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Abstract. Let L = Q(i) or Q(
√
−3) be a quadratic cyclotomic number field, and let K be a Galois extension

of L of prime degree q. This paper examines the behavior of p-Sylow subgroups of elliptic curves defined
over K, focusing on their growth under base change from L. The study uncovers distinctive patterns in
subgroup growth, shaped by both the arithmetic nature of the base field and the intrinsic properties of the
elliptic curves.

1. Introduction

Elliptic curves are central objects in number theory, algebraic geometry, and cryptography, known for
their rich algebraic and geometric structures. Understanding their group-theoretic behavior over various
fields and extensions remains a topic of significant interest across both pure and applied mathematics
[1, 2, 4, 15]. In this paper, we investigate the growth of p-Sylow subgroups of elliptic curves over number
fields of prime degree, focusing on base changes from quadratic cyclotomic fields.
The choice of these base fields is motivated by their deep connections to number theory and their promi-
nent role in diverse mathematical applications. Our study primarily examines the growth patterns of the
p-Sylow subgroups associated with elliptic curves over these extensions. These subgroups play a vital role
in understanding the structure of finite groups, and analyzing their growth offers important insights into
the algebraic and arithmetic behavior of elliptic curves.
Consider an elliptic curve E over a number field K with degree q. The classification of torsion subgroups
of elliptic curves over number fields has been extensively studied. Numerous mathematicians have con-
tributed to identifying these sets for fields of various degrees. In particular, Mazur established the complete
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classification of torsion subgroups of elliptic curves defined over K = Q [10].

Z/nZ for 1 ≤ n ≤ 12, n , 11,
Z/2Z ⊕Z/2nZ for 1 ≤ n ≤ 4.

Kenku, Momose, and Kamienny classify the different isomorphism types of E(K)tors in [9] and [8] respec-
tively, for a quadratic number field K and E/K.

Z/nZ for 1 ≤ n ≤ 18, n , 17,
Z/2Z ⊕Z/2nZ for 1 ≤ n ≤ 6,
Z/3Z ⊕Z/3nZ for 1 ≤ n ≤ 2.

For q = 3, Jeon, Kim, and Schweizer in [6] found all the torsion structures that appear infinitely often as one
runs through all elliptic curves over all cubic fields. A similar result was obtained for q = 4 by Jeon, Kim,
and Park in [7], and for q = 5, 6 by Derickx and Sutherland in [3].
For elliptic curves defined over Q(i) or Q(

√
−3), we do not have a precise description of the torsion sub-

groups that can appear over an extension of Q(i) or Q(
√
−3) of degree q. In particular, Najman’s paper,

referenced as [11, 12], presents significant results concerning the structure of torsion subgroups of elliptic
curves defined over cyclotomic quadratic number fields. Specifically, Najman establishes the following
classifications:

• For K = Q(i),

Z/nZ for 1 ≤ n ≤ 12, n , 11,
Z/2Z ⊕Z/2nZ for 1 ≤ n ≤ 4,

Z/4Z ⊕Z/4Z.

• Similarly, for K = Q(
√
−3),

Z/nZ for 1 ≤ n ≤ 12, n , 11,
Z/2Z ⊕Z/2nZ for 1 ≤ n ≤ 4,
Z/3Z ⊕Z/3nZ for 1 ≤ n ≤ 2.

Further refinements were made by Newman [13, 14], whose work determined the sets of torsion structures
that can arise as quadratic twists of a given torsion structure. He also studied the growth of the torsion part
of an elliptic curve on Q(i) or Q(

√
−3) that can appear over quadratic extension of the base fields.

Moreover, Ejder [5] determined the torsion subgroups of elliptic curves defined overQ(i) andQ(
√
−3) in el-

ementary abelian 2-extensions K of these fields. More precisely, the set of torsion subgroups is characterized
by the following elements

• If K = Q(i), then E(K)tors is isomorphic to one of the following groups:

Z/nZ for n ∈ {1, 3, 5, 7, 9, 15},
Z/2Z ⊕Z/2nZ for n ∈ {2, 3, 4, 5, 6, 8},
Z/4Z ⊕Z/4nZ for 2 ≤ n ≤ 4,

Z/nZ ⊕Z/nZ for n ∈ {2, 3, 4, 6, 8}.

