jℓ , 0.

For each case, we consider m1 = m2 = · · · = mδα = 0, and discuss the remaining cases one by one. For the
case ω ∈ P0

N, we choose

mℓ(ω) = (ω, λℓ−1), 1 ≤ ℓ ≤ δα.

Similarly, for the case ω ∈ P j1 j2··· jℓ
N , we take jm = 0, for some 1 ≤ m ≤ ℓ. Since the values of the functions mℓ,

1 ≤ ℓ ≤ δα − 1 are interdependent, as such we have listed these values in the form of a Table 1 given below.

P
j1 j2··· jl
N −ω j2 +P

j1 j2··· jl
N · · · · · · −ω jl +P

j1 j2··· jl
N

m1 1 0 · · · · · · 0
m2 0 1 · · · · · · 0
· · · · · · · · · · · · · · · · · ·

ml 0 0 · · · · · · 1
ml+1 0 0 · · · · · · 0
· · · · · · · · · · · · · · · · · ·

mδα 0 0 · · · · · · 0

Table 1: Choice of variable for the case ω ∈ P j1 j2··· jl
N , j1 = 0.

Likewise, the possible choice of the functions mℓ, 1 ≤ ℓ ≤ δα, when 1ω ∈ P̃N
j1 j2··· jℓ

, j1 = 0 is listed in Table 2.

1P̃N
j1 j2··· jℓ

−ω j2 +1 P̃N
j1 j2··· jℓ

−ω j3 +1 P̃N
j1 j2··· jℓ

· · · · · · −ω jl +1 P̃N
j1 j2··· jℓ

m1 B j2 1 0 · · · · · · 0
m2 B j3 0 1 · · · · · · 0
· · · · · · · · · · · · · · · · · · · · ·

mℓ−1 B jℓ 0 0 · · · · · · 1
mℓ 0 0 0 · · · · · · 0
· · · · · · · · · · · · · · · · · · · · ·

mδα 0 0 0 · · · · · · 0

Table 2: Choice of m′js on the set 1P̃N
j1 j2··· jℓ

, j1 = 0

For each 1 ≤ i ≤ ℓ − 1, the terms B ji+1 , appearing in Table 2, are given via

B ji+1 = − χCi+1 (ω)

∑
γ∈Λ⊥

χ(γ+ω ji+1+K)(ω)


∑
γ∈Λ⊥

χ(γ+K)(ω)


−1

,

Ci+1 =P(α̂−1(K)) ∩ P(ω ji+1 + α̂
−1(K)).
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Thus, we conclude that the wavelet functions ψi, 1 ≤ i ≤ δα can now be defined via (35).

Example 4.4. Let G = R be the group of real numbers with Λ = Z as a uniform lattice and let α : x 7→ 3x be the
dilative automorphism on G. Then, we observe that R̂ = R,Λ⊥ = Λ = Z and α̂ = α. We choose S = [0, 1) as the
fundamental domain associated with the lattice Z in R. Then, S = [0, 1) can be also represented as

S =

2⋃
j=0

(
j
3
+

[
0,

1
3

))

Clearly, S is self-similar with respect to α and Z. Assume that K = P1 ∪ (−P1), where P1 =
1
9

1⋃
n=0

[2n, 2n + 1]

and −P1 = {−x : x ∈ P1}. Define ϕ(x) ∈ L2(G) via the relation (22) and the subspace V j = PWG(α j(K)), j ∈ Z.
Then, we observe that

(i). K ⊂ S ∪ (−1 + S);

(ii). α̂−1(K) = P2 ∪ (−P2); where 27P2 =
1⋃

n=0
[2n, 2n + 1], and hence, α̂−1(K) ⊂ K;

(iii). P(α̂−1(K)) ∩ P(K\α̂−1(K)) = ∅;

(iv). Any open neighbourhood U of 0 satisfying 9U ⊆ [−1, 1], also satisfies U ⊆ K.

Thus, we conclude that the set K satisfies all the properties listed in Theorem 3.6 and therefore, we can claim
that the function ϕ generates an FMRA for L2(R).
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Figure 4: The scaling function ϕ.

Note that the partitioning of set Ĝ will lead us to know that:

(i). P f
N is an empty set;

(ii). P0
N =

⋃
n∈Z

(
n +

(
1
9

2⋃
n=0

[3n + 1, 3n + 2]
))

;
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(iii). Further partitioning is possible

PN
01 =

⋃
n∈Z

n +

 1⋃
n=0

[6n + 1
27

,
6n + 2

27

]
 , P̃N

01
=

⋃
n∈Z

n +


4⋃

n=0
n,2

[2n
27
,

2n + 1
27

]
 ,

PN
02 =

⋃
n∈Z

n +

 4⋃
n=3

[6n + 1
27

,
6n + 2

27

]
 , P̃N

02
=

⋃
n∈Z

n +


13⋃

n=9
n,11

[2n
27
,

2n + 1
27

]
 .

Moreover, the intervals corresponding to n = 0, 1 for P̃N
01

are 0P̃N
01

whereas the intervals corresponding

to n = 9, 10 for P̃N
02

are 2P̃N
02

. Besides, they have the following relationship:

0P̃N
01
= −

1
3
+ P̃N

02
, 0P̃N

02
= −

2
3
+ 1P̃N

01

Since the set P f
N = ∅, so only two functions ψ1 and ψ2 are enough to generate a wavelet frame for L2(R).

As we know that the periodic functions m1(ω) and m2(ω) are essential for defining the generators ψ1(x) and
ψ2(x) which can be derived by making use of Tables 1 and 2. Explicitly, the restriction of m1(ω) and m2(ω)
on S = [0, 1) is given by

m1(ω) = χB1 (ω), m2(ω) = χB2 (ω),

where B1 =
1

27

(
[1, 2] ∪ [6, 9] ∪ [18, 19] ∪ [20, 21]

)
, B2 =

1
27

(
[19, 20] ∪ [25, 26]

)
.

Consequently, the wavelet functions ψ1(x) and ψ2(x) in the Fourier domain takes the form

ψ̂1(ω) = χC1 (ω), ψ̂2(ω) = χC2 (ω),

where

C1 =
1
9

(
[−9,−8] ∪ [−7,−6] ∪ [1, 2] ∪ [6, 9]

)
, C2 =

1
9

(
[−8,−7] ∪ [−2,−1]

)
.
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Figure 5: Wavelet functions ψ1 and ψ2.
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