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New results on the solvability of Sylvester-type operator equations
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Abstract. This paper investigates several forms of Sylvester-type operator equations in infinite-dimensional
Hilbert spaces, focusing on both the classical equation AX—XB = C and its generalized version AX-YB = C,
which involves two unknowns. We establish new necessary and sufficient conditions for the existence of
solutions by employing generalized inverses under novel structural assumptions. Special attention is given
to the behavior of these equations when restricted to subspaces such as ker(A +I) and ker(B +1I), and to cases
involving two distinct subspaces. The study highlights how operator properties-such as involution and
pseudo-inverses-govern solvability and solution structure. The results offer a unified theoretical frame-
work that encompasses both classical and generalized operator equations, with potential applications in
control theory, perturbation analysis, and related areas. Illustrative examples are provided to demonstrate
the applicability and relevance of the theoretical developments.

1. Introduction

The concept of invertibility plays a fundamental role across various branches of mathematics, including
algebra, numerical analysis, and spectral theory. A wide range of problems can be formulated in the form
of an operator equation BY = E, where B represents a given transformation often a matrix or a bounded
linear operator. When B is invertible, the equation has a unique solution given by Y = B~'E. However,
in many practical and theoretical contexts, B may fail to be invertible. This non-invertibility introduces
significant challenges, which motivated the development of an extended notion of inverse-known as the
generalized inverse or pseudo-inverse to facilitate solutions in such cases.

The origins of the generalized inverse can be traced back to Fredholm in 1903, who introduced a specific
type of pseudoinverse in the context of integral operators that are not classically invertible. A year later,
in 1904, Hilbert extended this idea through the introduction of the generalized Green’s function, which
corresponds to the integral kernel of the pseudoinverse of a differential operator. Subsequently, in 1912,
Hurwitz characterized the class of all pseudoinverses. Using the finite-dimensionality of the null spaces of
Fredholm operators, he provided a clear algebraic framework for constructing generalized inverses.

Let H be an infinite-dimensional separable Hilbert space, and let B(H) denote the algebra of bounded
linear operators on H. For any operator B(H), we denote its spectrum by o(T).

Let T € B(H). The concept of a generalized inverse was introduced in [17] as an element T¥ € B(H)
that satisfies the following conditions:
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1. TTPT =T,
2. TPTTF = TP,
3. (TTP) =TT,
4. (TPT) =TrT.

In 1947, Lyapunov discovered a profound relationship between the stability of solutions to systems of linear
differential equations and the existence of a positive definite solution to the matrix equation AX+ XA* = -C,
where C is any positive definite matrix. This result, now known as Lyapunov’s theorem, has inspired
extensive research into related operator equations particularly the Sylvester equation AX — XB = C. This
equation has been studied not only in the context of finite-dimensional matrices but also within the broader
framework of bounded and unbounded operators on infinite-dimensional spaces.

Many authors have studied the equation (see [10-13]). Equation (1) was first examined in the finite-
dimensional case, where a foundational result was established by Sylvester in 1884 [11]. Remarkably,
analyzing the conditions for the existence of solutions to the equation AXB — EXD = C leads to significant
insights across a wide range of topics, including similarity transformations, commutativity of operators,
hyperinvariant subspaces, spectral operators, and differential equations. Some of these topics are discussed
below. We also derive several distinct explicit forms of the solution and illustrate their effectiveness in
applications such as perturbation theory. In addition, special attention is given to the operator equation
AXB — EXD = C, which presents further theoretical interest and practical relevance.

In 1987, J. Bevis, F. Hall, and R. Hartwig established the following Theorem:

Theorem 1.1. [6] Let X denote the matrix whose entries are complex-conjugates of the entries of X € C,, . Then
AX — XB = C over C has a solution if and only if

—( A C A 0
1 _
(6 5)s=(65)

for some nonsingular S.

Let H be an infinite-dimensional separable Hilbert space and let B(H) denotes the algebra of bounded
linear operators acting on H. If T € B(H), we write o(T) for the spectrum of T.

As highlighted in [6, 8, 10], a more comprehensive study of the Sylvester operator equation is warranted.
In particular, we focus on analyzing the existence and properties of solutions X and Y to the equation
AX - YB = C for given operators A, B, and C in B(H). This formulation also encompasses the classical
Sylvester equation AX — XB = C, which has been previously examined in works such as [7, 8].

In this paper, we investigate necessary and sufficient conditions for the existence of solutions to Sylvester-
type equations, with a particular emphasis on operator theoretic settings,

AX-XB=C, (1.1)

AXB-EXD =, (1.2)

AXB-XD =C, (1.3)
and

AXB-X=¢, (1.4)

receptively, where A, B,C € B(H) are given. Moreover, we also explore a more generalized form of the
following Sylvester equations:

AX-YB=C, (1.5)
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AXB-EYD =C(, (1.6)

AXB-YD =C(, 1.7)
and

AXB-Y=C, (1.8)
receptively.

The structure of this paper is organized as follows. In Section 3, we study the classical Sylvester
operator equation of the form AX — XB = C, highlighting fundamental properties and solution conditions.
Section 4 extends this framework to a generalized version, AX — YB = C, and introduces a coupled system
involving two unknown operators. Subsection 4 focuses on analyzing the equation AX — XB = C when
restricted to two subspaces, providing additional insights into its behavior under decomposition. Sections
4.1 and 4.2 are dedicated to studying the same operator equation on the subspaces ker(A + I) and ker(B +I),
respectively, revealing structural conditions that affect solvability. In Section 5, we present illustrative
examples to demonstrate the applicability of the theoretical results. Finally, Section 6 concludes the paper
with a summary of the main findings and possible directions for future research.

