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On conditions for the Levin-Steckin inequality and applications
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Abstract. Using an identity involving the Green function, we give a generalization of the Levin-Ste¢kin
inequality as a result concerning difference of integral arithmetic means with different measures. The results
are given with usual conditions for the Levin-Steckin type inequalities. As a special case, generalization of
the Levin-Ste¢kin inequality is given. We also prove that result for general measures can be easily reduced
to one single condition. Comparing the two approaches we get some surprisingly good estimations.

1. Introduction
V. I. Levin and S. B. Ste¢kin proved in [5] the following theorem (see also [1], [3, pages 414-415], [6]).
Theorem 1.1. Let f be defined on [0, 1] satisying the conditions:

1
f(x) is nondecreasing for 0 < x < 5 (1)

and
fx)=f(1-x),x€[0,1]. 2)

Then for any convex function ¢ we have

1 1 1
d d dx. 3
fo FE0x < fo Fx fo S )

In 1988. J. Pecari¢ and S. S. Dragomir in [2] gave the following generalization of the Levin-Steckin
inequality.

Theorem 1.2. Let u: [0,1] — R be an increasing function such that u(x) = —p(1 — x), and let f: [0,1] —» R be an
integrable function with respect to p such that (1) and (2) hold. Then for any continuous convex function ¢ we have

1 1 1 1
fo du) fo FOSE) < fo Fu) fo (). @
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Consider the Green function G: [a,b] X [4,b] — R defined by

(t—b)(s—a)
Glt,s)=4 a<s<t,
4 (s=b)(t=a) t<s<b.

b—a ==

The function G is convex and continuous with respect to both s and ¢. It is also symmetric.
We will use the following lemma (see [4], [9]).

Lemma 1.3. For every function f: [a,b] = R, f € C*([a, b]), the following identity holds:

b—x

_ b
fe) = 7= f(@) + H F(b) + f G(x,5)f"(s)ds, ©6)

where the function G is defined as in (5).

Using Lemma 1.3 we obtain some interesting results concerning difference of the integral arithmetic
means

[ e [ fwanw
[ dra) [Pane)

where expressions are well-defined, and A1, A>: [4,b] — R are suitable functions (see rest of the paper).
Lemma 1.3 enables us to reduce proofs of inequalities for convex (or concave) functions to proofs of
analogous inequalities for the Green function. It appears that this method works quite elegantly even in
the cases in which is known that the proofs are rather involved.

Using this method we give a simple geometric condition for the Levin-Steckin inequality in the case of
measures dA and wdA and a simple analytic condition in the case of measures dA; and dA,. We also show
that the former one implies the latter one, but not vice versa (see Example 3.4).

(7)

2. Conditions for the Levin-Steckin inequality via the Green function
The following equivalence is used throughout the paper.

Theorem 2.1. Let A;: [a,b] = R, i = 1,2 be continuous functions of bounded variation such that Ai(a) # Ai(b),
i=1,2. Let the function G be defined as in (5). Then the following two statements are equivalent:

1. For every continuous convex function f: [a,b] — R holds

[ fwdhae [ f@dn@

(8)
Fanw  [ldae
SO~ f@ [ [ xinae) [ xah)
B 7 YC0 N P A )
2. For every s € [a, b] holds
[ G, 9)dAx () N * G(x, 5)d A1 (x) o o

[N dra) [ )

Proof. (1) = (2) Let (1) holds. As the function G(+,s), for s € [a, D] is also continuous and convex on [g, b], the
inequality (8) also holds for this function, and we use G(b, s) = G(a,s) = 0.
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(2) = (1) Let (2) holds. From Lemma 1.3 we have that every function f defined on interval [a, b] such that
continuous f” exists, can be represented in the form (5). Now we have

[ foarat) [ F@dne) fb " )
i [lane  J7 | fane  [ldue

V(b—x x-a b dAy(x) dA1(x)
= —f(a) + (b) + G(,)”()d) -
.[(b—afa b—af fa x,5)f" (s)ds [f:d/\z(x) f:d/\l(x)

P(bh—x x—a dAo(x) dA1(x)
= —fl@) + (b)) -
j,; (b—afa b—af [fabd/\z(x) fabd)\l(x)

b b dAx(x) dAq(x)
. Glx,9)f( )d) - - (10
fa (f S [ [anw [ anw

Using the Fubini theorem on the last term in (10), and the obvious identity

dAz(x) dAi(x)

