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Abstract. Let G be a k-uniform hypergraph with k ⩾ 2 and 0 ⩽ α < 1. The α-spectral radius of G is the
largest modulus of all the eigenvalues ofAα(G), whereAα(G) = αD(G) + (1 − α)A(G) is the convex linear
combination ofD(G) andA(G) withD(G) andA(G) being the degree diagonal tensor and the adjacency
tensor of G, respectively. Let U(n, k) be the set of the k-uniform unicyclic hypergraphs having perfect
matchings with n vertices, where n ⩾ k(k − 1) and k ⩾ 3. By using a creative method of the α-Perron
vector and several techniques for studying the α-spectral radii of hypergraphs, such as the well-known
Perron–Frobenius theorem, the moving-edge operation, and the 2-switch transformation, the hypergraph
with the largest α-spectral radius is characterized amongU(n, k), where n ⩾ k(k − 1) and k ⩾ 3.

1. Introduction

Let G = (V(G),E(G)) be a simple (i.e., no loops or multiple edges) hypergraph with n vertices and a
edges, where V(G) = {v1, v2, · · · , vn} and E(G) = {e1, e2, · · · , ea} are the sets of the vertices and the edges of G,
respectively. If |ei| = k for 1 ⩽ i ⩽ a, then G is called a k-uniform hypergraph. A k-uniform hypergraph G is
linear if any two edges of E(G) share at most one vertex. Let u, v ∈ V(G) and e ∈ E(G). If {u, v} ⊆ e, then u
and v are adjacent, and u is incident with e. The degree of v, denoted by dG(v), is the number of the edges
of G incident with v. Without confusion, dG(v) is simplified as dv. If dv = 1, then v is a core vertex. For an
edge e = {v1, v2, · · · , vk} ∈ E(G), if dv1 ⩾ 2 and dvi = 1 for 2 ⩽ i ⩽ k, then e is a pendant edge at v1.

A path between u and v is denoted by P = (v1, e1, v2, . . . , vp, ep, vp+1), where v1 = u, vp+1 = v, all vi and all
ei are distinct, and vi, vi+1 ∈ ei for 1 ⩽ i ⩽ p. For p ⩾ 2, if we identify v1 with vp+1 in P together, then we get a
cycle of length p. In G, if every pair of vertices has a path connecting them, then we say that G is connected.

For a k-uniform hypergraph G, if a(k − 1) − n + ω(G) = r(G), then we call G an r(G)-cyclic hypergraph
[3], where ω(G) and r(G) are the number of components and the cyclomatics number of G, respectively. If
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ω(G) = 1 and r(G) = 0, then G is a supertree [9]. Namely, a supertree is a k-uniform hypergraph which is
connected and acyclic. If ω(G) = r(G) = 1, then G is a k-uniform connected unicyclic hypergraph. Let H be
a simple ordinary graph. The k-th power of H is obtained from H by inserting (k− 2) new vertices into each
edge (a 2-set) of H, where k ⩾ 3. A hypertree is the k-th power of an ordinary tree. Obviously, a hypertree
is a supertree.

A perfect matching of G is S1∪S2∪· · ·∪Sh, where h ⩾ 1, S1,S2, · · · ,Sh ∈ E(G), Si∩S j = ∅ (1 ⩽ i < j ⩽ h), and
S1 ∪ S2 ∪ · · · ∪ Sh = V(G). It is known that the hypergraphs with perfect matchings have many applications
in graph theory. For the results about some properties of the hypergraphs with perfect matchings, one can
refer to Refs. [7, 8, 18].

Let R and C be the sets of real and complex numbers, respectively. A k-ordered and n-dimensional real
tensorA = (ai1i2···ik ) overR is a multi-dimensional array with nk entries, where ai1i2···ik ∈ Rwith i1, i2, · · · , ik ∈
[n] = {1, 2, · · · ,n}. The concept of tensor eigenvalues and the spectra of tensors are independently introduced
by Qi [15] and Lim [10] as follows. If there exist a number λ ∈ C and an eigenvector x = {x1, x2, · · · , xn}

T
∈ Cn

satisfying

n∑
i2,··· ,ik=1

aii2···ik xi2 · · · xik = λxk−1
i , for any 1 ⩽ i ⩽ n, (1)

then λ is called an eigenvalue ofA and x an eigenvector ofA corresponding to λ. The spectral radius of
A is the largest modulus of the eigenvalues ofA, i.e., ρ(A) = max{|λ|

∣∣∣ λ is an eigenvalue ofA}.
For a k-uniform hypergraph G with n ⩾ 2 vertices, the adjacency tensor of G isA(G) =

(
ai1i2···ik

)
, where

ai1i2···ik =
1

(k−1)! if {vi1 , vi2 , · · · , vik } ∈ E(G) and ai1i2···ik = 0 otherwise [1]. The degree diagonal tensor of G is
D(G) = (di1i2···ik ), where di1i2···ik = dvi for any vi ∈ V(H) if i1 = i2 = · · · = ik = i with i ∈ [n] and di1i2···ik = 0
otherwise.

Let 0 ⩽ α < 1. Nikiforov [13] proposed to merge the spectral properties of the adjacency matrix
and the signless Laplacian matrix of a graph. Motivated by the work of Nikiforov [13], Lin et al. [11]
introduced the convex linear combination of D(G) and A(G) for a k-uniform hypergraph G as follows:
Aα(G) = αD(G) + (1 − α)A(G).

The α-spectral radius of G, denoted by ρα(G), is the spectral radius of Aα(G). When α = 0, Aα(G) is
A(G) and ρα(G) is the spectral radius of G. When α = 1

2 , 2Aα(G) is the signless Laplacian tensor of G and
2ρα(G) is the signless Laplacian spectral radius of G.

For a vector x = (x1, x2, . . . , xn)T
∈ Cn of dimension n and a subset W ⊆ [n], we define xW =

∏
i∈W xi. We

have

xT(A(G)x) =
n∑

i1,i2,...,ik=1

ai1i2...ik xi1 · · · xik = k
∑

e∈E(G)

xe, (2)

xT(D(G)x) =
n∑

i1,i2,...,ik=1

di1i2...ik xi1 · · · xik =

n∑
i=1

dvi x
k
i , (3)

xT(Aα(G)x) = αxT(D(G)x) + (1 − α)xT(A(G)x). (4)

Since the studies on the α-spectral radii of hypergraphs are of practical significance, some results about
the hypergraphs with the extremal α-spectral radii have been obtained. For the k-uniform supertrees, the
supertrees with the first to the third largest α-spectral radii were characterized [23] and the supertrees with
the fourth to the eighth largest α-spectral radii were determined [20]. For the k-uniform non-caterpillar
hypergraphs with a given diameter, the supertrees with the first and the second largest α-spectral radii
were derived [19]. The hypergraphs with the largest α-spectral radii were also characterized respectively
among the hypergraphs with a given number of pendant edges [12], among the unicyclic hypergraphs [12],
among the k-uniform unicyclic hypergraphs with a fixed diameter [6], and among the k-uniform unicyclic
hypergraphs with a given number of pendant edges [6]. For the results about the upper bounds of the
α-spectral radii for hypergraphs, one can refer to Refs. [2, 5, 12].
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We denote byU(n, k) the set of the k-uniform connected unicyclic hypergraphs having perfect matchings
with n vertices, where n ⩾ k(k − 1) and k ⩾ 3. Let G be an arbitrary hypergraph inU(n, k). We use M(G) to
denote a perfect matching of G. By Property 2.10 (as shown in Section 2), we know that M(G) is unique.
An edge of M(G) is called a perfect matching edge of G. If a vertex of G is incident with a perfect matching
edge, then it is saturated. Let Q(G) = E(G) −M(G) and Ĝ be the hypergraph induced by Q(G), that is,
Ĝ = G−M(G)−S0, where S0 is the set of the isolated vertices in G−M(G). We call Ĝ the capped hypergraph
of G and G the original hypergraph of Ĝ.

