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Abstract. Let G be a k-uniform hypergraph with k > 2 and 0 < a < 1. The a-spectral radius of G is the
largest modulus of all the eigenvalues of A,(G), where A,(G) = aD(G) + (1 — a)A(G) is the convex linear
combination of D(G) and A(G) with D(G) and A(G) being the degree diagonal tensor and the adjacency
tensor of G, respectively. Let U(n, k) be the set of the k-uniform unicyclic hypergraphs having perfect
matchings with n vertices, where n > k(k — 1) and k > 3. By using a creative method of the a-Perron
vector and several techniques for studying the a-spectral radii of hypergraphs, such as the well-known
Perron-Frobenius theorem, the moving-edge operation, and the 2-switch transformation, the hypergraph
with the largest a-spectral radius is characterized among U(n, k), where n > k(k — 1) and k > 3.

1. Introduction

Let G = (V(G),E(G)) be a simple (i.e., no loops or multiple edges) hypergraph with n vertices and a
edges, where V(G) = {v1,vp,- -+ ,v,} and E(G) = {eq, ez, - - , €,} are the sets of the vertices and the edges of G,
respectively. If |e;| = k for 1 <i < g, then G is called a k-uniform hypergraph. A k-uniform hypergraph G is
linear if any two edges of E(G) share at most one vertex. Let u,v € V(G) and e € E(G). If {u,v} C e, then u
and v are adjacent, and u is incident with e. The degree of v, denoted by d¢(v), is the number of the edges
of G incident with v. Without confusion, d¢(v) is simplified as d,. If d, = 1, then v is a core vertex. For an
edge e = {v1,vp,-++ , v} € E(G),if dy, > 2and d,, = 1 for 2 < i <k, then e is a pendant edge at v;.

A path between u and v is denoted by P = (vy,e1,0,...,0, €y, 0p11), where v1 = u, 0,1 = v, all v; and all
e; are distinct, and v;, vi41 € ¢; for 1 <i < p. For p > 2, if we identify v; with v,,1 in P together, then we get a
cycle of length p. In G, if every pair of vertices has a path connecting them, then we say that G is connected.

For a k-uniform hypergraph G, if a(k — 1) — n + w(G) = r(G), then we call G an r(G)-cyclic hypergraph
[3], where w(G) and 7(G) are the number of components and the cyclomatics number of G, respectively. If
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w(G) = 1 and r(G) = 0, then G is a supertree [9]. Namely, a supertree is a k-uniform hypergraph which is
connected and acyclic. If w(G) = r(G) = 1, then G is a k-uniform connected unicyclic hypergraph. Let H be
a simple ordinary graph. The k-th power of H is obtained from H by inserting (k — 2) new vertices into each
edge (a 2-set) of H, where k > 3. A hypertree is the k-th power of an ordinary tree. Obviously, a hypertree
is a supertree.

A perfect matching of Gis S{US,U- - -USy, whereh > 1,51, 53, , S € E(G), SiNS; = @ (1 <i < j<h),and
51US,U---US;, = V(G). Itis known that the hypergraphs with perfect matchings have many applications
in graph theory. For the results about some properties of the hypergraphs with perfect matchings, one can
refer to Refs. [7, 8, 18].

Let R and C be the sets of real and complex numbers, respectively. A k-ordered and n-dimensional real
tensor A = (a,j,..;,) over R is a multi-dimensional array with nk entries, where Ajyiyiy, € RWithiiy, dp, -+, ik €
[n] ={1,2,---,n}. The concept of tensor eigenvalues and the spectra of tensors are independently introduced
by Qi [15] and Lim [10] as follows. If there exist a number A € C and an eigenvector x = {x1,xa,- -+, x,}T € C"
satisfying

n
Z QiiyiyXiy -+ Xy, = AXST!, forany 1<i<n, @

ip, ix=1

then A is called an eigenvalue of A and x an eigenvector of A corresponding to A. The spectral radius of
A is the largest modulus of the eigenvalues of A, i.e., p(A) = max{l/\|| A is an eigenvalue of Aj.

For a k-uniform hypergraph G with n > 2 vertices, the adjacency tensor of G is A(G) = (ai,;,..;,), Where
Aiyiyeiy, = ﬁ if {vi,, vi, -+ ,vi} € E(G) and aj,.;, = 0 otherwise [1]. The degree diagonal tensor of G is
D(G) = (diiy-i,), Wwhere djj,..;; = dy, for any v; € V(H) if iy = ip = -+ = § = i with i € [n] and dj;,.;, = 0
otherwise.

Let 0 < a < 1. Nikiforov [13] proposed to merge the spectral properties of the adjacency matrix
and the signless Laplacian matrix of a graph. Motivated by the work of Nikiforov [13], Lin et al. [11]
introduced the convex linear combination of D(G) and A(G) for a k-uniform hypergraph G as follows:
AG) = aD(G) + (1 — ) A(G).

The a-spectral radius of G, denoted by p,(G), is the spectral radius of A,(G). When a = 0, A.(G) is
A(G) and p,(G) is the spectral radius of G. When a = %, 2A,(G) is the signless Laplacian tensor of G and
2p.(G) is the signless Laplacian spectral radius of G.

For a vector x = (x1,%a,...,%,)" € C" of dimension 7 and a subset W C [n], we define xy = [[;cyy xi. We
have

n

x"(AG)x) = Z Biriy. iy Xiy =+ X = k Z Xe, (2)
i1, =1 e€E(G)
n n
HDOGW = Y dipidy %= ) do, 3)
11,1, 0=1 i=1
! (ALG)x) = axT(D(G)x) + (1 — a)x" (A(G)x). (4)

Since the studies on the a-spectral radii of hypergraphs are of practical significance, some results about
the hypergraphs with the extremal a-spectral radii have been obtained. For the k-uniform supertrees, the
supertrees with the first to the third largest a-spectral radii were characterized [23] and the supertrees with
the fourth to the eighth largest a-spectral radii were determined [20]. For the k-uniform non-caterpillar
hypergraphs with a given diameter, the supertrees with the first and the second largest a-spectral radii
were derived [19]. The hypergraphs with the largest a-spectral radii were also characterized respectively
among the hypergraphs with a given number of pendant edges [12], among the unicyclic hypergraphs [12],
among the k-uniform unicyclic hypergraphs with a fixed diameter [6], and among the k-uniform unicyclic
hypergraphs with a given number of pendant edges [6]. For the results about the upper bounds of the
a-spectral radii for hypergraphs, one can refer to Refs. [2, 5, 12].
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We denote by U(n, k) the set of the k-uniform connected unicyclic hypergraphs having perfect matchings
with 7 vertices, where nn > k(k — 1) and k > 3. Let G be an arbitrary hypergraph in U(n, k). We use M(G) to
denote a perfect matching of G. By Property 2.10 (as shown in Section 2), we know that M(G) is unique.
An edge of M(G) is called a perfect matching edge of G. If a vertex of G is incident with a perfect matching

edge, then it is saturated. Let Q(G) = E(G) — M(G) and G be the hypergraph induced by Q(G), that is,
G=G- M(G) — So, where S is the set of the isolated vertices in G — M(G). We call G the capped hypergraph

of G and G the original hypergraph of G.

