Published by Faculty of Sciences and Mathematics,
University of Ni8, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

Filomat 40:2 (2026), 547-556
https://doi.org/10.2298/FIL2602547H

%, Py

2

&) 5
2 &
gy as’

5
TIprpor®

A new hybrid conjugate gradient method as a convex combination of
HZ and FR and PRP methods
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Abstract. In this paper, we propose a new conjugate gradient method for solving unconstrained optimiza-
tion problem, whom is convex combination of the Hager-Zhan, Fletcher-Reeves and Polak-Ribére-Polyak
algorithms. The search direction satisfies the sufficient descent condition and guarantees global conver-
gence under the strong Wolfe line search conditions. Moreover, several numerical experiments on standard
test functions are presented to illustrate that the proposed method is efficient and competitive compared to
existing conjugate gradient methods.

1. Introduction
The unconstrained nonlinear optimization problem can be formulated by
min {f(x),x € R"}. (1)

where f : R" — R continuously differentiable and bounded below. The conjugate gradient methods are
used for solving (1) which is an iterative method given by

X0€R",  xpp1 = ¢ + axde  keN. 2)

where the scalar a; > 0 is the step size.
The search direction d is defined by

_J) 90 fork=0
= { —gk + Pr-15k-1  fork > 1. )

where sy = X1 — X = aidy., and reR is the conjugate gradient coefficient. The different choices for py
correspond to different conjugate gradient methods.
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Some classical conjugate gradient methods are: Hestenes-Stiefel method [16], Fletcher-Reeves method
[10], Polyak-Polak-Ribére method [19, 21], Liu-Storey method [18], Dai-Yaun method [6] and Hager-Zhan
method [11] which are given, respectively, by
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where Y = grs1— gk , gk = Vf (%) the gradient of f and ||.|| denotes the Euclidean norm.

The methods FR, DY, and HZ are globally convergent but have poor practical performance. In contrast,
HS, PRP and LS algorithms are more efficient than FR, DY and HZ methods, but their global convergence
cannot be demonstrated without changes. The hybrid conjugate gradient method is one of the most
useful CG methods, which is a combination of different gradient conjugate algorithms, it is more efficient
than the classical conjugate gradient methods for global convergence properties and excellent numerical
performance.

Some well known hybrid CG methods

Touati Ahmed Storey [23] proposed the first hybrid conjugate gradient method, which f is calculated
as

BPRPif 0 < BPRP < pIR

TS SPe =P
k { BR else (10)

Andrie [3], [4]presented another two hybrid conjugate gradient methods, in which
E = (- 008 + 0B, (11)
kNDOMB ( -0 )‘BPRP + Gk,BkDYc (12)
Djordjevic [7], [8] proposed a family of conjugate methods, where

]l:RPRPCC -0 )‘BPRP + Qk‘BIER, (13)

II(JSCDCC ( _ Qk) ﬁés + QkﬁgD' (14)

Sellami et al. [23] proposed a family of conjugate methods where

o 0=A ||9k+1||2 + kst Gkt
(1= Ak — ) ||9k||2 + (Ak + 1) 5 g

(15)
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Hallal et al. [13] proposed a family of conjugate methods where
HDYCDHS — ), DY 4 9,6CD 4 (1 — A, — 0) 5. (16)

More related researches are detailed in the references [5], [12], and [12].

In this research, our main motivation is to improve the efficiency and robustness of nonlinear conjugate
gradient (CG) methods by combining the advantages of existing approaches. Specifically, we integrate
the FR, HZ, and PRP conjugate gradient algorithms to develop a new hybrid nonlinear CG method. In
Section 2, we present the detailed algorithm of the proposed method. In Section 3, we prove that the new
method satisfies the sufficient descent condition and achieves global convergence under an inexact line
search. Section 4 provides several numerical experiments to illustrate the effectiveness and performance of
the proposed algorithm.

2. New Conjugate Gradient Coefficient

In this article, motivated by the convex combination of conjugate gradient methods defined in [7] and
[13], we give a new hybrid conjugate gradient formula for fx know as " is defined by

N = OB+ BN + (1= O — i) BN (17)

where0 < 0, <1,0<n <1,and 0 < O + 1 < 1.
The new search direction dy is defined as as

= —go, oS = =G + BrVsi. (18)

The step size ay is determinated according to the following strong Wolfe conditions

f (o + agdi) = f () < eV f ()" d, (19)
on(xk)Tdk < Vf(x + akdk)Tdk < —OVf(xk)Tdk, (20)

where0 <o <tand0<6<1.
We choose 0 in a way that dj, satisfies the next conjugacy condition

0=y dyy". (21)
By substituting equation (18) into equation ((21), we obtain

PRP ., T

Yisk+ B Yy Sk

PRP) PRP)

= —yi g + Oc (B - yrse+ e (B

After some algebra, we get

(s oo+ vl ~ il
O = . (22)
(Trnﬁ STy — ykgk+1+2” wll k9k+1)

The values of 0y can be outside the interval [0, 1]. The next rule is represented as
If6,>21putf, =1,if O <0 put O =0, and if O + i = 1 put O + i = 1.