Let |M(G)| and |Q(G)| be the numbers of the edges in M(G) and Q(G), respectively. Since each vertex of G
is saturated, we have |M(G)| = n

k , where n is divisible by k and k ⩾ 3. Thus, it follows from n = |E(G)|(k − 1)
that |Q(G)| = |E(G)| − n

k =
n

k(k−1) , where n is divisible by k(k − 1). For simplicity, let |Q(G)| = m. Namely, m is

the number of the edges of Ĝ. Thus, inU(n, k), we get n = mk(k − 1), where m ⩾ 1 and k ⩾ 3.
In U(n, k), Sun et al. [17] obtained the hypergraph with the largest spectral radius. Motivated by

the preceding results on the hypergraphs with the extremal α-spectral radii, the aim of this article is to
characterize the hypergraph with the largest α-spectral radius amongU(n, k), where n ⩾ k(k − 1) and k ⩾ 3.

This paper is organized as follows. In Section 2, relevant notations and some necessary lemmas are
introduced. In Section 3, to obtain our results, we first introduce Lemmas 3.1–3.9. We will develop a
creative method of the α-Perron vector (as shown in Lemma 3.7 and Lemma 3.8) and apply several useful
methods, such as the well-known Perron–Frobenius theorem [4, 21], the moving-edge operation, and the
2-switch transformation introduced by Guo and Zhou [5], etc. The hypergraph with the largest α-spectral
radius is derived amongU(n, k), where n ⩾ k(k − 1) and k ⩾ 3, which is shown in Theorem 3.11.

2. Preliminary

In this section, we will introduce some notations and quote some necessary lemmas for subsequent
proofs.

The nonnegative weakly irreducible tensor was defined by Friedland et al. [4] and Yang et al. [22]
represented it as follows.

Definition 2.1. [4, 22] Let A = (ai1i2···ik ) be a nonnegative tensor of order k and dimension n. For any nonempty
proper index subset I ⊂ [n], if there is at least one entry ai1i2···ik > 0, where i1 ∈ I and at least one i j ∈ [n] \ I for
j = 2, 3, · · · , k, thenA is called a nonnegative weakly irreducible tensor.

Pearson and Zhang [14] proved that a k-uniform hypergraph G is connected if and only if its adjacency
tensor A(G) is weakly irreducible. Therefore, if G is connected, then A(G) and Aα(G) are all weakly
irreducible.

Let Rn
+ = {x = (x1, x2, · · · , xn)T

∈ Rn
| xi ⩾ 0, ∀i ∈ [n]} and Rn

++ = {x = (x1, x2, · · · , xn)T
∈ Rn

| xi > 0, ∀i ∈
[n]}.

Lemma 2.2. [4, 21] (The Perron–Frobenius theorem for nonnegative tensors). Let A be a nonnegative tensor of
order k and dimension n, where k ⩾ 2. Then we have the following statements.

(i). ρ(A) is an eigenvalue ofA with a nonnegative eigenvector x ∈ Rn
+ corresponding to it.

(ii). IfA is weakly irreducible, then ρ(A) is the unique eigenvalue ofA with a positive eigenvector x ∈ Rn
++, and

x is unique up to a positive scaling coefficient.

Lemma 2.3. [16] LetA be a nonnegative symmetric tensor of order k and dimension n. Then we have

ρ(A) = max
{
xT(Ax) | x ∈ Rn

+, ∥x∥
k
k = 1

}
.

Furthermore, x ∈ Rn
+ with ∥x∥kk = 1 is an optimal solution of the above optimization problem if and only if x is an

eigenvector ofA corresponding to the eigenvalue ρ(A).
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By Lemma 2.2, for a k-uniform connected hypergraph G, there exists the unique positive eigenvector
x = (x1, x2, · · · , xn)T of G corresponding to ρα(G), where ∥x∥kk = 1. This vector x is referred to as the α-Perron
vector of G and it plays an important role in studying ρα(G). By Lemma 2.3, we obtain Lemma 2.4 as
follows.

Lemma 2.4. Let G be a k-uniform connected hypergraph, where k ⩾ 2. Then we have

ρα(G) = max
{
xT (Aα(G)x) | x ∈ Rn

+, ∥x∥
k
k = 1

}
.

Furthermore, x ∈ Rn
+ with ∥x∥kk = 1 is an optimal solution of the above optimization problem if and only if it is an

eigenvector of G corresponding to the eigenvalue ρα(G).

In studying the spectral radius and the α-spectral radius of hypergraphs, the method of transformation
is a key tool. In Definition 2.5, Li et al. [9] introduced the definition of the moving-edge operation for the
spectral radii of hypergraphs. In Lemma 2.6, Guo and Zhou [5] generalized it to the α-spectral radii of
hypergraphs.

Definition 2.5. [9] Let G = (V(G),E(G)) be a hypergraph with u ∈ V(G) and e1, · · · , er ∈ E(G), where u < ei for
any i ∈ [r] with r ⩾ 1. Suppose that vi ∈ ei and e′i = (ei\ {vi})∪ {u}, where i ∈ [r]. Let G′ = (V(G′),E(G′)) be the
hypergraph with E(G′) = (E(G)\ {e1, · · · , er})∪

{
e′1, · · · , e

′
r

}
. Then we say that G′ is obtained from G by moving edges

(e1, · · · , er) from (v1, · · · , vr) to u.

Lemma 2.6. [5] Let G = (V(G),E(G)) be a k-uniform hypergraph with u, v1, · · · , vr ∈ V(G) and e1, · · · , er ∈ E(G),
where k ⩾ 2 and r ⩾ 1. Suppose that u < ei and vi ∈ ei for any i ∈ [r], where v1, · · · , vr are not necessarily distinct. Let
e′i = (ei\ {vi}) ∪ {u}, where i ∈ [r]. Suppose that e′i < E(G) for any i ∈ [r]. Let G′ be obtained from G by moving edges
(e1, · · · , er) from (v1, · · · , vr) to u. Let x be the α-Perron vector of G. If xu ⩾ max

{
xv1 , · · · , xvr

}
, then ρα (G′) > ρα(G)

for 0 ⩽ α < 1.

Li et al. [9] proposed the edge-releasing operation for the k-uniform linear hypergraphs. In Definition
2.7, we generalize the edge-releasing operation to the α-spectral radius of k-uniform hypergraphs.

Definition 2.7. Let G be a k-uniform connected hypergraph with k ⩾ 3. Let e ∈ E(G) be a non-pendant edge, and
let {e1, . . . , er} ⊆ E(G) be the set of all the edges that share exactly with e at one common vertex. Let vi be the unique
vertex in e ∩ ei, where 1 ⩽ i ⩽ r. Fix an arbitrary vertex (denoted by u) in e. Let G′ be a hypergraph obtained from G
by replacing each ei with e′i = (ei \ {vi}) ∪ {u} (i = 1, . . . , r) and keeping all other edges of G unchanged (in particular,
if vi = u, then e′i = ei). Then G′ is said to be obtained from G by the edge-releasing operation on e at u.

Lemma 2.8. Let G and G′ be the two k-uniform connected hypergraphs as defined in Definition 2.7, where k ⩾ 3.
Then ρα (G′) > ρα(G) for 0 ⩽ α < 1.

