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On conditions for the Levin-Stečkin inequality and applications
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Abstract. Using an identity involving the Green function, we give a generalization of the Levin-Stečkin
inequality as a result concerning difference of integral arithmetic means with different measures. The results
are given with usual conditions for the Levin-Stečkin type inequalities. As a special case, generalization of
the Levin-Stečkin inequality is given. We also prove that result for general measures can be easily reduced
to one single condition. Comparing the two approaches we get some surprisingly good estimations.

1. Introduction

V. I. Levin and S. B. Stečkin proved in [5] the following theorem (see also [1], [3, pages 414-415], [6]).

Theorem 1.1. Let f be defined on [0, 1] satisying the conditions:

f (x) is nondecreasing for 0 ≤ x ≤
1
2
, (1)

and

f (x) = f (1 − x), x ∈ [0, 1]. (2)

Then for any convex function ϕ we have∫ 1

0
f (x)ϕ(x)dx ≤

∫ 1

0
f (x)dx

∫ 1

0
ϕ(x)dx. (3)

In 1988. J. Pečarić and S. S. Dragomir in [2] gave the following generalization of the Levin-Stečkin
inequality.

Theorem 1.2. Let µ : [0, 1]→ R be an increasing function such that µ(x) = −µ(1 − x), and let f : [0, 1]→ R be an
integrable function with respect to µ such that (1) and (2) hold. Then for any continuous convex function ϕ we have∫ 1

0
dµ(x)

∫ 1

0
f (x)ϕ(x)dµ(x) ≤

∫ 1

0
f (x)dµ(x)

∫ 1

0
ϕ(x)dµ(x). (4)
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Consider the Green function G : [a, b] × [a, b]→ R defined by

G(t, s) =
{ (t−b)(s−a)

b−a , a ≤ s ≤ t,
(s−b)(t−a)

b−a , t ≤ s ≤ b.
(5)

The function G is convex and continuous with respect to both s and t. It is also symmetric.
We will use the following lemma (see [4], [9]).

Lemma 1.3. For every function f : [a, b]→ R, f ∈ C2([a, b]), the following identity holds:

f (x) =
b − x
b − a

f (a) +
x − a
b − a

f (b) +
∫ b

a
G(x, s) f ′′(s)ds, (6)

where the function G is defined as in (5).

Using Lemma 1.3 we obtain some interesting results concerning difference of the integral arithmetic
means∫ b

a f (x)dλ2(x)∫ b

a dλ2(x)
−

∫ b

a f (x)dλ1(x)∫ b

a dλ1(x)
, (7)

where expressions are well-defined, and λ1, λ2 : [a, b]→ R are suitable functions (see rest of the paper).
Lemma 1.3 enables us to reduce proofs of inequalities for convex (or concave) functions to proofs of
analogous inequalities for the Green function. It appears that this method works quite elegantly even in
the cases in which is known that the proofs are rather involved.
Using this method we give a simple geometric condition for the Levin-Stečkin inequality in the case of
measures dλ and wdλ and a simple analytic condition in the case of measures dλ1 and dλ2. We also show
that the former one implies the latter one, but not vice versa (see Example 3.4).

2. Conditions for the Levin-Stečkin inequality via the Green function

The following equivalence is used throughout the paper.

Theorem 2.1. Let λi : [a, b] → R, i = 1, 2 be continuous functions of bounded variation such that λi(a) , λi(b),
i = 1, 2. Let the function G be defined as in (5). Then the following two statements are equivalent:

1. For every continuous convex function f : [a, b]→ R holds∫ b

a f (x)dλ2(x)∫ b

a dλ2(x)
−

∫ b

a f (x)dλ1(x)∫ b

a dλ1(x)
(8)

≥
f (b) − f (a)

b − a


∫ b

a xdλ2(x)∫ b

a dλ2(x)
−

∫ b

a xdλ1(x)∫ b

a dλ1(x)

 .
2. For every s ∈ [a, b] holds∫ b

a G(x, s)dλ2(x)∫ b

a dλ2(x)
−

∫ b

a G(x, s)dλ1(x)∫ b

a dλ1(x)
≥ 0. (9)

