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Abstract. In this paper, we propose a new conjugate gradient method for solving unconstrained optimiza-
tion problem, whom is convex combination of the Hager-Zhan, Fletcher-Reeves and Polak-Ribére-Polyak
algorithms. The search direction satisfies the sufficient descent condition and guarantees global conver-
gence under the strong Wolfe line search conditions. Moreover, several numerical experiments on standard
test functions are presented to illustrate that the proposed method is efficient and competitive compared to
existing conjugate gradient methods.

1. Introduction

The unconstrained nonlinear optimization problem can be formulated by

min
{
f (x), x ∈ Rn} . (1)

where f : Rn
→ R continuously differentiable and bounded below. The conjugate gradient methods are

used for solving (1) which is an iterative method given by

x0ϵR
n, xk+1 = xk + αkdk kϵN. (2)

where the scalar αk > 0 is the step size.
The search direction dk is defined by

dk =

{
−10 for k = 0
−1k + βk−1sk−1 for k ≥ 1. (3)

where sk = xk+1 − xk = αkdk., and βkϵR is the conjugate gradient coefficient. The different choices for βk
correspond to different conjugate gradient methods.
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Some classical conjugate gradient methods are: Hestenes-Stiefel method [16], Fletcher-Reeves method
[10], Polyak-Polak-Ribére method [19, 21], Liu-Storey method [18], Dai-Yaun method [6] and Hager-Zhan
method [11] which are given, respectively, by

βHS
k =

1T
k+1yk

sT
k yk
, (4)

βFR
k =

∥∥∥1k+1

∥∥∥2∥∥∥1k

∥∥∥2 , (5)

βPRP
k =

1T
k+1yk∥∥∥1k

∥∥∥2 , (6)

βLS
k = −

1T
k+1yk

sT
k 1k
, (7)

βDY
k =

∥∥∥1k+1

∥∥∥2
sT

k yk
, (8)

βHZ
k =

1
sT

k yk

yT
k − 2sT

k

∥∥∥yk

∥∥∥2
sT

k yk


T

1k+1, (9)

where yk = 1k+1− 1k , 1k = ∇ f (xk) the gradient of f and ∥.∥ denotes the Euclidean norm.
The methods FR, DY, and HZ are globally convergent but have poor practical performance. In contrast,

HS, PRP and LS algorithms are more efficient than FR, DY and HZ methods, but their global convergence
cannot be demonstrated without changes. The hybrid conjugate gradient method is one of the most
useful CG methods, which is a combination of different gradient conjugate algorithms, it is more efficient
than the classical conjugate gradient methods for global convergence properties and excellent numerical
performance.

Some well known hybrid CG methods
Touati Ahmed Storey [23] proposed the first hybrid conjugate gradient method, which βk is calculated

as

βTS
k =

{
βPRP

k if 0 ≤ βPRP
k ≤ βFR

k
βFR

k else (10)

Andrie [3], [4]presented another two hybrid conjugate gradient methods, in which

βHS-DY
k = (1 − θk) βHS

k + θkβ
DY
k , (11)

βNDOMB
k = (1 − θk) βPRP

k + θkβ
DY
k . (12)

Djordjevic [7], [8] proposed a family of conjugate methods, where

βFRPRPCC
k = (1 − θk) βPRP

k + θkβ
FR
k , (13)

βLSCDCC
k = (1 − θk) βLS

k + θkβ
CD
k . (14)

Sellami et al. [23] proposed a family of conjugate methods where

β*
k =

(1 − λk)
∥∥∥1k+1

∥∥∥2 + λksT
k+11k+1(

1 − λk − µk
) ∥∥∥1k

∥∥∥2 + (λk + µk
)

sT
k 1k

. (15)
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Hallal et al. [13] proposed a family of conjugate methods where

βHDYCDHS
k = λkβ

DY
k + θkβ

CD
k + (1 − λk − θk) βHS

k . (16)

More related researches are detailed in the references [5], [12], and [12].
In this research, our main motivation is to improve the efficiency and robustness of nonlinear conjugate

gradient (CG) methods by combining the advantages of existing approaches. Specifically, we integrate
the FR, HZ, and PRP conjugate gradient algorithms to develop a new hybrid nonlinear CG method. In
Section 2, we present the detailed algorithm of the proposed method. In Section 3, we prove that the new
method satisfies the sufficient descent condition and achieves global convergence under an inexact line
search. Section 4 provides several numerical experiments to illustrate the effectiveness and performance of
the proposed algorithm.

