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Abstract. This paper investigates several forms of Sylvester-type operator equations in infinite-dimensional
Hilbert spaces, focusing on both the classical equation AX−XB = C and its generalized version AX−YB = C,
which involves two unknowns. We establish new necessary and sufficient conditions for the existence of
solutions by employing generalized inverses under novel structural assumptions. Special attention is given
to the behavior of these equations when restricted to subspaces such as ker(A+ I) and ker(B+ I), and to cases
involving two distinct subspaces. The study highlights how operator properties-such as involution and
pseudo-inverses-govern solvability and solution structure. The results offer a unified theoretical frame-
work that encompasses both classical and generalized operator equations, with potential applications in
control theory, perturbation analysis, and related areas. Illustrative examples are provided to demonstrate
the applicability and relevance of the theoretical developments.

1. Introduction

The concept of invertibility plays a fundamental role across various branches of mathematics, including
algebra, numerical analysis, and spectral theory. A wide range of problems can be formulated in the form
of an operator equation BY = E, where B represents a given transformation often a matrix or a bounded
linear operator. When B is invertible, the equation has a unique solution given by Y = B−1E. However,
in many practical and theoretical contexts, B may fail to be invertible. This non-invertibility introduces
significant challenges, which motivated the development of an extended notion of inverse-known as the
generalized inverse or pseudo-inverse to facilitate solutions in such cases.

The origins of the generalized inverse can be traced back to Fredholm in 1903, who introduced a specific
type of pseudoinverse in the context of integral operators that are not classically invertible. A year later,
in 1904, Hilbert extended this idea through the introduction of the generalized Green’s function, which
corresponds to the integral kernel of the pseudoinverse of a differential operator. Subsequently, in 1912,
Hurwitz characterized the class of all pseudoinverses. Using the finite-dimensionality of the null spaces of
Fredholm operators, he provided a clear algebraic framework for constructing generalized inverses.

LetH be an infinite-dimensional separable Hilbert space, and let B(H) denote the algebra of bounded
linear operators onH . For any operator B(H), we denote its spectrum by σ(T).

Let T ∈ B(H). The concept of a generalized inverse was introduced in [17] as an element Tp
∈ B(H)

that satisfies the following conditions:
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1. TTpT = T,

2. TpTTp = Tp,

3. (TTp)∗ = TTp,

4. (TpT)∗ = TpT.

In 1947, Lyapunov discovered a profound relationship between the stability of solutions to systems of linear
differential equations and the existence of a positive definite solution to the matrix equation AX+XA∗ = −C,
where C is any positive definite matrix. This result, now known as Lyapunov’s theorem, has inspired
extensive research into related operator equations particularly the Sylvester equation AX − XB = C. This
equation has been studied not only in the context of finite-dimensional matrices but also within the broader
framework of bounded and unbounded operators on infinite-dimensional spaces.

Many authors have studied the equation (see [10–13]). Equation (1) was first examined in the finite-
dimensional case, where a foundational result was established by Sylvester in 1884 [11]. Remarkably,
analyzing the conditions for the existence of solutions to the equation AXB − EXD = C leads to significant
insights across a wide range of topics, including similarity transformations, commutativity of operators,
hyperinvariant subspaces, spectral operators, and differential equations. Some of these topics are discussed
below. We also derive several distinct explicit forms of the solution and illustrate their effectiveness in
applications such as perturbation theory. In addition, special attention is given to the operator equation
AXB − EXD = C, which presents further theoretical interest and practical relevance.

In 1987, J. Bevis, F. Hall, and R. Hartwig established the following Theorem:

Theorem 1.1. [6] Let X̃ denote the matrix whose entries are complex-conjugates of the entries of X ∈ Cm,m. Then
AX − X̃B = C over C has a solution if and only if

S−1

(
A C
0 B

)
, S =

(
A 0
0 B

)
,

for some nonsingular S.

Let H be an infinite-dimensional separable Hilbert space and let B(H) denotes the algebra of bounded
linear operators acting onH . If T ∈ B(H), we write σ(T) for the spectrum of T.

As highlighted in [6, 8, 10], a more comprehensive study of the Sylvester operator equation is warranted.
In particular, we focus on analyzing the existence and properties of solutions X and Y to the equation
AX − YB = C for given operators A,B, and C in B(H). This formulation also encompasses the classical
Sylvester equation AX − XB = C, which has been previously examined in works such as [7, 8].

In this paper, we investigate necessary and sufficient conditions for the existence of solutions to Sylvester-
type equations, with a particular emphasis on operator theoretic settings,

AX − XB = C, (1.1)

AXB − EXD = C, (1.2)

AXB − XD = C, (1.3)

and

AXB − X = C, (1.4)

receptively, where A,B,C ∈ B(H) are given. Moreover, we also explore a more generalized form of the
following Sylvester equations:

AX − YB = C, (1.5)
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AXB − EYD = C, (1.6)

AXB − YD = C, (1.7)

and

AXB − Y = C, (1.8)

receptively.
The structure of this paper is organized as follows. In Section 3, we study the classical Sylvester

operator equation of the form AX − XB = C, highlighting fundamental properties and solution conditions.
Section 4 extends this framework to a generalized version, AX − YB = C, and introduces a coupled system
involving two unknown operators. Subsection 4 focuses on analyzing the equation AX − XB = C when
restricted to two subspaces, providing additional insights into its behavior under decomposition. Sections
4.1 and 4.2 are dedicated to studying the same operator equation on the subspaces ker(A+ I) and ker(B+ I),
respectively, revealing structural conditions that affect solvability. In Section 5, we present illustrative
examples to demonstrate the applicability of the theoretical results. Finally, Section 6 concludes the paper
with a summary of the main findings and possible directions for future research.

2. Sylvester operator equation AX − XB = C

Let A,B,C,D,E ∈ B(H), where C , 0, let X be a solution to the system of Sylvester operator equations
(1.1)–(1.4), which arise in the study of certain control problems [2,4,6,9]. These equations have been
investigated in various contexts by numerous authors [9, 13, 14]. In this section, we examine several
properties of such a solution X. In particular, we establish the existence of a solution X to the system
(1.1)–(1.4) under appropriate conditions. Recall that Ap denotes the pseudo-inverse of the operator A.

Theorem 2.1. Let A,B,C ∈ B(H) be given.

i. If AB = BA and A∗ is injective. Then ApB = BAp.

ii. If AB = BA and B∗ is injective. Then ABp = BpA.