• If K = Q(
√
−3), then E(K)tors is either isomorphic to one of the groups listed above or

Z/2Z ⊕Z/32Z.
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The main goal of this paper is to investigate the growth of the p-Sylow subgroups of elliptic curves over
Galois extensions of prime degrees upon base change from quadratic cyclotomic number fields. This
question naturally arises, given the significance of investigating elliptic curves over base changes in solving
Diophantine equations.
In the following section, we present several auxiliary results, including a key step for constraining the full
torsion subgroup, which is instrumental in studying the growth of p-Sylow subgroups of elliptic curves
over Galois extensions of the base field with prime degree.

2. Auxiliary results

Before we begin our study, let’s establish a few useful notations and abbreviations:

Notation 2.1.

• L be a quadratic cyclotomic number field.

• K a Galois extension of prime degree q of L which means that [K : L] = q and Gal(K/L) ≃ Z/qZ, otherwise K
is a degree q extension of L.

• E an elliptic curve defined over L.

• E[n] the group of all points of E(K̄) whose order is a divisor of n.

• E(K)[n] = {P = (x, y) ∈ E[n] | x, y ∈ K}.

• Z/nZ a cyclic group of order n.

• For an odd positive integer m, we denote by ζm a m-th primitive root of unity.

• E(K)
[
p∞
]

the p-Sylow subgroup of E(K).

Remark 2.2. If E(K)
[
p∞
]
, {O} we have that

p ∈ S(q)

where S(q) denotes the set of prime numbers p for which there exists a number field K of degree at most q, and an
elliptic curve E/K containing a torsion subgroup of order multiple of p. Consequently, for primes not belonging to
S(q), we obtain

E(K)
[
p∞
]
= {O}.

To prove the main theorems 3.1, 3.2, 3.3, and 3.4, our approach began with the crucial step of constraining
the full torsion subgroup, a crucial step that was rigorously established and supported by the proof of the
following two lemmas.

Lemma 2.3. Consider an elliptic curve E defined over Q(i). Thus, the elliptic curve E has a full n-torsion for n ≥ 2
over K only when n equals 2, or 4.

Proof. Assuming that E(K) has a full n-torsion over K, according to Weil’s pairing, this implies that the nth
roots of unity are defined in K. Consequently, we derive

Q
(
ζlcm(4,n)

)
⊆ K.

Subsequently, we can write : [
K : Q

(
ζlcm (4,n)

)] [
Q
(
ζlcm (4,n)

)
: Q
]
= [K : Q] = 2q

and since
[
Q
(
ζlcm(4,n)

)
: Q
]
= φ(lcm(4,n)) divides 2q, the only possibilities for n are 2, or 4.
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Lemma 2.4. Consider an elliptic curve E defined over Q(
√
−3). Thus, the elliptic curve E has a full n-torsion for

n ≥ 2 over K only when n equals 2, 3 or 6.

Proof. Following the same approach as in the previous proof, we obtain that

Q
(
ζlcm (a,n)

)
⊆ K, where a = 3 or 6.

We can then write : [
K : Q

(
ζlcm (a,n)

)] [
Q
(
ζlcm (a,n)

)
: Q
]
= [K : Q] = 2q

and since
[
Q
(
ζlcm(a,n)

)
: Q
]
= φ(lcm(a,n)) divides 2q, the only possibilities for n are 2, 3 or 6.

3. Main results

In this section, we present our main theorems 3.1, 3.2, 3.3, and 3.4, which investigate the growth of the
p-Sylow subgroup of elliptic curves defined over a quadratic cyclotomic field L that can appear on K.

Theorem 3.1. Consider a Galois extension K/Q(i) of prime degree q ≥ 3 and E be an elliptic curve over Q(i). Then,
if E(Q(i))[2] = 0 it follows that

E(K) [2∞] is either trivial, Z/2Z ⊕Z/2Z or Z/4Z ⊕Z/4Z.

On the other hand, if E(Q(i)) [2∞] , 0 then E(Q(i)) [2∞] = E(K) [2∞].

Theorem 3.2. Consider a Galois extension K/Q(
√
−3) of prime degree q ≥ 3 and E be an elliptic curve overQ(

√
−3).