Proof. (1)⇒ (2) Let (1) holds. As the function G(·, s), for s ∈ [a, b] is also continuous and convex on [a, b], the
inequality (8) also holds for this function, and we use G(b, s) = G(a, s) = 0.
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(2)⇒ (1) Let (2) holds. From Lemma 1.3 we have that every function f defined on interval [a, b] such that
continuous f ′′ exists, can be represented in the form (5). Now we have∫ b

a f (x)dλ2(x)∫ b

a dλ2(x)
−

∫ b

a f (x)dλ1(x)∫ b

a dλ1(x)
=

∫ b

a
f (x)

 dλ2(x)∫ b

a dλ2(x)
−

dλ1(x)∫ b

a dλ1(x)


=

∫ b

a

(
b − x
b − a

f (a) +
x − a
b − a

f (b) +
∫ b

a
G(x, s) f ′′(s)ds

)  dλ2(x)∫ b

a dλ2(x)
−

dλ1(x)∫ b

a dλ1(x)


=

∫ b

a

(
b − x
b − a

f (a) +
x − a
b − a

f (b)
)  dλ2(x)∫ b

a dλ2(x)
−

dλ1(x)∫ b

a dλ1(x)


+

∫ b

a

(∫ b

a
G(x, s) f ′′(s)ds

)  dλ2(x)∫ b

a dλ2(x)
−

dλ1(x)∫ b

a dλ1(x)

 . (10)

Using the Fubini theorem on the last term in (10), and the obvious identity∫ b

a

(
b − x
b − a

f (a) +
x − a
b − a

f (b)
)  dλ2(x)∫ b

a dλ2(x)
−

dλ1(x)∫ b

a dλ1(x)


=

f (b) − f (a)
b − a


∫ b

a xdλ2(x)∫ b

a dλ2(x)
−

∫ b

a xdλ1(x)∫ b

a dλ1(x)

 ,
(10) becomes∫ b

a f (x)dλ2(x)∫ b

a dλ2(x)
−

∫ b

a f (x)dλ1(x)∫ b

a dλ1(x)
(11)

=
f (b) − f (a)

b − a


∫ b

a xdλ2(x)∫ b

a dλ2(x)
−

∫ b

a xdλ1(x)∫ b

a dλ1(x)


+

∫ b

a
f ′′(s)


∫ b

a G(x, s)dλ2(x)∫ b

a dλ2(x)
−

∫ b

a G(x, s)dλ1(x)∫ b

a dλ1(x)

 ds.

In addition since f is convex, it follows that f ′′(s) ≥ 0 for all s ∈ [a, b]. Therefore, if for every s in [a, b]
the inequality (9) is valid, then for every continuous convex f : [a, b] → R, such that continuos f ′′ exists,
inequality (8) holds.

Furthermore, it should be noticed that it is not necessary to demand the existence of the second derivative
of the function f (see [8, page 172] and references therein). The differentiability condition can be eliminated
by using the fact that it is possible to approximate uniformly a continuous convex function by convex
polynomials.

In Theorem 2.1 we have a statement for convex functions. The similar conclusion holds for concave
functions.

Remark 2.2. Suppose that the assumptions as in Theorem 2.1 are fulfilled. Then the following statements are
equivalent:

(1′) For every continuous concave function f : [a, b]→ R the reversed inequality in (8) holds,
(2′) For every s ∈ [a, b] the inequality in (9) holds.
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Results in Theorem 2.1 are given for two general measures dλ1 and dλ2. Inequalities of the Levin-Stečkin
type are usually given for functions λ1, λ2 (that is, measures dλ1, dλ2) satisying the following conditions:

1. λ is increasing on [a, b],
2. λ(x) = −λ(a + b − x), for all x in [a, b].

Under this furher requirements, we have the following theorem.

Theorem 2.3. Let λ1, λ2 : [a, b]→ R be continuous functions, increasing on interval [a, b], such that λi(a) , λi(b)
and λi(x) = −λi(a + b − x), for all x in [a, b], i = 1, 2. Let the function G be defined as in (5).
Then the following two statements are equivalent:

1. For every continuous convex function f : [a, b]→ R holds∫ b

a f (x)dλ2(x)∫ b

a dλ2(x)
≥

∫ b

a f (x)dλ1(x)∫ b

a dλ1(x)
. (12)

2. For all s ∈ [a, b] holds∫ b

a G(x, s)dλ2(x)∫ b

a dλ2(x)
≥

∫ b

a G(x, s)dλ1(x)∫ b

a dλ1(x)
. (13)

Proof. Under aditional conditions on the weights and the measure, we have∫ b

a
xdλ(x) = (a + b)

∫ a+b
2

a
dλ(x),∫ b

a
dλ(x) = 2

∫ a+b
2

a
dλ(x),

which gives∫ b

a xdλ(x)∫ b

a dλ(x)
=

a + b
2
,

where dλ is dλ1 or dλ2, and the claims follow from Theorem 2.1.