2. Sylvester operator equation AX — XB = C

Let A,B,C,D,E € B(H), where C # 0, let X be a solution to the system of Sylvester operator equations
(1.1)—(1.4), which arise in the study of certain control problems [2,4,6,9]. These equations have been
investigated in various contexts by numerous authors [9, 13, 14]. In this section, we examine several
properties of such a solution X. In particular, we establish the existence of a solution X to the system
(1.1)—(1.4) under appropriate conditions. Recall that A? denotes the pseudo-inverse of the operator A.

Theorem 2.1. Let A, B, C € B(H) be given.
i. If AB = BA and A" is injective. Then APB = BAP.
ii. If AB = BA and B" is injective. Then ABP = BPA.
Proof. i. We have

AB = AAPAB
= AAPBA,
and
BA = BAAA
= ABAFA.
Also,

AAPBA = ABAFA.
Since A is injective, we get
APB = BAP.
ii. We have

AB

ABBPB,
BABPB,
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and

BA BBYBA,

BBFAB.

So,
BAB’B = BBFAB.
Since B is injective, we obtain
ABF = BFA.

Therefore, the desired results are achieved. [

374

Theorem 2.2. Let A,B,C € B(H) satisfy all the conditions stated in [12, 15, 16]. Under these assumptions, we

conclude the following result: If AB = BA then AVBF = BPAP.

Proof. Following [12, 16], we have (AB)? = BPAP. So,
(BAY’ APBP,
(ABY = BPA?,

(ABY
Thus,
AFPBP = BPAP.

(BA)’, because AB = BA.

O

Theorem 2.3. Let A,B,C € B(H) such that BC = CB and AC = CA. Then the operator equation (1.1) has a

solution:
1. X = BPCifand only if

I-AB? + BB = 0.

2. X = APC if and only if

I-AAP + APB=0.

where AP and BP are the pseudo-inverse of A and B, respectively.

Proof. 1. Suppose that I — AB? + B’B = 0 where B is the pseudo-inverse of B. Then we multiply C on

the left
(I-AB*+B’B)C = 0,
C-AB’C+BPBC = 0,
AB’C-BPBC = C,
AB’C-B’CB = C.

Taking X = B’C where BC = CB, we get the desired result.
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2. Suppose that I — AA? + APB = 0 where A? is the pseudo-inverse of A, then we multiply C on the left

(I-AAP + APBIC = 0,
C—AAPC+APBC = 0,
AAPC-APBC = C,
AAPC-APCB = C.

Taking X = APC where AC = CA, we get the desired result.
|

Remark 2.4. Similarly, if we multiply C on the right, we obtain
e IfC(I - ABP + BPB) = 0 taking X = CB?, we get the desired result.
o IfC(I - AAP + APB) = 0 taking X = CA¥, we get the desired result.
Corollary 2.5. Let A, B, C € B(H).

1 If A is invertible, then the operator equation (1.1) has a solution

X=A"'C 2.1

2 If B is invertible, then the operator equation (1.1) has a solution
X=B"C 2.2)

Proof. 1. If A is invertible, then A™! = AP. Hence we obtain the same result as in the case where AA is
invertible.

I-AA? + APB = 0.

By applying equation (2.1), it follows from Theorem 2.3 that the operator equation (1.1) admits a
solution.

2. If Bis invertible, then B! = BY. Proceeding as in the case when A is invertible, we arrive at equation
(2.2).
0

Corollary 2.6. Let A, B, C € B(H) be given. If A or B is is involution, then the operator equation (1.1) has a solution.
Proof. If A or B is involution, that is, A% = I, then
AAP =] = APA.

Hence
AP =A71

and hence A is invertible.
Similarly, if B? =], it follows that BB? = I = B”B and so B” = B~1. Thus, the Corollary 2.5 confirms that

the operator equation (1.1) has a solution. [J

Theorem 2.7. Let A,B,C,D,E € B(H) be given B commutes with C,E, and D, E commutes with A, and D, C
commutes with D, EP* and BP* are injectives. Then the operator equation(1.2) has a solution

X = EPEAPCB
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if and only if
(I - EFAAPE + APEDBP)EPCBF =0,
where A¥, BP and EP are the pseudo-inverse of A, B and E, respectively.

Proof. Suppose that
(I - EFAAPE + APEDBP)EPCBF =0,

where A7, BY and EF denote the pseudo-inverses of A, B and E, respectively. Then,

(I - EPAAPE + APEDBP)EPCB? = 0,
EPCB? — EPAAPEEPCBY + APEDBPEPCBY = 0,
EPAAPEEPCB? — A’/EDBPEFCBY = EFCBP.

Since BPis injective and from Theorem 2.1, we get
EPAAPEEPCBFB — AFEDBPEFC EPC,
EPAEFEAPCBPB — EFEAPCBPD = EPC.

Also, since EF*is injective and from Theorem 2.1, we obtain
AEPEAPCBYB — EEPFEAPCBPD = C. (2.3)
Since equation (2.3) is of the form (1.2), a solution is given by
X = EPEAPCP’.

O

Corollary 2.8. Let A,B,C,D, E € B(H) be given such that: B commutes with C,E, and D, E commutes with D, C
commutes with D. The adjoint pseudo-inverses EF* and BP* are injectives, if and only if

(I - EPABYE + BPEDBP)EFCB = 0.
In this case, the operator equation (1.2) has a solution if and only if
X = EFECBPB?

where AP is the pseudo-inverse of A, BP is the pseudo-inverse of B, EF is the pseudo-inverse of E.
Proof. Assume that (I — EPABPE + BPEDBP)EPCBP = 0 where B? is the pseudo-inverse of B. Then,
(I - EPABPE + BPEDBF)EFCB
EPCBP — EPABPEEFCBY + BPEDBPEFCBY
EPABYEEPCBP — BPEDBPEPCBP = EFCB'.

non
e e

Since B is injective, we get

EPABYEEPCBPB — BPEDBPEPC = EPC.
The fact that EF* is injective and for Theorem 2.1 give

AEPEBYCBPB — EEFEBPCBPD = C. (2.4)
Since equation (2.4) is of the same form as (1.2), a solution is given by

X = EPECBPBP.
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O
Corollary 2.9. Let A, B,C, D € B(H), assume that EF* and B are injectives. Then,

1 If A is invertible,then the operator equation (1.2) has a solution
X = EPEAT'CP’.

2 If B is invertible,then the operator equation (1.2) has a solution
X = EPEAPCB 'or X = EPEC(B™")%.

3 if E is invertible, then the operator equation (1.2) has a solution
X = APCBFor X = C(BP)>.