Proof. i. We have

AB = AApAB
= AApBA,

and

BA = BAApA
= ABApA.

Also,

AApBA = ABApA.

Since A∗ is injective, we get

ApB = BAp.

ii. We have

AB = ABBpB,
= BABpB,
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and

BA = BBpBA,
= BBpAB.

So,

BABpB = BBpAB.

Since B∗ is injective, we obtain

ABp = BpA.

Therefore, the desired results are achieved.

Theorem 2.2. Let A,B,C ∈ B(H) satisfy all the conditions stated in [12, 15, 16]. Under these assumptions, we
conclude the following result: If AB = BA then ApBp = BpAp.

Proof. Following [12, 16], we have (AB)p = BpAp. So,

(BA)p = ApBp,

(AB)p = BpAp,

(AB)p = (BA)p, because AB = BA.

Thus,

ApBp = BpAp.

Theorem 2.3. Let A,B,C ∈ B(H) such that BC = CB and AC = CA. Then the operator equation (1.1) has a
solution:

1. X = BpC if and only if

I − ABp + BpB = 0.

2. X = ApC if and only if

I − AAp + ApB = 0.

where Ap and Bp are the pseudo-inverse of A and B, respectively.

Proof. 1. Suppose that I − ABp + BpB = 0 where Bp is the pseudo-inverse of B. Then we multiply C on
the left

(I − ABp + BpB)C = 0,
C − ABpC + BpBC = 0,

ABpC − BpBC = C,
ABpC − BpCB = C.

Taking X = BpC where BC = CB, we get the desired result.
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2. Suppose that I − AAp + ApB = 0 where Ap is the pseudo-inverse of A, then we multiply C on the left

(I − AAp + ApB)C = 0,
C − AApC + ApBC = 0,

AApC − ApBC = C,
AApC − ApCB = C.

Taking X = ApC where AC = CA, we get the desired result.

Remark 2.4. Similarly, if we multiply C on the right, we obtain

• If C(I − ABp + BpB) = 0 taking X = CBp, we get the desired result.

• If C(I − AAp + ApB) = 0 taking X = CAp, we get the desired result.

Corollary 2.5. Let A,B,C ∈ B(H).

1 If A is invertible, then the operator equation (1.1) has a solution

X = A−1C. (2.1)

2 If B is invertible, then the operator equation (1.1) has a solution

X = B−1C. (2.2)

Proof. 1. If A is invertible, then A−1 = Ap. Hence we obtain the same result as in the case where AA is
invertible.

I − AAp + ApB = 0.

By applying equation (2.1), it follows from Theorem 2.3 that the operator equation (1.1) admits a
solution.

2. If B is invertible, then B−1 = Bp. Proceeding as in the case when A is invertible, we arrive at equation
(2.2).

Corollary 2.6. Let A,B,C ∈ B(H) be given. If A or B is is involution, then the operator equation (1.1) has a solution.

Proof. If A or B is involution, that is, A2 = I, then

AAp = I = ApA.

Hence
Ap = A−1

and hence A is invertible.
Similarly, if B2 = I, it follows that BBp = I = BpB and so Bp = B−1. Thus, the Corollary 2.5 confirms that

the operator equation (1.1) has a solution.

Theorem 2.7. Let A,B,C,D,E ∈ B(H) be given B commutes with C,E, and D, E commutes with A, and D, C
commutes with D, Ep∗ and Bp∗ are injectives. Then the operator equation(1.2) has a solution

X = EpEApCBp
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if and only if

(I − EpAApE + ApEDBp)EpCBp = 0,

where Ap,Bp and Ep are the pseudo-inverse of A,B and E, respectively.

Proof. Suppose that
(I − EpAApE + ApEDBp)EpCBp = 0,

where Ap, Bp and Ep denote the pseudo-inverses of A, B and E, respectively. Then,

(I − EpAApE + ApEDBp)EpCBp = 0,
EpCBp

− EpAApEEpCBp + ApEDBpEpCBp = 0,
EpAApEEpCBp

− ApEDBpEpCBp = EpCBp.

Since Bp∗is injective and from Theorem 2.1, we get

EpAApEEpCBpB − ApEDBpEpC = EpC,
EpAEpEApCBpB − EpEApCBpD = EpC.

Also, since Ep∗is injective and from Theorem 2.1, we obtain

AEpEApCBpB − EEpEApCBpD = C. (2.3)

Since equation (2.3) is of the form (1.2), a solution is given by

X = EpEApCBp.

Corollary 2.8. Let A,B,C,D,E ∈ B(H) be given such that: B commutes with C,E, and D, E commutes with D, C
commutes with D. The adjoint pseudo-inverses Ep∗ and Bp∗ are injectives, if and only if

(I − EpABpE + BpEDBp)EpCBp = 0.

In this case, the operator equation (1.2) has a solution if and only if

X = EpECBpBp

where Ap is the pseudo-inverse of A, Bp is the pseudo-inverse of B, Ep is the pseudo-inverse of E.

Proof. Assume that (I − EpABpE + BpEDBp)EpCBp = 0 where Bp is the pseudo-inverse of B. Then,

(I − EpABpE + BpEDBp)EpCBp = 0,
EpCBp

− EpABpEEpCBp + BpEDBpEpCBp = 0,
EpABpEEpCBp

− BpEDBpEpCBp = EpCBp.

Since Bp∗ is injective, we get

EpABpEEpCBpB − BpEDBpEpC = EpC.

The fact that Ep∗ is injective and for Theorem 2.1 give

AEpEBpCBpB − EEpEBpCBpD = C. (2.4)

Since equation (2.4) is of the same form as (1.2), a solution is given by

X = EpECBpBp.
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Corollary 2.9. Let A,B,C,D ∈ B(H), assume that Ep∗ and Bp∗ are injectives. Then,

1 If A is invertible,then the operator equation (1.2) has a solution

X = EpEA−1CBp.

2 If B is invertible,then the operator equation (1.2) has a solution

X = EpEApCB−1or X = EpEC(B−1)2.

3 if E is invertible,then the operator equation (1.2) has a solution

X = ApCBpor X = C(Bp)2.

Proof. It follows from Theorem 2.7 and corollary 2.8 that the operator equation (1.2) has a solution

(I − EpAApE + ApEDBp)EpCBp = 0 or (I − EpABpE + BpEDBp)EpCBp = 0.