Let [M(G)| and |Q(G)| be the numbers of the edges in M(G) and Q(G), respectively. Since each vertex of G
is saturated, we have IM(G)I = ¢, where n is divisible by k and k > 3. Thus, it follows from n = [E(G)|(k — 1)
that |Q(G)| = |[E(G)| — D =1k where 7 is divisible by k(k — 1). For simplicity, let |Q(G)| = m. Namely, m is

the number of the edges of G. Thus, in U(n, k), we get n = mk(k — 1), where m > 1 and k >

In U(n, k), Sun et al. [17] obtained the hypergraph with the largest spectral radius. Motivated by
the preceding results on the hypergraphs with the extremal a-spectral radii, the aim of this article is to
characterize the hypergraph with the largest a-spectral radius among U(n, k), where n > k(k—1) and k > 3

This paper is organized as follows. In Section 2, relevant notations and some necessary lemmas are
introduced. In Section 3, to obtain our results, we first introduce Lemmas 3.1-3.9. We will develop a
creative method of the a-Perron vector (as shown in Lemma 3.7 and Lemma 3.8) and apply several useful
methods, such as the well-known Perron-Frobenius theorem [4, 21], the moving-edge operation, and the
2-switch transformation introduced by Guo and Zhou [5], etc. The hypergraph with the largest a-spectral
radius is derived among U(n, k), where n > k(k — 1) and k > 3, which is shown in Theorem 3.11.

2. Preliminary

In this section, we will introduce some notations and quote some necessary lemmas for subsequent
proofs.

The nonnegative weakly irreducible tensor was defined by Friedland et al. [4] and Yang et al. [22]
represented it as follows.

Definition 2.1. [4, 22] Let ‘A = (a,;,-.;,) be a nonnegative tensor of order k and dimension n. For any nonempty
proper index subset I C [n], if there is at least one entry aj,..;, > 0, where iy € I and at least one i; € [n] \ I for
j=2,3,---,k, then Ais called a nonnegative weakly irreducible tensor.

Pearson and Zhang [14] proved that a k-uniform hypergraph G is connected if and only if its adjacency
tensor A(G) is weakly irreducible. Therefore, if G is connected, then A(G) and A,(G) are all weakly
irreducible.

Let R” = {x = (x1,%2, -, X)) € R" | x; >0, Vi€ [n]} and R?, = {x = (x1, %2, ,x,)T € R" | x;, >0, Vi €

[n]}.

Lemma 2.2. [4, 21] (The Perron—Frobenius theorem for nonnegative tensors). Let A be a nonnegative tensor of
order k and dimension n, where k > 2. Then we have the following statements.

(i). p(A) is an eigenvalue of A with a nonnegative eigenvector x € R} corresponding to it.

(ii). If A is weakly irreducible, then p(A) is the unique eigenvalue of A with a positive eigenvector x € R}, and
x is unique up to a positive scaling coefficient.

Lemma 2.3. [16] Let A be a nonnegative symmetric tensor of order k and dimension n. Then we have
p(A) = max {xT(ﬂx) |x e R, |Ix|f = 1}_

Furthermore, x € R’} with ||x||l’§ = 1 is an optimal solution of the above optimization problem if and only if x is an
eigenvector of A corresponding to the eigenvalue p(A).
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By Lemma 2.2, for a k-uniform connected hypergraph G, there exists the unique positive eigenvector
x=(x1,X2,---,x,)  of G corresponding to p,(G), where Ilelﬁ = 1. This vector x is referred to as the a-Perron
vector of G and it plays an important role in studying p,(G). By Lemma 2.3, we obtain Lemma 2.4 as
follows.

Lemma 2.4. Let G be a k-uniform connected hypergraph, where k > 2. Then we have
pa(G) = max {x" (A(G)) | x € RY, |Inllf = 1.

Furthermore, x € R} with ||x||£ = 1 is an optimal solution of the above optimization problem if and only if it is an
eigenvector of G corresponding to the eigenvalue p,(G).

In studying the spectral radius and the a-spectral radius of hypergraphs, the method of transformation
is a key tool. In Definition 2.5, Li et al. [9] introduced the definition of the moving-edge operation for the
spectral radii of hypergraphs. In Lemma 2.6, Guo and Zhou [5] generalized it to the a-spectral radii of
hypergraphs.

Definition 2.5. [9] Let G = (V(G), E(G)) be a hypergraph with u € V(G) and e1,--- ,e, € E(G), where u ¢ e; for
any i € [r] with r > 1. Suppose that v; € ¢; and ¢] = (e;\ {v)) U {u}, where i € [r]. Let G = (V(G’), E(G")) be the
hypergraph with E(G’) = (E(G)\ {e1, -+ ,e/}) U {eg, e, e;}. Then we say that G is obtained from G by moving edges
(e1,-++ , &) from (vy,--- ,v,) to u.

Lemma 2.6. [5] Let G = (V(G), E(G)) be a k-uniform hypergraph with u,vy,--- ,v, € V(G) and ey, -+ ,e, € E(G),
wherek > 2and r > 1. Suppose that u ¢ e; and v; € e; for any i € [r], where vy, - - - , v, are not necessarily distinct. Let
e; = (ej\ {vi}) U {u}, where i € [r]. Suppose that ¢! ¢ E(G) for any i € [r]. Let G’ be obtained from G by moving edges
(e1,--- ,e) from (vy,--- ,v,) to u. Let x be the a-Perron vector of G. If x,, > max {xy,,- - , Xy}, then py (G') > pa(G)
foro<a<l

Li et al. [9] proposed the edge-releasing operation for the k-uniform linear hypergraphs. In Definition
2.7, we generalize the edge-releasing operation to the a-spectral radius of k-uniform hypergraphs.

Definition 2.7. Let G be a k-uniform connected hypergraph with k > 3. Let e € E(G) be a non-pendant edge, and
let {e1, ..., e} € E(G) be the set of all the edges that share exactly with e at one common vertex. Let v; be the unique
vertex in e N e;, where 1 < i < r. Fix an arbitrary vertex (denoted by u) in e. Let G’ be a hypergraph obtained from G
by replacing each e; with e; = (e; \ {v;}) U{u} (i = 1,...,7) and keeping all other edges of G unchanged (in particular,
if v = u, then €, = e;). Then G’ is said to be obtained from G by the edge-releasing operation on e at u.

Lemma 2.8. Let G and G’ be the two k-uniform connected hypergraphs as defined in Definition 2.7, where k > 3.
Then py (G') > pa(G) for 0 < a < 1.