Then, if E(Q(
√
−3))[2] = 0 it follows that

E(K) [2∞] is either trivial or Z/2Z ⊕Z/2Z.

On the other hand, if E(Q(
√
−3)) [2∞] , 0 then, E(Q(

√
−3)) [2∞] = E(K) [2∞].

Theorem 3.3. Consider K/L a Galois extension of prime degree q ≥ 3 and E be an elliptic curve over L.
Then, if L = Q(

√
−3) it follows that

E(K) [3∞] is isomorphic to a subgroup of Z/3Z ⊕Z/9Z.

On the other hand, if L = Q(i) then,

E(K) [3∞] is isomorphic to a subgroup of Z/9Z.

Theorem 3.4. Consider K/L a Galois extension of prime degree q ≥ 3 and E be an elliptic curve over L. Then,

1. If p = q and E(L)[q] = 0 then E(K)[q] = 0.
2. If p , q. Then, the p-Sylow subgroup of E(K) is either trivial or isomorphic to Z/pZ.
3. If q is coprime to p − 1. Then, the p-Sylow groups of E(L) and E(K) are equal.

3.1. Proof of Theorems 3.1 and 3.2
To prove Theorems 3.1 and 3.2, we will rely on the following results. In these theorems, we focus on

analysing the growth of 2-Sylow subgroups of elliptic curves over Q(i) and Q(
√
−3).

Theorem 3.5. Consider a Galois extension K of degree q ofQ(i) and E be an elliptic curve overQ(i). If E(Q(i))[2] = 0.
Then

• E(K)[2] ≃ Z/2Z ⊕Z/2Z
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• If E(K) has a point of order 4, then E(K)[4] ≃ Z/4Z ⊕Z/4Z.

• E cannot have points of order 8 over K.

Proof. Under the assumption that E/Q(i) and E(Q(i))[2] = 0, the elliptic curve E can be represented by the
equation y2 = f (x) = x3 + ax + b, where the cubic polynomial f (x) is irreducible on Q(i).

• Assume that E(K)[2] , 0. Since K is a Galois extension of Q(i) and f has a root on K, we can deduce
that all roots of f are also elements of K. Consequently, this implies that

E(K)[2] ≃ Z/2Z ⊕Z/2Z.

• Assume that E(K)[4] , 0. Since ζ4 ∈ K, it follows that

E(K)[4] ≃ Z/2Z ⊕Z/4Z or Z/4Z ⊕Z/4Z.

Assuming that
E(K)[4] ≃ Z/2Z ⊕Z/4Z.

Let C := Gal(K/Q(i)), and consider the short exact sequence

0→ E(K)[2]→ E(K)[4]→ E(K)[4]/E(K)[2]→ 0

Therefore, we have

0→ H0 (C,E(K)[2])→ H0 (C,E(K)[4])

→ H0 (C,E(K)[4]/E(K)[2])→ H1 (C,E(K)[2])

Since E(K)[2] ≃ Z/2Z ⊕Z/2Z and ♯C = q (q is a prime number > 2) it follows that H1 (C,E(K)[2]) = 0,
on the other hand the group E(K)[4]/E(K)[2] is of order 2. Thus,

H0 (C,E(K)[4]) /H0 (C,E(K)[2]) ≃ H0 (C,E(K)[4]/E(K)[2]) ≃ Z/2Z

Consequently, we have that H0 (C,E(K)[4]) , 0. This leads to a contradiction, indicating that E(Q(i))
possesses a 2-torsion point.
Therefore, the only possible 4-torsion structure over K must be

E(K)[4] ≃ Z/4Z ⊕Z/4Z.

• Assume that E(K)[8] , 0. It follows that

E(K)[8] ≃ Z/2Z ⊕Z/8Z, Z/4Z ⊕Z/8Z, or Z/8Z ⊕Z/8Z.

