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Abstract. Čech L-fuzzy rough proximity spaces build upon proximities under the wing of the L-fuzzy
notion and extend it using the C̆ech completion process. The Čech completion is a technique commonly
used in topology to turn a given topological space into a complete space. This approach provides a
more refined understanding of closeness and connectivity in spaces with fuzzy or uncertain relationships
between points, contributing to the development of fuzzy topology and its applications in various fields.
The primary objective of this study is to explore the junction between the categories of Čech proximity
(and closure) spaces, specifically in relation to L-fuzzy rough sets, where L is a complete distributive lattice.
Additionally, we will discuss their properties. Further, we introduce L-fuzzy rough ideal creation and the
mutual relation between ideals and proximity spaces according to the L-fuzzy rough notion. Finally, we
apply the results in a model of a fuzzy topological graph, yielding valid observations.

Nomenclature

Symbols

R L-fuzzy relation.
L-FAPS L-fuzzy approximation spaces.
CL-FRPRX Čech L-fuzzy rough proximity spaces.
ACL-FRPRX Alexandrov CL-FRPRX.
CL-FRCS Čech L-fuzzy rough closure spaces.
ACL-FRCS Alexandrov CL-FRCS.
L-FRIS L-fuzzy rough ideal space.
AL-FRIS AlexandrovL-FRIS.
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1. Introduction

Relations are fundamental concepts for expressing preferences, but the two-valued concept is not useful
for expressing the complexity of real-life preferences. Pawlak [31, 32] introduced rough set theory, which
is an excellent and helpful tool for processing uncertainty and incomplete information. Axiomatic and
constructive approaches are continuously driving the development of theoretical research and practical
applications in rough set theory. Researchers in literature [26, 51] generalized the commitment of rough
sets, recommending other forms of arbitrary relation instead of the equivalence one. To overcome this
limitation, fuzzy relations are generally used. Dubois and Prade [12] used fuzzy relations to bring up a
fuzzy version of rough sets rather than crisp ones.

Recently, merging fuzzy sets with rough sets was served by fuzzy logic with binary fuzzy relation in
[13, 30, 33], where fuzzy implications [29, 34, 35, 47, 49] make a major change in the extensions of fuzzy rough
sets, at which L-fuzzy topological structures are an extremely important part of it [14, 15, 22, 44, 48, 53].

Respectively, Zhou [22, 52] discussed the most important features of closure spaces in the L-fuzzy notion
(see [5]), while Bělohlávek and Höhle widely investigated the category aspects. Using closure spaces to
induce new topologies according to the L-fuzzy concept attracted the attention of many researchers (Fang
[13–15], Pang [30]). There were several other contributions by many authors ([40, 41, 50, 52, 54]) that
discussed some properties.

Proximity structure is another topological construct that has found various applications in pattern
recognition, feature selection, digital image classification, data analysis, cluster analysis, multidimensional
scaling, concept analysis, computational biology, and many other fields [21]. Fuzzy proximity structures
in a completely distributive lattice were introduced by Katsaras [23, 24]. Bayoumi [3] extends L-fuzzy
proximity structures, Katsaras’s definition, in a slightly different sense than Čimoka and Šostak [11]. Kim
[25] and Ramadan [36–38] gave valuable efforts in this area. In other words, the nearness in L-fuzzy between
the topological structures that are respected by two sets can also help clarify the nearness between the sets.
Čech closure spaces [10] and proximity spaces [42, 43, 45] are closely related and come from the same field.
They are both topological spaces that have been extended. The Čech closure operator [10] can be induced
by every basic proximity structure. The theory of filters is also related to proximity spaces [39].

Čech closure spaces and Čech proximity spaces are closely related and come from the same field. They
are both topological spaces that have been extended. A Čech closure operator can be induced by every
basic proximity structure. The relationship of Čech rough proximity spaces and Čech closure spaces was
studied in [27, 45]. We further find the relationship between Čech L-fuzzy rough proximity, closure, and
ideals.

Graph theory, such an important mathematical tool discussed by Chartrand et al. [9], has several
applications in many fields, including civil engineering, networking problems, mechanism analysis, electric
engineering, graphics, medical, genetics, etc. Because of its involvement in the same fields of work as
topology, many researchers are inclined to mix them in various applications. Nada et al. [28] studied the
concept of topological structures via a graph based on neighborhoods. Recently, Atef et al. [2] initially
introduced fuzzy topological structures via fuzzy graphs, which included very useful applications in real-
life health problems.

This research will be divided into five sections as follows: the basic definitions and important results
will be stated in Section 2. Section 3 used to introduce the Čech L-fuzzy rough proximity and studies its
relation with a Čech fuzzy rough closure space. In Section 4, we define rough ideals under the notion of
L-fuzzy with a discussion of their connection toward Čech fuzzy rough proximity spaces. In Section 5, we
apply the results to a 3-vertex fuzzy topological graph. Section 6 is a conclusion and future work.