Proof. Let G and G’ be the two hypergraphs as defined in Definition 2.7. Since e is a non-pendant edge of
G, there exist some vertices in e which have degrees not less than 2. We denote these vertices by vy, -+, v,,
where 2 < r < kand k > 3. As G is a connected hypergraph, let x be the a-Perron vector of G. Without
loss of generality, we assume x,, > max{x,,, -, X, }. Let G” be the hypergraph obtained from G by moving
edges (e1,- -+, ¢r) (except for all the edges which are incident with v1) from (vy, - -+ , v,) (except for v1) to v;.
Obviously, G” is connected. By Lemma 2.6, for 0 < a < 1, we have p,(G”) > pn(G). Since |e; Ne| = 1 for
1 <i<r,G"” is the hypergraph G’ in Lemma 2.6. Thus, Lemma 2.8 holds. O

Let G = (V(G), E(G)) be a hypergraph. For E’ C E(G), let G — E’ be the hypergraph obtained from G by
deleting all the edges in E’. If E’ is a set of subsets of V(G) and no elements of E’ is an edge of G, then let
G + E’ be the hypergraph obtained from G by adding all the elements in E’. The 2-switch transformation
for the a-spectral radii of hypergraphs was proposed by Guo and Zhou in Lemma 2.9.
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Lemma 2.9. [5] Let G be a k-uniform connected hypergraph with k > 2, and e, f be two edges of G witheN f = @.
Let x be the a-Perron vector of G. Let U C eand V C fwith1 < |U| = |V| < k—-1.Let e’ = UU (f\V) and
f' =V U(e\U). Suppose that ¢, f' ¢ E(G). Let G’ = G —{e, f} +{¢/, f'}. If xu > xv, Xp\v > Xe\u and at least one
inequality holds, then p, (G’) > pa(G) for 0 < @ < 1.

For a k-uniform connected unicyclic hypergraph having perfect matchings, we have Property 2.10.

Property 2.10. [17] Let G € U(n, k), where n > k(k — 1) and k > 3. Then M(G) of G is unique.

3. The hypergraph with the largest a-spectral radius among U(n, k)

In this section, we will deduce the hypergraph with the largest a-spectral radius among U (n, k), where
n =mk(k —1), m > 1 and k > 3. To obtain our result (as shown in Theorem 3.11), we firstly introduce some
definitions and Lemmas 3.1-3.9.

Let U(n, k, 1) be a subset of U(n, k) in which each hypergraph has a cycle C;, where / is an integer with ] > 2.
Let G € U(n,k,I). Then G contains a cycle C; = vie1v26,v3 - - - vjev1, Where ¢; = {v;, i1, ..., Vik-2, Vit1} With
1<i<I-1lande = {v,v14,...,0k-2, v1}. According to the fact whether C; of G contains at least one perfect
matching edge or not, we classify U(n, k, ) into two subsets which are denoted by U (1, k,I) and U»(n, k, 1),
where U;(n, k, 1) (respectively U,(n,k, 1)) satisties that each hypergraph G in it has no perfect matching

edges on C; (respectively at least one perfect matching edge on C;). Obviously, U(n, k) = U, ((Lll(n, kU
Up(n, k,1)).

Let Ui (n,k,2) be a subset of Ui (n,k,2) in which each hypergraph satisfies two conditions: (1) each
vertex in C, must be incident with a pendant edge; and (2) at most one of the vertices in e; U e; of C; is
attached by a k-uniform supertree which has at least k edges, where k > 3.

Let U, (n, k,2) be a subset of Uy (n,k,2) in which each hypergraph satisfies two conditions: (1) each
vertex in e; \ {v1, v2} of C; must be incident with a pendant edge; and (2) at most one of the vertices ine; Ue;
of C, is attached by a k-uniform supertree which has at least k edges, where k > 3.

We use S, to denote a star with m edges and let 1 be the center vertex of S, with degree m, where m > 1.
Let S¥, be the hypertree obtained from S,, by inserting k — 2 new vertices into each edge of S, where m > 1
and k > 3. Obviously, all the edges of S, share a common vertex 1. Let G and H be two hypergraphs whose
vertex sets are disjoint with v € V(G) and w € V(H). We use G(v, w)H to denote the hypergraph obtained
by identifying the vertices v and w. For example, C»(v1, uo)S’; _, isshown in Fig. 1, where C; = v1e102€201 is
a cycle of length 2.

We use E, (respectively D, ) to denote the hypergraph obtained from Cy(vy1,10)S\, | (respectively
Cy(vq, uo)an_l) by attaching a pendant edge at each vertex (except for the vertices in e; ) of Ca(vy1, 110)S*

m—1
(respectively Cz(vl,uo)Skl_l), where n = mk(k —1), m > 1, and k > 3. E,x and D, are shown in Figs. 2

and 3, respectively. Whgn n = k(k — 1), it is obvious D, x = E,. Let F, x be the hypergraph obtained from
Co(vy, uo)S’; _, by attaching a pendant edge at each vertex of C»(v1, uO)S’; _,»Where n = mk(k — 1), m > 2, and
k > 3. F,,x is shown in Fig. 5.

Obviously, Dy, E, ¢ € (L_lQ(n, k,2)and F, \ € Tll (n,k,2).

Lemma 3.1. Let G € U(n, k, 1), where n > 3k(k — 1) and k,1 > 3. Let e be a perfect matching edge of G and e is not a
pendant edge. Let Go be the hypergraph obtained from G by applying the edge-releasing operation on e at an arbitrary
vertex of e such that e of Gy is a pendant edge. Then p,(Go) > pa(G), where Go € U(n, k) and 0 < a < 1.

Proof. Let G and Gg be the two hypergraphs as defined in Lemma 3.1. In G, since e is a perfect matching edge
and e is not a pendant edge, all the edges of G adjacent to e belong to Q(G). By applying the edge-releasing
operation on e at an arbitrary vertex in e, we get p,(Go) > pa(G) (by Lemma 2.8), where Gy has the perfect
matching M(G) and Go € U(n, k). By the definition of the edge-releasing operation, in Gy, e is a pendant
edge. Thus, we get Lemma 3.1. O
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Figure 1: C2(v1, up)S

Lemma 3.2. Let G € U(n, k, 1), where n > 2k(k — 1) and k,1 > 3. There exists a hypergraph G' € Uq(n, k,2) such
that pa(G’) > pa(G), where 0 < a < 1.

Proof. Let G € U(n, k, 1), where n > 2k(k — 1) and k,I > 3. Let 0 < @ < 1. The cycle contained in G is denoted
by C; = viey ... viev;. Since U(n, k, 1) = Ui(n, k, 1) U Uy(n, k, 1), two cases are considered.

Case (i). G € Ui(n, k,1).

According to the definition of U;(n, k, 1), e; ¢ M(G) and each vertex of ¢; is incident with an edge of M(G),
where 1 < i <. Let x be the a-Perron vector of G. Without loss of generality, we suppose that x,, > x,,. Let
G1 be the hypergraph obtained from G by removing e, from v, to v;. Since all the edges incident with v,
(except for the edge e;) remain unchanged, M(G) is the perfect matching of G; and G; contains C;_;. Thus,
G1 € Ui(n, k1 —1). By Lemma 2.6, we get p,(G1) > pa(G). By repeatedly using the same operation, we
finally get a hypergraph G’ € U (n, k, 2) such that p,(G’) > p.(G).