Let C := Gal(K/Q(i)), and consider the short exact sequence

0→ E(K)[2]→ E(K)[8]→ E(K)[8]/E(K)[2]→ 0

Therefore, we have

0→ H0 (C,E(K)[2])→ H0 (C,E(K)[8])

→ H0 (C,E(K)[8]/E(K)[2])→ H1 (C,E(K)[2])

If E(K)[8] ≃ Z/4Z ⊕ Z/8Z. Then E(K)[8]/E(K)[2] ≃ Z/2Z ⊕ Z/4Z and it follows from the previous
proof that H0 (C,E(K)[8]/E(K)[2]) , 0, and since H1 (C,E(K)[2]) = 0 it follows that H0 (C,E(K)[8]) , 0.
Consequently, it implies that E(Q(i))[2] , 0, leading to a contradiction.
If E(K)[8] ≃ Z/2Z ⊕ Z/8Z. Then E(K) has a point of order 4. It follows from the second statement
that E(K)[4] ≃ Z/4Z ⊕Z/4Z, which is a contradiction.
Note that Lemma 2.3 indicates that E(K)[8] cannot be isomorphic to Z/8Z ⊕Z/8Z.
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Theorem 3.6. Consider a Galois extension K of prime degree q of Q(
√
−3), and E be an elliptic curve over Q(

√
−3).

If E(Q(
√
−3))[2] = 0. Then

• E(K)[2] ≃ Z/2Z ⊕Z/2Z.

• E cannot have points of order 4 over K.

Proof. Assume that E/Q(
√
−3) and E(Q(

√
−3))[2] = 0.

• Assume that E(K)[2] , 0. Since K is a Galois extension of Q(
√
−3) and f has a root on K, we can

deduce that all roots of f are also elements of K. Consequently, this implies that

E(K)[2] ≃ Z/2Z ⊕Z/2Z.

• Assume that E(K)[4] , 0. Since ζ4 < K, it follows that the possibility for E(K) to have a 4 -torsion point
is that

E(K)[4] ≃ Z/2Z ⊕Z/4Z.

Let C := Gal(K/Q(
√
−3)), and consider the short exact sequence

0→ E(K)[2]→ E(K)[4]→ E(K)[4]/E(K)[2]→ 0

it follows that
0→ H0 (C,E(K)[2])→ H0 (C,E(K)[4])

→ H0 (C,E(K)[4]/E(K)[2])→ H1 (C,E(K)[2])

Since E(K)[2] ≃ Z/2Z ⊕Z/2Z and ♯C = q (q is a prime number > 2) it follows that H1 (C,E(K)[2]) = 0,
on the other hand E(K)[4]/E(K)[2] is a group of order 2, then

H0 (C,E(K)[4]/E(K)[2]) ≃ Z/2Z

Therefore, we can conclude that H0 (C,E(K)[4]) , 0. This leads to a contradiction, indicating that
E(Q(

√
−3)) possesses a 2 -torsion point.

This means that the elliptic curve E has no points of order 4 over K.

Theorem 3.7. Consider a Galois extension K/L of prime degree q and E be an elliptic curve over L. If the torsion
group of the elliptic curve E over L has a nontrivial 2-Sylow subgroup, then E(K) has the same 2-Sylow subgroup as
E(L).

Proof. If E(L) ≃ Z/2nZ for n = 1, 2 or 4, then if the 2-Sylow group grows, we must find a K-rational point
P = (x, y) (but not L-rational).
Let Q ∈ E(L) be a nontrivial torsion point of order 2 such that 2P = Q, put E : y2 = f (x) = x3 + ax + b where
α, β and γ are roots of f on K.
Since E(L) , 0 we can consider that α ∈ L and Q = (α, 0). On the other hand, we have

(
x2P, y2P

)
=
(
xQ, yQ

)
,

and then

x2P = m2
− 2x = α

y2P = m (x − x2P) − y = 0.

m =
3x2 + a

2y
.
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It follows that
(
3x2 + a

)2
= 4m2y2 and then

x4
− 4αx3

− 2ax2
− 4(αa + 2b)x + a24αb = 0.

The discriminant of this polynomial is

D = −4096
(
4a3 + 27b2

) (
α3 + aα + b

)2
= 0.

Thus, the polynomial has a multiple root. This means that β = γ ∈ K\L and then f (x) = (x − α)
(
x2 + ex + f

)
where x2 + ex + f is irreducible over L. Which is a contradiction.
Consider Gal(K/L) ≃ Z/qZ and let T and Q be elements of E(L) such that T is of order 4 and Q is of order 8
(if they exist) and

A = {P ∈ E(K) | 2P = T} and B = {P ∈ E(K) | 2P = Q}

The action of the group Gal(K/L) is observed on both sets A, which consists of 4 elements, and B, which
comprises 8 elements. Furthermore, according to the orbit stabilizer theorem, the orbits have length q. This
implies that A and B are decomposed into sets of q elements each, which is impossible because q is a prime
number > 2.