'(b-x x—a dAy(x) dAq(x)
(a) + (b)) _
ja\ (b—gfa b—af J;bdAz(x) j‘;bd/\l(x)
fO) = f@ | [ ¥ [ xdnw
b-a fub dAz(x) fﬂb dAq(x)

7

(10) becomes

[ fdha) [ fd )
fﬂbd/\z(x) ) fubdAl(x)
) - f@ | [ xda@ [ xdd )
o [ Pane e

b b d b g
+ [ 1o ket [ cesinm]
a fu dA>(x) fu dA1(x)

In addition since f is convex, it follows that f”’(s) > 0 for all s € [a,b]. Therefore, if for every s in [a, b]
the inequality (9) is valid, then for every continuous convex f: [4,b] — R, such that continuos f” exists,
inequality (8) holds.

Furthermore, it should be noticed that it is not necessary to demand the existence of the second derivative
of the function f (see [8, page 172] and references therein). The differentiability condition can be eliminated
by using the fact that it is possible to approximate uniformly a continuous convex function by convex
polynomials. [J

(11)

In Theorem 2.1 we have a statement for convex functions. The similar conclusion holds for concave
functions.

Remark 2.2. Suppose that the assumptions as in Theorem 2.1 are fulfilled. Then the following statements are
equivalent:

(1') For every continuous concave function f: [a,b] — R the reversed inequality in (8) holds,
(2") For every s € [a, b] the inequality in (9) holds.
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Results in Theorem 2.1 are given for two general measures dA; and dA,. Inequalities of the Levin-Ste¢kin
type are usually given for functions A1, A, (that is, measures dA;,dA,) satisying the following conditions:

1. Aisincreasing on [, b],
2. AMx)=-Aa+Db-x), forall xin [a, b].
Under this furher requirements, we have the following theorem.
Theorem 2.3. Let Ay, A>: [a,b] — R be continuous functions, increasing on interval [a, b], such that Ai(a) # A;(b)

and Ai(x) = =Ai(a+ b —x), forall x in [a,b], i = 1,2. Let the function G be defined as in (5).
Then the following two statements are equivalent:

1. For every continuous convex function f: [a,b] — R holds

[ f@)dA ) >fa " F0dA ()

> (12)
Fanw — [dne
2. Forall s € [a, b] holds
[ G, $)dAx () § [ G, () )

[ane — [lane

Proof. Under aditional conditions on the weights and the measure, we have

; 5
f xdA(x) = (a + b)f dA(x),

b atb
f dA(x) = 2 f T ),
which gives
b
[xdAx)  avp
[arw 2
where dA is dA; or dA,, and the claims follow from Theorem 2.1. []

Remark 2.4. Suppose that the assumptions as in Theorem 2.3 are fulfilled. Then the following statements are
equivalent:

(1") For every continuous concave function f: [a,b] — R the reversed inequality in (12) holds,
(2") For every s € [a, b] the inequality in (13) holds.

We now show that using Theorem 2.3 we can elegantly prove Theorem 1.2, and by that the Levin-Steckin
inequality (3).
Since the Levin-Steckin inequality is given on the interval [0, 1], we give the following two results on that
interval. The analogous result for the interval [a, b] easily follows.

Theorem 2.5. Let A: [0,1] — IR be an continuous increasing function such that A(0) # A(1) and A(x) = —A(1 —x),
for x € [0,1]. Let w be an increasing function on interval [0, %] such that w(x) = w(l — x), for x € [0,1] and

f01 w(x)dA(x) # 0. Then the inequality

) FdA) . ) f)dAR)
i) [ w(0dAx)

holds for every continuous convex function f: [0,1] — R.

(14)
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Proof. From Theorem 2.3, with substitutions dA;(x) = w(x)dA(x), dA2(x) = dA(x), to prove (14), it is enough
to prove

1 1 1 1
\L‘G(x,s)w(x)d/\(x)fo‘ d/\(x)sjo‘ G(x,s)d/\(x)~f0 w(x)dA(x) (15)
for every s € [0, 1].
Set
1 1 1 1
F(s) ::fo G(x,s)dA(x)f(; w(x)dA(x)—L G(x,s)w(x)d/\(x)fo dA(x). (16)

The claim is that F(s) > 0 for every s € [0, 1].
Using the definition of the Green function G, we get:

S 1 1
F(s) = [(s—l)j;di(x)+sf(x—1)d/\(x)]fo w(x)dA(x)

S 1 1
—[(s—l)f0 xw(x)d)\(x)+sf (x—l)w(x)dA(x)}]o‘ dA(x).