Proof. It follows from Theorem 2.7 and corollary 2.8 that the operator equation (1.2) has a solution
(I - EPAAPE + APEDBP)EPCBF =0 or (I — EPABYE + BPEDBP)EPCBF = 0.

Taking
If A is invertible, then A~ AP = X = EPEACBY
If B is invertible, then B~ B’ = X = EFEAPCB'or X = EPEC(B™!)?
If E is invertible, then E' = Ef = X = APCBPor X = C(B')%.

O

Corollary 2.10. Let A, B,C € B(H) be given,EP* and BP* are injectives. If A or B is is involution, then the operator
equation (1.2) has a solution.

Proof. If A or B is involution ie A2 = [ ,it follows that AA? = [ = APA and so A? = A™. Hence A is invertible.
Similarly, B? =1 ,it follows that BB? = I = B’B and so B? = B"1Then we get that it follows from corollary
2.9 that the operator equation (1.2) has a solution. [

Remark 2.11. Let A, B, C € B(H) be given,EF* and BP* are injectives. If A and B are invertible et A~ = B!, then
the operator equation (1.2) has a solution

X = EPEA7'CA 'or X = EPFEC(A™Y)2.

Remark 2.12. Let A, B,C € B(H) be given,EP* and BP* are injectives. If A and B are invertible et A~ = Bt = E71,
then the operator equation (1.2) has a solution

X=A"CA or X = C(A™H>2.
Remark 2.13. Let A, B, C € B(H) be given. If B and E are invertible, then the operator equation
AXB-EXD=C= E'AX-XDB' =E"'CB™".
in the form of equation (1.1), then the solution has a solution
X = APCB™lor X = (CB™1)%.

Proposition 2.14. Let A,B,C,D € B(H) such that DB = BD ,DC = CD, BP* is injective. Then the operator
equation(1.3), has a solution

X = APCBY
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if and only if
(I - AA? + APDBF)CB? =0
where AP and BP are the pseudo-inverse of A and B, respectively.
Proof. Suppose that (I — AA? + APDBP)CBP = 0 where A? is the pseudo-inverse of A
(I - AA? + APDBF)CB?

CBY — AAPCBP + AFDBPCB?
AAPCBY — APDBPCB? = CBP.

[T
e e

Since BF"is injective
AAPCBYBBP — APDBYCBY = CBF
and for Theorem 2.1
AAPCBPB — APCBFD = C. (2.5)
Since the equation (2.5) is of the form (1.3), then the solution taking X = APCB?. [
Corollary 2.15. Let A, B, C,D € B(H) such that DB = BD, DC = CD, B"* is injective if and only if
(I - AB? + BPDBF)CB = 0.
Then the operator equation (1.3) has a solution
X = BPCBY
where BP are the pseudo-inverse of B.
Proof. Suppose that (I — AB? + BPDBP)CB? = 0 where B is the pseudo-inverse of B
(I-AB? + BPDBP)CB? = 0,
CB? — AB'CB? + BPDBPCB? = 0,
ABYCBP — BPDBFCB? = CB’,
ABYCBPBBY — BPDBPCBY = CB.
The fact that B is injective
ABYCBPB - BPCB’D = C
and Theorem 2.1 give
ACBPBPB - CBFBPD =C (2.6)

Since the eqeation (2.6) is of the form (1.3), then the solution taking X = C(B*)?>. [
Corollary 2.16. Let A,B,C,D € B(H) , B'*is injective be given.

1. If A is invertible, then the operator equation (1.3) has a solution
X =A"'CB. (2.7
2. If B is invertible, then the operator equation (1.3) has a solution of the form

X =APCBor X = C(B™})>2. (2.8)
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Proof. 1. If Aisinvertible, then A~! = AP. Hence
(I-AA? + APDBP)CB? =0 or (I - AB” + BPDBF)CB? = 0.
It follows from Proposition 2.14 and Corollary 2.15 that (2.7) solves the operator equation(1.3).

2. If B is invertible and B! = B, then the same reasoning used for the case of A invertible leads to
equation (2.8).
|

Corollary 2.17. Let A,B,C € B(H), assume that BP* is injective. If A or B is is involution, then the operator
equation (1.3) has a solution.

Proof. If A or B is involution that is A% = I, it follows that AA? = [ = APA and so A? = A~!. Hence A is
invertible.

Similarly, if B> = I, it follows that BB = [ = BPB and so B? = B™!. Following Corollary 2.16, we deduce
that the operator equation(1.3) has a solution. [

Remark 2.18. Let A, B,C € B(H), assume that BP* is injective. If A and B are invertible and A1 = B, then the
operator equation (1.3) has a solution of the form

X=A"'CA! or X=C(B™
Remark 2.19. Let A, B, C € L(H). If B is invertible, then the operator equation
AXB-XD=C= AX-XDB™' =CB!
has a solution
X = APCB lor X = C(B™1)2
Remark 2.20. Let A,B,C,D, E € B(H). The operator equation (1.2) reduces to equation (1.3) if E = L.