2. New Conjugate Gradient Coefficient

In this article, motivated by the convex combination of conjugate gradient methods defined in [7] and
[13], we give a new hybrid conjugate gradient formula for βk know as βNew

k is defined by

βNew
k = θkβ

HZ
k + ηkβ

FR
k +

(
1 − θk − ηk

)
βPRP

k , (17)

where 0 < θk < 1, 0 < ηk < 1, and 0 < θk + ηk < 1.
The new search direction dk is defined as as

d0 = −10, dNew
k+1 = −1k+1 + β

New
k sk. (18)

The step size αk is determinated according to the following strong Wolfe conditions

f (xk + αkdk) − f (xk) ≤ δαk∇ f (xk)Tdk, (19)

σ∇ f (xk)Tdk ≤ ∇ f (x + αkdk)Tdk ≤ −σ∇ f (xk)Tdk, (20)

where 0 < σ < 1
2 and 0 < δ < 1.

We choose θk in a way that dk+1 satisfies the next conjugacy condition

0 = yT
k dNew

k+1 . (21)

By substituting equation (18) into equation ((21), we obtain

0 = −yT
k 1k+1 + θk

(
βHZ

k − βPRP
k

)
yT

k sk + ηk

(
βFR

k − β
PRP
k

)
yT

k sk + β
PRP
k yT

k sk.

After some algebra, we get

θk =

ηk

(
−1T

k+11k

∥1k∥
2

)
yT

k sk + yT
k 1k+1 −

1T
k+1 yk

∥1k∥
2 yT

k sk(
1T

k+1 yk

∥1k∥
2 sT

k yk − yT
k 1k+1 + 2∥

yk∥
2

sT
k yk

sT
k 1k+1

) . (22)

The values of θk can be outside the interval [0, 1]. The next rule is represented as
If θk ≥ 1 put θk = 1, if θk ≤ 0 put θk = 0, and if θk + ηk ≥ 1 put θk + ηk = 1.
Based on the above analysis, the new algorithm can be presented as follows
Algorithm 2.1
Step 1: Choose x0 ∈ Rn,and ϵ > 0, set d0 = −10, α0 =

1

∥10∥
2 , and 1k = ∇ f (xk) , set k = 0.

Step 2: If
∥∥∥1k

∥∥∥ < ϵ then stop.
Step 3: Compute αk using the Wolfe line sezrch (19) and (20).



A. Hallal et al. / Filomat 40:2 (2026), 547–556 550

Step 4: Compute xk+1 = xk + αkdk, sk = xk+1− xk, 1k+1, yk = 1k+1− 1k.

Step 5: If
(
1T

k+1 yk

∥1k∥
2 sT

k yk − yT
k 1k+1 + 2∥

yk∥
2

sT
k yk

sT
k 1k+1

)
= 0, then θk = 0 else compute θk as in (22).

Step 6: Compute βk
If θk = 1, ηk = 0 : βNew

k = βHZ
k , if θk = 0, ηk = 1 : βNew

k = βFR
k , if θk = 0, ηk = 0 : βNew

k = βPRP
k , if θkϵ]0, 1[,

ηk = 0 : βNew
k = (1 − θk) βPRP

k +θkβHZ
k , if θk = 0, ηkϵ]0, 1[: βNew

k =
(
1 − ηk

)
βPRP

k +ηkβFR
k , if θkϵ]0, 1[, ηkϵ]0, 1[ and

θk+ηk = 1 : βNew
k = θkβHZ

k +ηkβFR
k , if θk, ηkϵ]0, 1[, and 0 < θk+ηk < 1 : βNew

k = θkβHZ
k +ηkβFR

k +
(
1 − θk − ηk

)
βPRP

k .