Case (ii). G € U>(n,k, ).

According to the definition of Us(n,k, 1), in C; of G, there exists one edge (denoted by e) such that
e € M(G). Let v be an arbitrary vertex in e. Let G, be the hypergraph obtained from G by applying the
edge-releasing operation on e at v. By Lemma 3.1, we have p,(G2) > p.(G), where G, satisfies that e is a
pendant edge, and the number of the perfect matching edges in the cycle of G, is one less than |M(C;)| of
G. Obviously, G, € U(n, kI — 1). By repeatedly using the same operation as above and as in Case (i), we
finally get a hypergraph G” € U1(n, k, 2) such that p,(G’) > p,(G). Thus, we get Lemma 3.2. O

Lemma 3.3. Let G € U(n, k,2), where n > 2k(k — 1) and k > 3. There exists a hypergraph G” € U (n,k,2) such
that po(G”) = pa(G) with the equality if and only if G = G, where 0 < a < 1.

Proof. Let n = mk(k — 1), m > 2, and k > 3. When m = 2, obviously, Lemma 3.3 holds. Next, let m > 3. Let
G € Ui(n, k,2). According to the definition of U;(n, k, 2), each vertex in C; of G is incident with an edge in
M(G) which does not belong to E(C;). Let e be an arbitrary edge of M(G) which is incident with a vertex
in G, of G, where e ¢ E(Cy). By applying the edge-releasing operation on ¢ at a vertex of e and using the
methods similar to those for the proofs of Lemma 3.1, we can get a hypergraph (denoted by G3) such that
Pa(G3) = pa(G) for 0 < a < 1, with the equality if and only if G = G3, where Gj satisfies: (1). each vertex in
C; of G3 is incident with a pendant edge; and (2). each vertex in C, of G3 may be attached by a k-uniform
supertree containing at least k edges, where k > 3.

Since m > 3, there exists at least a vertex in C, of Gz which is attached by a k-uniform supertree containing
at least k edges, where k > 3. Let x be the a-Perron vector of Gs. In G3, let V1 be a subset of V(C,) such that
each vertex in V; satisfies that it is attached by a k-uniform supertree containing at least k edges, where k > 3.
For all the components in x corresponding to the vertices in V;, we can choose a maximum value among
them. Let w € V1 be such a vertex having the maximum value and x,, be the component corresponding to
w among x. Let G and G’ in Lemma 2.6 be G3 and Gy, respectively, where G, is obtained from G3 by moving
all the k-uniform supertrees which are attached at all the vertices (except for w) in V; to w, and Gy satisfies:
(1). each vertex in C; of Gy is incident with a pendant edge; and (2). only one vertex (namely w) in C; of G4

is attached by a k-uniform supertree containing at least k edges, where k > 3. Obviously, G4 € U1(n,k,2).
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By Lemma 2.6, we get po(G4) > pa(G3) for 0 < a < 1, with the equality if and only if G3 = G4. Therefore,
0a(Gs) = pa(G), with the equality if and only if G = G4. Thus, we get Lemma 3.3. O

Lemma 3.4. Let G € U, (n,k,2), where n > 2k(k — 1) and k > 3. Then p,(Fyx) > pa(G) with the equality if and
only if G = F,x, where 0 < a < 1.

Proof. Let G° be the hypergraph with the largest a-spectral radius among U, (1, k, 2), where n > 2k(k — 1)
and k > 3. Let 0 < a < 1. Let C; = v1e1026,v1 be the cycle of G°, where ¢; = {v1,v;1, ..., Vg2, v2} withi=1,2.
When n = 2k(k — 1), we have U1 (n, k,2) = {F,x}. Thus, Lemma 3.4 holds. Let n > 3k(k —1). According to the
definition of U;(n, k, 2), there exists a vertex (denoted by v*) in C, of G® which is attached by a k-uniform
supertree containing at least k edges, where k > 3. Without loss of generality, we suppose that v* € ¢;. Let x
be the a-Perron vector of G°.

Claim 1. v* = vy or v* = v,.

We prove Claim 1 by contradiction. Without loss of generality, we suppose that v* = v1;. Let M(G®) be
the perfect matching of G°. By the definition of al(n, k,2),e; ¢ M(G®) and each vertex in C, of G° is incident
with an edge in M(G°) which is a pendant edge. If x,, > x,,,, then let G5 be the hypergraph obtained from
G° by removing all the edges which are incident with ;1 (except for ¢; and the pendant edge incident with
v1,1) from vy to v;. Obviously, Gs € U1(n,k,2). By Lemma 2.6, po(Gs) > po(G®). This is a contradiction.
Therefore, we have x,, < x,,,. Let G¢ be the hypergraph obtained from G° by removing e, from v; to vy ;.
Obviously, G¢ € U1(n,k,2). By Lemma 2.6, po(Gg) > po(G°). This is a contradiction. Therefore, when
n > 3k(k — 1), each vertex in C, of G° is incident with a pendant edge, and only v; in C; of G° is attached by
a k-uniform supertree (denoted by T) containing at least k edges, where k > 3. Thus, we get Claim 1.

Next, we will prove that each edge in E(T) N M(G®) is a pendant edge. Otherwise, we suppose that
there exists an edge (denoted by e) in E(T) N M(G°) such that ¢ is not a pendant edge. By applying the
edge-releasing operation on e at a vertex of e and using the methods similar to those for the proofs of Lemma
3.1, we can get a hypergraph Gy such that p,(G7) > p.(G°), where G7 satisfies: (1). each vertex in C, of
Gy is incident with a pendant edge; (2). only v; in C, of Gy is attached by a k-uniform supertree (denoted
by T1) containing at least k edges, where k > 3; and (3). e of Gy is a pendant edge. Thus, Gy € U;(n,k, 2).
Obviously, the inequality p,(G7) > p.(G°) contradicts the definition of G°. Thus, each edge in E(T) N M(G®)
is a pendant edge. Therefore, When n = 3k(k—1), Lemma 3.4 holds since G° = F, . Letn > 4k(k—1). We will
prove G° = F,; by contradiction. Otherwise, we suppose that G° # F, k. Then T of G° contains at least two
edges of Q(G®), and there exists an edge (denoted by g = {wy, ..., wy}) in T of G° such that three conditions
are satisfied: (1). v1 € g; (2). v1 is adjacent to wy; and (3). g is not a pendant edge. Two cases are considered.
Case (i). xy, > xy,.

Let Gg be the hypergraph obtained from G° by removing g from w; to v;. Obviously, Gs € U1(n,k,2).
By Lemma 2.6, pa(Gs) > po(G®). This is a contradiction.