Proposition 2.21. Let A, B, C € B(H), assume that BC = CB, B is injective. Then the operator equation (1.4) has
a solution X = APCBP, if and only if

(I-AAP + APBP)CBF =0,
where AP and BP are the pseudo-inverse of A and B, respectively.

Proof. Suppose that (I — AA? + APBP)CBP = 0 where A? is the pseudo-inverse of A
(I - AAP + APBP)CB?P 0,
CB? — AAPCBY + APBPCBY = 0,
AAPCBF — APBFCBY = CPB’,

AAPCBPBBP — APBPCBP = CB!.
Since B is injective
AAPCBPB — APCBF = C. (2.9)

Given that equation (2.9) has the same structure as equation (1.4), it admits the solution X = A’CB?. [0
Corollary 2.22. Let A, B, C € B(H). Assume that BC = CB. So, the pseudo-inverse B is injective if and only if,

(I - ABP + (B*)*)CB* = 0.
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In this case, the operator equation (1.4) has a solution
X = BFCPY,
where BP are the pseudo-inverse of B.
Proof. Suppose that (I — AB? + (B*)*)CB? = 0 where B is the pseudo-inverse of B
(I-ABY + BPBP)CBP = O,
CBY — ABPCBY + BFBFCB? = 0,
ABYCBP — BPBCB? = CP’,
ABPCBYBBP — BPBPCBP = CB'.
Since B is injective

ABYCBPB — BPCBF = C.

Since the equation (2.10) takes the form (1.4), then X = B’CB? solves it. X = B’CBF.

Corollary 2.23. Let A, B, C € B(H). We have

1. If A is invertible and BF* is injective, then the operator equation (1.4) has a solution
X=A"CB.
2. If B is invertible and BF* is injective, then the operator equation (1.4) has a solution
X=APCB™!, or X=B"'CB™",
Proof. 1. If Aisinvertible, then A~! = AP. Then

(I - AAP + APBP)CB? =0 or (I — AB? + B’B)CB? = 0.

380

(2.10)

(2.11)

(2.12)

Proposition 2.14 and Corollary 2.22 confirm that the operator equation (1.4) has a solution of the form

@.11).

2. If Bisinvertible with B~! = B?, then the same reasoning used for the invertibility of A leads to equation

(2.12).
O

Corollary 2.24. Let A, B, C € B(H). If either A or B is an involution, then the operator equation (1.4) has a solution.

Proof. If A or B is involution, it follows that AA? = [ = APA and so A? = A~!. Hence A is invertible.

Similarly, if B? =], then B is an involution, which implies BB? = [ = BB and hence BF = B~L. It then

follows from the corollary that the operator equation (1.4) admits a solution. [

Remark 2.25. Let A, B, C € B(H). If B is invertible, then the operator equation
AXB-X=C= AX-XB™'=CB™"

witch takes the form (1.1) has a solution
X =APCB'or X =B'CB™".

Remark 2.26. Let A,B,C,D,E € B(H). Then
1. The operator equation (1.3) in the form of equation (1.1) if D = L.
2. The operator equation (1.2) in the form of equation (1.4) if E=D = L.
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3. Sylvester operator equation of the form AX —YB =C

Let A,B,C,D,E € B(H) with C # 0. Let X, Y be a solution pair to the system of generalized operator
equations (1.5), (1.6), (1.7), and (1.8), which arise in the study of certain control problems [11, 17]. This
system has been investigated by several authors in various contexts [6, 8]. In particular, [9] established
necessary and sufficient conditions for the existence of a solution pair (X, Y) to the generalized Sylvester
equation (1.5).

In this section, we explore further properties of such a solution pair (X, Y). Specifically, we prove the
existence of solutions to the system (1.5)-(1.8) under suitable assumptions. Recall that B” denotes the
pseudo-inverse of the operator B.

Theorem 3.1. Let A,B,C,D,E € B(H) EF* and B are injective be given. Then the operator equation (1.6) has a
solution pair

(X,Y) = (APEE’CB?, —EP(I - AAPEEP)CB’BD"D
if and only if
(I - EPAAPE)EPCBP(I - BD'DBY) = 0,

where AP is the pseudo-inverse of A, BP is the pseudo-inverse of B, DF is the pseudo-inverse of D, EP is the pseudo-
inverse of E.

Proof. Assume that
(I - EPAAYE)EPCBP(I - BD'DB") = 0,

where A7, BY, DP, and E? denote the pseudo-inverses of the operators A, B, D, and E, respectively.
So,

(I - EPAAPE)EPCBF(I - BD'DB?) = 0,

(EPCBP — EPAAPEEPCBP)(I — BD'DB?) = 0,

EFCBP — EPAAPEEFCBY — EPCBPBD"DB" + EPAAPEPCBPBD"DB’ =0,
EFAAPEEFCBP + EF(I - AAPEEP)CB’BDPDB” = EPCBP.

Since EP*and BF* are injective
AAPEEPCBPB + EEF(I — AAPEEP)CBPBD'D = C. (3.1)
Since equation (3.1) is of the form (1.6), a corresponding solution pair (X, Y) is given by
(X,Y) = (APEEPCBP, —EP(I - AATEEF)CB"BD’D.
0
Corollary 3.2. Let A, B, C,D, E € B(H), and suppose that EP*and BP* are injective.
1. If A is invertible, then the operator equation (1.6) admits a solution pair

(X,Y) = (A"'EEPCB?, —EP(I — EEF)CB"BD" D).