Taking

If A is invertible, then A−1 = Ap
⇒ X = EpEA−1CBp

If B is invertible, then B−1 = Bp
⇒ X = EpEApCB−1or X = EpEC(B−1)2

If E is invertible, then E−1 = Ep
⇒ X = ApCBpor X = C(Bp)2.

Corollary 2.10. Let A,B,C ∈ B(H) be given,Ep∗ and Bp∗ are injectives. If A or B is is involution, then the operator
equation (1.2) has a solution.

Proof. If A or B is involution ie A2 = I ,it follows that AAp = I = ApA and so Ap = A−1. Hence A is invertible.
Similarly, B2 = I ,it follows that BBp = I = BpB and so Bp = B−1Then we get that it follows from corollary

2.9 that the operator equation (1.2) has a solution .

Remark 2.11. Let A,B,C ∈ B(H) be given,Ep∗ and Bp∗ are injectives. If A and B are invertible et A−1 = B−1, then
the operator equation (1.2) has a solution

X = EpEA−1CA−1or X = EpEC(A−1)2.

Remark 2.12. Let A,B,C ∈ B(H) be given,Ep∗ and Bp∗ are injectives. If A and B are invertible et A−1 = B−1 = E−1,
then the operator equation (1.2) has a solution

X = A−1CA−1or X = C(A−1)2.

Remark 2.13. Let A,B,C ∈ B(H) be given. If B and E are invertible, then the operator equation

AXB − EXD = C⇒ E−1AX − XDB−1 = E−1CB−1.

in the form of equation (1.1), then the solution has a solution

X = ApCB−1or X = (CB−1)2.

Proposition 2.14. Let A,B,C,D ∈ B(H) such that DB = BD ,DC = CD, Bp∗ is injective. Then the operator
equation(1.3), has a solution

X = ApCBp
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if and only if

(I − AAp + ApDBp)CBp = 0

where Ap and Bp are the pseudo-inverse of A and B, respectively.

Proof. Suppose that (I − AAp + ApDBp)CBp = 0 where Ap is the pseudo-inverse of A

(I − AAp + ApDBp)CBp = 0,
CBp
− AApCBp + ApDBpCBp = 0,

AApCBp
− ApDBpCBp = CBp.

Since Bp∗is injective

AApCBpBBp
− ApDBpCBp = CBp

and for Theorem 2.1

AApCBpB − ApCBpD = C. (2.5)

Since the equation (2.5) is of the form (1.3), then the solution taking X = ApCBp.

Corollary 2.15. Let A,B,C,D ∈ B(H) such that DB = BD,DC = CD, Bp∗ is injective if and only if

(I − ABp + BpDBp)CBp = 0.

Then the operator equation (1.3) has a solution

X = BpCBp

where Bp are the pseudo-inverse of B.

Proof. Suppose that (I − ABp + BpDBp)CBp = 0 where Bp is the pseudo-inverse of B

(I − ABp + BpDBp)CBp = 0,
CBp
− ABpCBp + BpDBpCBp = 0,

ABpCBp
− BpDBpCBp = CBp,

ABpCBpBBp
− BpDBpCBp = CBp.

The fact that Bp∗ is injective

ABpCBpB − BpCBpD = C

and Theorem 2.1 give

ACBpBpB − CBpBpD = C (2.6)

Since the eqeation (2.6) is of the form (1.3), then the solution taking X = C(Bp)2.

Corollary 2.16. Let A,B,C,D ∈ B(H) , Bp∗is injective be given.

1. If A is invertible, then the operator equation (1.3) has a solution

X = A−1CBp. (2.7)

2. If B is invertible, then the operator equation (1.3) has a solution of the form

X = ApCB−1 or X = C(B−1)2. (2.8)
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Proof. 1. If A is invertible, then A−1 = Ap. Hence

(I − AAp + ApDBp)CBp = 0 or (I − ABp + BpDBp)CBp = 0.

It follows from Proposition 2.14 and Corollary 2.15 that (2.7) solves the operator equation(1.3).

2. If B is invertible and B−1 = Bp, then the same reasoning used for the case of A invertible leads to
equation (2.8).

Corollary 2.17. Let A,B,C ∈ B(H), assume that Bp∗ is injective. If A or B is is involution, then the operator
equation (1.3) has a solution.

Proof. If A or B is involution that is A2 = I, it follows that AAp = I = ApA and so Ap = A−1. Hence A is
invertible.

Similarly, if B2 = I, it follows that BBp = I = BpB and so Bp = B−1. Following Corollary 2.16, we deduce
that the operator equation(1.3) has a solution.

Remark 2.18. Let A,B,C ∈ B(H), assume that Bp∗ is injective. If A and B are invertible and A−1 = B−1, then the
operator equation (1.3) has a solution of the form

X = A−1CA−1 or X = C(B−1)2.

Remark 2.19. Let A,B,C ∈ Ł(H). If B is invertible, then the operator equation

AXB − XD = C⇒ AX − XDB−1 = CB−1

has a solution

X = ApCB−1or X = C(B−1)2.

Remark 2.20. Let A,B,C,D,E ∈ B(H). The operator equation (1.2) reduces to equation (1.3) if E = I.

Proposition 2.21. Let A,B,C ∈ B(H), assume that BC = CB, Bp∗ is injective. Then the operator equation (1.4) has
a solution X = ApCBp, if and only if

(I − AAp + ApBp)CBp = 0,

where Ap and Bp are the pseudo-inverse of A and B, respectively.

Proof. Suppose that (I − AAp + ApBp)CBp = 0 where Ap is the pseudo-inverse of A

(I − AAp + ApBp)CBp = 0,
CBp
− AApCBp + ApBpCBp = 0,

AApCBp
− ApBpCBp = CBp,

AApCBpBBp
− ApBpCBp = CBp.

Since Bp∗ is injective

AApCBpB − ApCBp = C. (2.9)

Given that equation (2.9) has the same structure as equation (1.4), it admits the solution X = ApCBp.

Corollary 2.22. Let A,B,C ∈ B(H). Assume that BC = CB. So, the pseudo-inverse Bp∗ is injective if and only if,

(I − ABp + (Bp)2)CBp = 0.
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In this case, the operator equation (1.4) has a solution

X = BpCBp,

where Bp are the pseudo-inverse of B.