Step 7: Generate d = −1k+1+ βNew
k sk, if the restart criterion of Powell condition∣∣∣1T

k+11k

∣∣∣ ≥ 0.2
∥∥∥1k+1

∥∥∥2 , (23)

is ful lled, then dNew
k+1 = −1k+1 else dNew

k+1 = dNew.
Step 8: Put k = k + 1 and go to step 2.

3. Global Convergence Analysis

In this section, we will study the sufficient descent property and global convergence of the new algorithm.
For that we suppose that f satisfies the hypotheses (i) and (ii).
(i). The level set F =

{
x ∈ Rn

| f (x) ≤ f (x0)
}

is bounded.
(ii). In a neighborhood V of G the function f is continuously differentiable and its gradient is Lipschitz
continuous, for each x, y ∈ V ie there ∃ L non negative such that

∥∇ f (x) − ∇ f (y)∥ ≤ L∥x − y∥, (24)

under (i) and (ii) there ∃Ψ ≥ 0 where

∥∇ f (x)∥ ≤ Ψ, for all x ∈ G. (25)

3.1. Sufficient descent condition

The next lemma show that the sufficient descent condition possesses for the new method.

Theorem 3.1. Suppose dk génirated by Algorithm 2.1. Then we have for k ≥ 0

1T
k dk ≤ C

∥∥∥1k

∥∥∥2 C > 0. (26)

Proof. The demostration is with induction.

From (18) we have d0 = −10 then 1T
0 d0 = −

∥∥∥10

∥∥∥2 < 0, for k = 0 condition holds.
We will show that holds also for k ≥ 1.
If the restart criterion of Powell condition is satisfied then

1T
k+1dNew

k+1 = 1
T
k+1

(
−1k+1

)
= −
∥∥∥1k+1

∥∥∥2 < 0, the search direction satisfies the sufficient direction condition.
If the restart criterion of Powell condition doesn’t hold in that case and from (18) with some arithmetic

operation we have

dNew
k+1 = −1k+1 + θkβ

HZ
k sk + ηkβ

FR
k sk +

(
1 − θk − ηk

)
βPRP

k sk,

= −θk1k+1 − ηk1k+1 −
(
1 − θk − ηk

)
1k+1 + θkβ

HZ
k sk

+ηkβ
FR
k sk +

(
1 − θk − ηk

)
βPRP

k sk,

hence

dNew
k+1 = θkdHZ

k+1 + ηkd FR
k+1 +

(
1 − ηk − ηk

)
dPRP

k+1 , (27)
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after multiplying the above equation by 1T
k+1 we get

1T
k+1dNew

k+1 = θk1
T
k+1dHZ

k+1 + ηk1
T
k+1dFR

k+1 +
(
1 − θk − ηk

)
1T

k+1dPRP
k+1 .

If θk = 1, ηk = 0 : 1T
k+1dNew

k+1 = 1
T
k+1dHZ

k+1
Harger and Zhan in [11] proved that there exists m1 =

7
8 such that

1T
k+1dHZ

k+1 ≤ −m1

∥∥∥1k+1

∥∥∥2 , (28)

where 0 < σ < 1
2 .

If θk = 0, ηk = 1: 1T
k+1dNew

k+1 = 1
T
k+1dFR

k+1,
in this case was also proven that the direction fulfills the condition In [1], by Al-Baali using the strong Wolfe
line search for 0 < σ < 1

2 , ie ∃m2 > 0 where

1T
k+1dFR

k+1 ≤ −m2

∥∥∥1k+1

∥∥∥2 . (29)

If θk = 0, ηk = 0 : 1T
k+1dNew

k+1 = 1
T
k+1dPRP

k+1
It was also established that the direction satisfies the condition undre the strong Wolfe line search

conditions, is mentioned in [8] for 0 < σ < 1
2 , i.e ∃m3 > 0

1T
k+1dPRP

k+1 ≤ −m3

∥∥∥1k+1

∥∥∥2 , m3 > 0. (30)