2. If B is invertible, then the operator equation (1.6) admits a solution pair

(X,Y) = (APEEPCB™!, -EP(I - AAPEEF)CD"D)
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3. If D is invertible, then the operator equation (1.6) admits a solution pair

(X,Y) = (APEE’CBP, —EP(I - AAYEEF)CB"B)

4. If E is invertible, then the operator equation (1.6) admits a solution pair
(X,Y) = (APCB*,—E"Y(I - AA")CB’BD’D).
Here, AP, BP, D, and EP denote the pseudo-inverses of the operators A, B, D, and E, respectively.

Proof. It follows from Theorem 3.1 that the operator equation (1.6) has a solution if and only if
(I - AAP)CBP(I - BD'DBP) = 0.

Note that
If A is invertible, then A™! = AP = (X,Y) = (A"'EE’CBP, —EP(I — EEP)CB"BD"D).
If B is invertible, then B! = B = (X,Y) = (APEEPCB™!, —EP(I - AAEEF)CD'D).
If D is invertible, then D™! = DF = (X,Y) = (APEE’CBY, —EF(I - AAPEEP)CB'B).
If E is invertible, then E' = EF = (X,Y) = (APCB?,—E~'(I - AA")CB’BD"D).
O

Remark 3.3. If A and E are invertibles, then the operator equation (1.6) has a solution pair (X,Y) = (A"CB?, 0).

Corollary 3.4. Let A,B,C, D, E € B(H) be given. If A or B or D or E is involution, then the operator equation (1.6)
has a solution.

Proof. Suppose that any one of the operators A, B, D, or E is an involution, i.e., satisfies A2 =1 B =1,
D? =1, or E? = I, respectively.

It follows that AAP = I = APA and so A? = A™!. Hence A is invertible. By Corollary 3.2, the operator
equation (1.6) has a solution.

Similarly, B> = I, it follows that BB¥ = [ = B’B and so B’ = B"!. Then we get the same proof of B
invertible.

The same reasoning applies if D? =1thenDD? =1 =D'DandsoDP = D1, showing that D is invertible.

Finally, if E? = I, we conclude that EEP = I = EPE and so EP = E™}, and E is invertible. [

Remark 3.5. Let A, B,C,D € B(H). If B and E are invertible, then the operator equation
AXB-EYD=C= E'AX-YDB ! =E'CB!
takes the form of equation (1.5), (see, [9]).

Proposition 3.6. Let A, B,C, D, E € B(H), The following statements hold.
If (1.6) has a solution pair (X,Y) , then

(3 5)0 )6 0
wil( 5 500 B8 )

are equivalent on H & H.
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Proof. Let (1.6) has a solution pair (X, Y) , then

(658 5) = (3 <)
(£ 2)(3 ) - (2 %)
(61 C+DYD) (13 AgB)
(338 8) = (5 %)
(L3 - (3 %)
()5 ) - (57)
(528} (5 7)

383

Proposition 3.7. Let A, B, C € B(H). Suppose that (M, W, L) and (N, W, L) are equivalent on H ® H, meaning there
exist invertible operators U and V such that UM = NV, UW = WV and UL = LV with the additional condition

that NV = VN. Then the operator equation (1.6) admits a solution pair (X,Y).

Proof. Suppose that

and

0 I

Nz(A 0

are equivalent on H®H. Then there exist invertible operator matrices U = (

H & H such that
UM = NV
u u A C _ A 0 Vi
Us u4 0 D - 0 D Vs V,
uw = WV
u Uu, I 0 _ I 0 Vi WV,
U u4 0 B N 0 B Vi V4

o

UL

u U E O
U U4 0 I

[ A C I 0 E
p=(o §)w=(o 5 )e=(5

I 0
0 B

E 0
Jr=(5 3

)]

Vs
Vs

|

Jon
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This implies

U1A = AV,
U,C+ U,D=AV,
U3A = DV3
U;C+UyD =DV,

and

U=V
U,B=V,
Us = BV3
U4B = V4

and

U,E = EV,
U, =EV,
UsE = V5
U, =V,

then

U.C+U,D = AU,B
u,.C = AUB-EV,D
U;:C+UyD = V4D where NV =VN
U,.C = AUB-EV,D.

Since U is invertible, thenU;is invertible , it follows that
C = AU, 'U,B - EU;'V,D (3.2)
Since the equation (3.2) takes the form (1.6), then the solution take

X=U""U;Y=U"1V,.

Proposition 3.8. Let A,B,C,D € B(H) ,BP" is injective. Then the operator equation (1.7) has a solution pair
(X,Y) = (APCB?,—(I — AAP)CB"BD?

if and only if
(I - AAP)CBP(I - BD’DB?) = 0

where AP is the pseudo-inverse of A, BP is the pseudo-inverse of B, DV is the pseudo-inverse of D.

Proof. Suppose that (I — AAP)CBF(I — BDDBP) = 0,where A is the pseudo-inverse of A, B? is the pseudo-
inverse of B, DF is the pseudo-inverse of D.
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Then
(I - AAP)CBP(I - BDDBY) = 0
(CB* — AAPCBP)(I-BD'DB") = 0
CBP — AAPCB' — CB'BDDB” + AAPCB’BD'DB” = 0
AAFCBP + (I - AAPYCB’BD’DB” = CBF.

Since B is injective, we get
AAPCBPB + (I - AAT)CBPBDPD = C. (3.3)
Since the equation (3.3) is of the form (1.7), then the solution pair takes the form
(X,Y) = (APCB?, —(I - AAP)CB"BDP).
0
Corollary 3.9. Let A,B,C,D € B(H) , B"is injective be given,
1. If A is invertible, then the operator equation (1.7) has a solution pair

(X,Y) = (A7ICB,0). (3.4)

2. IfA is invertible, then the operator equation (1.7) has a solution pair

(X,Y) = (APCB™", —(I - AA")CD"D). (3.5)
3. If D is invertible, then the operator equation (1.7) has a solution pair
(X,Y) = (APCB*, —(I — AA")CB'B) (3.6)
where AP is the pseudo-inverse of A, BY is the pseudo-inverse of B, D¥ is the pseudo-inverse of D.