Using obvious substitutions it is easy to prove F(s) = F(1 — s) for every s € [0, 1], and F(0) = F(1) = 0.
Differentiation gives:

S 1 1
F'(s)=[f0 xd)\(x)+f (x—l)d/\(x)]jo‘ w(x)dA(x)

S 1 1
_[fo xw(x)d/\(x)+fs(x—l)w(x)d/\(x)]fo‘ dA(x). (17)

Let’s prove that F'(s) > 0 for 0 < s < 1. Using some elementary calculus, we get

F'(s) = 2f0 al)\(x)-fo‘2 w(x)dA(x)—Z](; w(x)al/\(x)~j;2 dA(x).

In this way the claim F’(s) > 0 is equivalent to the inequality

S 1/2
J§ wx)dA(x) . 7 wx)dA(x)
@ [ Paa
which is a simple consequence of the increasing property of w on [0, 1].

It follows that F’(s) > 0 for s € [0, %], and F(s) > 0 fors € [0, %]. Due to the symmetry of F this concludes the
proof. O

The next result gives us conditions on real Lebesgue-Stieltjes measures dA; and dA; so that for continuos
convex functions the inequality (13) holds.

Theorem 2.6. Let A;: [0,1] — R,i = 1,2 be continuous increasing functions such that A;(0) # Ai(1), and Ai(x) =
-Ai(1=x),i=1,2, forall x in [0,1]. Let the function G be as defined in (5). If

M) _ A
1M = T

holds for every s in [0, 1/2], then

(18)

I G, s)dAa(x) ) i 6, ) (x) o
Iy 4ra(x) Fane
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holds for every s in [0, 1].

Proof. We search for conditions under which inequality

1 1 1 1
ﬁG(x,s)dAl(x)fo d/\z(x)sj(; G(x,s)d/\z(x)jo‘ dAq(x), (19)

holds.
Define the function F: [0,1] = R by

1 1 1 1
F(s) :=f(; G(x,s)dAz(x)L d/\l(x)—f(; G(x,s)dAl(x)f(; dAs(x).

Using the definition of the Green function, we get

S 1 1
F(s) = [(s—l)‘fo‘xd)\z(x)+sfs(x—l)d/\2(x)]‘f0 dAq(x)
S 1 1
—[(s—l)f0 xd/\l(x)+sf(x—1)d/\1(x)]f0 dA;(x).

Using obvious substitutions it is easy to prove F(s) = F(1 —s) for every s € [0, 1], and F(0) = F(1) = 0.
The proof reduces to F'(s) > 0,s € [0,1/2].
Differentiation gives

S 1 1
F'(s) = [j; diz(x)+£(x—1)dA2(x)]j; dA1(x)
S 1 1
— dA - 1)dA dAs(x).
[£x1m+£w )«4L )

Using some elementary calculus we get

F'(s) = (‘fo‘l xdAy(x) — fsl d/\z(x)) j(;l dA1(x)
—([)1 xdAq(x) — fsl d)\l(x)) fol dA;(x)
= —z-f d/\z(x)-fj d)\l(x)+2-jf dAl(x)-f dAy(x). (20)

Now F’(s) > 0 for s € [0,1/2] is equivalent to

[Parae) [
1/2 - rl/2
J T dAax) [T dA(x)

,s€1[0,1/2]

which simply gives

Aas) _ M)

A200) ~ A1(0)
which is in some sense misleading (compare to (19), note that A;(0) < 0, i = 1,2). So more accordingly to
(19) it can be written as

M) _ A
@ = L)
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From Theorems 2.1 and 2.6 the next result easily follows.

Corollary 2.7. Let A;: [a,b] — R,i = 1,2 be continuous increasing functions such that Ai(a) # A;(D), and Ai(x) =
-Aila+b—-x),i=1,2, forall x in [a,D]. If

M) _ Aas)

A1(b) T Aa(b)

holds for every s in [a, ], then the inequality

ﬁmmm>fmmm
Fanw e

holds for every continuous convex function f: [a,b] = R.