Proof. Suppose that (I − ABp + (Bp)2)CBp = 0 where Bp is the pseudo-inverse of B

(I − ABp + BpBp)CBp = 0,
CBp
− ABpCBp + BpBpCBp = 0,

ABpCBp
− BpBpCBp = CBp,

ABpCBpBBp
− BpBpCBp = CBp.

Since Bp∗ is injective

ABpCBpB − BpCBp = C. (2.10)

Since the equation (2.10) takes the form (1.4), then X = BpCBp solves it. X = BpCBp.

Corollary 2.23. Let A,B,C ∈ B(H). We have

1. If A is invertible and Bp∗ is injective, then the operator equation (1.4) has a solution

X = A−1CBp. (2.11)

2. If B is invertible and Bp∗ is injective, then the operator equation (1.4) has a solution

X = ApCB−1, or X = B−1CB−1. (2.12)

Proof. 1. If A is invertible, then A−1 = Ap. Then

(I − AAp + ApBp)CBp = 0 or (I − ABp + BpBp)CBp = 0.

Proposition 2.14 and Corollary 2.22 confirm that the operator equation (1.4) has a solution of the form
(2.11).

2. If B is invertible with B−1 = Bp, then the same reasoning used for the invertibility of A leads to equation
(2.12).

Corollary 2.24. Let A,B,C ∈ B(H). If either A or B is an involution, then the operator equation (1.4) has a solution.

Proof. If A or B is involution, it follows that AAp = I = ApA and so Ap = A−1. Hence A is invertible.
Similarly, if B2 = I, then B is an involution, which implies BBp = I = BpB and hence Bp = B−1. It then

follows from the corollary that the operator equation (1.4) admits a solution.

Remark 2.25. Let A,B,C ∈ B(H). If B is invertible, then the operator equation

AXB − X = C⇒ AX − XB−1 = CB−1

witch takes the form (1.1) has a solution

X = ApCB−1or X = B−1CB−1.

Remark 2.26. Let A,B,C,D,E ∈ B(H). Then

1. The operator equation (1.3) in the form of equation (1.1) if D = I.

2. The operator equation (1.2) in the form of equation (1.4) if E = D = I.
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3. Sylvester operator equation of the form AX − YB = C

Let A,B,C,D,E ∈ B(H) with C , 0. Let X,Y be a solution pair to the system of generalized operator
equations (1.5), (1.6), (1.7), and (1.8), which arise in the study of certain control problems [11, 17]. This
system has been investigated by several authors in various contexts [6, 8]. In particular, [9] established
necessary and sufficient conditions for the existence of a solution pair (X,Y) to the generalized Sylvester
equation (1.5).

In this section, we explore further properties of such a solution pair (X,Y). Specifically, we prove the
existence of solutions to the system (1.5)-(1.8) under suitable assumptions. Recall that Bp denotes the
pseudo-inverse of the operator B.

Theorem 3.1. Let A,B,C,D,E ∈ B(H) Ep∗ and Bp∗ are injective be given. Then the operator equation (1.6) has a
solution pair

(X,Y) = (ApEEPCBp, −Ep(I − AAPEEp)CBPBDPD

if and only if

(I − EpAApE)EpCBp(I − BDPDBP) = 0,

where Ap is the pseudo-inverse of A, Bp is the pseudo-inverse of B, Dp is the pseudo-inverse of D, Ep is the pseudo-
inverse of E.

Proof. Assume that
(I − EpAApE)EpCBp(I − BDPDBP) = 0,

where Ap, Bp, Dp, and Ep denote the pseudo-inverses of the operators A, B, D, and E, respectively.
So,

(I − EpAApE)EpCBp(I − BDPDBP) = 0,

(EpCBp
− EpAApEEpCBp)(I − BDPDBP) = 0,

EpCBp
− EpAApEEpCBp

− EpCBpBDPDBP + EpAApEpCBpBDPDBP = 0,

EpAApEEpCBp + Ep(I − AAPEEp)CBPBDPDBP = EpCBp.

Since Ep∗and Bp∗ are injective

AApEEpCBpB + EEp(I − AAPEEp)CBPBDPD = C. (3.1)

Since equation (3.1) is of the form (1.6), a corresponding solution pair (X,Y) is given by

(X,Y) = (ApEEPCBp,−Ep(I − AAPEEp)CBPBDPD.

Corollary 3.2. Let A,B,C,D,E ∈ B(H), and suppose that Ep∗and Bp∗ are injective.

1. If A is invertible, then the operator equation (1.6) admits a solution pair

(X,Y) = (A−1EEPCBp,−Ep(I − EEp)CBPBDPD).

2. If B is invertible, then the operator equation (1.6) admits a solution pair

(X,Y) = (ApEEPCB−1,−Ep(I − AAPEEp)CDPD)
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3. If D is invertible, then the operator equation (1.6) admits a solution pair

(X,Y) = (ApEEPCBp,−Ep(I − AAPEEp)CBPB)

4. If E is invertible, then the operator equation (1.6) admits a solution pair

(X,Y) = (ApCBp,−E−1(I − AAP)CBPBDPD).

Here, Ap, Bp, Dp, and Ep denote the pseudo-inverses of the operators A, B, D, and E, respectively.

Proof. It follows from Theorem 3.1 that the operator equation (1.6) has a solution if and only if

(I − AAp)CBp(I − BDPDBP) = 0.

Note that

If A is invertible, then A−1 = Ap
⇒ (X,Y) = (A−1EEPCBp,−Ep(I − EEp)CBPBDPD).

If B is invertible, then B−1 = Bp
⇒ (X,Y) = (ApEEPCB−1,−Ep(I − AAPEEp)CDPD).

If D is invertible, then D−1 = Dp
⇒ (X,Y) = (ApEEPCBp,−Ep(I − AAPEEp)CBPB).

If E is invertible, then E−1 = Ep
⇒ (X,Y) = (ApCBp,−E−1(I − AAP)CBPBDPD).

Remark 3.3. If A and E are invertibles, then the operator equation (1.6) has a solution pair (X,Y) = (A−1CBp, 0).

Corollary 3.4. Let A,B,C ,D,E ∈ B(H) be given. If A or B or D or E is involution, then the operator equation (1.6)
has a solution.

Proof. Suppose that any one of the operators A, B, D, or E is an involution, i.e., satisfies A2 = I, B2 = I,
D2 = I, or E2 = I, respectively.

It follows that AAp = I = ApA and so Ap = A−1. Hence A is invertible. By Corollary 3.2, the operator
equation (1.6) has a solution.