Proof. 1 If A is invertible , then A™! = A?. Then we get that
(I - AAP)CBP(I — BD'DB?) = 0.
It follows from Proposition 3.1 that the operator equation (1.7) has a solution Taking (3.4).

2 If Bis invertible , then B! = BF. Then we get that (3.5) .

3 If D is invertible , then D! = D?. Then we get that (3.6).
[

Corollary 3.10. Let A,B,C € B(H) be given. If A or B is is involution, then the operator equation (1.7) has a
solution.

Proof. If A or B is involution ie A? =], it follows that AA? = [ = A’A and so A? = A, Hence A is invertible.
It then follows from Corollary 3.9 that the operator equation (1.7) admits a solution.
Similarly, if B? = I, then B is an involution and hence BB = I = BB, which implies BV = B! so Bis
invertible. Thus, the same conclusion as in the case of A applies.
Likewise, if D? = I, then DD? = [ = DPD, and so DP = D! Again, the same reasoning as for A holds.
Finally, if E? = I, then EEF = I = EPE and so E¥ = E™}, and similarly The same conclusion follows. []

Remark 3.11. Let A,B,C,D € B(H) be given If B is invertible, then the operator equation

AXB-YD=C= AX-YDB™!' =CB™!
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in the form of equation (1.5) ,in article[9] .
Remark 3.12. Let A, B,C, D, E € B(H). The operator equation (1.6) takes the form of equation (1.7) if E = I.

Proposition 3.13. Let A, B, C € B(H), The following statements hold.
If (1.7) has a solution pair (X,Y) , then

A 0 J A C
o 1"\ o 1
are equivalent on H ® H.
Proof. Let (1.7) has a solution pair (X, Y), then
I YD A C (A O A XB
0 I 0 I B 0 I 0 I
A C+YD (A AXB
0 I B 0 I ‘
|

Corollary 3.14. Let A, B, C € B(H). If (1.7) has a solution pair (X, Y) , then

A C I 0 J A0 I 0
o p)\o B))"™\ o DJ)\o B
are equivalent on H @ H.

Proof. Let (1.7) has a solution pair (X, Y) , then
I Y\[A C _[A C+YD
0 I 0 D) ~ 0 D

(Eaflse) - (2)
(5

cma) _ (A AXB)

T -y
) - )

Proposition 3.15. Let A, B,C € B(H). If (M, W) and (N, W) are equivalent on H @ H such that UM = NV and
UW = WV where U and V are invertible, and NV = VN also (U; + Us) is invertible, then (1.7) has a solution pair

X, Y).

Proof. Suppose that

(5 5wl b= (5 5 )we (o
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H @ H such that
UM = NV
u Uu A C _ A 0 Vi
U u4 0 D 0 D V3
uw = Wv
u, u 0 _ I 0 %}
Us u4 B N 0 B V3
This implies
U, A=AV,
U,C+U,D=AV,
Uz;A =DV;3
U3C + U4D =DV,
and
u, =V
U,B=V,
Uz = BV3
UsB=V,
then
u,;C+U,b = AU,B
U;C+UsD = V4D, where NV =VN
(U1 + U3)C = AU,B- (UZ + Uy — V4)D

Since (U; + Us3) is invertible, it follows that

C =AU + Uz) ' UB — (U + Us) Y (U + Uy — V4)D.
Since the equation (3.7) takes the form (1.7), then the solution is given by

X=(U+Us) ' Y = Uy + Us) N (Up + Uy — V).

u U
U, u4

o

Vi
V3

Va
Vs
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Jon

(3.7)

Proposition 3.16. Let A, B, C € B(H), BP* injective be given. Then the operator equation (1.8) has a solution pair

(X,Y) = (APCBP, —(I — AAP)C(B")?

if and only if

(I - AAP)CBP(I - (B")?) =0

where AP is the pseudo-inverse of A, BP is the pseudo-inverse of B.

Proof. Suppose that (I—AAP)CBF(I—(B”)?) = 0,where A? is the pseudo-inverse of A, B is the pseudo-inverse

of B.
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Hence
(I- AAP)CBP(I- (BY)») = 0,
(CB? — AAPCBF)(I - (BY)?) = O,
CB’ — AAPCB? — C(B")® + AAPC(BYY = 0,
AAFCBPBB? + (1 - AAT)C(BF)> = CB.

Since B injective
AAPCBPB + (I - AAP)C(BP)? = C (3.8)
Since the equation (3.8) is of the form (1.8), then the solution is given by (X, Y) = (APCBF, —(I-AAP)C(BP)2. 0O
Corollary 3.17. Let A, B, C € B(H) be given:
1. If A is invertible, then the operator equation (1.8) has a solution pair

(X,Y) = (A"'CB,0). (3.9)

2. If B is invertible, then the operator equation (1.8) has a solution pair
(X,Y) = (APCB7!, —(I - AAP)C(B™1)?), (3.10)
where AP is the pseudo-inverse of A, B? is the pseudo-inverse of B.
Proof. 1 If A is invertible, then A~! = AP. Thus,
(I-AAP + APBP)CB? =0
it follows from Proposition 3.16 that the operator equation (1.8) has a solution Taking (3.9) .

2 If B is invertible, then B~! = B”. Then we get that (3.10).
O

Corollary 3.18. Let A,B,C € B(H) be given. If A or B is is involution, then the operator equation (1.8) has a
solution.