Remark 2.4. Suppose that the assumptions as in Theorem 2.3 are fulfilled. Then the following statements are
equivalent:

(1′) For every continuous concave function f : [a, b]→ R the reversed inequality in (12) holds,
(2′) For every s ∈ [a, b] the inequality in (13) holds.

We now show that using Theorem 2.3 we can elegantly prove Theorem 1.2, and by that the Levin-Stečkin
inequality (3).
Since the Levin-Stečkin inequality is given on the interval [0, 1], we give the following two results on that
interval. The analogous result for the interval [a, b] easily follows.

Theorem 2.5. Let λ : [0, 1]→ R be an continuous increasing function such that λ(0) , λ(1) and λ(x) = −λ(1− x),
for x ∈ [0, 1]. Let w be an increasing function on interval [0, 1

2 ] such that w(x) = w(1 − x), for x ∈ [0, 1] and∫ 1

0 w(x)dλ(x) , 0. Then the inequality∫ 1

0 f (x)dλ(x)∫ 1

0 dλ(x)
≥

∫ 1

0 w(x) f (x)dλ(x)∫ 1

0 w(x)dλ(x)
(14)

holds for every continuous convex function f : [0, 1]→ R.
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Proof. From Theorem 2.3, with substitutions dλ1(x) = w(x)dλ(x), dλ2(x) = dλ(x), to prove (14), it is enough
to prove∫ 1

0
G(x, s)w(x)dλ(x)

∫ 1

0
dλ(x) ≤

∫ 1

0
G(x, s)dλ(x)

∫ 1

0
w(x)dλ(x) (15)

for every s ∈ [0, 1].
Set

F(s) :=
∫ 1

0
G(x, s)dλ(x)

∫ 1

0
w(x)dλ(x) −

∫ 1

0
G(x, s)w(x)dλ(x)

∫ 1

0
dλ(x). (16)

The claim is that F(s) ≥ 0 for every s ∈ [0, 1].
Using the definition of the Green function G, we get:

F(s) =

[
(s − 1)

∫ s

0
xdλ(x) + s

∫ 1

s
(x − 1)dλ(x)

] ∫ 1

0
w(x)dλ(x)

−

[
(s − 1)

∫ s

0
xw(x)dλ(x) + s

∫ 1

s
(x − 1)w(x)dλ(x)

] ∫ 1

0
dλ(x).

Using obvious substitutions it is easy to prove F(s) = F(1 − s) for every s ∈ [0, 1], and F(0) = F(1) = 0.
Differentiation gives:

F′(s) =
[∫ s

0
xdλ(x) +

∫ 1

s
(x − 1)dλ(x)

] ∫ 1

0
w(x)dλ(x)

−

[∫ s

0
xw(x)dλ(x) +

∫ 1

s
(x − 1)w(x)dλ(x)

] ∫ 1

0
dλ(x). (17)

Let’s prove that F′(s) ≥ 0 for 0 ≤ s ≤ 1
2 . Using some elementary calculus, we get

F′(s) = 2
∫ s

0
dλ(x) ·

∫ 1
2

0
w(x)dλ(x) − 2

∫ s

0
w(x)dλ(x) ·

∫ 1
2

0
dλ(x).

In this way the claim F′(s) ≥ 0 is equivalent to the inequality∫ s

0 w(x)dλ(x)∫ s

0 dλ(x)
≤

∫ 1/2

0 w(x)dλ(x)∫ 1/2

0 dλ(x)
,

which is a simple consequence of the increasing property of w on [0, 1
2 ].

It follows that F′(s) ≥ 0 for s ∈ [0, 1
2 ], and F(s) ≥ 0 for s ∈ [0, 1

2 ]. Due to the symmetry of F this concludes the
proof.

The next result gives us conditions on real Lebesgue-Stieltjes measures dλ1 and dλ2 so that for continuos
convex functions the inequality (13) holds.