2. Preliminaries

In our quest, L indicates (L,≤,∧,∨) as a complete lattice, where each subfamily A ⊆ L contains its own
joins (suprema) and meets ( infima). In particular, ⊤ , ⊥where ⊤ is a top and ⊥ is a bottom elements in L.
In lattice, we use

∨
and
∧

for the case of finite arbitrary families of elements. If L satisfied the first infinite
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distributive law, it would be completely distributive [8]. In other words, a ∧ (
∨
ι∈γ

bι) =
∨
ι∈γ

(a ∧ bι), ∀ a ∈ L,

{bι}ι∈γ ⊆ L. The implication binary operation can also induced by ∧ as: a ∧ b ≤ c ⇔ a ≤ b→ c ∀ a, b, c ∈ L.
Here, suppose ∗ will be define by a∨ b = (a∗ ∧ b∗)∗, a∗ = a→ ⊥ as an order reversing involution whom made
(L,≤,∧,∗ ) as complete lattice.

The proposition below is considered as a collection of some basic characteristics of∧ and the implication
→ that may be found in [4, 17, 18, 20, 22, 46].

Proposition 2.1. For a, b, c, aι, bι,w ∈ L and ι ∈ γ, we have the following properties:
(1) a→ b =

∨
{c ∈ L|a ∧ c ≤ b},

(2) ⊤ → a = a,⊥ ∧ a = ⊥,
(3) If b ≤ c, then a→ b ≤ a→ c and c→ a ≤ b→ a,
(4) a ≤ b⇔ a→ b = ⊤,
(5) (
∧
ι

bι)∗ =
∨
ι

b∗ι and (
∨
ι

bι)∗ =
∧
ι

b∗ι ,

(6) a→ (
∨
ι

bι) ≥
∨
ι

(a→ bι) and (
∧
ι

aι)→ b ≥
∨
ι

(aι → b),

(7) a→ (
∧
ι

bι) =
∧
ι

(a→ bι) and (
∨
ι

aι)→ b =
∧
ι

(aι → b),

(8)
∨
ι

aι →
∨
ι

bι ≥
∧
ι

(aι → bι) and
∧
ι

aι →
∧
ι

bι ≥
∧
ι

(aι → bι).

(9) a ∧ b = (a→ b∗)∗, a ∨ b = a∗ → b and a→ b = b∗ → a∗,
(10) (a→ b) ∧ (c→ w) ≤ (a ∧ c)→ (b ∧ w),
(11) a→ b ≤ (a ∧ c)→ (b ∧ c) and (a→ b) ∧ (b→ c) ≤ a→ c,
(12) (a ∧ b) ∧ (c ∨ w) ≤ (a ∧ c) ∨ (b ∧ w),
(13) (a→ b) ∧ (c→ w) ≤ (a ∨ c)→ (b ∨ w),
(14) (a→ b) ∨ (c→ w) ≤ (a ∧ c)→ (b ∨ w),
(15) a ∧ (a→ b) ≤ b , b ≤ a→ (a ∧ b) and (a→ b)→ b ≥ a,
(16) a ∧ (b→ c) ≤ b→ (a ∧ c) and a ∧ (b→ c) ≤ (a→ b)→ c,
(17) c→ a ≤ (a→ b)→ (c→ b) and b→ c ≤ (a→ b)→ (a→ c),
(18) (a ∧ b)→ c = a→ (b→ c) = b→ (a→ c) and a ≤ (a→ b)→ b,

LX is used to pointing to all L-fuzzy sets [19] which defined on a universal set X. In addition, ⊤X and
⊥X are denoted by sets in a fuzzy L that given as ⊤X(a) = ⊤ and ⊥X(a) = ⊥, ∀ a ∈ X, are called the universal
greatest and smallest bound (upper and lower, respectively) in LX.

We do not differentiate between α ∈ L as an element and α : X→ L as a constant function with α(a) = α,
∀ a element on X. Every algebraic operation on LX is considered as the extension of that in L. Such for any
⊤a, f , 1 sets in fuzzy lattice, a ∈ X, α ∈ L, for f enough to be less than or equal to 1 if f (a) ≤ 1(a), moreover
( f ∧ 1)(a) = f (a) ∧ 1(a), and ( f → 1)(a) = f (a)→ 1(a),

⊤a(b) =
{
⊤, if b = a,
⊥, o.w., ⊤

∗

a(b) =
{
⊥, if b = a,
⊤, o.w.

In this paper, all the categories are concrete.

Definition 2.2. ([1]) GivenX as a category, the functorM is faithful, whereM : X → Set. Then, (X,M) is a
concrete category, writeX (for short) if it is clear. If a set A is considered asX-object, the underlying set of A
isM(A). Take (X,M) and (Y,N) as concrete categories. Thus, the functor between them isG : X → Ywith
M = N ◦G,which refers to the sets changes w. r. toG. The necessary two conditions to defineG : X → Y as
a concrete functor are stated as follows, firstly, we consider the set A for eachX-object andG(A) forY-object
where N(G(A)) = M(A). Secondly, we make sure that if Ω : M(A) → M(B) be a X-morphism mapping
A→ B, then also beY-morphism G(A)→ G(B).
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Definition 2.3. ([4]) If R defined on a nonempty set X, where R(a, b) means the junction of a and b out of
degree tenet, then ∀ a, b, c ∈ X the relation R is said to be

(i) reflexive if R(a, a) = ⊤,

(ii) symmetric if R(b, a) = R(a, b),

(iii) transitive if R(b, c) ∧ R(a, b) ≤ R(a, c).
Moreover, it is an L-fuzzy preorder if it achieves (i), (iii), tolerance if it achieves (i), (ii), and equivalence

if R satisfies all previous conditions.