Proof. Let G and G′ be the two hypergraphs as defined in Definition 2.7. Since e is a non-pendant edge of
G, there exist some vertices in e which have degrees not less than 2. We denote these vertices by v1, · · · , vr,
where 2 ⩽ r ⩽ k and k ⩾ 3. As G is a connected hypergraph, let x be the α-Perron vector of G. Without
loss of generality, we assume xv1 ⩾ max{xv2 , · · · , xvr }. Let G′′ be the hypergraph obtained from G by moving
edges (e1, · · · , er) (except for all the edges which are incident with v1) from (v2, · · · , vr) (except for v1) to v1.
Obviously, G′′ is connected. By Lemma 2.6, for 0 ⩽ α < 1, we have ρα(G′′) > ρα(G). Since |ei ∩ e| = 1 for
1 ⩽ i ⩽ r, G′′ is the hypergraph G′ in Lemma 2.6. Thus, Lemma 2.8 holds. □

Let G = (V(G),E(G)) be a hypergraph. For E′ ⊆ E(G), let G − E′ be the hypergraph obtained from G by
deleting all the edges in E′. If E′ is a set of subsets of V(G) and no elements of E′ is an edge of G, then let
G + E′ be the hypergraph obtained from G by adding all the elements in E′. The 2-switch transformation
for the α-spectral radii of hypergraphs was proposed by Guo and Zhou in Lemma 2.9.
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Lemma 2.9. [5] Let G be a k-uniform connected hypergraph with k ⩾ 2, and e, f be two edges of G with e ∩ f = ∅.
Let x be the α-Perron vector of G. Let U ⊂ e and V ⊂ f with 1 ⩽ |U| = |V| ⩽ k − 1. Let e′ = U ∪ ( f\V) and
f ′ = V ∪ (e\U). Suppose that e′, f ′ < E(G). Let G′ = G − {e, f } +

{
e′, f ′
}
. If xU ⩾ xV, x f\V ⩾ xe\U and at least one

inequality holds, then ρα (G′) > ρα(G) for 0 ⩽ α < 1.

For a k-uniform connected unicyclic hypergraph having perfect matchings, we have Property 2.10.

Property 2.10. [17] Let G ∈ U(n, k), where n ⩾ k(k − 1) and k ⩾ 3. Then M(G) of G is unique.

3. The hypergraph with the largest α-spectral radius amongU(n, k)

In this section, we will deduce the hypergraph with the largest α-spectral radius amongU(n, k), where
n = mk(k − 1), m ⩾ 1 and k ⩾ 3. To obtain our result (as shown in Theorem 3.11), we firstly introduce some
definitions and Lemmas 3.1–3.9.

LetU(n, k, l) be a subset ofU(n, k) in which each hypergraph has a cycle Cl, where l is an integer with l ⩾ 2.
Let G ∈ U(n, k, l). Then G contains a cycle Cl = v1e1v2e2v3 · · · vlelv1, where ei = {vi, vi,1, . . . , vi,k−2, vi+1} with
1 ⩽ i ⩽ l− 1 and el = {vl, vl,1, . . . , vl,k−2, v1}. According to the fact whether Cl of G contains at least one perfect
matching edge or not, we classifyU(n, k, l) into two subsets which are denoted byU1(n, k, l) andU2(n, k, l),
where U1(n, k, l) (respectively U2(n, k, l)) satisfies that each hypergraph G in it has no perfect matching
edges on Cl (respectively at least one perfect matching edge on Cl). Obviously,U(n, k) =

⋃
l≥2

(
U1(n, k, l) ∪

U2(n, k, l)
)
.

Let U1(n, k, 2) be a subset of U1(n, k, 2) in which each hypergraph satisfies two conditions: (1) each
vertex in C2 must be incident with a pendant edge; and (2) at most one of the vertices in e1 ∪ e2 of C2 is
attached by a k-uniform supertree which has at least k edges, where k ⩾ 3.

Let U2(n, k, 2) be a subset of U2(n, k, 2) in which each hypergraph satisfies two conditions: (1) each
vertex in e2 \ {v1, v2} of C2 must be incident with a pendant edge; and (2) at most one of the vertices in e1 ∪ e2
of C2 is attached by a k-uniform supertree which has at least k edges, where k ⩾ 3.

We use Sm to denote a star with m edges and let u0 be the center vertex of Sm with degree m, where m ⩾ 1.
Let Sk

m be the hypertree obtained from Sm by inserting k − 2 new vertices into each edge of Sm, where m ⩾ 1
and k ⩾ 3. Obviously, all the edges of Sk

m share a common vertex u0. Let G and H be two hypergraphs whose
vertex sets are disjoint with v ∈ V(G) and w ∈ V(H). We use G(v,w)H to denote the hypergraph obtained
by identifying the vertices v and w. For example, C2(v1,u0)Sk

m−1 is shown in Fig. 1, where C2 = v1e1v2e2v1 is
a cycle of length 2.

We use En,k (respectively Dn,k) to denote the hypergraph obtained from C2(v2,1,u0)Sk
m−1 (respectively

C2(v1,u0)Sk
m−1) by attaching a pendant edge at each vertex (except for the vertices in e1 ) of C2(v2,1,u0)Sk

m−1
(respectively C2(v1,u0)Sk

m−1), where n = mk(k − 1), m ⩾ 1, and k ⩾ 3. En,k and Dn,k are shown in Figs. 2
and 3, respectively. When n = k(k − 1), it is obvious Dn,k � En,k. Let Fn,k be the hypergraph obtained from
C2(v1,u0)Sk

m−2 by attaching a pendant edge at each vertex of C2(v1,u0)Sk
m−2, where n = mk(k − 1), m ⩾ 2, and

k ⩾ 3. Fn,k is shown in Fig. 5.
Obviously, Dn,k,En,k ∈ U2(n, k, 2) and Fn,k ∈ U1(n, k, 2).

Lemma 3.1. Let G ∈ U(n, k, l), where n ⩾ 3k(k− 1) and k, l ⩾ 3. Let e be a perfect matching edge of G and e is not a
pendant edge. Let G0 be the hypergraph obtained from G by applying the edge-releasing operation on e at an arbitrary
vertex of e such that e of G0 is a pendant edge. Then ρα(G0) > ρα(G), where G0 ∈ U(n, k) and 0 ⩽ α < 1.

Proof. Let G and G0 be the two hypergraphs as defined in Lemma 3.1. In G, since e is a perfect matching edge
and e is not a pendant edge, all the edges of G adjacent to e belong to Q(G). By applying the edge-releasing
operation on e at an arbitrary vertex in e, we get ρα(G0) > ρα(G) (by Lemma 2.8), where G0 has the perfect
matching M(G) and G0 ∈ U(n, k). By the definition of the edge-releasing operation, in G0, e is a pendant
edge. Thus, we get Lemma 3.1. □
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m − 1︷       ︸︸       ︷
e2 e1

v2v1v2,1v2,k−2 v1,1 v1,k−2

Figure 1: C2(v1,u0)Sk
m−1

Lemma 3.2. Let G ∈ U(n, k, l), where n ⩾ 2k(k − 1) and k, l ⩾ 3. There exists a hypergraph G′ ∈ U1(n, k, 2) such
that ρα(G′) > ρα(G), where 0 ⩽ α < 1.

Proof. Let G ∈ U(n, k, l), where n ⩾ 2k(k − 1) and k, l ⩾ 3. Let 0 ⩽ α < 1. The cycle contained in G is denoted
by Cl = v1e1 . . . vlelv1. SinceU(n, k, l) =U1(n, k, l) ∪U2(n, k, l), two cases are considered.

Case (i). G ∈ U1(n, k, l).
According to the definition ofU1(n, k, l), ei <M(G) and each vertex of ei is incident with an edge of M(G),

where 1 ⩽ i ⩽ l. Let x be the α-Perron vector of G. Without loss of generality, we suppose that xv1 ⩾ xv2 . Let
G1 be the hypergraph obtained from G by removing e2 from v2 to v1. Since all the edges incident with v2
(except for the edge e2) remain unchanged, M(G) is the perfect matching of G1 and G1 contains Cl−1. Thus,
G1 ∈ U1(n, k, l − 1). By Lemma 2.6, we get ρα(G1) > ρα(G). By repeatedly using the same operation, we
finally get a hypergraph G′ ∈ U1(n, k, 2) such that ρα(G′) > ρα(G).

Case (ii). G ∈ U2(n, k, l).
According to the definition of U2(n, k, l), in Cl of G, there exists one edge (denoted by e) such that

e ∈ M(G). Let v be an arbitrary vertex in e. Let G2 be the hypergraph obtained from G by applying the
edge-releasing operation on e at v. By Lemma 3.1, we have ρα(G2) > ρα(G), where G2 satisfies that e is a
pendant edge, and the number of the perfect matching edges in the cycle of G2 is one less than |M(Cl)| of
G. Obviously, G2 ∈ U(n, k, l − 1). By repeatedly using the same operation as above and as in Case (i), we
finally get a hypergraph G′ ∈ U1(n, k, 2) such that ρα(G′) > ρα(G). Thus, we get Lemma 3.2. □

Lemma 3.3. Let G ∈ U1(n, k, 2), where n ⩾ 2k(k − 1) and k ⩾ 3. There exists a hypergraph G′′ ∈ U1(n, k, 2) such
that ρα(G′′) ⩾ ρα(G) with the equality if and only if G � G′′, where 0 ⩽ α < 1.