Theorem 2.6. Let λi : [0, 1] → R, i = 1, 2 be continuous increasing functions such that λi(0) , λi(1), and λi(x) =
−λi(1 − x), i = 1, 2, for all x in [0, 1]. Let the function G be as defined in (5). If

λ1(s)
λ1(1)

≤
λ2(s)
λ2(1)

(18)

holds for every s in [0, 1/2], then ∫ 1

0 G(x, s)dλ2(x)∫ 1

0 dλ2(x)
−

∫ 1

0 G(x, s)dλ1(x)∫ 1

0 dλ1(x)
≥ 0
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holds for every s in [0, 1].

Proof. We search for conditions under which inequality∫ 1

0
G(x, s)dλ1(x)

∫ 1

0
dλ2(x) ≤

∫ 1

0
G(x, s)dλ2(x)

∫ 1

0
dλ1(x), (19)

holds.
Define the function F : [0, 1]→ R by

F(s) :=
∫ 1

0
G(x, s)dλ2(x)

∫ 1

0
dλ1(x) −

∫ 1

0
G(x, s)dλ1(x)

∫ 1

0
dλ2(x).

Using the definition of the Green function, we get

F(s) =

[
(s − 1)

∫ s

0
xdλ2(x) + s

∫ 1

s
(x − 1)dλ2(x)

] ∫ 1

0
dλ1(x)

−

[
(s − 1)

∫ s

0
xdλ1(x) + s

∫ 1

s
(x − 1)dλ1(x)

] ∫ 1

0
dλ2(x).

Using obvious substitutions it is easy to prove F(s) = F(1 − s) for every s ∈ [0, 1], and F(0) = F(1) = 0.
The proof reduces to F′(s) ≥ 0, s ∈ [0, 1/2].
Differentiation gives

F′(s) =

[∫ s

0
xdλ2(x) +

∫ 1

s
(x − 1)dλ2(x)

] ∫ 1

0
dλ1(x)

−

[∫ s

0
xdλ1(x) +

∫ 1

s
(x − 1)dλ1(x)

] ∫ 1

0
dλ2(x).

Using some elementary calculus we get

F′(s) =
(∫ 1

0
xdλ2(x) −

∫ 1

s
dλ2(x)

) ∫ 1

0
dλ1(x)

−

(∫ 1

0
xdλ1(x) −

∫ 1

s
dλ1(x)

) ∫ 1

0
dλ2(x)

= −2 ·
∫ 1

2

s
dλ2(x) ·

∫ 1
2

0
dλ1(x) + 2 ·

∫ 1
2

s
dλ1(x) ·

∫ 1
2

0
dλ2(x). (20)

Now F′(s) ≥ 0 for s ∈ [0, 1/2] is equivalent to∫ 1/2

s dλ2(x)∫ 1/2

0 dλ2(x)
≤

∫ 1/2

s dλ1(x)∫ 1/2

0 dλ1(x)
, s ∈ [0, 1/2]

which simply gives
λ2(s)
λ2(0)

≤
λ1(s)
λ1(0)

,

which is in some sense misleading (compare to (19), note that λi(0) < 0, i = 1, 2). So more accordingly to
(19) it can be written as

λ1(s)
λ1(1)

≤
λ2(s)
λ2(1)

.
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From Theorems 2.1 and 2.6 the next result easily follows.

Corollary 2.7. Let λi : [a, b] → R, i = 1, 2 be continuous increasing functions such that λi(a) , λi(b), and λi(x) =
−λi(a + b − x), i = 1, 2, for all x in [a, b]. If

λ1(s)
λ1(b)

≤
λ2(s)
λ2(b)

holds for every s in [a, a+b
2 ], then the inequality∫ b

a f (x)dλ2(x)∫ b

a dλ2(x)
−

∫ b

a f (x)dλ1(x)∫ b

a dλ1(x)
≥ 0

holds for every continuous convex function f : [a, b]→ R.

Remark 2.8. In this remark we want to emphasize the important connections between Theorem 2.5 and Theorem 2.6.
We can write the inequality (9) in the following form∫ 1

0
G(x, s)dλ1(x)

∫ 1

0
dλ2(x) ≤

∫ 1

0
G(x, s)dλ2(x)

∫ 1

0
dλ1(x), (21)

where λ1 and λ2 are continuous increasing with λi(1− x) = −λi(x), i = 1, 2. As it is shown in Theorem 2.6, F′(s) ≥ 0
for s ∈ [0, 1/2], in this case, is equivalent to

λ1(s)
λ1(1)

≤
λ2(s)
λ2(1)

, s ∈ [0, 1/2].