Suppose X is a universe with R. Then, (X,R) be L-FAPS. Upper (lower) approximation that is recalled
in the definition below, used by many researchers [33, 35, 36, 48, 49, 53].

Definition 2.4. Assume that R : LX
→ LX defined on X. A function L,U : LX

→ LX for f , 1 ∈ LX,”a ” element
in X defined as:
L( f )(a) =

∧
b∈X

(R(a, b)→ f (b)) and U( f )(a) =
∨
b∈X

( f (b) ∧ R(a, b)).

L( U) are called lower (upper) L-FAP operators, respectively. Moreover (L( f ),U( f )) consider as L-fuzzy
rough of f out of (X,R).

The distinctive features of upper (lower) approximation in L-fuzzy notion, that collected below, are from
[4, 12, 33, 35, 36, 48, 49, 53].

Proposition 2.5. If (X,R) be L-FAPS and U(L), be textbfL-FAP(upper, lower. respectively) approximation operator
on X. Then, ∀ f , fι ∈ LX, a ∈ X and α ∈ L, we receive that :

(1) being, R, reflexive lead to U(⊤a) = ⊤a, U(⊥X) = ⊥X, U(⊤X) = ⊤X,

(2) being, R, reflexive, then L(⊥X) = ⊥X, L(⊤X) = ⊤X and L( f ) ≤ f ≤ U( f ),

(3) Sd( f , 1) ≤ Sd(U( f ),U(1)) and Sd( f , 1) ≤ Sd(L( f ), L(1)),

(4) U( f ∨ 1) = U( f ) ∨ U(1) and U( f ∧ 1) ≤ U( f ) ∧ U(1),

(5) L( f ∧ 1) = L( f ) ∧ L(1) and L( f ∨ 1) ≥ L( f ) ∨ L(1),

(6) L(
∧
ι∈γ

fι) =
∧
ι∈γ
L( fι) and U(

∨
ι∈γ

fι) =
∨
ι∈γ
U( fι),

(7) L(α→ f ) = α→ L( f ) and U(α ∧ f ) = α ∧ U( f ),

(8) U(α→ f ) ≤ α→ U( f ) and L(α ∧ f ) ≥ α ∧ L( f ),

(9) If R is transitive, then U(U( f )) ≤ U( f ) and L( f ) ≤ L(L( f )),

(10) If R is reflexive then, L(L( f )) ≤ L( f ) ≤ f and f ≤ U( f ) ≤ U(U( f )).
One may notice that:

(i) If f ≤ 1, then U( f ) ≤ U(1)) and L( f ) ≤ L(1)),

(ii) If R is reflexive and transitive, then L(L( f )) = L( f ) and U( f ) = U(U( f )),

(iii) U
∗

( f ) = L( f ∗) and L∗( f ) = U( f ∗).

For any L-FAPS (X,RX) and (Y,RY). L-FAP map is the function η : X → Y with η←(LY( f )) ≤ LX(η←( f ))
and η←(UY( f )) ≥ UX(η←( f )), ∀ f ∈ LX.

Definition 2.6. ([4, 53]) For L-fuzzy sets f , 1, the maps Sd,Nd : LX
× LX

→ L are, respectively, defined by

(i) The subsethood degree of f , 1 and it define by Sd( f , 1) =
∧
a∈X

( f (a)→ 1(a)).
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(ii) The degree of intersection of f , 1 and it define by Nd( f , 1) =
∨
a∈X

f (a) ∧ 1(a).

Subsethood (intersection) degree properties are collected, [4, 14, 30, 47, 49, 53], in Proposition 2.7..

Proposition 2.7. For f , 1, h, k, fι(ι ∈ γ) ∈ LX and α ∈ L, we have

(S1) Sd( f , 1) = ⊤ ⇔ 1 ≥ f ,

(S2) Sd( f ∧ k, 1 ∧ h) ≥ Sd( f , 1) ∧ Sd(k, h), Sd( f ∨ k, 1 ∨ h) ≥ Sd( f , 1) ∧ Sd(k, h),

(S3) Sd(h, f )→ Sd(h, 1) ≥ Sd( f , 1), Sd(1, h)→ Sd( f , h) ≥ Sd( f , 1),

(S4) Sd( f , 1) ≥ Sd( f , 1) ∧ Sd(1, h), Sd( f , 1)→ 1 ≥ f and 1 ≥ Sd( f , 1) ∧ f ,

(S5) Sd( f , α ∧ 1) ≥ α ∧ Sd( f , 1) and Sd( f , 1) = Sd(1∗, f ∗),

(N1) Nd(⊥X,⊤X) = Nd(⊤X,⊥X),

(N2) Nd(1, f ) = Nd( f , 1),

(N3) f ≤ 1 implies Nd(h, f ) ≤ Nd(h, 1), Nd( f , h) ≤ Nd(1, h),

(N4) Nd( f ,
∨
ι∈γ

fι) =
∨
ι∈γ

Nd( f , fι),

(N5) α ∧Nd( f , k) = Nd( f , α ∧ k),

(N6) α→ Nd( f , k) ≥ Nd( f , α→ k),

(N7) Nd( f , k)→ α = Sd( f , k→ α),

(N8) if η : X→ Y be a function, then Nd(h, k) ≥ Nd(η←(h), η←(k)), for h, k ∈ LY.