Case (ii). x,, < Xy,

Let Go be the hypergraph obtained from G° by removing (e1, e2) from vy tows. Lete! = {w1,vi1, ..., Vik-2, 02},
where i = 1,2. Obviously, wiejvz¢,w; is a cycle of Gy and Gy € U1(n, k,2). By Lemma 2.6, pa(Go) > pa(G°).
This is a contradiction.

By combining the proofs of Cases (i) and (ii), when n > 4k(k—1), we have G° = F,,x. Thus, we get Lemma
34. O

Corollary 3.5. Let G € U(n, k)\Ur(n, k,2), wheren > 2k(k—1)and k > 3. For0 < a < 1, we have p,(F,. k) = pa(G)
with the equality if and only if G = F .

Proof. Since U(n, k) \ Ux(n,k,2) = U3 U, k, 1) U Ui(n,k, 2), where n > 2k(k — 1) and k > 3, by Lemmas
3.2-3.4, we get Corollary 3.5. O

Lemma 3.6. Let G € Uy(n, k,2), where n > 2k(k — 1) and k > 3. For 0 < a < 1, there exists a hypergraph
G"" € Uy(n, k,2) such that p(G"") > pa(G) with the equality if and only if G = G"".
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Proof. Letn > 2k(k—1),k >3 and 0 < a < 1. Let G € Us(n, k, 2) and C; = v1e1v26,v1 be the cycle of G. By the
definition of U, (n, k, 2), there exists one edge in C, of G which belongs to M(G). Without loss of generality,
we suppose that e; € M(G). Then e, in C; of G is an edge in Q(G). Thus, each vertex in e, \ {v1, v,} is incident
with an edge in M(G). By the methods similar to those for the proofs of Lemma 3.1, we get a hypergraph
Gip such that p,(G1o) > pa(G), with the equality if and only if G = Gyo, where Gy satisfies: (1). each vertex
in e, \ {v1,v2} of C of Gy is incident with a pendant edge; and (2) each vertex in e; U e; of C; of Gyp may be
attached by a k-uniform supertree containing at least k edges, where k > 3.

Let x be the a-Perron vector of Gyg. In Gy, let V; be a subset of V(C;) such that each vertex in V; satisfies
that it is attached by a k-uniform supertree containing at least k edges, where k > 3. For all the components
in x corresponding to the vertices in V5, we can choose a maximum value among them. Let w’ € V; be such
a vertex having the maximum value and x,s be the component corresponding to w’ among x. Let G and
G’ in Lemma 2.6 be Gyp and G, respectively, where Gy is obtained from Gig by moving all the k-uniform
supertrees which are attached at all the vertices (except for w’) in V; to w’, and G, satisfies: (1). each vertex
in e, \ {v1, vz} of C; of Gy is incident with a pendant edge; and (2). only one vertex (namely w’) in C, of G1;
is attached by a k-uniform supertree containing at least k edges, where k > 3. Obviously, G11 € U»(n,k,2).
By Lemma 2.6, we get p,(Gi11) = pa(Gio), with the equality if and only if Gi1 = Gyg. Thus, pa(G11) = pa(G),
with the equality if and only if G = Gy1. Therefore, we get Lemma 3.6. O

m—1
——

Uy (k-1 Ug,(k—-2)(k-1)+1

Uy m=2)(k=1)2 +(k=2)(k=1)+1

L - - - >

Uy (m-1)(k-1)2

Uz, (m-1)(k-1)

€1

u U f—
U (k—4)(k-1)+1 up Uz 11 1k-2

Us,(k=3)(k-1) o ugr-1

Figure 2: E, x

Lemma 3.7. Let n > 2k(k — 1), where k > 3. We have po(D, k) > pa(Eny), where 0 < o < 1.

Proof. Let E, x be the hypergraph as shown in Fig. 2. Let 0 < a < 1. We divide V (E,x) into eight subsets

as follows. Let Vo = {uy, 1z}, Vi = {u1, -+, w12}, Vo = {tiap, -+ ,u2p2}, V3 = {ua,l,"' ,M3,(m—1)(k—1)}, Vi

{M4,1,"' /u4,(m—1)(k—1)2}/ Vs = {u5,1,-~- /u5,(k—3)(k—1)}/ Ve = {ue1, -+ ,uer-1}, and Vy = {uy1}, where dg, (u2,1)
m+1, each vertexin V; (i = 0,2, 3) has degree 2 and each vertexin V; (i = 1,4, 5, 6) has degree 1. Furthermore,
Vi with 1 < i < 6 satisfies the following conditions: (1). each vertex in V; is adjacent to u; and u, in Vj
simultaneously; (2). each vertex in V; is adjacent to u, 1, 1 and u, in V, and k — 1 core vertices in Vs which
are incident with a pendant edge; (3). each vertex in V3 is adjacent to 1, and k — 1 core vertices in V, which
are incident with a pendant edge; (4). each vertex in V4 is adjacent to a vertex in V3; (5). each vertex in Vs is
adjacent to a vertex in V5; and (6). each vertex in Vj is adjacent to 1, 1. Obviously, we have V (E, ) = Ul-7:0 Vi
and V;NV; =@ for 0 <i<j<7. Allthevertices of E, are shown in Fig. 2.
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Figure 3: D), x

Let x be the a-Perron vector of E, ;. Namely, we have x (A(E,x)x) = pa(Enx), where IIxIII; =1and
x € R} . By the symmetry, all the vertices in V; have the same component in x, where 0 < i < 6. We use
x; to denote the component in x which corresponds to the vertices in V; (E, x), where 0 < i < 7. In E,, let
e; = {uy,ui1, - Uik, up} withi =1,2and g1, - - , -1 be the m — 1 edges which are incident with u,; and
k — 1 core vertices in V4, where m > 2.

If xo > x7, then let G| be the hypergraph obtained from E, x by removing (g1, , gm-1) from 1y to uy.
Obviously, G} = D, x. By Lemma 2.6, we get py(Dyx) > pa(Ej)-

Next, let x7 > xo. Let f = {121, U671, , Usx-1}- Two cases are considered as follows.

Case () Xe,\ju) > Xf\fuya)-

Let U = {ulll,--- s U1 k=2, 1/[2} and V = {1/[6/1,"'1/16,](_1}. Then e = uuvu {1/[1} and f =Vu {Mz/l}. Let 61 =
UU(AV) ={ur1, -, upo t,uz1}and f/ = VU (e\U) = {ug1, - tgj-1,u1}. Let G, = E, x —{e1, f} + {ei,f’}.
Obviously, uzllezuze;uz,l is the cycle of G}, u; is incident with the pendant edge f” in G;, and all the perfect
matching edges of G;, are pendant edges. Therefore, G}, = D, ;. In this case, we have xy = Xe,\{u;) = Xf\ju,;) =
xy. Furthermore, we get xp\v = x,, = X7 > X0 = X, = X¢;\u- By Lemma 2.9, we obtain p,(D; ) > pa(Enk)-

Case (ii). X £\ {11} > Xe\ua)-

Two subcases are considered.