Similarly, B2 = I, it follows that BBp = I = BpB and so Bp = B−1. Then we get the same proof of B
invertible.

The same reasoning applies if D2 = I then DDp = I = DpD and so Dp = D−1, showing that D is invertible.
Finally, if E2 = I, we conclude that EEp = I = EpE and so Ep = E−1, and E is invertible.

Remark 3.5. Let A,B,C,D ∈ B(H). If B and E are invertible, then the operator equation

AXB − EYD = C⇒ E−1AX − YDB−1 = E−1CB−1

takes the form of equation (1.5), (see, [9]).

Proposition 3.6. Let A,B,C,D,E ∈ B(H), The following statements hold.
If (1.6) has a solution pair (X,Y) , then((

A C
0 D

)
,

(
I 0
0 B

)
,

(
E 0
0 I

))

and
((

A 0
0 D

)
,

(
I 0
0 B

)
,

(
E 0
0 I

))
are equivalent onH ⊕H .
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Proof. Let (1.6) has a solution pair (X,Y) , then(
I EY
0 I

) (
A C
0 D

)
, =

(
A C + EYD
0 D

)
(

A 0
0 D

) (
I XB
0 D

)
, =

(
A AXB
0 D

)
(

A C + YD
0 D

)
=

(
A AXB
0 D

)
and(

I X
0 I

) (
I 0
0 B

)
, =

(
I XB
0 B

)
(

I 0
0 B

) (
I XB
0 I

)
, =

(
I XB
0 B

)
and(

I EY
0 I

) (
E 0
0 I

)
, =

(
E EY
0 I

)
(

E 0
0 I

) (
I Y
0 I

)
, =

(
E EY
0 I

)

Proposition 3.7. Let A,B,C ∈ B(H). Suppose that (M,W,L) and (N,W,L) are equivalent on H⊕H, meaning there
exist invertible operators U and V such that UM = NV, UW = WV and UL = LV with the additional condition
that NV = VN. Then the operator equation (1.6) admits a solution pair (X,Y).

Proof. Suppose that[
M =

(
A C
0 I

)
,W =

(
I 0
0 B

)
, L =

(
E 0
0 I

)]
and [

N =
(

A 0
0 I

)
,W =

(
I 0
0 B

)
, L =

(
E 0
0 I

)]

are equivalent on H⊕H. Then there exist invertible operator matrices U =
(

U1 U2
U3 U4

)
and V =

(
V1 V2
V3 V4

)
on

H ⊕H such that

UM = NV(
U1 U2
U3 U4

) (
A C
0 D

)
=

(
A 0
0 D

) (
V1 V2
V3 V4

)
UW = WV(

U1 U2
U3 U4

) (
I 0
0 B

)
=

(
I 0
0 B

) (
V1 V2
V3 V4

)
UL = LV(

U1 U2
U3 U4

) (
E 0
0 I

)
=

(
E 0
0 I

) (
V1 V2
V3 V4

)
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This implies
U1A = AV1

U1C +U2D = AV2
U3A = DV3

U3C +U4D = DV4

and 
U1 = V1

U2B = V2
U3 = BV3
U4B = V4

and 
U1E = EV1
U2 = EV2
U3E = V3
U4 = V4

then

U1C +U2D = AU2B
U1C = AU2B − EV2D

U3C +U4D = V4 D where NV = VN
U1C = AU2B − EV2D.

Since U is invertible, thenU1is invertible , it follows that

C = AU1
−1U2B − EU1

−1V2D (3.2)

Since the equation (3.2) takes the form (1.6), then the solution take

X = U1
−1U2 ; Y = U1

−1V2.

Proposition 3.8. Let A,B,C,D ∈ B(H) ,Bp∗ is injective. Then the operator equation (1.7) has a solution pair

(X,Y) = (ApCBp,−(I − AAp)CBPBDp

if and only if

(I − AAp)CBp(I − BDPDBP) = 0

where Ap is the pseudo-inverse of A, Bp is the pseudo-inverse of B, Dp is the pseudo-inverse of D.

Proof. Suppose that (I − AAp)CBp(I − BDPDBP) = 0,where Ap is the pseudo-inverse of A, Bp is the pseudo-
inverse of B, Dp is the pseudo-inverse of D.
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Then

(I − AAp)CBp(I − BDPDBP) = 0
(CBp

− AApCBp)(I − BDPDBP) = 0
CBp
− AApCBp

− CBPBDPDBP + AApCBPBDPDBP = 0
AApCBp + (I − AAP)CBPBDPDBP = CBp.

Since Bp∗ is injective, we get

AApCBpB + (I − AAP)CBPBDPD = C. (3.3)

Since the equation (3.3) is of the form (1.7), then the solution pair takes the form

(X,Y) = (ApCBp,−(I − AAp)CBPBDp).

Corollary 3.9. Let A,B,C,D ∈ B(H) , Bp∗is injective be given,

1. If A is invertible, then the operator equation (1.7) has a solution pair

(X,Y) = (A−1CBp, 0) . (3.4)

2. IfA is invertible, then the operator equation (1.7) has a solution pair

(X,Y) = (ApCB−1,−(I − AAP)CDPD). (3.5)

3. If D is invertible, then the operator equation (1.7) has a solution pair

(X,Y) = (ApCBp,−(I − AAP)CBPB) (3.6)

where Ap is the pseudo-inverse of A, Bp is the pseudo-inverse of B,Dp is the pseudo-inverse of D.

Proof. 1 If A is invertible , then A−1 = Ap. Then we get that

(I − AAp)CBp(I − BDPDBP) = 0.

It follows from Proposition 3.1 that the operator equation (1.7) has a solution Taking (3.4).

2 If B is invertible , then B−1 = Bp. Then we get that (3.5) .

3 If D is invertible , then D−1 = Dp. Then we get that (3.6).

Corollary 3.10. Let A,B,C ∈ B(H) be given. If A or B is is involution, then the operator equation (1.7) has a
solution.

Proof. If A or B is involution ie A2 = I, it follows that AAp = I = ApA and so Ap = A−1. Hence A is invertible.
It then follows from Corollary 3.9 that the operator equation (1.7) admits a solution.
Similarly, if B2 = I, then B is an involution and hence BBp = I = BpB, which implies Bp = B−1, so B is

invertible. Thus, the same conclusion as in the case of A applies.
Likewise, if D2 = I, then DDp = I = DpD, and so Dp = D−1 Again, the same reasoning as for A holds.
Finally, if E2 = I, then EEp = I = EpE and so Ep = E−1, and similarly The same conclusion follows.