Proof. Let n = mk(k − 1), m ⩾ 2, and k ⩾ 3. When m = 2, obviously, Lemma 3.3 holds. Next, let m ⩾ 3. Let
G ∈ U1(n, k, 2). According to the definition ofU1(n, k, 2), each vertex in C2 of G is incident with an edge in
M(G) which does not belong to E(C2). Let e be an arbitrary edge of M(G) which is incident with a vertex
in C2 of G, where e < E(C2). By applying the edge-releasing operation on e at a vertex of e and using the
methods similar to those for the proofs of Lemma 3.1, we can get a hypergraph (denoted by G3) such that
ρα(G3) ⩾ ρα(G) for 0 ⩽ α < 1, with the equality if and only if G � G3, where G3 satisfies: (1). each vertex in
C2 of G3 is incident with a pendant edge; and (2). each vertex in C2 of G3 may be attached by a k-uniform
supertree containing at least k edges, where k ⩾ 3.

Since m ⩾ 3, there exists at least a vertex in C2 of G3 which is attached by a k-uniform supertree containing
at least k edges, where k ⩾ 3. Let x be the α-Perron vector of G3. In G3, let V1 be a subset of V(C2) such that
each vertex in V1 satisfies that it is attached by a k-uniform supertree containing at least k edges, where k ⩾ 3.
For all the components in x corresponding to the vertices in V1, we can choose a maximum value among
them. Let w ∈ V1 be such a vertex having the maximum value and xw be the component corresponding to
w among x. Let G and G′ in Lemma 2.6 be G3 and G4, respectively, where G4 is obtained from G3 by moving
all the k-uniform supertrees which are attached at all the vertices (except for w) in V1 to w, and G4 satisfies:
(1). each vertex in C2 of G4 is incident with a pendant edge; and (2). only one vertex (namely w) in C2 of G4

is attached by a k-uniform supertree containing at least k edges, where k ⩾ 3. Obviously, G4 ∈ U1(n, k, 2).
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By Lemma 2.6, we get ρα(G4) ⩾ ρα(G3) for 0 ⩽ α < 1, with the equality if and only if G3 � G4. Therefore,
ρα(G4) ⩾ ρα(G), with the equality if and only if G � G4. Thus, we get Lemma 3.3. □

Lemma 3.4. Let G ∈ U1(n, k, 2), where n ⩾ 2k(k − 1) and k ⩾ 3. Then ρα(Fn,k) ⩾ ρα(G) with the equality if and
only if G � Fn,k, where 0 ⩽ α < 1.

Proof. Let G◦ be the hypergraph with the largest α-spectral radius among U1(n, k, 2), where n ⩾ 2k(k − 1)
and k ⩾ 3. Let 0 ⩽ α < 1. Let C2 = v1e1v2e2v1 be the cycle of G◦, where ei = {v1, vi,1, . . . , vi,k−2, v2}with i = 1, 2.
When n = 2k(k− 1), we haveU1(n, k, 2) = {Fn,k}. Thus, Lemma 3.4 holds. Let n ⩾ 3k(k− 1). According to the
definition of U1(n, k, 2), there exists a vertex (denoted by v∗) in C2 of G◦ which is attached by a k-uniform
supertree containing at least k edges, where k ⩾ 3. Without loss of generality, we suppose that v∗ ∈ e1. Let x
be the α-Perron vector of G◦.
Claim 1. v∗ = v1 or v∗ = v2.

We prove Claim 1 by contradiction. Without loss of generality, we suppose that v∗ = v1,1. Let M(G◦) be
the perfect matching of G◦. By the definition ofU1(n, k, 2), e2 <M(G◦) and each vertex in C2 of G◦ is incident
with an edge in M(G◦) which is a pendant edge. If xv1 ⩾ xv1,1 , then let G5 be the hypergraph obtained from
G◦ by removing all the edges which are incident with v1,1 (except for e1 and the pendant edge incident with
v1,1) from v1,1 to v1. Obviously, G5 ∈ U1(n, k, 2). By Lemma 2.6, ρα(G5) > ρα(G◦). This is a contradiction.
Therefore, we have xv1 < xv1,1 . Let G6 be the hypergraph obtained from G◦ by removing e2 from v1 to v1,1.
Obviously, G6 ∈ U1(n, k, 2). By Lemma 2.6, ρα(G6) > ρα(G◦). This is a contradiction. Therefore, when
n ⩾ 3k(k − 1), each vertex in C2 of G◦ is incident with a pendant edge, and only v1 in C2 of G◦ is attached by
a k-uniform supertree (denoted by T) containing at least k edges, where k ⩾ 3. Thus, we get Claim 1.

Next, we will prove that each edge in E(T) ∩M(G◦) is a pendant edge. Otherwise, we suppose that
there exists an edge (denoted by e) in E(T) ∩M(G◦) such that e is not a pendant edge. By applying the
edge-releasing operation on e at a vertex of e and using the methods similar to those for the proofs of Lemma
3.1, we can get a hypergraph G7 such that ρα(G7) > ρα(G◦), where G7 satisfies: (1). each vertex in C2 of
G7 is incident with a pendant edge; (2). only v1 in C2 of G7 is attached by a k-uniform supertree (denoted
by T1) containing at least k edges, where k ⩾ 3; and (3). e of G7 is a pendant edge. Thus, G7 ∈ U1(n, k, 2).
Obviously, the inequality ρα(G7) > ρα(G◦) contradicts the definition of G◦. Thus, each edge in E(T)∩M(G◦)
is a pendant edge. Therefore, When n = 3k(k−1), Lemma 3.4 holds since G◦ � Fn,k. Let n ⩾ 4k(k−1). We will
prove G◦ � Fn,k by contradiction. Otherwise, we suppose that G◦ � Fn,k. Then T of G◦ contains at least two
edges of Q(G◦), and there exists an edge (denoted by 1 = {w1, . . . ,wk}) in T of G◦ such that three conditions
are satisfied: (1). v1 < 1; (2). v1 is adjacent to w1; and (3). 1 is not a pendant edge. Two cases are considered.
Case (i). xv1 ⩾ xw1 .

Let G8 be the hypergraph obtained from G◦ by removing 1 from w1 to v1. Obviously, G8 ∈ U1(n, k, 2).
By Lemma 2.6, ρα(G8) > ρα(G◦). This is a contradiction.
Case (ii). xv1 < xw1 .

Let G9 be the hypergraph obtained from G◦ by removing (e1, e2) from v1 to w1. Let e′i = {w1, vi,1, . . . , vi,k−2, v2},
where i = 1, 2. Obviously, w1e′1v2e′2w1 is a cycle of G9 and G9 ∈ U1(n, k, 2). By Lemma 2.6, ρα(G9) > ρα(G◦).
This is a contradiction.

By combining the proofs of Cases (i) and (ii), when n ⩾ 4k(k−1), we have G◦ � Fn,k. Thus, we get Lemma
3.4. □

Corollary 3.5. Let G ∈ U(n, k)\U2(n, k, 2), where n ⩾ 2k(k−1) and k ⩾ 3. For 0 ⩽ α < 1, we have ρα(Fn,k) ⩾ ρα(G)
with the equality if and only if G � Fn,k.