4. Proof of Theorem 3.3

To prove Theorem 3.3, we will use several auxiliary results and focus on the growth of the 3-Sylow
subgroups of elliptic curves over Q(i) and Q(

√
−3).

Lemma 4.1. Let E/Q(i) be an elliptic curve and K be a Galois extension ofQ(i) of prime degree q. Suppose that E(K)
has a point of order 27, it follows that E has a 27-isogeny over Q(i).

Proof. Assume that E(K) has a point of order 27, and Gal(K/Q(i)) =< σ >. Put E[27] =< P,Q > then
Pσ = αP + βQ ∈ E(K), so

(27 − α)P + Pσ = βQ ∈ E(K).

• If β = 0 (mod 27), then Pσ = αP and the action of Gal(Q(i)/Q(i)) on ⟨P⟩ factors through Gal(K/Q(i)), it
follows that

Pµ = αP, µ ∈ Gal(Q(i)/Q(i))

which means that E/Q(i) has an 27-isogeny.

• If β , 0 (mod 27), then βQ is a point of order l with l/27 not contained in ⟨P⟩, from which it follows
that E(K) has full l-torsion. On the other hand, the Lemma 2.3 shows that the only possibilities for l
are 2 or 4, which is a contradiction.

Theorem 4.2. Consider a Galois extension K of Q(i) of prime degree q and E be an elliptic curve over Q(i). Then the
3-Sylow group of E(K) is isomorphic to a subgroup of Z/9Z.

Proof. By Lemma 2.3 we have that E(K) cannot have full 3n-torsion for n ≥ 1. Suppose that E(K) has a point
of order 27, it follows from Lemma 4.1 that E has a 27-isogeny over Q(i). But there is only one family of
twists of elliptic curves over Q(i) defined over Q with a 27-isogeny and torsion Z/3Z (see, [13]), this with
j-invariant −12288000 which are the twists of the elliptic curve 27a4. By the division polynomial method,
we find that 27a4 has no 27-torsion over any Galois extension of prime degree q = 3 ,5, 7 or 11 of the base
field Q(i).
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We then look at a broader statement that extends these number fields. Consider Gal(K/Q(i)) ≃ Z/qZ. So, if
q ≥ 11, and suppose Z/27Z ⊂ E(K) it follows from the Lemma 2.3 that

E(K)[27] ≃ Z/27Z.

Let P and Q be elements of E(L) such that P is of order 3 and Q is of order 9 (if they exist) and

A = {T ∈ E(K) | 3T = P} and B = {T ∈ E(K) | 3T = Q} .

The action of the group Gal(K/L) is observed on both sets A, which consists of 3 elements, and B, which
comprises 9 elements. Furthermore, according to the orbit stabilizer theorem, the orbits have length q. This
implies that A and B are decomposed into sets of q elements, which is impossible because q is a prime
number > 11.

Theorem 4.3. Consider a Galois extension K of Q(
√
−3) of prime degree q and E be an elliptic curve over Q(

√
−3).

Then the 3-Sylow group of E(K) is isomorphic to a subgroup of Z/3Z ⊕Z/9Z.

Proof. By Lemma 2.4 we have that E(K) cannot have full 3n-torsion for n ≥ 2. Suppose that E(K) has
a point of order 27, and Gal(K/Q(

√
−3)) =< σ >. Put E[27] =< P,Q > then Pσ = αP + βQ ∈ E(K), so

(27 − α)P + Pσ = βQ ∈ E(K).

• If β = 0 (mod 27), then Pσ = αP and the action of Gal(Q(
√
−3)/Q(

√
−3)) on ⟨P⟩ factors through

Gal(K/Q(
√
−3)), it follows that

Pµ = αP, µ ∈ Gal(Q(
√

−3)/Q(
√

−3))

which means that E/Q(
√
−3) has an 27-isogeny over Q(

√
−3). But according to (See, [13]), that’s

impossible.