Subcase (ii.i). xy > x¢.

Let U = {ug1} and V = {u1}. Lete] = UU (e1\V) = {ug1,u1,1, - ti2,u2} and f” = VU (fAU) =
{ur, uz1,u6p -+ usr1}. Let Gy = E,x — {er, f} + {ei’,f”}. Obviously, us1eou1 f”uz, is the cycle of Gj, us is
incident with the pendant edge e}’ in G}, and all the perfect matching edges of G; are pendant edges.
Therefore, G} = Dy,x. Since Xo > Xe, Xf\fu,;) = X5 ' > Xej\uy) = Xox5 2, and x € R, we get x£2 > x¥~2. Since
XAU = Xf\jugy) = X7X5 2 and Xep\v = Xe\y) = Xoxt 2, it follows from x; > xg and x£2 > xK=2 that x i > xe,\v.
Since xy > xy and xp\y > X,,\v, by Lemma 2.9, we obtain pa(D;x) > pa(Eni)-

Subcase (ii.ii). x¢ > xg.

We divide V (D, ) into ten subsets as follows. Let V|, = {v21}, V] ={v61, -+ , Vs x-2}, V5 = {022, , 242},
Vi = {03,1, e 103,(n1—1)(k—1)}r vV, = {04,1/ e 104,(m—1)(k—1)2}r Vi = {05,1, e /US,(k—S)(k—l)}/ Vi = o1, vip2),
V7 = {01}, Vi = {vs}, and Vg = {va}, where dp,,(v1) = m + 1, each vertex in V] has degree 2 withi =0,2,3,9,
and each vertex in Vi has degree 1 with 1 <i < 8 and i # 2,3,7. Furthermore, %4 with 1 < i < 6 satisfies
the following conditions: (1). each vertex in V] is adjacent to v, and vg simultaneously; (2). each vertex in
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V7, is adjacent to v, v1, v2, and k — 1 core vertices in Vi which are incident with a pendant edge; (3). each
vertex in V} is adjacent to v; and k — 1 core vertices in V;; which are incident with a pendant edge; (4). each
vertex in V| is adjacent to a vertex in V7; (5). each vertex in V{ is adjacent to a vertex in V7; and (6). each
vertex in V is adjacent to v; and v, simultaneously. Obviously, we have V (D,,x) = Ui Viand V] N Vi=
for 0 <i < j<9. The hypergraph D,,; and all the vertices of D, s are shown in Fig. 3.

We construct a vector y = (y1, 2, -, yn)T of D, as follows. By the symmetry, the components in y
which correspond to the vertices in V! are the same, and we denote them by y;, where 0 <i < 9. Let y; = x;
for0<i<7, yo=ys =xpand ys = Y9 = x¢. Since ||x||£ =1and x € R}, we also have ||y||£ =land y € R},.
By (3), we have

X" (D(E,p)x) = 40k + (k — 2)xk +2(k = 3)x8 +20m — 1)(k - 1)«

5
+(m =1k = 1% + (k= 3)(k = Dk + (k= 1)k + (m + 1)k ©
Bearing in mind that y; = x; with 0 <i <7, yo = ys = X0, and ys = y9 = X, by (3), we get
Yy (DD,p)y) =3x8 + (k= 2)xk +2(k = 3)xk +2(m — 1)(k - 1)x§ ©
+ (m = 1)k — 1% + (k= 3)(k = D)xk + kok + (m + 1)k
It follows from (5), (6) and x¢ > x( that
T T _ ok _ ok
y (DDui)y) —x (D(E,p)x) = xg — x5 > 0. (7)
By (2), we have
M (AE) =k Y %
CEE(EH,k)
= k(x%x’{‘z + x§x7x§‘3 + (k- 3)x2x’§‘1 + xyxlg‘l (8)
+ (m = Dz + (m = 1)k = Dxas ™).
Since y; = x; for 0 < i< 7, yo = yg = xp, and ye = Y9 = X¢, by (2), we obtain
yT (ﬂ(Dn,k)y) =k Z Xe
¢€E(Dy)
= k(x%x’fz + xgxéxyx’;’g‘ + (k- 3)x2x’§’1 + xyx’g’l ©)
+ (m = Doy + (m = 1)k = Drax ™).
It follows from (8), (9), xs > xo, and x € R}, that
Y (AD,)y) — x" (A(E,1)x) = kxoxzxs™(x6 — x0) > 0. (10)
By Lemma 2.3, (7) and (10), we obtain
Pa (Dn,k) — Pa (En,k) = yT (ﬂa(Dn,k)y) -t (y{a(En,k)x)
= a(y" (DDu)y) - *" (D(E,p)x) )
+(1 - a)(y" (AD,Y) - x" (AE0)x) ) > 0. (11)

By (11), we have p, (D) > pa (Eyx), where k > 3 and m > 2. Thus, Lemma 3.7 holds. O
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Lemma 3.8. Let n > 2k(k — 1), where k > 3. We have po(Fyx) = pa(Dy)-

Proof. We divide V (D, ) into seven subsets as follows. Let Vo = {u}, V1 = {u11, -, U142}, Vo =

lug1,-- yupp2}, V3 = {Ms,l, R ”3,(k—2)(k—1)}/ Vy = {u4,1, ey, M4,(m—1)(k—1)}, Vs = {M5,1, et Us mo1)-1)2{, and
Ve = {up}, where dp, (u1) = m + 1, each vertex in V; (i = 2,4, 6) has degree 2 and each vertexin V; (i = 1, 3,5)
has degree 1. Furthermore, V; with 1 < i < 5 satisfies the following conditions: (1). each vertex in V is
adjacent to u; and u, simultaneously; (2). each vertex in V; is adjacent to u1, u,, and k — 1 core vertices in
V3 which are incident with a pendant edge; (3). each vertex in V3 is adjacent to a vertex in V»; (4). each
vertex in Vy is adjacent to u; and k — 1 core vertices in V5 which are incident with a pendant edge; and (5).
each vertex in Vs is adjacent to a vertex in V4. Obviously, we have V (D,.x) = Ufzo Viand V;NV; = @ for
0 <i < j<6. The hypergraph D, ; and all the vertices of D, are shown in Fig. 4.
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Let x be the a-Perron vector of D, . Namely, we have xT (Ay(Dyj)x) = pa(Dyk), where ||x||’}§ =1and
x € RY,. By the symmetry, all the vertices in V; have the same component in x, where 0 < i < 6. We
use x; to denote the component in x which Corresponds to the vertices in V;(D,,x), where 0 < i < 6. Let
e ={uy, w1, - U, up} withi=1,2and g = {uy, ug1,- -+, ugp1}.

If x1 > x¢, then let G} be the hypergraph obtained from D, x by removing e, from u; to u;,;. Obviously,
G} = Dy By Lemma 2 6, we get po(Dyx) > pa(Dyx), where 0 < a < 1. This is a contradiction. Therefore,
X > x1. Two cases are considered as follows.