Let w : [0, 1]→ R be such that w is increasing on [0, 1
2 ] and w(x) = w(1− x), for all x in [0, 1], and λ2 be continuous

increasing function with λ2(1 − x) = −λ2(x).
Now, let λ1 be such that dλ1(s) = w(s)dλ2(s). Using (20) we have

F′(s) = 2 ·
∫ 1

2

s
w(x)dλ2(x) ·

∫ 1
2

0
dλ2(x) − 2 ·

∫ 1
2

s
dλ2(x) ·

∫ 1
2

0
w(x)dλ2(x).

Since w is increasing on [0, 1
2 ], we have ∫ 1

2

s w(x)dλ2(x)∫ 1
2

s dλ2(x)
≥

∫ 1
2

0 w(x)dλ2(x)∫ 1
2

0 dλ2(x)
,

that is F′(s) ≥ 0 on [0, 1/2], which gives λ1(s)
λ1(1) ≤

λ2(s)
λ2(1) on [0, 1/2].

Our proof of the above implication is indirect. It could be of some interest to give a direct proof of the above implication,
or more explicitly, the proof of the following claim:
Suppose that λ : [0, 1] → R is an increasing and antisymmetric with respect to 1/2. If w : [0, 1] → [0,∞) is
increasing on [0, 1/2] and w(1 − x) = w(x) on [0, 1], then

λ1(s)
λ1(1)

≤
λ2(s)
λ2(1)

, s ∈ [0, 1/2],

where dλ1(x) := w(x)dλ(x) and dλ2(x) := dλ(x).

To complete the picture we give the following general result. It uses the same technique as the proof of
Theorem 1.2. Compare with similar results given in [7].
It is based on following theorem proved in [3, Chap. XI, Theorem 5.1].
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Theorem 2.9. Let dµ be a signed measure on (a, b) ⊆ R. Then∫ b

a
f (x)dµ(x) ≥ 0

for every convex function f on (a, b) if and only if∫ b

a
dµ(x) = 0,

∫ b

a
xdµ(x) = 0,

∫ t

a
(t − x)dµ(x) ≥ 0 for every t ∈ [a, b].

Theorem 2.10. For i = 1, 2 let λi : [a, b] → R be continuous increasing functions such that λi(a) , λi(b), and
λi(x) = −λi(a + b − x) for all x in [a, b]. Then the following two statements are equivalent:

1. For every convex function f : (a, b)→ R holds∫ b

a f (x)dλ1(x)∫ b

a dλ1(x)
≤

∫ b

a f (x)dλ2(x)∫ b

a dλ2(x)
. (22)

2. For every x ∈ [a, (a + b)/2] holds∫ x

a λ1(s)ds

λ1(b)
≤

∫ x

a λ2(s)ds

λ2(b)
. (23)

Proof. Set for s ∈ [a, (a + b)/2]:

f̃ (x) =


s − x , x ∈ [a, s]
0 , x ∈ [s, a + b − s]
x − (a + b − s) , x ∈ [a + b − s, b]

Then, using symmetry and integration by parts, we get for i = 1, 2:∫ b

a f̃ (x)dλi(x)∫ b

a dλi(x)
=

2
∫ s

a (s − x)dλi(x)

λi(b) − λi(a)

= −
(s − a)λi(a)
λi(b)

+

∫ s

a λi(x)dx

λi(b)
= s − a +

∫ s

a λi(x)dx

λi(b)
. (24)

Suppose that (22) holds for any convex f on (a, b). Since f̃ is obviously convex, using (24) in (22) and by
simple rearranging we get (23).
Assume that (23) holds. Set

dµ :=
dλ2

λ2(b)
−

dλ1

λ1(b)
.

Obviously dµ is a signed measure. Note that
∫ b

a f (x)dµ(x) is well-defined (although may be infinite) for any
convex f on (a, b). The first two conditions are trivially satisfied. The formula (24) and the assumption (23)
give: ∫ s

a
(s − x)dµ(x) =

∫ s

a λ2(x)dx

λ2(b)
−

∫ s

a λ1(x)dx

λ1(b)
≥ 0.