Proof. SinceU(n, k) \ U2(n, k, 2) =
⋃

l⩾3U(n, k, l) ∪ U1(n, k, 2), where n ⩾ 2k(k − 1) and k ⩾ 3, by Lemmas
3.2–3.4, we get Corollary 3.5. □

Lemma 3.6. Let G ∈ U2(n, k, 2), where n ⩾ 2k(k − 1) and k ⩾ 3. For 0 ⩽ α < 1, there exists a hypergraph
G′′′ ∈ U2(n, k, 2) such that ρα(G′′′) ⩾ ρα(G) with the equality if and only if G � G′′′.
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Proof. Let n ⩾ 2k(k− 1), k ⩾ 3 and 0 ⩽ α < 1. Let G ∈ U2(n, k, 2) and C2 = v1e1v2e2v1 be the cycle of G. By the
definition ofU2(n, k, 2), there exists one edge in C2 of G which belongs to M(G). Without loss of generality,
we suppose that e1 ∈M(G). Then e2 in C2 of G is an edge in Q(G). Thus, each vertex in e2 \ {v1, v2} is incident
with an edge in M(G). By the methods similar to those for the proofs of Lemma 3.1, we get a hypergraph
G10 such that ρα(G10) ⩾ ρα(G), with the equality if and only if G � G10, where G10 satisfies: (1). each vertex
in e2 \ {v1, v2} of C2 of G10 is incident with a pendant edge; and (2) each vertex in e1 ∪ e2 of C2 of G10 may be
attached by a k-uniform supertree containing at least k edges, where k ⩾ 3.

Let x be the α-Perron vector of G10. In G10, let V2 be a subset of V(C2) such that each vertex in V2 satisfies
that it is attached by a k-uniform supertree containing at least k edges, where k ⩾ 3. For all the components
in x corresponding to the vertices in V2, we can choose a maximum value among them. Let w′ ∈ V2 be such
a vertex having the maximum value and xw′ be the component corresponding to w′ among x. Let G and
G′ in Lemma 2.6 be G10 and G11, respectively, where G11 is obtained from G10 by moving all the k-uniform
supertrees which are attached at all the vertices (except for w′) in V2 to w′, and G11 satisfies: (1). each vertex
in e2 \ {v1, v2} of C2 of G11 is incident with a pendant edge; and (2). only one vertex (namely w′) in C2 of G11

is attached by a k-uniform supertree containing at least k edges, where k ⩾ 3. Obviously, G11 ∈ U2(n, k, 2).
By Lemma 2.6, we get ρα(G11) ⩾ ρα(G10), with the equality if and only if G11 � G10. Thus, ρα(G11) ⩾ ρα(G),
with the equality if and only if G � G11. Therefore, we get Lemma 3.6. □
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Figure 2: En,k

Lemma 3.7. Let n ⩾ 2k(k − 1), where k ⩾ 3. We have ρα(Dn,k) > ρα(En,k), where 0 ⩽ α < 1.

Proof. Let En,k be the hypergraph as shown in Fig. 2. Let 0 ⩽ α < 1. We divide V
(
En,k
)

into eight subsets
as follows. Let V0 = {u1,u2}, V1 =

{
u1,1, · · · ,u1,k−2

}
, V2 =

{
u2,2, · · · ,u2,k−2

}
, V3 =

{
u3,1, · · · ,u3,(m−1)(k−1)

}
, V4 ={

u4,1, · · · ,u4,(m−1)(k−1)2

}
, V5 =

{
u5,1, · · · ,u5,(k−3)(k−1)

}
, V6 =

{
u6,1, · · · ,u6,k−1

}
, and V7 =

{
u2,1
}
, where dEn,k (u2,1) =

m+1, each vertex in Vi (i = 0, 2, 3) has degree 2 and each vertex in Vi (i = 1, 4, 5, 6) has degree 1. Furthermore,
Vi with 1 ⩽ i ⩽ 6 satisfies the following conditions: (1). each vertex in V1 is adjacent to u1 and u2 in V0
simultaneously; (2). each vertex in V2 is adjacent to u2,1, u1 and u2 in V0, and k− 1 core vertices in V5 which
are incident with a pendant edge; (3). each vertex in V3 is adjacent to u2,1 and k− 1 core vertices in V4 which
are incident with a pendant edge; (4). each vertex in V4 is adjacent to a vertex in V3; (5). each vertex in V5 is
adjacent to a vertex in V2; and (6). each vertex in V6 is adjacent to u2,1. Obviously, we have V

(
En,k
)
=
⋃7

i=0 Vi
and Vi ∩ V j = ∅ for 0 ⩽ i < j ⩽ 7. All the vertices of En,k are shown in Fig. 2.
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Figure 3: Dn,k

Let x be the α-Perron vector of En,k. Namely, we have xT (Aα(En,k)x
)
= ρα(En,k), where ∥x∥kk = 1 and

x ∈ Rn
++. By the symmetry, all the vertices in Vi have the same component in x, where 0 ⩽ i ⩽ 6. We use

xi to denote the component in x which corresponds to the vertices in Vi
(
En,k
)
, where 0 ⩽ i ⩽ 7. In En,k, let

ei = {u1,ui,1, · · · ,ui,k−2,u2} with i = 1, 2 and 11, · · · , 1m−1 be the m − 1 edges which are incident with u2,1 and
k − 1 core vertices in V4, where m ⩾ 2.

If x0 ⩾ x7, then let G′1 be the hypergraph obtained from En,k by removing (11, · · · , 1m−1) from u2,1 to u1.
Obviously, G′1 � Dn,k. By Lemma 2.6, we get ρα(Dn,k) > ρα(En,k).

Next, let x7 > x0. Let f = {u2,1,u6,1, · · · ,u6,k−1}. Two cases are considered as follows.
Case (i) xe1\{u1} ⩾ x f\{u2,1}.
Let U =

{
u1,1, · · · ,u1,k−2,u2

}
and V =

{
u6,1, · · · u6,k−1

}
. Then e1 = U ∪ {u1} and f = V ∪ {u2,1}. Let e′1 =

U ∪ ( f\V) =
{
u1,1, · · · ,u1,k−2,u2,u2,1

}
and f ′ = V ∪ (e1\U) =

{
u6,1, · · · u6,k−1,u1

}
. Let G′2 = En,k −

{
e1, f
}
+
{
e′1, f ′

}
.

Obviously, u2,1e2u2e′1u2,1 is the cycle of G′2, u1 is incident with the pendant edge f ′ in G′2, and all the perfect
matching edges of G′2 are pendant edges. Therefore, G′2 � Dn,k. In this case, we have xU = xe1\{u1} ⩾ x f\{u2,1} =
xV. Furthermore, we get x f\V = xu2,1 = x7 > x0 = xu1 = xe1\U. By Lemma 2.9, we obtain ρα(Dn,k) > ρα(En,k).

Case (ii). x f\{u2,1} > xe1\{u1}.
Two subcases are considered.
Subcase (ii.i). x0 ⩾ x6.
Let U = {u6,1} and V = {u1}. Let e′′1 = U ∪ (e1\V) =

{
u6,1,u1,1, · · · u1,k−2,u2

}
and f ′′ = V ∪ ( f\U) ={

u1,u2,1,u6,2 · · · u6,k−1
}
. Let G′3 = En,k −

{
e1, f
}
+
{
e′′1 , f ′′

}
. Obviously, u2,1e2u1 f ′′u2,1 is the cycle of G′3, u2 is

incident with the pendant edge e′′1 in G′3, and all the perfect matching edges of G′3 are pendant edges.
Therefore, G′3 � Dn,k. Since x0 ⩾ x6, x f\{u2,1} = xk−1

6 > xe1\{u1} = x0xk−2
1 , and x ∈ Rn

++, we get xk−2
6 > xk−2

1 . Since
x f\U = x f\{u6,1} = x7xk−2

6 and xe1\V = xe1\{u1} = x0xk−2
1 , it follows from x7 > x0 and xk−2

6 > xk−2
1 that x f\U > xe1\V.