Based on the above analysis, the new algorithm can be presented as follows
Algorithm 2.1

Step 1: Choose xp € R",and € > 0, set dy = —go, 2 = —, and g, = Vf (xx), setk = 0.

llg |I
Step 2: If ||ng < € then stop.
Step 3: Compute a; using the Wolfe line sezrch (19) and (20).
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Step 4: Compute X1 = Xk + Ay, Sk = Xier1— Xk, Jra1, Yk = Jir1— G-

Step 5: 1If (TIMH/A LYk = Yy ksl + 2”y ” St kel ) 0, then Oy = 0 else compute Gy as in (22).
Step 6: Compute i
If =1, =0: BV =B%if O =0, =1: BV =BR,if 6, =0, =0: Y™ =R, if Ore]0, 1],
me=0:pNw =(1- Gk) ﬁPRP+6kﬁHZ, if 6 = 0,nke]0, 1[: Y™ = (1 M) BERE +miBER, if Bke]0, 1[ nkel0, 1[ and
Ot = 1: BN = 042 4R, if Ok, meel0, 1], and 0 < 9k+nk <1:pNew = QkﬁkHZ"‘nkﬁ +(1 = O — i) BERT

Step 7: Generate d = —gy1+ ﬁNeWsk, if the restart criterion of Powell condition

? (23)

|97 19| = 02| gk

is ful lled, then dY%" = —gy,1 else Ay = dNev.

Step 8: Put k = k + 1 and go to step 2.

3. Global Convergence Analysis

In this section, we will study the sufficient descent property and global convergence of the new algorithm.
For that we suppose that f satisfies the hypotheses (i) and (ii).
(). The level set ¥ = {x € R" | f(x) < f (x0)} is bounded.
(iD). In a neighborhood V of G the function f is continuously differentiable and its gradient is Lipschitz
continuous, for each x, y € V ie there 3 L non negative such that

IVF(x) = VIl < Lllx = yll, (24)
under (i) and (ii) there AW > 0 where

IVl < W, forall x € G. (25)

3.1. Sufficient descent condition

The next lemma show that the sufficient descent condition possesses for the new method.

Theorem 3.1. Suppose dy génirated by Algorithm 2.1. Then we have for k > 0

gldc<Claf  c>o. (26)

Proof. The demostration is with induction.

From (18) we have dy = —g then ggdo =— ||g0||2 < 0, for k = 0 condition holds.

We will show that holds also for k > 1.

If the restart criterion of Powell condition is satisfied then
gk+1dk ew — gk+1 (—=Gk+1) = — H ng” < 0, the search direction satisfies the sufficient direction condition.

If the restart criterion of Powell condition doesn’t hold in that case and from (18) with some arithmetic
operation we have

Aes = —ger + OB i+ B sk + (1= Ok — 1) B~ st
= —Okgke1 — MkGkr1 — (L= O — 1) Ger1 + OkPrsi
+1iBe sk + (1= 6k — 1) B~ s

hence

deflw O + md S + (1= =) diy (27)
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after multiplying the above equation by g/, we get

T N _ T HZ T FR T PRP
gk+1dk+elw - 6kgk+ldk+l + 77kgk+1dk+1 + (1 — Ok - T]k) gk+1dk+1 :

If 6c=1m=0: g, 5 = g,

Harger and Zhan in [11] proved that there exists m; = £ such that

2

gead < —mlgeal, (28)
where 0 <0 < 1.

If O =0,n =1 g, 35" =g.,,45,
in this case was also proven that the direction fulfills the condition In [1], by Al-Baali using the strong Wolfe
line search for 0 < 0 < %, ie dmy > 0 where

GEAdR, < = [|g (29)

I£6 =0, 1 = 0: g7, dNew = gT_dPR?
It was also established that the direction satisfies the condition undre the strong Wolfe line search

conditions, is mentioned in [8] for 0 < ¢ < 2, i.e Imz > 0

2 ms>0. (30)

T PRP
gk+1dk+1 < —ms ||{]k+1

If 64e]0,1[, nx=0: gT aNew — 1-6y ‘BfRP + Qkﬁfz, then

k+1"k+1
Jy1, y2€ : 0 < y1 < Ok < ¥, such that
2
glaldg-elw = - ”ngH + ((1 B ek) ﬁ}:RP + ekﬁkHz) 9I{+15k

(1= 60 giadiy + 0kdpad,5

IA

= (m3 (1 =y2) + miy1) “9k+1||2 :

so, we get

2
, my=m3(1—=y2)+my; >0. (31)