From Theorem 2.9 follows that (22) holds for any convex f on (a, b).

We remark that Theorem 2.10 implies both Corollary 2.7 and Theorem 2.5, but note that our proofs are
based on applications of Lemma 1.3 (the Green function), and this technique allows us to establish the
connection of conditions given in these results as explained in Remark 2.8 (see also the following section).
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3. Applications

We can write the inequality (9) in the following form∫ 1

0
G(x, s)dλ1(x)

∫ 1

0
dλ2(x) ≤

∫ 1

0
G(x, s)dλ2(x)

∫ 1

0
dλ1(x), (25)

where λ1 and λ2 are increasing with λi(1 − x) = −λi(x), i = 1, 2. As it is shown, F′(s) ≥ 0 for s ∈ [0, 1/2] is, in
this case, equivalent to

λ1(s)
λ1(1)

≤
λ2(s)
λ2(1)

, s ∈ [0, 1/2] .

If we let λ1, λ2 be such that dλ1(s)
dλ2(s) = w(s), where w : [0, 1]→ R is increasing on [0, 1

2 ] and w(x) = w(1 − x), for

all x in [0, 1], we have shown in the Remark 2.8 that condition λ1(s)
λ1(1) ≤

λ2(s)
λ2(1) on [0, 1/2] is fulfilled.

Example 3.1. Suppose that λ2(x) = − cos (πx) and w1(x) = x(1 − x). From λ′1(x) = w1(xs)λ′2(x), we easily get:

λ1(x) =
∫ x

1/2
w1(t)λ′2(t)dt =

1
π2

(
π(1 − 2x) sin(πx) +

(
π2(x − 1)x − 2

)
cos(πx)

)
.

Notice λ1(1) = 2/π2. Rearranging λ1(s)/λ1(1) ≤ λ2(s)/λ2(1) it follows

tan (πs) ≤
πs(1 − s)

1 − 2s
, s ∈ [0, 1/2).

Although weaker than the Becker-Stark inequality

tan(πs) ≤
πs

1 − 4s2 , s ∈ [0, 1/2),

it is still interesting, especially in view how it is obtained.
Let’s look at behaviour for the general case for the weight functions wn(x) = xn(1− x)n, where n inN. With An(s)

we denote the upper estimate for tan (πs) obtained by this technique, and with A(s) denote πs
1−4s2 the upper estimate in

the Becker-Stark inequality.
The following results are obtained using Wolfram Mathematica.

For n = 1, that is for w1(x) = x(1 − x), λ2(x) = − cos(πx), we saw previously

A1(s) =
πs(1 − s)

1 − 2s
,

and it is easy to see that A(s) < A1(s) on (0, 1
2 ), A(0) = A1(0) = 0.

For n = 2, in the similar fashion, we get

A2(s) =
A1(s)

2
π2s2

− π2s − 12
π2s2 − π2s − 6

,

A1(s) ≥ A2(s) ≥ tan (πs), for s ∈ [0, 1
2 ), and for s2 ≈ 0.217925, we have

A(s) < A2(s), for s ∈ (0, s2),

A(s) > A2(s), for s ∈ (s2,
1
2

).

We skip the case n = 3. For n = 4, we get

A4(s) =
A1(s)

4

·

π6(s − 1)3s3 + 240π2
(
7s2
− 7s + 2

)
− 4π4

(
14s3

− 28s2 + 17s − 3
)

s − 20160

π6(s − 1)3s3 + 120π2 (7s2 − 7s + 1) − 6π4 (7s3 − 14s2 + 8s − 1) s − 5040
,
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A2(s) ≥ A4(s) ≥ tan (πs), for s ∈ [0, 1/2), and for s4 ≈ 0.000964534, we have

A(s) < A4(s), for s ∈ (0, s4),

A(s) > A4(s), for s ∈ (s4,
1
2

).

From this examples, one could make the following hypotheses:
1.

Ak(s) ≥ Ak+1(s) for s ∈ [0,
1
2

), k ∈N.

2.
sk > sk+1, for k ∈N, k ≥ 2,

where sn is the solution of the equation An(x) = A(x) on the interval (0, 1
2 ).

3. for k ∈N, k ≥ 2

A(s) < Ak(s), for s ∈ (0, sk),

A(s) > Ak(s), for s ∈ (sk,
1
2

).

4.
lim
k→∞

Ak(s) = tan (πs).