Definition 2.8. ([6]) A fuzzy subset is defined as σ : X→ [0, 1] on X, and the fuzzy relation on X is a fuzzy
subset of X × X. Then, for f , 1 ∈ [0, 1]X, f ∨ 1 (join) is defined as ( f ∨ 1)(a) = max( f (a), 1(a)) for every a in X.
Moreover f ∧ 1 (meet) given by ( f ∧ 1)(a) = min( f (a), 1(a)) per a in X.

Definition 2.9. ([7]) A fuzzy graph is a triplet G = (X, σ,R), in which Xis a universe, σ is a fuzzy subset of X
with R on σ satisfying R(a, b) ≤ σ(a) ∧ σ(b), for all a, b ∈ X. The fuzzy set σ and R are called the fuzzy vertex
and fuzzy edge set of G, respectively.

3. Čech L-fuzzy rough proximities and Čech L-fuzzy closure operators

Here, we axiomatize Čech L-fuzzy rough proximity spaces. Some basic results on Čech L-fuzzy rough
proximity space are proved. Throughout this paper, (X,R) is L-FAPS, with equivalence R on X.

Definition 3.1. Let (X,R) is L-FAPS. CL-FRPRX is a function δR : LX
× LX

→ L if ∀ f , 1, h, k ∈ LX satisfies:

(P1) δR(U( f ),U(⊥X)) = δR(U(⊥X),U( f )) = ⊥,

(P2) δR( f , k) ≥ Nd(U( f ),U(k)),

(P3) Sd(U( f ),U(k)) ≤ δR(U( f ),U(1))→ δR(U(k),U(1)),
Sd(U( f ),U(k)) ≤ δR(U(1),U( f )))→ δR(U(1),U(k)),

(P4) δR(U(h),U( f ) ∨ U(1)) ≤ δR(U(h),U( f )) ∨ δR(U(h),U(1)) and
δR(U( f ) ∨ U(1),U(h)) ≤ δR(U( f ),U(h)) ∨ δR(U(1),U(h)).

Then the pair (X, δR) is CL-FRPRX. Furthermore, it is ACL-FRPRX if satisfies:

(AL) for each family { fι, 1ι : ι ∈ γ} subset or equal of LX,
δR(
∨
ι∈γ
U( fι),U(1)) ≤

∨
ι∈γ
δR(U( fι),U(1)) and δR(U( f ),

∨
ι∈γ
U(1ι)) ≤

∨
ι∈γ
δR(U( f ), U(1ι)).

A binary relation δR is called a basic CL-FRPRX, if it a Čech proximity and additionally satisfies the
following axioms:
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(P) δs
R = δR, where δs

R(U( f ),U(1)) = δR(U(1),U( f )).
A binary relation δR is CL-FRPRX, if it is Čech L-fuzzy basic rough proximity and additionally satisfies

the following axioms:

(P5) δR(U( f ),U(1)) ≥
∧

h∈LX
δR(U( f ),U(h)) ∨ δR(U(h)∗,U(1)). In this study, we will not consider the axiom(P5).

A functionη : (X, δRX )→ (Y, δRY ) between two CL-FRPRXS is LF-proximity map if δRX (UX (η←( f )),UX(η←(k)))
≤ δRY (UY( f ), UY(k)) ∀ f , k ∈ LY.

Remark 3.2. If (X, δR) be a CL-FRPRX , then for all α ∈ L and f , 1, h subsets in LX. We have from (P3):

(1) If U( f ) ≤ U(1), then δR(U( f ),U(h)) ≤ δR(U(1),U(h)) and δR(U(h),U( f )) ≤ δR(U(h),U(1)).

(2) δR(α ∧ U( f ),U(1)) ≥ α ∧ δR(U( f ),U(1))⇔ δR(α→ U( f ),U(1)) ≤ α→ δR(U( f ),U(1)),

(3) δR(U( f ), α ∧ U(1)) ≥ α ∧ δR(U( f ),U(1))⇔ δR(U( f ), α→ U(1)) ≤ α→ δR(U( f ),U(1)).

(4) If δR is Alexandrov, then by axiom (P3), we have
δR(U( f ),

∨
ι∈γ
U(1ι)) =

∨
ι∈γ
δR(U( f ),U(1ι)) and δR(

∨
ι∈γ
U( fι),U(1)) =

∨
ι∈γ
δR(U( fι),U(1)).