Since xV ⩾ xU and x f\U > xe1\V, by Lemma 2.9, we obtain ρα(Dn,k) > ρα(En,k).
Subcase (ii.ii). x6 > x0.
We divide V

(
Dn,k
)

into ten subsets as follows. Let V′0 =
{
v2,1
}
, V′1 =

{
v6,1, · · · , v6,k−2

}
, V′2 =

{
v2,2, · · · , v2,k−2

}
,

V′3 =
{
v3,1, · · · , v3,(m−1)(k−1)

}
, V′4 =

{
v4,1, · · · , v4,(m−1)(k−1)2

}
, V′5 =

{
v5,1, · · · , v5,(k−3)(k−1)

}
, V′6 =

{
v1,1, · · · , v1,k−2

}
,

V′7 = {v1}, V′8 = {v8}, and V′9 = {v2}, where dDn,k (v1) = m + 1, each vertex in V′i has degree 2 with i = 0, 2, 3, 9,
and each vertex in V′i has degree 1 with 1 ⩽ i ⩽ 8 and i , 2, 3, 7. Furthermore, V′i with 1 ⩽ i ≤ 6 satisfies
the following conditions: (1). each vertex in V′1 is adjacent to v2,1 and v8 simultaneously; (2). each vertex in
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V′2 is adjacent to v2,1, v1, v2, and k − 1 core vertices in V′5 which are incident with a pendant edge; (3). each
vertex in V′3 is adjacent to v1 and k − 1 core vertices in V′4 which are incident with a pendant edge; (4). each
vertex in V′4 is adjacent to a vertex in V′3; (5). each vertex in V′5 is adjacent to a vertex in V′2; and (6). each
vertex in V′6 is adjacent to v1 and v2 simultaneously. Obviously, we have V

(
Dn,k
)
=
⋃9

i=0 V′i and V′i ∩V′j = ∅
for 0 ⩽ i < j ⩽ 9. The hypergraph Dn,k and all the vertices of Dn,k are shown in Fig. 3.

We construct a vector y = (y1, y2, · · · , yn)T of Dn,k as follows. By the symmetry, the components in y
which correspond to the vertices in V′i are the same, and we denote them by yi, where 0 ⩽ i ⩽ 9. Let yi = xi

for 0 ⩽ i ⩽ 7, y0 = y8 = x0 and y6 = y9 = x6. Since ∥x∥kk = 1 and x ∈ Rn
++, we also have ∥y∥kk = 1 and y ∈ Rn

++.
By (3), we have

xT (
D(En,k)x

)
= 4xk

0 + (k − 2)xk
1 + 2(k − 3)xk

2 + 2(m − 1)(k − 1)xk
3

+ (m − 1)(k − 1)2xk
4 + (k − 3)(k − 1)xk

5 + (k − 1)xk
6 + (m + 1)xk

7.
(5)

Bearing in mind that yi = xi with 0 ⩽ i ⩽ 7, y0 = y8 = x0, and y6 = y9 = x6, by (3), we get

yT (
D(Dn,k)y

)
= 3xk

0 + (k − 2)xk
1 + 2(k − 3)xk

2 + 2(m − 1)(k − 1)xk
3

+ (m − 1)(k − 1)2xk
4 + (k − 3)(k − 1)xk

5 + kxk
6 + (m + 1)xk

7.
(6)

It follows from (5), (6) and x6 > x0 that

yT (
D(Dn,k)y

)
− xT (

D(En,k)x
)
= xk

6 − xk
0 > 0. (7)

By (2), we have

xT (
A(En,k)x

)
= k

∑
e∈E(En,k)

xe

= k
(
x2

0xk−2
1 + x2

0x7xk−3
2 + (k − 3)x2xk−1

5 + x7xk−1
6

+ (m − 1)x7xk−1
3 + (m − 1)(k − 1)x3xk−1

4

)
.

(8)

Since yi = xi for 0 ⩽ i ⩽ 7, y0 = y8 = x0, and y6 = y9 = x6, by (2), we obtain

yT (
A(Dn,k)y

)
= k

∑
e∈E(Dn,k)

xe

= k
(
x2

0xk−2
1 + x0x6x7xk−3

2 + (k − 3)x2xk−1
5 + x7xk−1

6

+ (m − 1)x7xk−1
3 + (m − 1)(k − 1)x3xk−1

4

)
.

(9)

It follows from (8), (9), x6 > x0, and x ∈ Rn
++ that

yT (
A(Dn,k)y

)
− xT (

A(En,k)x
)
= kx0x7xk−3

2 (x6 − x0) > 0. (10)

By Lemma 2.3, (7) and (10), we obtain

ρα
(
Dn,k
)
− ρα

(
En,k
)
⩾ yT (

Aα(Dn,k)y
)
− xT (

Aα(En,k)x
)

= α
(
yT (
D(Dn,k)y

)
− xT (

D(En,k)x
) )

+ (1 − α)
(
yT (
A(Dn,k)y

)
− xT (

A(En,k)x
) )
> 0. (11)

By (11), we have ρα
(
Dn,k
)
> ρα

(
En,k
)
, where k ⩾ 3 and m ⩾ 2. Thus, Lemma 3.7 holds. □
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Figure 4: Dn,k
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Figure 5: Fn,k

Lemma 3.8. Let n ⩾ 2k(k − 1), where k ⩾ 3. We have ρα(Fn,k) ⩾ ρα(Dn,k).

Proof. We divide V
(
Dn,k
)

into seven subsets as follows. Let V0 = {u1}, V1 =
{
u1,1, · · · ,u1,k−2

}
, V2 ={

u2,1, · · · ,u2,k−2
}
, V3 =

{
u3,1, · · · ,u3,(k−2)(k−1)

}
, V4 =

{
u4,1, · · · ,u4,(m−1)(k−1)

}
, V5 =

{
u5,1, · · · ,u5,(m−1)(k−1)2

}
, and

V6 = {u2}, where dDn,k (u1) = m+ 1, each vertex in Vi (i = 2, 4, 6) has degree 2 and each vertex in Vi (i = 1, 3, 5)
has degree 1. Furthermore, Vi with 1 ⩽ i ⩽ 5 satisfies the following conditions: (1). each vertex in V1 is
adjacent to u1 and u2 simultaneously; (2). each vertex in V2 is adjacent to u1, u2, and k − 1 core vertices in
V3 which are incident with a pendant edge; (3). each vertex in V3 is adjacent to a vertex in V2; (4). each
vertex in V4 is adjacent to u1 and k − 1 core vertices in V5 which are incident with a pendant edge; and (5).
each vertex in V5 is adjacent to a vertex in V4. Obviously, we have V

(
Dn,k
)
=
⋃6

i=0 Vi and Vi ∩ V j = ∅ for
0 ⩽ i < j ⩽ 6. The hypergraph Dn,k and all the vertices of Dn,k are shown in Fig. 4.
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Let x be the α-Perron vector of Dn,k. Namely, we have xT (Aα(Dn,k)x
)
= ρα(Dn,k), where ∥x∥kk = 1 and

x ∈ Rn
++. By the symmetry, all the vertices in Vi have the same component in x, where 0 ⩽ i ⩽ 6. We

use xi to denote the component in x which corresponds to the vertices in Vi
(
Dn,k
)
, where 0 ⩽ i ⩽ 6. Let

ei = {u1,ui,1, · · · ,ui,k−2,u2}with i = 1, 2 and 1 = {u1,u4,1, · · · ,u4,k−1}.
If x1 ⩾ x6, then let G′4 be the hypergraph obtained from Dn,k by removing e2 from u2 to u1,1. Obviously,

G′4 � Dn,k. By Lemma 2.6, we get ρα(Dn,k) > ρα(Dn,k), where 0 ⩽ α < 1. This is a contradiction. Therefore,
x6 > x1. Two cases are considered as follows.

Case (i). x1 ⩾ x4.
Since x6 > x1 and x1 ⩾ x4, we get x6 > x4. Let G′5 be the hypergraph obtained from Dn,k by removing

the k − 1 pendant edges which are adjacent to 1 from u4,1,u4,2, · · · ,u4,k−1 to u2,u1,1, · · · ,u1,k−2, respectively.
Obviously, G′5 � Fn,k. By Lemma 2.6, we get ρα(Fn,k) > ρα(Dn,k), where 0 ⩽ α < 1.