Case (i). x1 = x4.

Since x6 > x1 and x1 > x4, we get x¢ > x4. Let Gf be the hypergraph obtained from D, ; by removing
the k — 1 pendant edges which are adjacent to g from Ug1,Usn, + , Usk—1 tO Up, U1, -+, U1 k-2, Tespectively.
Obviously, G; = F, x. By Lemma 2.6, we get pa(Fy ) > pa(Dyk), where O0<a<l.

Case (ii). x4 > x1.

Wedivide V (F, ) into eleven subsets as follows. Let V|, = {v1}, V| = {v11, -+, 012}, V5, = {021, -+, 242},
V= {03,1,'" ,03,(1(72)(1«1)}, V= {714 1, O (m-2)(k— 1)} Vi= {05,1, ,05,(m—2)(k—1)2}/ Vi ={ve), V;, = {v71,-++,
07 k-1 }, Vé = {US,L , 08, (k=2)(k— 1)}, V {091, Ug/k_z}, and ViO = {Uz}, where d}:mk(lh) =m+ 1, dpulk(lh) = 3,
each vertex in V! has degree 2 w1th i=2,4,9,and each vertex in V} has degree 1 with1 <i<8andi # 2,4.
Furthermore, V’ with 1 <7< 9 (i # 6) satisfies the following condltlons (1). each vertex in V’ is adjacent to
v1 and vg s1multaneously, (2). each vertex in V7 is adjacent to v, v, and k — 1 core vertices in Vi which are
incident with a pendant edge; (3). each Vertex in V7 is adjacent to a vertex in V7; (4). each Vertex in V) is
adjacent to v; and k — 1 core vertices in V; which are incident with a pendant edge; (5). each vertex in V7 is
adjacent to a vertex in V; (6). each vertex in V7 is adjacent to vy; (7). each vertex in V7 is adjacent to a vertex
in V{; and (8). each vertex in Vg is adjacent to vy, vz, and k — 1 core vertices in V{ which are incident with a
pendant edge. Obviously, we have V (F,.x) = Ui% V7 and V! N Vi =@ for 0 <i<j<10. The hypergraph
F, i and all the vertices of F, are shown in Fig. 5.

Two cases are considered as follows.

Subcase (ii.i). x4 > x.

We construct a vector y = (1, Y2, -+, yn)" for F,x as follows. By the symmetry, the components iny
which correspond to the vertices in V! are the same, and we denote them by y;, where 0 < i < 10. Let y; = x;
for0<i<6,ys =1y =y =x4and y5 = y7 = yg = x5. Since ||x||k =land x € R},, we also have ||y||k =1
and y € ]R +- By (3), we have

X" (D(Dyp)x) = (m+ Dk + (k — 2)2% + 2(k — 2)x8 + (k — 2)(k — 1)k

+2(m = 1)(k = 1ok + (m — 1)(k — 1)%5 + 2oL, (12)
Bearing in mind that y; = x; with 0 <7< 6, ¥4 = yo = Y10 = x4, and y5 = y7 = ys = x5, by (3), we get
Yy (DF,0)y) = (m+1xb + (k= 2)a8 +2(k — 2)x8 + (k= 2)(k - 1)«
+(20m = 1)(k = 1) + 1)k + (m = 1)(k — 1)%xf + 2£. 13)
It follows from (12), (13) and x4 > x¢ that
Yy (DF,0)y) — x" (D(Dyp)x) = 25 — 2k > 0. (14)

By (2), we have

A (ADx) =k Y| %
CEE(DV, k) (15)
= k(x0x6x1 + x0x6x2 24 (m- 1)x0x + (k— Z)chx3 + (m—1)(k— 1)x4x )
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Since y; = x; for 0 < i < 6, y4 = Yo = Y10 = X4, and Y5 = y7 = ys = x5, by (2), we get

y (AFENY) =k Y, x
L’EE(Pnk) (16)

= k(x0x6x1 + xoxaxs 2 4+ (m — Dxoxs ™+ (k= 2xpxs ™+ (m = 1)k - Draak™?).
It follows from (15), (16), x4 > xe, and x € R, that
Y (A, Y) — x" (A(Dy0)x) = kxoxs (x4 — x6) > 0. (17)
By Lemma 2.3, (14) and (17), we obtain
Pa (Fuj) = pa (Dig) > y' (Aa(Enp)y) — 2 (Aa(Dyj)x)
= a(y" (D(F,0)y) — X" (DDyp)x) )
+(1 - a)(y" (AF,)y) - x" (ADyp)x) ) > 0. (18)

By (18), we obtain p, (Fux) = pa (Dyx) for 0 < a < 1, where k > 3 and m > 2.

Subcase (ii.ii). x¢ > x4.

We construct a vector z = (z1,2,++ ,2z,)" for F,x as follows. By the symmetry, the components in z
which correspond to the vertices in V’ are the same, and we denote them by z;, where 0 <i < 10. Letz; = x;
for 0 <i<5,24 =26 =29 = X4, 25 = 27 = z3 = X5 and 219 = Xg. Since ||x||k =landx € ]R++, we also have
||z||’}§ =1 and z € R},. By (3), we get

2 (D(Fup)z) = (m+ 1)xb + (k — 2)xk +2(k — 2)x5 + (k — 2)(k — 1)«

+(20m = 1)k = 1) = 1)k + (m — 1)(k = 1% + 3x. 19)
It follows from (12), (19) and x4 > x4 that
2" (D(F,p)z) — xT (DD, p)x) = &k — & > 0. (20)
Since z; = x; with 0 <7< 5,24 =z = 29 = X4, 25 = 27 = zg = x5, and 219 = X6, by (2), we get
2 (AF)z) = k Z 9
e€E(Fyy)
= k(x0x4x1 + xox6x2 24 x0x6x4 24 (m— 2)x0x4 (21)
+ (k- 2)x2x3_ + ((m -Dk-1)- )x4x5 + x6x§ 1).
It follows from (15), (21), x¢ > x4, x4 > x1, and x € R}, that
Zr (A(Fp)z) - x! (AD, 4)x)
= k(xo(x6 - x4)(x’; - x1 2) + x5 1(x6 - x4)) 2)
By Lemma 2.3, (20) and (22), we obtain
Pa (Fui)) = pa (D) = 2" (Aa(Fup)z) — x" (An(Dup)x)
= o(z" (D(F1p)2) - x" (DDup)x) )
+ (1= a)(z" (AF,)2) = x" (ADyp)x) ) > 0 (23)

By (23), we get pa (Fux) > pa (Dyi), where 0 < @ < 1, k > 3 and m > 2. Thus, Lemma 3.8 holds. O
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Lemma3.9. Let G € T(z(n, k,2), where n > 2k(k — 1) and k > 3. Then p, (Fnx) = pa (G), where 0 < @ < 1.