Definition 3.3. Given (X,R) as L-FAPS, a function CR : LX
→ LX is said to be Čech L-fuzzy rough closure

operator on X if ∀ f , 1, fι ∈ LX, it satisfies:

(LC1) CR(⊥X) = ⊥X,

(LC2) CR( f ) ≥ U( f ),

(LC3) Sd( f , 1) ≤ Sd(CR( f ),CR(1)),

(LC4) CR( f ∨ 1) ≤ CR( f ) ∨ CR(1).
Then the pair (X,CR) is CL-FRCS. Furthermore, it is ACL-FRCS if satisfies

(AL) CR(
∨
ι∈γ

fι) =
∨
ι∈γ
CR( fι). in addition, called topological CL-FRCS if it satisfies

(T) CR(CR( f )) ≤ CR( f ).
An LF-closure map is a function η : (X,CRX )→ (Y,CRY ) satisfing
η←(CRY ( f )) ≥ CRX (η←( f )), ∀ f ∈ LY.

Remark 3.4. Let (X,CR) be an CL-FRCS. Then, by (LC3), we have

(1) f ≤ 1 implies that CR( f ) ≤ CR(1),

(2) CR(α ∧ f ) ≥ α ∧ CR( f ), equivalently, CR(α→ f ) ≤ α→CR( f ).

Theorem 3.5. Let δR be CL-FRPRX. Define a function CδR : LX
→ LX as CδR ( f )(a) = δR(U(⊤a),U( f )). Then, we

have

(1) (X,CδR ) is CL-FRCS with CδR (α ∧ f ) ≥ α ∧ CδR ( f ),

(2) if δR is Alexandrov, then CδR is so.

(3) if δR(U( f ), α∧U(1)) = α∧ δR(U( f ),U(1)) and δR is ACL-FRPRX, then CδR ( f )(a) =
∨
b∈X

f (b)∧ δR(U(⊤a),U(⊤b)).

Proof. To prove (1), it must satisfy the following conditions:

(LC1) Since δR(U(⊤a),U(⊥X)) = ⊥, then CδR (⊥X)(a) = δR(U(⊤a), U(⊥X) = ⊥.

(LC2) CδR ( f )(a) ≥
∨
a∈X
U(⊤a)(a) ∧ U( f )(a) ≥

∨
a∈X
⊤a(a) ∧ U( f )(a) ≥ U( f )(a).

(LC3) Sd(CδR ( f ),CδR (1)) =
∧
a∈X

(CδR ( f )(a)→CδR (1)(a)) =
∧
a∈X

(δR(U(⊤a),U( f ))→ δR(U(⊤a),U(1)))≥Sd(U( f ),U(1)) ≥

Sd( f , 1).
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(LC4) CδR ( f )(a)∨CδR (1)(a) = δR(U(⊤a),U( f ))∨ δR(U(⊤a),U(1)) ≥ δR(U(⊤a),U( f )∨U(1)) ≥ δR(U(⊤a), U( f ∨ 1)) =
CδR ( f ∨ h)(a).
CδR (α ∧ f )(a) = δR(U(⊤a),U(α ∧ f )) = δR(U(⊤a), α ∧ U( f )) ≥ α ∧ δR(U(⊤a),U( f )) = α ∧ CδR ( f )(a).

(2) If δR is Alexandrov, then CδR (
∨
ι∈γ

fι)(a) = δR(U(⊤a),U(
∨
ι∈γ

fι)) = δR(U(⊤a),
∨
ι∈γ
U( fι)) =

∨
ι∈γ
δR(U(⊤a),U( fι)) =∨

ι∈γ
CδR ( fι)(a).

(3) Since f =
∨
b∈X

( f (b) ∧ ⊤b). Then, we get CδR ( f )(a) = δR(U(⊤a),U( f )) = δR(U(⊤a),U(
∨
b∈X

( f (b) ∧ ⊤b))) =

δR(U(⊤a),
∨
b∈X
U( f (b) ∧ ⊤b)) = δR(U(⊤a),

∨
b∈X

f (b) ∧ U(⊤b))) =
∨
b∈X

f (b) ∧ δR(U(⊤a),U(⊤b)).

Remark 3.6. Let (X,R) be an L-FAPS and (X,CR) be a CL-FRCS. Then,

(1) If δR(U(⊤a),U(CδR ( f ))) ≤ δR(U(⊤a),U( f )), then CδR is a a fuzzy topology,

(2) Sd(U( f ),U(1)) ≤ CδR ( f )→CδR (1).

From Theorem 3.7, a Čech L-fuzzy rough proximity induced by a Čech L-fuzzy rough closure operator
is obtained.

Theorem 3.7. Given (X,R) as L-FAPS and (X,CR) as CL-FRCS. Define a function δCR : LX
×LX

→ L as δCR ( f , 1) =
Nd(CR(1), U( f )) ∀ f , 1 ∈ LX. We obtain the following:

(1) δCR is a CL-FRPRX on X with δCR (U( f ), α ∧ U(1)) ≥ α ∧ δCR (U( f ), U(1)) and δCR (α → U( f ),U(1)) ≤ α →
δCR (U( f ),U(1)).

(2) if CR is Alexandrov, then δCR is Alexandrov.

(3) CδCR
≥ CR and if δR( f , 1) =

∨
a∈X
U( f )(a) ∧ U(1)(a), then δCδR ≤ δR.