• If β , 0 (mod 27), then βQ is a point of order l with l/27 not contained in ⟨P⟩, from which it follows
that E(K) has full l-torsion. Since L = Q(

√
−3) then l = 3 and then,

E[27] = Z/3Z ⊕Z/9Z.

5. Proof of the Theorem 3.4

Consider K/L a Galois extension of prime degree q ≥ 3 and E be an elliptic curve over L. We now turn
our attention to the behavior of the p-sylow subgroup when p = q, p , q or q is coprime to p − 1.

Proof. First note that for a positive integer n, E(K) cannot have full pn-torsion for a prime number p by
Lemmas 2.3 and 2.4. Thus, E(K)

[
pn] is either trivial or a subgroup of Z/pnZ.

Let C := Gal(K/L) ≃ Z/qZ.

1. Suppose that p = q. then, E(K)[q] is Fq-linear representation of C and we denote this linear representa-
tion by ρ. Suppose that E(K)[q] , 0 and let x be a nonzero element of E(K)[q], and M be the subgroup
of E(K)[q] generated by the ρ(s)x, s ∈ C. We apply Lemma 3 in [16] to M, observing that M is finite and
of order a power of q. Therefore H0(C,M) , {0}, which proves that

H0 (C,E(K)[q]
)
= E(L)[q] , {0}.
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2. Suppose that p , q. then, if E(L)[p] ≃ Z/pZ and Z/p2Z ⊂ E(K). Then there is a no L-rational point
Q ∈ E(K)

[
p2
]

such that, pQ = P and P ∈ E(L)[p]. If we consider all these points together and denote
them by X. The orbit of a point Q ∈ X under the action of C is of length q. This means that X can be
partitioned into sets of size q. Consequently, the order of X must be a multiple of q. Thus, since the
order of C is coprime to p and by the Orbit stabilizer theorem we have that E(K)

[
p2
]
= 0, and then

E(K)
[
p∞
]

is either trivial or isomorphic to Z/pZ.

3. First, suppose E(L)[p] ≃ Z/pZ. Then
E(K)[p] ≃ Z/pZ

and we have that E(K)
[
p2
]
= 0. Consequently, E(L)

[
p∞
]

and E(K)
[
p∞
]

are equal and all isomorphic to
Z/pZ.
Suppose E(L)[p] = 0 and E(K)[p] , 0. Let P ∈ E(K)[p]. Since E(L)[p] = 0 it follows that Pα , P, and that
C acts on ⟨P⟩. On the other hand, we have that

Z/qZ ≃ C→ Aut(⟨P⟩) ≃ Aut
(
Z/pZ

)
≃
(
Z/pZ

)×
is a homomorphism. So either C acts trivially on P, or q divides p−1, and this contradicts the statement.

6. Conclusion

This paper delves into the behavior of p-Sylow subgroups of elliptic curves over a Galois extension
K of prime degree q, with a focus on base changes from the quadratic cyclotomic number field L. The
investigation reveals distinct patterns in subgroup growth contingent upon the base field and properties of
the elliptic curves. Specifically, the Theorems 3.1 and 3.2 outline the conditions over the 2-Sylow subgroup.
More precisely, if E(L) [2∞] , 0 then E(L) [2∞] = E(K) [2∞]. On the other hand, if E(L)[2] = 0 it follows that
E(K) [2∞] is either trivial, Z/2Z ⊕Z/2Z or Z/4Z ⊕Z/4Z, and E(K) [2∞] is either trivial or Z/2Z ⊕Z/2Z.
For the 3-Sylow we prove in the Theorem 3.3 that E(K) [3∞] is isomorphic to a subgroup of Z/3Z ⊕Z/9Z,
and E(K) [3∞] is isomorphic to a subgroup of Z/9Z.
Moreover, in Theorem 3.4 we provide the conditions over p-Sylow subgroups for p > 3. More presisly we
have that, if E(L)[q] = 0 then E(K)[q] = 0 and if p , q, then the p-Sylow group of E(K) is either trivial or
isomorphic toZ/pZ. Moreover, if q is coprime to p− 1, then the p-Sylow groups of E(L) and E(K) are equal.
These results provide a deeper understanding of the interplay between elliptic curves and their behavior
over different field extensions.
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