Proof. Letn > 2k(k—1),k > 3,and 0 < @ < 1. Let G°® be the hypergraph having the largest a-spectral
radius among @(n, k,2). Let C; = vie1v2e2v1 be the cycle of G°, wheree; = {v1,0;1, ..., Vi, 02} withi =1, 2.
According to the definition of ﬂz(n, k,2), there exists one perfect matching edge in C, of G°, and there
exists a vertex (denoted by v*) in e; U e; of G® which is attached by a k-uniform supertree containing at
least k edges, where k > 3. We suppose that ¢; in C; is the perfect matching edge. In G°, if v* € e1 \ {v1, v2},
without loss of generality, we suppose that v* = v1;. By the same methods similar to those for the proofs
of Claim 1 in Lemma 3.4, we can get a hypergraph G’ such that p,(G’) > p.(G®), where G’ satisfies: (1).
G € le(n, k,2); and (2). there exists only one vertex in e; N e; of C, of G’ which is attached by a k-uniform
supertree containing at least k edges, where k > 3. Obviously, the inequality p,(G’) > p.(G®) contradicts the
definition of G°. Therefore, In G°, v* € ¢;. Namely, G°® € T{z (n,k,2) and only one vertex (namely v*) in e, of
C, of G° is attached by a k-uniform supertree containing at least k edges, where k > 3.
Two cases are considered.

Case (i). v* € {vq, v}

We suppose v* = v1. When n = 2k(k — 1), by the definitions of G° and D,,, we obtain G* = D, ;. By
Lemma 3.8, we get po(Frx) > pa(Dyx). Thus, Lemma 3.9 holds. Next, let n > 3k(k — 1). By the definition of
G°, v1 of G° is attached by a k-uniform supertree (denoted by T) containing at least 2k edges, where k > 3.
We will prove that each edge in M(G®) \ {e1} is a pendant edge. Otherwise, we suppose that there exists an
edge (denoted by ¢) in E(T) N M(G®) which is not a pendant edge. By applying the edge-releasing operation
on ¢ at a vertex of e and using the methods similar to those for the proofs of Lemma 3.1, we can get a
hypergraph (denoted by Gi,) such that p,(Gi2) > pa(G®), where Gi, € ’le(n, k,2) and e of Gy, is a pendant
edge. This is a contradiction. Thus, each edge in E(T) N M(G®) is a pendant edge. Namely, each edge in
M(G®) \ {e1} is a pendant edge.

If G° = Dy, then by Lemma 3.8, p,(F,x) = pa(G®). Namely, Lemma 3.9 holds. If G° # D,, then
according to the definitions of G° and D,, there exists an edge (denoted by g" = {w;, ... ,w,’(}) in T of G°
satistying: (1). v1 ¢ g’; (2). v1 and w] are incident with a common edge in T (denoted by g1); and (3). ¢’
is not a pendant edge. Obviously, g; is not a perfect matching edge of G°. Let x be the a-Perron vector of
G®. If xy, > xy;, then let Gi3 be the hypergraph obtained from G° by removing g from w/ to v. Obviously,

Gz € az(n, k,2). By Lemma 2.6, po(G13) > pa(G®). This is a contradiction. Thus, we have X, > Xo,. Let Gisa
be the hypergraph obtained from G° by removing e; from v; to w]. By Lemma 2.6, pa(G14) > pa(G®). Let
e = {w},v21,...,02k-1,02}. Obviously, wieve1v1g1w] is a cycle of length 3 in Gi4. Since G° € Ua(n,k, 2),
by the definition of WQ(n, k,2), e ¢ M(G®). Thus, M(G®) is the perfect matching of Gi4 and e; is a perfect
matching edge of Gy4. Therefore, Gi4 € Ua(n, k, 3).

Let G15 be the hypergraph obtained from G4 by applying the edge-releasing operation on e; at v;. By
Lemma 3.3, we get p,(G15) > pa(Gia), with the equality if and only if G14 = Gy5. Obviously, wiejv1g1w] is a
cycle of G5 and e; of G35 is a pendant edge. Since e; is a perfect matching edge of G4, all the edges of G4
which are adjacent to e; are not perfect matching edges of G14. Thus, G5 € Wl(n, k,2), where n > 3k(k — 1).
By Lemma 3.4, po(Fx) > pa(Gis), with the equality if and only if Gi5 = F, k. Thus, we get pa(Fnr) > pa(G°).
Namely, Lemma 3.9 holds.

Case (ii). v* € ey \ {v1, v2}.

Suppose v* = v,1. If n = 2k(k — 1), by the definitions of G® and E, x, G° = E, . By Lemmas 3.7 and 3.8,
Pa(Erni) > pa(G®). Next, let n > 3k(k — 1). By the definition of G°, v is attached by a k-uinform supertree
(denoted by T”) containing at least 2k edges, where k > 3. We will prove that each edge in M(G®) \ {e1}
is a pendant edge. Otherwise, we suppose that there exists an edge (denoted by e) in E(T") N M(G®)
which is not a pendant edge. By applying the edge-releasing operation on ¢ at a vertex of e and using the
methods similar to those for the proofs of Lemma 3.1, we can get a hypergraph (denoted by Gi6) such that
Pa(Gi6) > pa(G®), where Gis € Us(n,k,2) and e of Gy is a pendant edge. This is a contradiction. Thus, each
edge in E(T") N M(G®) is a pendant edge. Namely, each edge in M(G®) \ {e1} is a pendant edge. If G° = E,,,
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by Lemmas 3.7 and 3.8, pa(Enx) > pa(G®). If G° # E, k, by the definition of G°, there exist two edges in E(T")
which belong to Q(G®). By using the methods similar to those for the proofs of Cases (i) and (ii) in Lemma
3.4, we obtain p,(E, k) = p.(G®), with the equality if and only if G° = E, x. Furthermore, by Lemmas 3.7 and
3.8, we get p,(Fyx) > pa(G®). L

By combining the above proofs, we get py(Fy k) = pa(G), where 0 < @ < 1 and G € Uy(n,k,2). O

By Lemmas 3.6 and 3.9, we get Corollary 3.10.

Corollary 3.10. Let G € Up(n, k,2), where n > 2k(k — 1) and k > 3. Then po(Fyx) = pa(G), where 0 < a < 1.

Theorem 3.11. Let G € U(n, k), where n > k(k — 1) and k > 3.
(i). Whenn = k(k—1), G = Dy .
(ii). When n > 2k(k — 1), for 0 < @ < 1, we have pa(Fpx) > pa(G) with the equality if and only if G = F,, k.

Proof. When n = k(k — 1), by the definition of D, s, we have Theorem 3.11(i). Let n > 2k(k — 1) and
0<a<l IfGeUmnk)\ Uynk?2), then by Corollary 3.5, we have p,(Fyx) = pu(G), with the equality
if and only if G = F, ;. If G € U(n,k,2), then by Corollary 3.10, we get pu(Fnx) = pal(G). Since U(n, k) =

(U(n, k) \ Us(n,k,2)) U Us(n, k, 2), we obtain Theorem 3.11(ii). O
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