Remark 3.11. Let A,B,C,D ∈ B(H) be given If B is invertible, then the operator equation

AXB − YD = C⇒ AX − YDB−1 = CB−1



A. Yakoub, A. Mennouni / Filomat 40:2 (2026), 371–396 386

in the form of equation (1.5) ,in article[9] .

Remark 3.12. Let A,B,C,D,E ∈ B(H). The operator equation (1.6) takes the form of equation (1.7) if E = I.

Proposition 3.13. Let A,B,C ∈ B(H), The following statements hold.
If (1.7) has a solution pair (X,Y) , then(

A 0
0 I

)
and

(
A C
0 I

)
are equivalent on H ⊕H.

Proof. Let (1.7) has a solution pair (X,Y), then(
I YD
0 I

) (
A C
0 I

)
=

(
A 0
0 I

) (
A XB
0 I

)
(

A C + YD
0 I

)
=

(
A AXB
0 I

)
.

Corollary 3.14. Let A,B,C ∈ B(H). If (1.7) has a solution pair (X,Y) , then((
A C
0 D

)
,

(
I 0
0 B

))
and

((
A 0
0 D

)
,

(
I 0
0 B

))
are equivalent on H ⊕H.

Proof. Let (1.7) has a solution pair (X,Y) , then(
I Y
0 I

) (
A C
0 D

)
, =

(
A C + YD
0 D

)
(

A 0
0 D

) (
I XB
0 D

)
, =

(
A AXB
0 D

)
(

A C + YD
0 D

)
=

(
A AXB
0 D

)
and (

I X
0 I

) (
I 0
0 B

)
, =

(
I XB
0 B

)
(

I 0
0 B

) (
I XB
0 I

)
=

(
I XB
0 B

)
.

Proposition 3.15. Let A,B,C ∈ B(H). If (M,W) and (N,W) are equivalent on H ⊕ H such that UM = NV and
UW =WV where U and V are invertible, and NV = VN also (U1 +U3) is invertible, then (1.7) has a solution pair
(X,Y).

Proof. Suppose that[
M =

(
A C
0 D

)
,W =

(
I 0
0 B

)]
and

[
N =

(
A 0
0 D

)
,W =

(
I 0
0 B

)]



A. Yakoub, A. Mennouni / Filomat 40:2 (2026), 371–396 387

are equivalent on H⊕H. Then there exist invertible operator matrices U =
(

U1 U2
U3 U4

)
and V =

(
V1 V2
V3 V4

)
on

H ⊕H such that

UM = NV(
U1 U2
U3 U4

) (
A C
0 D

)
=

(
A 0
0 D

) (
V1 V2
V3 V4

)
UW = WV(

U1 U2
U3 U4

) (
I 0
0 B

)
=

(
I 0
0 B

) (
V1 V2
V3 V4

)
.

This implies
U1A = AV1

U1C +U2D = AV2
U3A = DV3

U3C +U4D = DV4

and 
U1 = V1

U2B = V2
U3 = BV3
U4B = V4

then

U1C +U2D = AU2B
U3C +U4D = V4 D, where NV = VN
(U1 +U3)C = AU2B − (U2 +U4 − V4)D

Since (U1 +U3) is invertible, it follows that

C = A(U1 +U3)−1U2B − (U1 +U3)−1(U2 +U4 − V4)D. (3.7)

Since the equation (3.7) takes the form (1.7), then the solution is given by

X = (U1 +U3)−1U2 ; Y = (U1 +U3)−1(U2 +U4 − V4).

Proposition 3.16. Let A,B,C ∈ B(H), Bp∗ injective be given. Then the operator equation (1.8) has a solution pair

(X,Y) = (ApCBp,−(I − AAp)C(BP)2

if and only if

(I − AAp)CBp(I − (BP)2) = 0

where Ap is the pseudo-inverse of A, Bp is the pseudo-inverse of B.

Proof. Suppose that (I−AAp)CBp(I− (BP)2) = 0,where Ap is the pseudo-inverse of A, Bp is the pseudo-inverse
of B.
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Hence

(I − AAp)CBp(I − (BP)2) = 0,
(CBp

− AApCBp)(I − (BP)2) = 0,
CBp
− AApCBp

− C(BP)3 + AApC(BP)3 = 0,
AApCBpBBp + (I − AAP)C(BP)3 = CBp.

Since Bp∗ injective

AApCBpB + (I − AAP)C(BP)2 = C (3.8)

Since the equation (3.8) is of the form (1.8), then the solution is given by (X,Y) = (ApCBp,−(I−AAp)C(BP)2.

Corollary 3.17. Let A,B,C ∈ B(H) be given:

1. If A is invertible, then the operator equation (1.8) has a solution pair

(X,Y) = (A−1CBp, 0) . (3.9)

2. If B is invertible, then the operator equation (1.8) has a solution pair

(X,Y) = (ApCB−1,−(I − AAp)C(B−1)2), (3.10)

where Ap is the pseudo-inverse of A, Bp is the pseudo-inverse of B.

Proof. 1 If A is invertible, then A−1 = Ap. Thus,

(I − AAp + ApBp)CBp = 0

it follows from Proposition 3.16 that the operator equation (1.8) has a solution Taking (3.9) .

2 If B is invertible, then B−1 = Bp. Then we get that (3.10).

Corollary 3.18. Let A,B,C ∈ B(H) be given. If A or B is is involution, then the operator equation (1.8) has a
solution.

Proof. If A or B is involution ie A2 = I ,it follows that AAp = I = ApA and so Ap = A−1. Hence A is invertible.
Similarly, B2 = I ,it follows that BBp = I = BpB and so Bp = B−1Then we get that it follows from corollary

3.17 that the operator equation (1.8) has a solution .

Remark 3.19. Let A,B,C ∈ B(H) be givenIf B is invertible, then the operator equation

AXB − Y = C⇒ AX − YB−1 = CB−1

in the form of equation (1.5) ,in article[9] .

Remark 3.20. Let A,B,C,D and E ∈ B(H) be given.

1. the operator equation (1.7) in the form of equation (1.8) if D = I.

2. the operator equation (1.6) in the form of equation (1.8) if E = D = I.