Proof. If A or B is involution ie A? =] it follows that AA? = [ = A’A and so A? = A1, Hence A is invertible.
Similarly, B2 =1 ,it follows that BB? = I = B’B and so B? = B"1Then we get that it follows from corollary
3.17 that the operator equation (1.8) has a solution. [

Remark 3.19. Let A, B, C € B(H) be givenlf B is invertible, then the operator equation
AXB-Y=C= AX-YB'=CB™"
in the form of equation (1.5) ,in article[9] .
Remark 3.20. Let A, B,C,D and E € B(H) be given.
1. the operator equation (1.7) in the form of equation (1.8) if D = I.
2. the operator equation (1.6) in the form of equation (1.8) if E=D = L.

Proposition 3.21. Let A, B, C € B(H), The following statements hold.
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If (1.8) has a solution pair (X,Y) , then

A 0 J A C
o 1]\ o 1
are equivalent on H @ H.
Proof. Let (1.8) has a solution pair (X, Y) , then
I'Y A C _ A 0 A XB
0 I 0 I - 0 I 0 I
( A C+Y ) ( A AXB )

0 I 0 I
O

Proposition 3.22. Let A, B, C € B(H), The following statements hold
if (M, W) and (N, W) are equivalent on H ® H such that UM = NV and UW = WV where U and V are
invertible,and (U, + Us) is invertible, then (1.8) has a solution pair (X,Y).

Proof. Suppose that
A C I 0 A 0 I 0
e 5 )=(o 8 fo=(3 F)we(o 5

. .. . . _ U1 U2 _ V1 Vz
are equivalent on H®H. Then there exist invertible operator matrices U = ( Us U4 )and V= ( Vs Vi )on
H @ H such that

UM = NV

u u A C _ A 0 Vi
U U4 0 I B 0 I Vs V4

U U I 0 Vi W,
U, u4 0 B Vs V4

This implies

-
=
I

=
<

Il
—_———
O~

U1A=AV,
U,C+ U, = AV,
UsA =V;3
U;C+ Uy =V,

and

u =V
U,B =V,
U = BV,
U,B =V,

So

U,C+ U,
U;C + Uy
Uy + U3)C

AU,B
V4
AlU,B - (UQ + Uy — V4)
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Since (U; + U3) is invertible, it follows that
C =AUy + Us) 'UpB — (U + Uz) " (U + Uy — V). (3.12)
Since the equation (3.12) is of the form (1.8), then the solution take
X=U +U3) Uy, Y=(U +Us) H(Uy + Uy — V).

O

4. Operator equation AX — XB = C on two subspace ker(A + I) and ker(B + I)

4.1. Operator equation AX — XB = C on the subspace ker(A + I)
If A, B and C € B(H), such that 6(A) N ¢(B) = @ can be put in the form of

(A+DX-XB+I)=C

Now let us consider x € ker(A + I). So,

—xX(B+1)
xX

xC,
—xCB+D)7L.

Thus, the solution of the equation (1.1) on the subspace ker(A + I) coincides with —C(B + I)~! that is,
X lker(a+n= —C(B + D" lker(a+1)

if A,B, C,D and E € B(H), such that 6(A) N o(D) = @. Also,
A+DXB+DH)-(E+DX(D+1)=C.

Consider x € ker(A +1). So,

—x(E+ DX(D +1)
X

xC,
—(E+Dc(D+DnL

Hence the solution of the equation (1.2) on the subspace ker(A + I) ccoincides with —(E +I)"'C(D +1)7! that
is,

X lkerasn= —(E + )'CD + 1) Iker(as1y -
4.2. Operator equation AX — XB = C on the subspace ker(B + I)
If A, B and C € B(H), such that 6(A) N ¢(B) = @ then
A+DX-XB+I)=C.
Let us consider x € ker(B + I) then

(A+DXx Cx
Xx = (A+D7'Cx

Hence the solution of the equation (1.1) on the subspace ker(B + I) Coincides with (A + I)7'C that is, we
have

X lker(g+n= (A + 1) 'C lker(p+1) -
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If A,B,C,D and E € B(H), such that 6(A) N (D) = @. then
A+DXB+D—-(E+DX(D+I)=C.

Consider x € ker(B + I) then

—x(E+ DX(D +1) Cx,
X = —(E+DcD+Dn

Thus, the solution of the equation (1.2) on the subspace ker(B +I) coincides with —(E +1)~'C(D +I)~! that is,

X lkerg+n= —(E + DT'CD + )" Ixer(Bs1) -

5. Examples

Example 5.1. Let us begin with the following example to illustrate Theorem 2.1. To this end, Let

Lo 21 0
— 3 —
A—(O %)andB—(I I)'

So,
3 0 ir o
P — p—| 2
A (031){mdB (%II)'
Also,
1 0)
A =| 3
th
is injective. Moreover,
21 0
AB = BA = %I 11 ’
3t 3
and )
AB”:B”A:( i) )
gl 3l

Example 5.2. This example illustrates the results of Theorem 2.2. To this end, let

{1 ) meee(2 8)

I I 0 2I
So,
1(1 I i1 0
| —— P = 2
A 4(1 1)””dB (o %1)
Also,
I I
AB_BA_Z(I I)'
Moreover,
1(1 I
PRP — BPAP = —
w111

Example 5.3. The following example serves to illustrate the results of Theorem 2.3. Tn order to achieve this goal, let
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A, B and C on £3(N)

Alen) =2Ane,, forall ne N with A, #0,
B(es) = Awey, forall ne N with A, #0,
Cley) = )\ien, forall ne N with A, #0.

So,
1 )
AP(e,) = ﬁen, forall ne N with A, #0,
BP(e,) = Alen, forall ne N with A, #0.
n
Also,
BC(e,) = CB(ey) = Ade,, forall ne N with A, #0,
ABF(e;) = 2e,, forall neN,
BBF(e,) = ey, forall neN.
Hence
(I - AB? + BB?) = 0.
This gives

X =BPC = Aney, forall ne N with A, #0.