Remark 2.8. In this remark we want to emphasize the important connections between Theorem 2.5 and Theorem 2.6.
We can write the inequality (9) in the following form

1 1 1 1
fOG(x,s)dAl(x)fo d/\z(x)sj(; G(x,s)d/\z(x)f0 dAq(x), (21)

where A1 and A, are continuous increasing with A;(1—x) = —=A(x), i = 1,2. As it is shown in Theorem 2.6, F'(s) > 0
fors €[0,1/2], in this case, is equivalent to

Al(S) /\2(3)
M)~ =7 2(1)’

s€[0,1/2].

Let w: [0,1] — R be such that w is increasing on [0, %] and w(x) = w(l — x), for all x in [0, 1], and A, be continuous
increasing function with A(1 — x) = —A(x).
Now, let A1 be such that dA1(s) = w(s)dAa(s). Using (20) we have

F'(s) = 2-]2 w(x)d/\g(x)-‘[o2 d/\z(x)—2-‘[2 d/\g(x)-‘fo2 w(x)dAy(x).

Since w is increasing on [0, %], we have

[* w(xdAs(x) fo )

[F dro) [ drao)

that is F'(s) > 0 on [0,1/2], which gives ng) < Qz(i) on [0,1/2].

Our proof of the above implication is indirect. It could be of some interest to give a direct proof of the above implication,
or more explicitly, the proof of the following claim:

Suppose that A : [0,1] — R is an increasing and antisymmetric with respect to 1/2. If w : [0,1] — [0, 00) is

increasing on [0,1/2] and w(1 — x) = w(x) on [0, 1], then

A(s) < Aa(s) s
A1) T A1)’

€[0,1/2],

where dA1(x) := w(x)dA(x) and dA,(x) := dA(x).

To complete the picture we give the following general result. It uses the same technique as the proof of
Theorem 1.2. Compare with similar results given in [7].
It is based on following theorem proved in [3, Chap. XI, Theorem 5.1].



J. Pecarié, ]. Peri¢ / Filomat 40:1 (2026), 121-131 128

Theorem 2.9. Let du be a signed measure on (a,b) € R. Then

b
f f(x)du(x) =0

for every convex function f on (a, b) if and only if

b b ¢
f du(x) =0, f xdu(x) =0, f (t = x)du(x) > 0 for every t € [a,b].

Theorem 2.10. For i = 1,2 let A;: [a,b] — R be continuous increasing functions such that Ai(a) # Ai(b), and
Ai(x) = —=Ai(a + b —x) for all x in [a, b]. Then the following two statements are equivalent:

1. For every convex function f: (a,b) — R holds

[ f@dr ) ) " FdA(x)

fanE [ dhE 2
2. For every x € [, (a + b)/2] holds
“As)ds [ Ag(s)ds
! /\11((5)) = ! /\22((17)) >
Proof. Set for s € [a, (a + b)/2]:
_ S—x ,Xx € [a,s]
fx)=4 0 ,X€E€[s,a+Db—s]
x—(a+b-s) ,xela+b-s,b]
Then, using symmetry and integration by parts, we get for i = 1,2:
[ Fodrx) 2[5 - 0)dA)
fab dAi(x) Ai(b) = Ai(a)
— DA, ® Ai(x)dx ® Ai(x)dx
--° /\i'l()ljk)l(u) ’ . ;\\i((b)) ST ! ;‘\i((b)) ' 29

Suppose that (22) holds for any convex f on (a,b). Since fis obviously convex, using (24) in (22) and by
simple rearranging we get (23).
Assume that (23) holds. Set
. dAy — dh
TR0 T 1)

Obviously dy is a signed measure. Note that fu ! f(x)du(x) is well-defined (although may be infinite) for any
convex f on (a,b). The first two conditions are trivially satisfied. The formula (24) and the assumption (23)
give:

s B [ Aa@dx [ Ar(x)dx
[ 6= uen = 2= - 2 =0

From Theorem 2.9 follows that (22) holds for any convex f on (a,b). O
We remark that Theorem 2.10 implies both Corollary 2.7 and Theorem 2.5, but note that our proofs are

based on applications of Lemma 1.3 (the Green function), and this technique allows us to establish the
connection of conditions given in these results as explained in Remark 2.8 (see also the following section).
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3. Applications