If θkϵ ]0, 1[ , ηk = 0 : 1T
k+1dNew

k+1 = (1 − θk) βPRP
k + θkβHZ

k , then
∃γ1, γ2ϵ : 0 < γ1 < θk < γ2, such that

1T
k+1dNew

k+1 = −

∥∥∥1k+1

∥∥∥2 + ((1 − θk) βPRP
k + θkβ

HZ
k

)
1T

k+1sk

= (1 − θk) 1T
k+1dPRP

k+1 + θk1
T
k+1dHZ

k+1

≤ −
(
m3
(
1 − γ2

)
+m1γ1

) ∥∥∥1k+1

∥∥∥2 .
so, we get

1T
k+1dNew

k+1 ≤ −m4

∥∥∥1k+1

∥∥∥2 , m4 = m3
(
1 − γ2

)
+m1γ1 > 0. (31)

If ηkϵ ]0, 1[ , θk = 0 :1T
k+1dNew

k+1 = (1 − θk) βPRP
k + θkβFR

k , then
∃l1, l2ϵ : 0 < l1 < ηk < l2, such that

1T
k+1dNew

k+1 = −

∥∥∥1k+1

∥∥∥2 + ((1 − ηk
)
βPRP

k + ηkβ
FR
k

)
1T

k+1sk

=
(
1 − ηk

)
1T

k+1dPRP
k+1 + ηk1

T
k+1dFR

k+1

≤ − (m3 (1 − l1) +m2l2)
∥∥∥1k+1

∥∥∥2 ,
hence

1T
k+1dNew

k+1 ≤ −m5

∥∥∥1k+1

∥∥∥2 , m5 = m3 (1 − l1) +m2l2 > 0. (32)

If θk, ηkϵ]0, 1[,where θk + ηk = 1: 1T
k+1dNew

k+1 = (1 − θk) βHZ
k + θkβFR

k , then

∃u1, u2ϵ : 0 < u1 < ηk < u2

1T
k+1dNew

k+1 = −

∥∥∥1k+1

∥∥∥2 + ((1 − ηk
)
βHZ

k + ηkβ
FR
k

)
1T

k+1sk

=
(
1 − ηk

)
1T

k+1dHZ
k+1 + ηk1

T
k+1dFR

k+1

≤ − (m1 (1 − u2) +m2u1)
∥∥∥1k+1

∥∥∥2 .
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Implies

1T
k+1dNew

k+1 ≤ −m6

∥∥∥1k+1

∥∥∥2 , m6 = m1 (1 − u2) +m2u1 > 0. (33)

If θk, ηkϵ]0, 1[,where 0 < θk + ηk < 1, then
∃ξ1, ξ2, ξ3, ξ4ϵ : 0 < ξ1 < θk < ξ2, 0 < ξ3 < ηk < ξ4.

1T
k+1dNew

k+1 = θk1
T
k+1dHZ

k+1 + ηk1
T
k+1dFR

k+1 +
(
1 − θk − ηk

)
1T

k+1dPRP
k+1 . (34)

From (28) , (29) and (30), we conclude that

1T
k+1dNew

k+1 ≤ − (ξ2m1 + ξ4m2 + (1 − ξ1 − ξ3) m3)
∥∥∥1k+1

∥∥∥2 , (35)

where C = ξ2m1 + ξ4m2 + (1 − ξ1 − ξ3) m3 > 0.
Under the strong Wolfe conditions, the sufficient descent condition holds for the New algorithm.

The proof is finished.

3.2. Global convergence properties
For the global convergence also we need the following lemma which is famous.

Lemma 3.2. [8] Consider the conjugate gradient method generated by (2) and (18), with dk satisfies the sufficient
descent and αk computed with (19) and (20). If∑

k≥1

1

∥dk∥
2 = ∞ ,

then

lim
k→∞

inf
∥∥∥1k

∥∥∥ = 0.

The following global convergence theorem is the result of Lemma 3.2.