Proof. (1) It is sufficient to prove the following conditions
(P1) Since CR(U(⊥X)) = ⊥X and U(U(⊤X)) = ⊤X, getting δCR (U(⊤X), U(⊥X)) = Nd(CR(U (⊥X)), U(U(⊤X))) =
⊥, δCR (U(⊥X), U(⊤a)) = Nd(CR (U(⊤a)), U(U(⊥X))) = ⊥.
(P2) Since CR(1) ≥ U(1), we obtain δCR ( f , 1) = Nd(CR(1), U( f )) ≥ Nd(U(1), U( f )) = Nd(U( f ), U(1)).
(P3) Since R is reflexive and transitive, we receive δCR (U( f ),U(h))→ δCR (U(1),U(h)) =Nd(CR (U(h)),U (U( f )))
→ Nd(CR(U(h)), U(U(1))) ≥

( ∨
a∈X
CR(U(h))(a) ∧ U(U( f ))(a)

)
→

( ∨
b∈X
CR (U(h))(b) ∧ U(U(1))(b)

)
≥
∧
a∈X

(U(U( f ))(a)

→ U(U(1))(a)) = Sd(U(U( f )), U(U(1))) ≥ Sd(U( f ),U(1)),
δCR (U(h), U( f )) → δCR (U(h), U(1)) = Nd(CR(U( f )), U(U( f ))) → Nd(CR(U(1)), U(U(h))) ≥

( ∨
a∈X
CR(U( f ))(a) ∧

U(U(h))(a)
)
→

( ∨
a∈X
CR(U(U(1)))(a) ∧ U(U(h))(a)

)
≥
∧
a∈X

(CR(U( f ))(a)→ CR(U(1))(a)) = Sd(CR(U( f )), CR(U(1))) ≥

Sd(U( f ), U(1)).
(P4) δCR (U( f ),U(1))∨ δCR (U( f ),U(h)) =Nd(U(U( f )),CR(U(1)))∨Nd(U(U( f )),CR (U(h)))≥Nd(U(U( f )),CR(U(1))
∨ CR(U(h))) ≥ Nd(U(U( f )), CR(U(1) ∨ U(h))) ≥ Nd(U(U( f )), CR(U(1 ∨ h))) = δCR (U( f ), U(1 ∨ h))). By similarity,
the other case is proved. Finally, From Remark 3.2, we have δCR (U( f ), α ∧ U(1)) = Nd(U( f ), CR(α ∧ U(1))) ≥
Nd(U(U( f )), α ∧ CR(U(1))) = α ∧Nd(U(U( f )), CR(U(1))) = α ∧ δCR (U( f ), U(1)),
δCR (α→ U( f ), U(1)) = Nd(C(U(1)), U(α → U( f ))) ≤ α→ Nd(C(U( f )), U(U( f ))) = α→ δCR (U( f ), U(1)). Hence,
δCR (U( f ), α ∧ U(1)) ≥ α ∧ δCR (U( f ), U(1)) and δCR (α→ U( f ), U(1)) ≤ α→ δCR (U( f ), U(1)).

(2) By Proposition 2.7 ((N1) and (N4)), we have δCR (
∨
ι∈γ
U( fι), U(1)) = Nd(CR(U(1)), U(U(

∨
ι∈γ

fι))) =
∨
ι∈γ

Nd(CR

(U(1)), U(U( fι))) =
∨
ι∈γ
δCR (U( fι), U(1)),

δCR (U( f ),
∨
ι∈γ
U(1ι)) = Nd(U(U( f )), CR(

∨
ι∈γ
U(1ι))) ≤

∨
ι∈γ

Nd(U(U( f )), CR(U(1ι))) =
∨
ι∈γ
δCR (U( f ),U(1ι)),
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(3) CδCR
( f )(a) = δCR (U(⊤a), U( f )) = Nd(U(U(⊤a)), CR(U( f ))) ≥ Nd(U(⊤a), CR( f )) =

∨
a∈X
U(⊤a)(a) ∧ CR( f )(a) ≥

⊤ ∧ CR( f )(a) = CR( f )(a). Finally, δCδR ( f , 1) =
∨
a∈X
U( f )(a) ∧CδR (1)(a) =

∨
a∈X
U( f )(a) ∧

∨
a∈X
δR(U (⊤a),U(1)) ≤∨

a∈X
U( f )(a) ∧

∨
a∈X
U(1)(a) ≤

∨
a∈X
U( f )(a) ∧ U(1)(a) = δR( f , 1). Hence, δCδR ≤ δR.

Corollary 3.8. Given (X,R) as L-FAPS. Let δCR : LX
× LX

→ L be a function identified by δCR ( f , 1) = Nd(U(1),
CR( f )). Then, δCR is a CL-FRPRX on X.

We can easily prove Theorem 3.9 is the same as Theorem 3.7. So, it will be omitted.

Theorem 3.9. Given (X,R) as L-FAPS. Let (X,CR) be an CL-FRCSand δCR : LX
× LX

→ L be a function defined by
δCR ( f , 1) = Nd(CR(1), CR( f )) ∀ f , 1 ∈ LX. Which is coming are hold

(1) δCR is an L-fuzzy rough basic proximity on X,

(2) if CR is Alexandrov, then δCR is Alexandrov.

Theorem 3.10 shows L-FAPS’s category can be incorporated into the category of L-FPRXS.