T New
Jis1%esr < —Ma ”9k+1

If mel0, 1[, 6k = 0:g}  dNe" = (1 - 6p) PR + OkBER, then

k+17k+1 k
dl, e : 0 < lj < mx < Iy, such that
ew 2
gradey = — gl + ((1 =) Bt + ﬂkﬁfR) TisaSk
= (1 - ’7k) g{+1d155113 + nkglaldlf-lfl
2
< = (m3(1 =) +mob) ||geal|,
hence
2
g]]("+1de+e1\/v < —ms ||gk+1 , M5 =mg3 (1 - ll) + myly > 0. (32)

If Ok, niel0, 1[, where Oy + ni = 1: gf  dre” = (1 - 6p) Bi'% + 6xBLR, then

Juy, uze 1 0 <up <M < up
ew 2
G dys = =gl + ((1 — o) B+ leﬁfR) Tis15
(1 - TTk) gljc;ldg-zl + r]kgljc;ldffl

— (mq (1 = up) + mouy) H!7’<+1||2 :

IA
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Implies

New<_

2
g,fﬂdk+1 < —mg ||gk+1 , me =mq (1 —up) +mouy > 0. (33)

If Ok, 1rel0, 1], where 0 < 6y + 1 < 1, then
&1, 80,83,84€:0 <& <O < &2,0< &3 <1 < &4

Tl = Oy + Mgy + (1= 0 =) g iy (34)

From (28),(29) and (30), we conclude that

?, (35)

Fr AN < — (Eamy + Egmy + (1= & — E3)m3) ||gent

where C = &my + Egmy + (1 — & — &) mz > 0.
Under the strong Wolfe conditions, the sufficient descent condition holds for the New algorithm.
The proof is finished. O

3.2. Global convergence properties
For the global convergence also we need the following lemma which is famous.

Lemma 3.2. [8] Consider the conjugate gradient method generated by (2) and (18), with dy satisfies the sufficient
descent and oy computed with (19) and (20). If

Z , 2 =%
[l

k>1

then
lim inf =0.
lim inf |lg.]| = 0
The following global convergence theorem is the result of Lemma 3.2.

Theorem 3.3. Assume that the hypotheses (i) and (ii) hold.
Consider CG method given by (2) and (3), and let dy = dlk\ffi” is descent direction, and ay iis chosen to satisfy, then

%1_)1?0 inf ”gk” =0. (36)

Proof. Suppose by contradiction that limy_, inf ”gk“ = 0 does not hold. ie g # 0V k, then there exists a
constant 3W > 0 such that
7] = ¥ forallk =0, (37)
D = xy41 — X¢ = s be the diameter of the level set G .
Il yi 1< L1l s NI= L || Xgeor = Xk [|< LD. (38)
Therefore
lieall <Il geon 11+ |8 s 1 -

In the other hand

I8y < |Be] + |Be"| + |Be™" -
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From (19) and (20), we get
1

T T T
S Y =S w1—gk) = —(1=0)s g = < . (39)
k¥ = 5 (gt = g1 < sty —(1—0)sl gk

According to (25), (26),(37),(38) and (39), we have

2
7] < Do el Dsd o] [l
k1= 2 1
Ca-olal” ©€a-o)|a
WLD 12D’y
HA < — +2 — = 40
) CA-0)¥2 "(C(1-0)* W4 40
And
\1_12
5| < g = Ma (41)
And
Il gee1 ll ye Il WLD
B s == <55 = Ms. (42)
I

Then
|ﬁll:lew| < M1 + M2 + M3 =M.

Now, we get
[|[dis1ll € W + MLD.

Hence

1 S 1
ldiall® ~ (¥ +MLDY*
Therfore
1 1
> = oo, (43)
0 i1l kZZO‘ (¥ + MLD)*

This is contradiction. So the proof is complete. [

4. Results and Discussion

In this section, the authors demonstrate the computational effectiveness of the new algorithm on a set
of test problems [3, 17].

The parameters used include 6 = 0.0001, ¢ = 0.1, with varying initial points xy and dimensions. The
algorithm terminates when Hgk”m < & = 107° is reached. For this problem, we compare the performance
of two methods. Let f! and f? represent the optimal values obtained by the first and second methods,

respectively. The first method is considered superior if || f! - f?|| < 10%, and it involves fewer CPU time or
iterations compared to the second method. We evaluated the performance of the New algorithm against
the FRPRPCC[7], and LSCDCC [8] algorithms using the Dolan-Moré profiles [9].

The performance profiles in Figures 1, 2, 3, and 4 illustrate the comparison of different methods based
on the CPU Time, number of iteration (NI), number of function evaluation (NF), and number of gradient
(NG).
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Figure 2: Results using the number iteration.
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Figure 3: Results using the number function.
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Figure 4: Results using the number gradient.
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