Case (ii). x4 > x1.
We divide V

(
Fn,k
)

into eleven subsets as follows. Let V′0 = {v1}, V′1 =
{
v1,1, · · · , v1,k−2

}
, V′2 =

{
v2,1, · · · , v2,k−2

}
,

V′3 =
{
v3,1, · · · , v3,(k−2)(k−1)

}
, V′4 =

{
v4,1, · · · , v4,(m−2)(k−1)

}
, V′5 =

{
v5,1, · · · , v5,(m−2)(k−1)2

}
, V′6 = {v6}, V′7 =

{
v7,1, · · · ,

v7,k−1
}
, V′8 =

{
v8,1, · · · , v8,(k−2)(k−1)

}
, V′9 =

{
v9,1, · · · , v9,k−2

}
, and V′10 = {v2}, where dFn,k (v1) = m + 1, dFn,k (v2) = 3,

each vertex in V′i has degree 2 with i = 2, 4, 9, and each vertex in V′i has degree 1 with 1 ⩽ i ⩽ 8 and i , 2, 4.
Furthermore, V′i with 1 ⩽ i ⩽ 9 (i , 6) satisfies the following conditions: (1). each vertex in V′1 is adjacent to
v1 and v6 simultaneously; (2). each vertex in V′2 is adjacent to v1, v2, and k − 1 core vertices in V′3 which are
incident with a pendant edge; (3). each vertex in V′3 is adjacent to a vertex in V′2; (4). each vertex in V′4 is
adjacent to v1 and k − 1 core vertices in V′5 which are incident with a pendant edge; (5). each vertex in V′5 is
adjacent to a vertex in V′4; (6). each vertex in V′7 is adjacent to v2; (7). each vertex in V′8 is adjacent to a vertex
in V′9; and (8). each vertex in V′9 is adjacent to v1, v2, and k − 1 core vertices in V′8 which are incident with a
pendant edge. Obviously, we have V

(
Fn,k
)
=
⋃10

i=0 V′i and V′i ∩ V′j = ∅ for 0 ⩽ i < j ⩽ 10. The hypergraph
Fn,k and all the vertices of Fn,k are shown in Fig. 5.

Two cases are considered as follows.
Subcase (ii.i). x4 ⩾ x6.
We construct a vector y = (y1, y2, · · · , yn)T for Fn,k as follows. By the symmetry, the components in y

which correspond to the vertices in V′i are the same, and we denote them by yi, where 0 ⩽ i ⩽ 10. Let yi = xi

for 0 ⩽ i ⩽ 6, y4 = y9 = y10 = x4 and y5 = y7 = y8 = x5. Since ∥x∥kk = 1 and x ∈ Rn
++, we also have ∥y∥kk = 1

and y ∈ Rn
++. By (3), we have

xT (
D(Dn,k)x

)
= (m + 1)xk

0 + (k − 2)xk
1 + 2(k − 2)xk

2 + (k − 2)(k − 1)xk
3

+ 2(m − 1)(k − 1)xk
4 + (m − 1)(k − 1)2xk

5 + 2xk
6.

(12)

Bearing in mind that yi = xi with 0 ⩽ i ⩽ 6, y4 = y9 = y10 = x4, and y5 = y7 = y8 = x5, by (3), we get

yT (
D(Fn,k)y

)
= (m + 1)xk

0 + (k − 2)xk
1 + 2(k − 2)xk

2 + (k − 2)(k − 1)xk
3

+ (2(m − 1)(k − 1) + 1)xk
4 + (m − 1)(k − 1)2xk

5 + xk
6.

(13)

It follows from (12), (13) and x4 ⩾ x6 that

yT (
D(Fn,k)y

)
− xT (

D(Dn,k)x
)
= xk

4 − xk
6 ⩾ 0. (14)

By (2), we have

xT (
A(Dn,k)x

)
= k

∑
e∈E(Dn,k)

xe

= k
(
x0x6xk−2

1 + x0x6xk−2
2 + (m − 1)x0xk−1

4 + (k − 2)x2xk−1
3 + (m − 1)(k − 1)x4xk−1

5

)
.

(15)
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Since yi = xi for 0 ⩽ i ⩽ 6, y4 = y9 = y10 = x4, and y5 = y7 = y8 = x5, by (2), we get

yT (
A(Fn,k)y

)
= k

∑
e∈E(Fn,k)

xe

= k
(
x0x6xk−2

1 + x0x4xk−2
2 + (m − 1)x0xk−1

4 + (k − 2)x2xk−1
3 + (m − 1)(k − 1)x4xk−1

5

)
.

(16)

It follows from (15), (16), x4 ⩾ x6, and x ∈ Rn
++ that

yT (
A(Fn,k)y

)
− xT (

A(Dn,k)x
)
= kx0xk−2

2 (x4 − x6) ⩾ 0. (17)

By Lemma 2.3, (14) and (17), we obtain

ρα
(
Fn,k
)
− ρα

(
Dn,k
)
⩾ yT (

Aα(Fn,k)y
)
− xT (

Aα(Dn,k)x
)

= α
(
yT (
D(Fn,k)y

)
− xT (

D(Dn,k)x
) )

+ (1 − α)
(
yT (
A(Fn,k)y

)
− xT (

A(Dn,k)x
) )
⩾ 0. (18)

By (18), we obtain ρα
(
Fn,k
)
⩾ ρα

(
Dn,k
)

for 0 ⩽ α < 1, where k ⩾ 3 and m ⩾ 2.
Subcase (ii.ii). x6 > x4.
We construct a vector z = (z1, z2, · · · , zn)T for Fn,k as follows. By the symmetry, the components in z

which correspond to the vertices in V′i are the same, and we denote them by zi, where 0 ⩽ i ⩽ 10. Let zi = xi

for 0 ⩽ i ⩽ 5, z4 = z6 = z9 = x4, z5 = z7 = z8 = x5 and z10 = x6. Since ∥x∥kk = 1 and x ∈ Rn
++, we also have

∥z∥kk = 1 and z ∈ Rn
++. By (3), we get

zT (
D(Fn,k)z

)
= (m + 1)xk

0 + (k − 2)xk
1 + 2(k − 2)xk

2 + (k − 2)(k − 1)xk
3

+
(
2(m − 1)(k − 1) − 1

)
xk

4 + (m − 1)(k − 1)2xk
5 + 3xk

6.
(19)

It follows from (12), (19) and x6 > x4 that

zT (
D(Fn,k)z

)
− xT (

D(Dn,k)x
)
= xk

6 − xk
4 > 0. (20)

Since zi = xi with 0 ⩽ i ⩽ 5, z4 = z6 = z9 = x4, z5 = z7 = z8 = x5, and z10 = x6, by (2), we get

zT (
A(Fn,k)z

)
= k

∑
e∈E(Fn,k)

xe

= k
(
x0x4xk−2

1 + x0x6xk−2
2 + x0x6xk−2

4 + (m − 2)x0xk−1
4

+ (k − 2)x2xk−1
3 +

(
(m − 1)(k − 1) − 1

)
x4xk−1

5 + x6xk−1
5

)
.

(21)

It follows from (15), (21), x6 > x4, x4 > x1, and x ∈ Rn
++ that

zT (
A(Fn,k)z

)
− xT (

A(Dn,k)x
)

= k
(
x0(x6 − x4)(xk−2

4 − xk−2
1 ) + xk−1

5 (x6 − x4)
)
> 0.

(22)

By Lemma 2.3, (20) and (22), we obtain

ρα
(
Fn,k
)
− ρα

(
Dn,k
)
⩾ zT (

Aα(Fn,k)z
)
− xT (

Aα(Dn,k)x
)

= α
(
zT (
D(Fn,k)z

)
− xT (

D(Dn,k)x
) )

+ (1 − α)
(
zT (
A(Fn,k)z

)
− xT (

A(Dn,k)x
) )
> 0. (23)

By (23), we get ρα
(
Fn,k
)
> ρα

(
Dn,k
)
, where 0 ⩽ α < 1, k ⩾ 3 and m ⩾ 2. Thus, Lemma 3.8 holds. □
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Lemma 3.9. Let G ∈ U2(n, k, 2), where n ⩾ 2k(k − 1) and k ⩾ 3. Then ρα
(
Fn,k
)
⩾ ρα (G), where 0 ⩽ α < 1.