Theorem 3.10. If (X,R) is an L-FAPS and δR : LX
× LX

→ L be a function defined for all f , 1 ∈ LX by δR( f , 1) =
Nd(U(1),U( f )). Then,

(1) (X, δR) present as a L-fuzzy rough basic proximity space,

(2) δCδR ≥ δR,

(3) if η : (X,RX)→ (Y,RY) be a LF-approximation function. Then, η : (X, δRX )→ (Y, δRY ) is a LF-proximity function.

Proof.

(1) It is sufficient to prove 4 conditions as in the proof of Theorem 3.7(1).

(2) δCδR ( f , 1) =
∨
a∈X
CδR ( f )(a) ∧ U(1)(a) =

∨
a∈X
δR(U(⊤a), U( f )) ∧ U(1)(a) =

∨
a∈X

( ∨
a∈X
U(⊤a)(a) ∧ U( f )(a)

)
∧ U(1)(a) ≥∨

a∈X
U( f )(a) ∧ U(1)(a) = δR( f , 1).

(3) The proof is given in the same manner.

We have the concrete functor Φ : L-FAPS→ CL-FRPRX, according to Theorems 3, 4 by the following
Φ(X,RX) = (X, δRX ), Φ(η) = η.

Example 3.11. If the universal fuzzy set given as X = {(a1, 0.4), (a2, 0.3), (a3, 0.5), (a4, 0.7)} with a fuzzy
topology τ = { f = 0, e = {(a1, 0.4)}, d = {(a1, 0.4), (a3, 0.5)}, c = {(a1, 0.4), (a2, 0.3)}, b = {(a1, 0.4), (a2, 0.3),
(a3, 0.5)}, a = {(a1, 0.4), (a2, 0.3), (a3, 0.5), (a4, 0.7)}} and shown in Fig. 1. Define R : X × X→ [0, 1] as

R =


1 0.9 1 1
1 1 1 1

0.9 0.8 1 1
0.7 0.6 0.8 1


Where U( f )(aι) =

∨
a j∈X

R(aι, a j) ∧ f (a j). Then, we have for each aι, a j ∈ X, i, j ∈ {1, 2, 3, 4}

U( f )(a1) = 0 U( f )(a2) = 0 U( f )(a3) = 0 U( f )(a4) = 0;
U(a)(a1) = 0.7 U(a)(a2) = 0.7 U(a)(a3) = 0.7 U(a)(a4) = 0.7;
U(b)(a1) = 0.5 U(b)(a2) = 0.5 U(b)(a3) = 0.5 U(b)(a4) = 0.5;
U(c)(a1) = 0.4 U(c)(a2) = 0.4 U(c)(a3) = 0.4 U(c)(a4) = 0.4;
U(d)(a1) = 0.5 U(d)(a2) = 0.5 U(d)(a3) = 0.5 U(d)(a4) = 0.5;
U(e)(a1) = 0.4 U(e)(a2) = 0.4 U(e)(a3) = 0.4 U(e)(a4) = 0.4.
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Figure 1: A fuzzy topological graph

Define δR(a, b) = N(U(a),U(b). For each a, b ∈ τ, we have
δR(e, c) = 0.4 δR( f , e) = 0 δR(e, d) = 0.4 δR( f , c) = 0
δR(e, b) = 0.4 δR( f , d) = 0 δR(a, e) = 0.4 δR( f , d) = 0
δR(c, d) = 0.4 δR( f , b) = 0 δR(c, b) = 0.4 δR(a, f ) = 0
δR(a, c) = 0.4 δR(a, b) = 0.5 δR(d, b) = 0.5 δR(a, d) = 0.5

Define CR( f )(a) =
∨

a j∈X
R(aι, a j) ∧ f (a j)

CR( f )(a1) = 0 CR( f )(a2) = 0 CR( f )(a3) = 0 CR( f )(a4) = 0;
CR(a)(a1) = 0.7 CR(a)(a2) = 0.7 CR(a)(a3) = 0.7 CR(a4) = 0.7;
CR(b)(a1) = 0.5 CR(b)(a2) = 0.5 CR(b)(a3) = 0.5 CR(b)(a4) = 0.5;
CR(c)(a1) = 0.4 CR(c)(a2) = 0.4 CR(c)(a3) = 0.4 CR(c)(a4) = 0.4;
CR(d)(a1) = 0.5 CR(d)(a2) = 0.5 CR(d)(a3) = 0.5 CR(d)(a4) = 0.5;
CR(e)(a1) = 0.4 CR(e)(a2) = 0.4 CR(e)(a3) = 0.4 CR(e)(a4) = 0.4.

Where δCR ( f , 1) = Nd(CR(1),U( f )). Then, we have
δCR (e, c) = 0.4 δCR ( f , e) = 0 δCR (e, d) = 0.4 δCR ( f , c) = 0
δCR (e, b) = 0.4 δCR ( f , d) = 0 δCR (e, a) = 0.4 δCR ( f , d) = 0
δCR (c, d) = 0.4 δCR ( f , b) = 0 δCR (c, b) = 0.4 δCR ( f , a) = 0
δCR (c, a) = 0.4 δCR (b, a) = 0.7 δCR (d, b) = 0.5 δCR (d, a) = 0.5

Theorem 3.12. If (X,R) is an L-FAPS and η : (X, δRX )→ (Y, δRY ) be LF-proximity function, then η : (X,CδRX
)→

(Y,CδRY
) is LF-closure function.