Proposition 3.21. Let A,B,C ∈ B(H), The following statements hold.
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If (1.8) has a solution pair (X,Y) , then(
A 0
0 I

)
and

(
A C
0 I

)
are equivalent on H ⊕H.

Proof. Let (1.8) has a solution pair (X,Y) , then(
I Y
0 I

) (
A C
0 I

)
=

(
A 0
0 I

) (
A XB
0 I

)
(

A C + Y
0 I

)
=

(
A AXB
0 I

)
.

Proposition 3.22. Let A,B,C ∈ B(H), The following statements hold
if (M,W) and (N,W) are equivalent on H ⊕ H such that UM = NV and UW = WV where U and V are

invertible,and (U1 +U3) is invertible, then (1.8) has a solution pair (X,Y).

Proof. Suppose that[
M =

(
A C
0 I

)
,W =

(
I 0
0 B

)]
and

[
N =

(
A 0
0 I

)
,W =

(
I 0
0 B

)]

are equivalent on H⊕H. Then there exist invertible operator matrices U =
(

U1 U2
U3 U4

)
and V =

(
V1 V2
V3 V4

)
on

H ⊕H such that

UM = NV(
U1 U2
U3 U4

) (
A C
0 I

)
=

(
A 0
0 I

) (
V1 V2
V3 V4

)
UW = WV(

U1 U2
U3 U4

) (
I 0
0 B

)
=

(
I 0
0 B

) (
V1 V2
V3 V4

)
This implies

U1A = AV1
U1C +U2 = AV2

U3A = V3
U3C +U4 = V4

and
U1 = V1

U2B = V2
U3 = BV3
U4B = V4

.

So

U1C +U2 = AU2B
U3C +U4 = V4

(U1 +U3)C = AU2B − (U2 +U4 − V4).
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Since (U1 +U3) is invertible, it follows that

C = A(U1 +U3)−1U2B − (U1 +U3)−1(U2 +U4 − V4). (3.12)

Since the equation (3.12) is of the form (1.8), then the solution take

X = (U1 +U3)−1U2, Y = (U1 +U3)−1(U2 +U4 − V4).

4. Operator equation AX − XB = C on two subspace ker(A + I) and ker(B + I)

4.1. Operator equation AX − XB = C on the subspace ker(A + I)

If A,B and C ∈ B(H), such that σ(A) ∩ σ(B) = ⊘ can be put in the form of

(A + I)X − X(B + I) = C.

Now let us consider x ∈ ker(A + I). So,

−xX(B + I) = xC,
xX = −xC(B + I)−1.

Thus, the solution of the equation (1.1) on the subspace ker(A + I) coincides with −C(B + I)−1 that is,

X |ker(A+I)= −C(B + I)−1
|ker(A+I)

if A,B , C,D and E ∈ B(H), such that σ(A) ∩ σ(D) = ⊘. Also,

(A + I)X(B + I) − (E + I)X(D + I) = C.

Consider x ∈ ker(A + I). So,

−x(E + I)X(D + I) = xC,
X = −(E + I)−1C(D + I)−1.

Hence the solution of the equation (1.2) on the subspace ker(A+ I) ccoincides with −(E+ I)−1C(D+ I)−1 that
is,

X |ker(A+I)= −(E + I)−1C(D + I)−1
|ker(A+I) .

4.2. Operator equation AX − XB = C on the subspace ker(B + I)

If A,B and C ∈ B(H), such that σ(A) ∩ σ(B) = ⊘ then

(A + I)X − X(B + I) = C.

Let us consider x ∈ ker(B + I) then

(A + I)Xx = Cx
Xx = (A + I)−1Cx.

Hence the solution of the equation (1.1) on the subspace ker(B + I) Coincides with (A + I)−1C that is, we
have

X |ker(B+I)= (A + I)−1C |ker(B+I) .
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If A,B , C,D and E ∈ B(H), such that σ(A) ∩ σ(D) = ⊘. then

(A + I)X(B + I) − (E + I)X(D + I) = C.

Consider x ∈ ker(B + I) then

−x(E + I)X(D + I) = Cx,
X = −(E + I)−1C(D + I)−1.

Thus, the solution of the equation (1.2) on the subspace ker(B+ I) coincides with −(E+ I)−1C(D+ I)−1 that is,

X |ker(B+I)= −(E + I)−1C(D + I)−1
|ker(B+I) .

5. Examples

Example 5.1. Let us begin with the following example to illustrate Theorem 2.1. To this end, Let

A =
(

I
3 0
0 I

3

)
and B =

(
2I 0
I I

)
.

So,

Ap =

(
3I 0
0 3I

)
and Bp =

(
1
2 I 0
1
2 I I

)
.

Also,

A∗ =
(

I
3 0
0 I

3

)
is injective. Moreover,

AB = BA =
(

2
3 I 0
1
3 I 1

3 I

)
,

and

ABp = BpA =
(

1
6 I 0
1
6 I 1

3 I

)
.

Example 5.2. This example illustrates the results of Theorem 2.2. To this end, let

A =
(

I I
I I

)
and B =

(
2I 0
0 2I

)
.

So,

Ap =
1
4

(
I I
I I

)
and Bp =

(
1
2 I 0
0 1

2 I

)
.

Also,

AB = BA = 2
(

I I
I I

)
.

Moreover,

ApBp = BpAp =
1
8

(
I I
I I

)
.

Example 5.3. The following example serves to illustrate the results of Theorem 2.3. Tn order to achieve this goal, let
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A,B and C on ℓ2(N)

A(en) = 2λnen, for all n ∈ N with λn , 0,
B(en) = λnen, for all n ∈ N with λn , 0,

C(en) = λ2
nen, for all n ∈ N with λn , 0.

So,

Ap(en) =
1

2λn
en, for all n ∈ N with λn , 0,

Bp(en) =
1
λn

en, for all n ∈ N with λn , 0.

Also,

BC(en) = CB(en) = λ3
nen, for all n ∈ N with λn , 0,

ABp(en) = 2en, for all n ∈ N,
BBp(en) = en, for all n ∈ N.

Hence
(I − ABp + BBp) = 0.

This gives
X = BpC = λnen, for all n ∈ N with λn , 0.

Example 5.4. This example serves to illustrate the conclusions of Corollary 2.5. To that end, let us define the
following:

B =
(

2I I
0 2I

)
, A =

(
4I 2I
0 4

)
, and C =

(
S1 S2
0 S1

)
.