Proof. Let n ⩾ 2k(k − 1), k ⩾ 3, and 0 ⩽ α < 1. Let G⋄ be the hypergraph having the largest α-spectral
radius amongU2(n, k, 2). Let C2 = v1e1v2e2v1 be the cycle of G⋄, where ei = {v1, vi,1, . . . , vi,k−2, v2}with i = 1, 2.
According to the definition of U2(n, k, 2), there exists one perfect matching edge in C2 of G⋄, and there
exists a vertex (denoted by v∗) in e1 ∪ e2 of G⋄ which is attached by a k-uniform supertree containing at
least k edges, where k ⩾ 3. We suppose that e1 in C2 is the perfect matching edge. In G⋄, if v∗ ∈ e1 \ {v1, v2},
without loss of generality, we suppose that v∗ = v1,1. By the same methods similar to those for the proofs
of Claim 1 in Lemma 3.4, we can get a hypergraph G′ such that ρα(G′) > ρα(G⋄), where G′ satisfies: (1).
G′ ∈ U2(n, k, 2); and (2). there exists only one vertex in e1 ∩ e2 of C2 of G′ which is attached by a k-uniform
supertree containing at least k edges, where k ⩾ 3. Obviously, the inequality ρα(G′) > ρα(G⋄) contradicts the
definition of G◦. Therefore, In G⋄, v∗ ∈ e2. Namely, G⋄ ∈ U2(n, k, 2) and only one vertex (namely v∗) in e2 of
C2 of G⋄ is attached by a k-uniform supertree containing at least k edges, where k ⩾ 3.

Two cases are considered.
Case (i). v∗ ∈ {v1, v2}.

We suppose v∗ = v1. When n = 2k(k − 1), by the definitions of G⋄ and Dn,k, we obtain G⋄ � Dn,k. By
Lemma 3.8, we get ρα(Fn,k) ⩾ ρα(Dn,k). Thus, Lemma 3.9 holds. Next, let n ⩾ 3k(k − 1). By the definition of
G⋄, v1 of G⋄ is attached by a k-uniform supertree (denoted by T̃) containing at least 2k edges, where k ⩾ 3.
We will prove that each edge in M(G⋄) \ {e1} is a pendant edge. Otherwise, we suppose that there exists an
edge (denoted by e) in E(T̃)∩M(G⋄) which is not a pendant edge. By applying the edge-releasing operation
on e at a vertex of e and using the methods similar to those for the proofs of Lemma 3.1, we can get a
hypergraph (denoted by G12) such that ρα(G12) > ρα(G⋄), where G12 ∈ U2(n, k, 2) and e of G12 is a pendant
edge. This is a contradiction. Thus, each edge in E(T̃) ∩M(G⋄) is a pendant edge. Namely, each edge in
M(G⋄) \ {e1} is a pendant edge.

If G⋄ � Dn,k, then by Lemma 3.8, ρα(Fn,k) ⩾ ρα(G⋄). Namely, Lemma 3.9 holds. If G⋄ � Dn,k, then
according to the definitions of G⋄ and Dn,k, there exists an edge (denoted by 1′ = {w′1, . . . ,w

′

k}) in T̃ of G⋄

satisfying: (1). v1 < 1′; (2). v1 and w′1 are incident with a common edge in T̃ (denoted by 11); and (3). 1′

is not a pendant edge. Obviously, 11 is not a perfect matching edge of G⋄. Let x be the α-Perron vector of
G⋄. If xv1 ⩾ xw′1 , then let G13 be the hypergraph obtained from G⋄ by removing 1′ from w′1 to v. Obviously,

G13 ∈ U2(n, k, 2). By Lemma 2.6, ρα(G13) > ρα(G⋄). This is a contradiction. Thus, we have xw′1 > xv1 . Let G14
be the hypergraph obtained from G⋄ by removing e2 from v1 to w′1. By Lemma 2.6, ρα(G14) > ρα(G⋄). Let
e∗2 = {w

′

1, v2,1, . . . , v2,k−1, v2}. Obviously, w′1e∗2v2e1v111w′1 is a cycle of length 3 in G14. Since G⋄ ∈ U2(n, k, 2),
by the definition of U2(n, k, 2), e2 < M(G⋄). Thus, M(G⋄) is the perfect matching of G14 and e1 is a perfect
matching edge of G14. Therefore, G14 ∈ U2(n, k, 3).

Let G15 be the hypergraph obtained from G14 by applying the edge-releasing operation on e1 at v1. By
Lemma 3.3, we get ρα(G15) ⩾ ρα(G14), with the equality if and only if G14 � G15. Obviously, w′1e∗2v111w′1 is a
cycle of G15 and e1 of G15 is a pendant edge. Since e1 is a perfect matching edge of G14, all the edges of G14

which are adjacent to e1 are not perfect matching edges of G14. Thus, G15 ∈ U1(n, k, 2), where n ⩾ 3k(k − 1).
By Lemma 3.4, ρα(Fn,k) ⩾ ρα(G15), with the equality if and only if G15 � Fn,k. Thus, we get ρα(Fn,k) > ρα(G⋄).
Namely, Lemma 3.9 holds.
Case (ii). v∗ ∈ e2 \ {v1, v2}.

Suppose v∗ = v2,1. If n = 2k(k − 1), by the definitions of G⋄ and En,k, G⋄ � En,k. By Lemmas 3.7 and 3.8,
ρα(Fn,k) > ρα(G⋄). Next, let n ⩾ 3k(k − 1). By the definition of G⋄, v2,1 is attached by a k-uinform supertree
(denoted by T′) containing at least 2k edges, where k ⩾ 3. We will prove that each edge in M(G⋄) \ {e1}

is a pendant edge. Otherwise, we suppose that there exists an edge (denoted by e) in E(T′) ∩ M(G⋄)
which is not a pendant edge. By applying the edge-releasing operation on e at a vertex of e and using the
methods similar to those for the proofs of Lemma 3.1, we can get a hypergraph (denoted by G16) such that
ρα(G16) > ρα(G⋄), where G16 ∈ U2(n, k, 2) and e of G16 is a pendant edge. This is a contradiction. Thus, each
edge in E(T′) ∩M(G⋄) is a pendant edge. Namely, each edge in M(G⋄) \ {e1} is a pendant edge. If G⋄ � En,k,
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by Lemmas 3.7 and 3.8, ρα(Fn,k) > ρα(G⋄). If G◦ � En,k, by the definition of G⋄, there exist two edges in E(T′)
which belong to Q(G⋄). By using the methods similar to those for the proofs of Cases (i) and (ii) in Lemma
3.4, we obtain ρα(En,k) ⩾ ρα(G⋄), with the equality if and only if G⋄ � En,k. Furthermore, by Lemmas 3.7 and
3.8, we get ρα(Fn,k) > ρα(G⋄).

By combining the above proofs, we get ρα(Fn,k) ⩾ ρα(G), where 0 ⩽ α < 1 and G ∈ U2(n, k, 2). □
By Lemmas 3.6 and 3.9, we get Corollary 3.10.

Corollary 3.10. Let G ∈ U2(n, k, 2), where n ⩾ 2k(k − 1) and k ⩾ 3. Then ρα(Fn,k) ⩾ ρα(G), where 0 ⩽ α < 1.

Theorem 3.11. Let G ∈ U(n, k), where n ⩾ k(k − 1) and k ⩾ 3.
(i). When n = k(k − 1), G � Dn,k.
(ii). When n ⩾ 2k(k − 1), for 0 ⩽ α < 1, we have ρα(Fn,k) ⩾ ρα(G) with the equality if and only if G � Fn,k.

Proof. When n = k(k − 1), by the definition of Dn,k, we have Theorem 3.11(i). Let n ⩾ 2k(k − 1) and
0 ⩽ α < 1. If G ∈ U(n, k) \ U2(n, k, 2), then by Corollary 3.5, we have ρα(Fn,k) ⩾ ρα(G), with the equality
if and only if G � Fn,k. If G ∈ U2(n, k, 2), then by Corollary 3.10, we get ρα(Fn,k) ⩾ ρα(G). Since U(n, k) =(
U(n, k) \ U2(n, k, 2)

)
∪U2(n, k, 2), we obtain Theorem 3.11(ii). □
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