392

Example 5.4. This example serves to illustrate the conclusions of Corollary 2.5. To that end, let us define the

following:
(21 (4 2] [ S1 S
B‘(o 21)'A‘(0 4)' ””dc‘(o 51)'
So,
1r _1p
P =Bl = 2 4
w=s=(§ )
and
_ _ 251 25, + 5,
BC—CB—( 0 25, )
Hence
St 5% _ 5
X=pBC=(2 2_1
(5 %57
and
. [ S1 0
=(3 5]
is injective. Then
S5 S _ S
X=B”C=CB’”=((2) 254)
2

Example 5.5. This example serves to illustrate the results of Proposition 2.14. To that end, let A, B, C,D € €* such
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that

A(x1,x2,x3,+++) = (x1,0,0,---),

B(x1,x2,x3,---) =(0,x2,0,0,---),

C(XLXZ,XB,"') = (xl +x210101' ")1

D(x1,x2,x3,+++) = (x1,%2,0,0,--).
So,

Ap(xl/ X2,X3,"" ) = (xlr O/ 0/ e )r

Bp(xlleI X3, ) = (O/ X2, 0/ 0/ e )
Therefore,

AAP(X],XZ,.X:;, o ) = A(xll 0/0/ o ) = (xlroror e )/

CBp(xll-XZ/ X3, " ) = C(Or X2, O/ O/ o ) = (XZI Or Or e )
Also,

APDBP(x1,x2,x3,-++) = APD(0,x,0,0,---) = AP(0,x,0,0,---) = 0.
Hence
(I —AAP)(x1,x2,x3,-++) = (0,x2,x3,-+)
and hence
(I - AAP)CBP(x1,x2,%3,---) = 0.
Thus,
A”DB”CB”(xl,xz,xg,- . ) =0.
Also,
(I-AAP + APDBP)CBP = 0.

Consequently,

X = (XZIOrOr'“)'

Example 5.6. This example serves to illustrate the results of Proposition 2.21. To that end, let us define the following:
a=(10) 5=(2 ) wac=( 1)
A”z((l) 8) and B”z(?
r-(3 3
AA”:((I) 8), and Csz((I) 8)

|

So,

o o
~——

Hence
0
I

is injective. Also, we have

Hence

o O

0
PR =
APB (0
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This gives,
0 0
_ AAP PRP —
I AA+AB—(O I)
and
00 I 0
_ AAP PBP\CRP = =
(I - AA? + APBP)CB (0 I)(O 0) 0.
Thus,

I
e}

o )

Example 5.7. This example serves to illustrate the results of Proposition Proposition 3.16. To that end, let us consider

the following
0 I I 0 0 S
#=(5 6} 4=(s o) e=(5 o)
Hence
I 0 0 0
- P —
A—(O 0), andB—(I 0),
and hence
I 0 S 0
P = P —
AA —(0 0),andCB —(0 0).
Also,
00
AV
®7=(0 o)
This gives
00 S 0 I 0
_ p ?( — (BP)?) = _
(I - AAP)CBP(I (B))—(O I)(O 0)(0 I)_O'
Thus,

S 0
X—( 0 O)’ Y=0.

Example 5.8. This example is presented to clarify the outcome of Proposition 3.16. To proceed, let A, B, C € €2, such
that:

A(x1,x2,x3,-++) = (x1,0,0,--+),

B(xl/er X3, ) = (Or X2, 0/ Or e )r

Clx1, x2,%3,++) = (0,¢(x2), 0, -).

So,

AP(x1,%2,%3,-++) = (x1,0,0,--),

BP(x1,x2,%x3,-+) = (0,x2,0,0,--),

AAP(x1,x2,x3,++) = A(x1,0,0,---) = (x1,0,0,---),
CBP(x1,22,%3,-++) = C(0,22,0,0,--+) = (0,¢(x2)?,0,0,---),
BPBP(x1,x2,x3,+-+) = BP(0,x2,0,0,---) = (0,x2,0,0,-- ).
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From this, we conclude that

(I — AAP)(x1,x2,x3,+) = (0,x2, %3, ),
(I - (BP)Z)(xl’ X2,X3,° " ) = (xl/ 0/ X3, X4, " )/

(I - AAP)CBP(I - (BF)?) = 0.

Conseguently,
q Y X = 0, Y = (0’ _C(x2)2,0,0’...).

Example 5.9. In support of Proposition Corollary 3.17, we offer the following illustrative example. Let

I 0 I 0 25 0
a=(o o) #=(a5) e=(T5)

So,
I 0 I 0
P = p —p-1_
A (0 0)’B‘B ‘(0 1)
Also,
I 0 25 0
P = P —
(s 3) =[5 9)
This gives
I 0
PY2 =
@ =[5 1)

From this, we conclude that
(I - AAP)CBP(I - (BF)?) = 0.

Therefore

25 0
<[ 0), vo

6. Conclusion

In this work, we have studied various forms of the Sylvester-type operator equations in infinite-
dimensional Hilbert spaces, including the classical equation AX — XB = C and its generalized version
AX — YB = C, which introduces additional complexity due to the presence of two unknowns. We es-
tablished new necessary and sufficient conditions for the solvability of these equations by employing
generalized inverses under novel structural assumptions. Our analysis extended to the behavior of these
equations on specific subspaces, such as ker(A + I) and ker(B + I), as well as on pairs of distinct subspaces.
These investigations highlighted how properties such as involution and pseudo-inverses influence the ex-
istence and structure of solutions. The findings provide a unified perspective on classical and generalized
operator equations, enriching the theoretical framework and suggesting potential applications in areas such
as control theory, perturbation analysis, and operator theory. The illustrative examples further confirm the
practical relevance of the results and open the door to future research in more specialized settings.
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