So,

Bp = B−1 =

(
1
2 I −

1
4 I

0 1
2 I

)
and

BC = CB =
(

2S1 2S2 + S1
0 2S1

)
.

Hence

X = BpC =
( S1

2
S2
2 −

S1
4

0 S1
2

)
and

C∗ =
(

S1 0
S2 S1

)
is injective. Then

X = BpC = CBp =

( S1
2

S2
2 −

S1
4

0 S1
2

)
.

Example 5.5. This example serves to illustrate the results of Proposition 2.14. To that end, let A,B,C,D ∈ ℓ2 such
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that

A(x1, x2, x3, · · · ) = (x1, 0, 0, · · · ),
B(x1, x2, x3, · · · ) = (0, x2, 0, 0, · · · ),
C(x1, x2, x3, · · · ) = (x1 + x2, 0, 0, · · · ),
D(x1, x2, x3, · · · ) = (x1, x2, 0, 0, · · · ).

So,

Ap(x1, x2, x3, · · · ) = (x1, 0, 0, · · · ),
Bp(x1, x2, x3, · · · ) = (0, x2, 0, 0, · · · ).

Therefore,

AAp(x1, x2, x3, · · · ) = A(x1, 0, 0, · · · ) = (x1, 0, 0, · · · ),
CBp(x1, x2, x3, · · · ) = C(0, x2, 0, 0, · · · ) = (x2, 0, 0, · · · ).

Also,
ApDBp(x1, x2, x3, · · · ) = ApD(0, x2, 0, 0, · · · ) = Ap(0, x2, 0, 0, · · · ) = 0.

Hence
(I − AAp)(x1, x2, x3, · · · ) = (0, x2, x3, · · · )

and hence
(I − AAp)CBp(x1, x2, x3, · · · ) = 0.

Thus,
ApDBpCBp(x1, x2, x3, · · · ) = 0.

Also,
(I − AAp + ApDBp)CBp = 0.

Consequently,
X = (x2, 0, 0, · · · ).

Example 5.6. This example serves to illustrate the results of Proposition 2.21. To that end, let us define the following:

A =
(

I 0
0 0

)
, B =

(
0 I
0 0

)
, and C =

(
−I I
0 0

)
.

So,

Ap =

(
I 0
0 0

)
and Bp =

(
0 0
I 0

)
.

Hence

(Bp)∗ =
(

0 0
I 0

)
is injective. Also, we have

AAp =

(
I 0
0 0

)
, and CBp =

(
I 0
0 0

)
.

Hence

ApBp =

(
0 0
0 0

)
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This gives,

I − AAp + ApBp =

(
0 0
0 I

)
and

(I − AAp + ApBp)CBp =

(
0 0
0 I

) (
I 0
0 0

)
= 0.

Thus,

X =
(

I 0
0 0

)
.

Example 5.7. This example serves to illustrate the results of Proposition Proposition 3.16. To that end, let us consider
the following

B =
(

0 I
0 0

)
, A =

(
I 0
0 0

)
, C =

(
0 S
0 0

)
.

Hence

Ap =

(
I 0
0 0

)
, and Bp =

(
0 0
I 0

)
,

and hence

AAp =

(
I 0
0 0

)
, and CBp =

(
S 0
0 0

)
.

Also,

(Bp)2 =

(
0 0
0 0

)
This gives

(I − AAp)CBp(I − (Bp)2) =
(

0 0
0 I

) (
S 0
0 0

) (
I 0
0 I

)
= 0.

Thus,

X =
(

S 0
0 0

)
, Y = 0.

Example 5.8. This example is presented to clarify the outcome of Proposition 3.16. To proceed, let A,B,C ∈ ℓ2, such
that:

A(x1, x2, x3, · · · ) = (x1, 0, 0, · · · ),
B(x1, x2, x3, · · · ) = (0, x2, 0, 0, · · · ),

C(x1, x2, x3, · · · ) = (0, c(x2)2, 0, · · · ).

So,

Ap(x1, x2, x3, · · · ) = (x1, 0, 0, · · · ),
Bp(x1, x2, x3, · · · ) = (0, x2, 0, 0, · · · ),
AAp(x1, x2, x3, · · · ) = A(x1, 0, 0, · · · ) = (x1, 0, 0, · · · ),

CBp(x1, x2, x3, · · · ) = C(0, x2, 0, 0, · · · ) = (0, c(x2)2, 0, 0, · · · ),
BpBp(x1, x2, x3, · · · ) = Bp(0, x2, 0, 0, · · · ) = (0, x2, 0, 0, · · · ).
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From this, we conclude that

(I − AAp)(x1, x2, x3, · · · ) = (0, x2, x3, · · · ),

(I − (Bp)2)(x1, x2, x3, · · · ) = (x1, 0, x3, x4, · · · ),

(I − AAp)CBp(I − (Bp)2) = 0.

Consequently,
X = 0, Y = (0,−c(x2)2, 0, 0, · · · ).

Example 5.9. In support of Proposition Corollary 3.17, we offer the following illustrative example. Let

A =
(

I 0
0 0

)
, B =

(
I 0
0 I

)
, C =

(
2S 0
0 0

)
.

So,

Ap =

(
I 0
0 0

)
, Bp = B−1 =

(
I 0
0 I

)
.

Also,

AAp =

(
I 0
0 0

)
, CBp =

(
2S 0
0 0

)
.

This gives

(Bp)2 =

(
I 0
0 I

)
.

From this, we conclude that
(I − AAp)CBp(I − (Bp)2) = 0.

Therefore

X =
(

2S 0
0 0

)
, Y = 0.

6. Conclusion

In this work, we have studied various forms of the Sylvester-type operator equations in infinite-
dimensional Hilbert spaces, including the classical equation AX − XB = C and its generalized version
AX − YB = C, which introduces additional complexity due to the presence of two unknowns. We es-
tablished new necessary and sufficient conditions for the solvability of these equations by employing
generalized inverses under novel structural assumptions. Our analysis extended to the behavior of these
equations on specific subspaces, such as ker(A + I) and ker(B + I), as well as on pairs of distinct subspaces.
These investigations highlighted how properties such as involution and pseudo-inverses influence the ex-
istence and structure of solutions. The findings provide a unified perspective on classical and generalized
operator equations, enriching the theoretical framework and suggesting potential applications in areas such
as control theory, perturbation analysis, and operator theory. The illustrative examples further confirm the
practical relevance of the results and open the door to future research in more specialized settings.
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