We can write the inequality (9) in the following form

1 1 1 1
fOG(x,s)dAl(x)fo d/\z(x)sj(; G(x,s)d/\z(x)f0 dAq(x), (25)

where A; and A, are increasing with A;(1 — x) = —A;(x), i = 1,2. Asitis shown, F'(s) > 0 for s € [0,1/2] is, in
this case, equivalent to
A1(s) < Aa(s)
A1) T A1)’
dAi(s)

If we let A1, 4> be such that 3 ne = w(s), where w: [0, 1] — R is increasing on [0, %] and w(x) = w(l — x), for

all x in [0, 1], we have shown in the Remark 2.8 that condition jﬁg; < ;j((i)) on [0,1/2] is fulfilled.

se[0,1/2].

Example 3.1. Suppose that A»(x) = — cos (rix) and w1 (x) = x(1 — x). From A{(x) = w1(xs)A}(x), we easily get:
"X
A(x) = f w1 (H)AS(H)dt = iz (n(l — 2x) sin(mtx) + (nz(x - 1)x - 2) cos(nx)) .
1/2 Tt

Notice A1(1) = 2/m2. Rearranging A1(s)/A1(1) < Aa(s)/Aa(1) it follows

mis(1 —s)

t <
an (1ts) < T o9

,s€[0,1/2).

Although weaker than the Becker-Stark inequality

s
1—4s27

it is still interesting, especially in view how it is obtained.

Let’s look at behaviour for the general case for the weight functions wy(x) = x"(1 —x)", where n in IN. With A,(s)
we denote the upper estimate for tan (rs) obtained by this technique, and with A(s) denote 1735 the upper estimate in
the Becker-Stark inequality.

The following results are obtained using Wolfram Mathematica.

tan(7s) <

s€[0,1/2),

Forn =1, that is for wy(x) = x(1 — x), A2(x) = — cos(nx), we saw previously
7ts(1 — s)
A = —
1(8) 1-2s ’

and it is easy to see that A(s) < Ai(s) on (0, %), A(0) = A1(0) = 0.
For n = 2, in the similar fashion, we get

Aq(s) 382 — m2s — 12
As(s) = 12( )

7

22 — 25— 6
A1(s) = Ax(s) = tan (ms), for s € [0, %), and for s; = 0.217925, we have
A(s) < Az(s), fors € (0,52),

A(s) > Ax(s), fors € (sp, %).

We skip the case n = 3. For n = 4, we get

=420

(s — 1% + 240m2 (752 — 7s + 2) — 4nc* (145 — 2852 + 175 — 3) s — 20160
. 16(s — 1)3s3 + 12012 (752 — 7s + 1) — 6m* (753 — 1452 + 85 — 1)s — 5040 ~
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Ax(s) = A4(s) = tan (ms), for s € [0,1/2), and for s4 = 0.000964534, we have
A(s) < A4(s), fors € (0,s4),
A(s) > A4(s), fors € (sa, %).
From this examples, one could make the following hypotheses:

1.
Ax(s) 2 Ags1(s) for s € [0, %),k € N.

Sk > Sk41, fOT’kEN,kZ 2,

where s, is the solution of the equation A, (x) = A(x) on the interval (0, %).
3. forke N, k>2

A(s) < Ax(s), fors € (0,sx),
A(s) > Ak(s), fors € (s, 1).

2
4,
]}im Ag(s) = tan (7s).
Example 3.2. Set A»(x) = sinh (x — 1/2), w(x) = x(1 — x). Using A}(x) = w(x)A;(x), and A1(x) = Ez w(t)A5(t)dt
we can express Ay(s)/A2(1) — A1(s)/A1(1) in two different ways (using addition theorems or not):
Aa(s) — Ai(s)
_ 26
A1) Aq(1) (26)
csch (%) ((1 —2s) cosh (% -~ s) - sinh(% - s) (52 — s+ coth (%)))
- coth (%) -2
Aa(s) M) o

A1) A1)
(e —1)s(es — s + e + 3) cosh(s) — (—4@(5 —1)— (s —3)s +e%s(s + 1)) sinh(s)
) e=3)e—1) '

1
What significantly differs these two formulas is that % >0, but (e — 3)(e — 1) < 0. The condition

Aa(s) — AMals)

) - ) >0,s5€[0,1/2],

and (26), rearranging give
1-2s

——,5€]0,1/2],
sz—s+coth% [0,1/2]

1
tanh (5 - s) <
or
2s

tanhs < I
§2 — 1 + COthE

s€[0,1/2].