Example 3.2. Set λ2(x) = sinh (x − 1/2), w(x) = x(1 − x). Using λ′1(x) = w(x)λ′2(x), and λ1(x) =
∫ x

1/2 w(t)λ′2(t)dt
we can express λ2(s)/λ2(1) − λ1(s)/λ1(1) in two different ways (using addition theorems or not):

λ2(s)
λ2(1)

−
λ1(s)
λ1(1)

(26)

=
csch

(
1
2

) (
(1 − 2s) cosh

(
1
2 − s

)
− sinh

(
1
2 − s

) (
s2
− s + coth

(
1
2

)))
coth

(
1
2

)
− 2

λ2(s)
λ2(1)

−
λ1(s)
λ1(1)

(27)

=
(e − 1)s(es − s + e + 3) cosh(s) −

(
−4e(s − 1) − (s − 3)s + e2s(s + 1)

)
sinh(s)

(e − 3)(e − 1)
.

What significantly differs these two formulas is that
csch( 1

2 )
coth( 1

2 )−2
> 0, but (e − 3)(e − 1) < 0. The condition

λ2(s)
λ2(1)

−
λ1(s)
λ1(1)

≥ 0, s ∈ [0, 1/2],

and (26), rearranging give

tanh
(1

2
− s

)
≤

1 − 2s
s2 − s + coth 1

2

, s ∈ [0, 1/2],

or
tanh s ≤

2s
s2 − 1

4 + coth 1
2

, s ∈ [0, 1/2].

On the other hand, the same condition and (27) imply:

tanh s ≥
(e − 1)s(es − s + e + 3)

4e(1 − s) + (3 − s)s + e2s(s + 1)
, s ∈ [0, 1/2].

Both estimations have error ≈ 0.008. These are rational approximations (with irrational coefficients) of tanh. We
couldn’t find similar estimations to compare with.
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It remains to resolve if the following implication is valid:

λ1(s)
λ1(1)

≤
λ2(s)
λ2(1)

, s ∈ [0, 1/2]⇒ w(s) =
λ′1(s)
λ′2(s)

is an increasing function on [0, 1/2). (28)

Note that for w(s) =
λ′1(s)
λ′2(s) trivially holds w(s) = w(1 − s), s ∈ [0, 1] (this obviously holds for λ′1 and λ′2).

Example 3.3. Let λ1(x) = − cos (πx), λ2(x) = (2x−1)3. Obviously λ1(s) ≤ λ2(s), s ∈ [0, 1/2] (λ1(0) = λ2(0) = −1,
λ1(1/2) = λ2(1/2) = 0 and λ1 is convex, λ2 is concave on [0, 1/2]). It is easy to see that w(s) = λ′1(s)/λ′2(s) = π sin(πs)

6(2s−1)2

is an increasing function on [0, 1/2). In this case the inequality∫ 1

0
f (x)dλ1(x)

∫ 1

0
dλ2(x) ≤

∫ 1

0
f (x)dλ2(x)

∫ 1

0
dλ1(x), (29)

where f is convex on [0, 1], holds using both arguments. Of course, λ1(s)/λ1(1) ≤ λ2(s)/λ2(1), s ∈ [0, 1/2], is easier
to check.

In the next example we show that the implication (28) generally doesn’t hold.

Example 3.4. Let λ1(x) = 1
2 (4x − 1)3

−
1
2 , for x ∈ [0, 1/2] and λ1(x) = −λ1(1 − x) for x ∈ [1/2, 1]. Obviously

λ1(1) = 1, λ1(1/2) = 0, λ1 increasing. Let λ2(x) = (2x − 1)3. Straightforwardly

λ1(s) ≤ λ2(s), s ∈ [0, 1/2],

hence the inequality (29) holds by the second condition.
On the other hand

w(s) =
λ′1(s)
λ′2(s)

=
(4s − 1)2

(2s − 1)2

obviously is not an increasing function on [0, 1/2) (w(0) = 1, w(1/4) = 0). Hence the first condition cannot be applied
on the inequality (29).
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[5] V. I. Levin, S. B. Stečkin, Inequalities, Amer. Math. Soc. Transl., 14 (1960), 1 - 22.
[6] P. R. Mercer, A note on inequalities due to Clausing and Levin-Stečkin, J. Math. Inequal. 11 (2017), no. 1, 163–166.
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