Theorem 3.3. Assume that the hypotheses (i) and (ii) hold.
Consider CG method given by (2) and (3), and let dk = dNew

k+1 is descent direction, and αk iis chosen to satisfy, then

lim
k→∞

inf
∥∥∥1k

∥∥∥ = 0. (36)

Proof. Suppose by contradiction that limk→∞ inf
∥∥∥1k

∥∥∥ = 0 does not hold. ie 1k , 0 ∀ k, then there exists a
constant ∃Ψ > 0 such that∥∥∥1k

∥∥∥ ≥ Ψ̄ for all k = 0, (37)

D = xk+1 − xk = sk be the diameter of the level set G .

∥ yk ∥≤ L ∥ sk ∥= L ∥ xk+1 − xk ∥≤ LD. (38)

Therefore

∥dk+1∥ ≤∥ 1k+1 ∥ +
∣∣∣βNew

k

∣∣∣ ∥ sk. ∥ .

In the other hand∣∣∣βNew
k

∣∣∣ ≤ ∣∣∣βHZ
k

∣∣∣ + ∣∣∣βFR
k

∣∣∣ + ∣∣∣βPRP
k .
∣∣∣ .
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From (19) and (20), we get

sT
k yk = sT

k
(
1k+1 − 1k

)
≥ − (1 − σ) sT

k 1k ⇒
1

sT
k yk
≤

1
− (1 − σ) sT

k 1k
. (39)

According to (25), (26) , (37) , (38) and (39), we have

∣∣∣βHZ
k

∣∣∣ ≤ ∥ 1k+1 ∥∥ yk ∥

C (1 − σ)
∥∥∥1k

∥∥∥2 + 2
∥sk∥
∥∥∥1k+1

∥∥∥ ∥∥∥yk

∥∥∥2
(C (1 − σ))2

∥∥∥1k

∥∥∥4∣∣∣βHZ
k

∣∣∣ ≤ ΨLD
C (1 − σ) Ψ̄2

+ 2
L2D3Ψ

(C (1 − σ))2 Ψ̄4
=M1. (40)

And∣∣∣βFR
k

∣∣∣ ≤ Ψ2

Ψ̄2
=M2. (41)

And∣∣∣βPRP
k

∣∣∣ ≤ ∥ 1k+1 ∥∥ yk ∥∥∥∥1k

∥∥∥2 ≤
ΨLD
Ψ̄2

=M3. (42)

Then∣∣∣βNew
k

∣∣∣ ≤M1 +M2 +M3 =M.

Now, we get

∥dk+1∥ ≤ Ψ+MLD.

Hence

1

∥dk+1∥
2 ≥

1

(Ψ+MLD)2 .

Therfore∑
k≥0

1

∥dk+1∥
2 ≥

∑
k≥0

1

(Ψ+MLD)2 = ∞. (43)

This is contradiction. So the proof is complete.

4. Results and Discussion

In this section, the authors demonstrate the computational effectiveness of the new algorithm on a set
of test problems [3, 17].

The parameters used include δ = 0.0001, σ = 0.1, with varying initial points x0 and dimensions. The
algorithm terminates when

∥∥∥1k

∥∥∥
∞
< ε = 10−6 is reached. For this problem, we compare the performance

of two methods. Let f 1
i and f 2

i represent the optimal values obtained by the first and second methods,
respectively. The first method is considered superior if

∥∥∥ f 1
i − f 2

i

∥∥∥ < 10−3, and it involves fewer CPU time or
iterations compared to the second method. We evaluated the performance of the New algorithm against
the FRPRPCC[7], and LSCDCC [8] algorithms using the Dolan-Moré profiles [9].

The performance profiles in Figures 1, 2, 3, and 4 illustrate the comparison of different methods based
on the CPU Time, number of iteration (NI), number of function evaluation (NF), and number of gradient
(NG).
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Figure 1: Results using the CPU time.

Figure 2: Results using the number iteration.
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Figure 3: Results using the number function.

Figure 4: Results using the number gradient.
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