On the other hand, the same condition and (27) imply:

(e—1)s(es—s+e+3)
tanhs > ,
4de(1—s)+ (B3 —s)s+e2s(s+ 1)
Both estimations have error ~ 0.008. These are rational approximations (with irrational coefficients) of tanh. We
couldn’t find similar estimations to compare with.

s€[0,1/2].
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It remains to resolve if the following implication is valid:

M) _ Aafs) R0
) < ) s€[0,1/2] = w(s) = )\’2(5)

is an increasing function on [0,1/2). (28)

Note that for w(s) = {3 trivially holds w(s) = w(l - s), s € [0, 1] (this obviously holds for A7 and 7).

Example 3.3. Let A1(x) = — cos (1x), A2(x) = (2x—1)3. Obviously A1(s) < Aa(s), s € [0,1/2] (A1(0) = A2(0) = -1,
A1(1/2) = A2(1/2) = 0and Ay is convex, A, is concave on [0,1/2]). It is easy to see that w(s) = A} (s)/A5(s) = 767(521?_(711)52)
is an increasing function on [0, 1/2). In this case the inequality

1 1 1 1
dA A < dA dA ,
Lﬂmlmﬁ xmgﬁﬂmzmﬁ ) 29)

where f is convex on [0, 1], holds using both arquments. Of course, A1(s)/A1(1) < Ax(s)/A2(1), s € [0,1/2], is easier
to check.

In the next example we show that the implication (28) generally doesn’t hold.

Example 3.4. Let Ay(x) = %(4x -1)% - %,for x €[0,1/2] and A1(x) = —A1(1 — x) for x € [1/2,1]. Obuviously
A1) =1, A1(1/2) = 0, Ay increasing. Let Ay(x) = (2x — 1)3. Straightforwardly

A1(s) < Aa(s), s €10,1/2],

hence the inequality (29) holds by the second condition.
On the other hand

LX) @s—1p
Ay(s)  (2s—1)?

obviously is not an increasing function on [0,1/2) (w(0) = 1, w(1/4) = 0). Hence the first condition cannot be applied

on the inequality (29).

w(s)

References

[1] A. Clausing, Disconjugacy and integral inequalities., Trans. Amer. Math. Soc. 260(1980), no.1, 293-307.

[2] S.S. Dragomir, ]. Pecari¢, A On some integral inequalities for convex functions, Bul. Inst. Pol. Iasi 36 (1 - 4) (1990), 19 - 23.

[3] S.Karlin, W.]. Studden, Tchebycheff Systems: With Applications in Analysis and Statistic, Interscience Publishers, New York - London
- Sydney, 1966.

[4] M. Krni¢, ]. Pecari¢, More accurate Jensen-type inequalities for signed measures characterized via Green function and applications, Turk ]
Math (2017) 41: 1482 - 1496

[5] V.1 Levin, S. B. Ste¢kin, Inequalities, Amer. Math. Soc. Transl., 14 (1960), 1 - 22.

[6] P.R.Mercer, A note on inequalities due to Clausing and Levin-Steckin, ]. Math. Inequal. 11 (2017), no. 1, 163-166.

[7] C. P. Niculescu, L.-E. Persson, Convex Functions and Their Applications. A Contemporary Approach, CMS Books in Mathemat-
ics/Ouvrages de Mathématiques de la SMC, 23. Springer, New York, 2006. xvi+255 pp. ISBN: 978-0387-24300-9; 0-387-24300-3

[8] J. Petari¢, F. Proschan, Y. L. Tong, Convex functions, partial orderings, and statistical applications. Mathematics in Science and
Engineering, 187. Academic Press, Inc., Boston, MA, 1992. xiv+467 pp. ISBN: 0-12-549250-2

[9] D. V. Widder, Completely convex functions and Lidstone series, T Am Math Soc 1942; 51: 387-398.