Proof. For each f ∈ LY,

η←(CδRY
( f ))(a) = CδRY

( f )(η(a)) = δRY (UY(⊤η(a)),UY( f ))

≥ δRX (UX(η←(⊤η(a))),UX(η←( f )))

≥ δRX (UX(⊤a),UX(η←( f ))) = CδRX
(η←( f ))(a).

Getting the concrete functor ∆ : CL-FRPRX → CL-FRCS, according to Theorems 3.5 and 3.12, by
∆(X, δRX ) = (X,CδRX

), ∆(η) = η. If the functor ∆ : CL-FRPRX→ CL-FRCS to the category ACL-FRPRX is still
written, then by Theorem 3.5, ∆ : ACL-FRPROX→ ACL-FRCS considered as a concrete functor.

Theorem 3.13. If (X,R) is an L-FAPS and η : (X,CRX )→ (Y,CRY ) be a LF-closure function, then η : (X, δCRX
)→

(Y, δCRY
) is a LF-proximity function.
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Proof. Since CRX (η←(1)) ≤ η←(CRY (1)),and by (N6) in Proposition 2.5, then we have,

δCRX
(UX(η←( f )),UX(η←(1))) = N

(
CRX (UX(η←(1))),UX(UX(η←( f ))))

)
≤ N
(
CRX (η←(UY(1))), η←(UY( f ))

)
≤ N
(
η←(CRY (1)), η←(UY( f ))

)
≤ N
(
CRY (1),UY( f )

)
≤ N
(
CRY (UY(1),UY(UY( f ))

)
= δCRY

(UY( f ),UY(1)).

By Theorems 3.5 and 3.13, we obtain a concrete functor Υ : CL-FRCS → CL-FRPRX by Υ(X,CRX ) =
(X, δCRX

), Υ(η) = η. By Theorem 3.5(3), we have ∆(Υ(X,CR)) = (X,CδCR
) ≥ (X,CR). Thus, ∆ is a left inverse of

Υ. If the restriction of the functor Υ : CL-FRCS→ CL-FRPROX to the full subcategory ACL-FRCS is still
written, then by Theorem 3.5, Υ : ACL-FRCS→ ACL-FRPRX forms a concrete functor.

The proof of Theorem 3.14 is obvious. Then, the proof is omitted.

Theorem 3.14. (∆,Υ) forms a Galois connection between the category CL-FRPRX and the category CL-FRCS.

Proposition 3.15. If R ∈ LX×X is defined on a set X, and a function δR : LX
× LX

→ L is defined by δR( f , 1)) =∨
a,b∈X

R(a, b) ∧ U( f )(a) ∧ U(1)(b). Then,

(1) δRX is ACL-FRPRX with δR(U( f ),U(α∧1)) = α∧δR(U( f ),U(1)) and δR(U(α→ f ),U(1)) ≤ α→ δR(U( f ),U(1)),

(2) if η : (X,RX)→ (Y,RY) is an order preserving function, this lead to η : (X, δRX )→ (Y, δRY ) is LF-proximity function.

Proof. (1) The conditions (P1), (P3), and (AL) can be proved easily. So, we omit it.
(P2): Since R is reflexive, then δR( f , 1) =

∨
a,b∈X

R(a, b) ∧ U( f )(a) ∧ U(1)(b) ≥
∨
a∈X

R(a, a) ∧ U( f )(a) ∧ U(1)(a) =

Nd(U( f ),U(1)).
(P4) Since R is transitive, then δR(U( f ), U(1)) ∨ δR(U(h),U(1)) =

( ∨
a,b∈X

(R(a, b) ∧ U(U( f ))(a) ∧ U(U(1))(b))
)
∨( ∨

b,c∈X
(R(b, c) ∧ U(U(h))(b)

)
∧ U (U(1))(c)

)
≤
∨

a,c∈X

( ∨
b∈X

(R(a, b) ∧ R(b, c) ∧ U(1)(b) ∧ U(1)(c) ∧ (U( f )(a) ∨ U(h)(b)))
)

≤
∨

a,c∈X

(
R(a, c) ∧ U(1)(c) ∧(U( f ) ∨ U(h))(a)

)
= δR(U( f ) ∨ U(h), U(1)).

Next, δR(U( f ), U(α ∧ 1)) =
∨

a,b∈X
R(a, b) ∧ U(U( f ))(a) ∧ U(U(α ∧ 1))(b) =

∨
a,b∈X

R(a, b) ∧ U(U( f ))(a) ∧α ∧

U(U(1))(b) = α∧
∨
a∈X

R(a, b) ∧ U(U( f ))(a) ∧ U(U(1))(b) = α ∧ δR(U( f ), U(1)).

δR(U(α→ f ),U(1)) =
∨

a,b∈X
R(a, b) ∧ U(U(α → f ))(a)∧ U(U(1))(b) ≤

∨
a,b∈X

R(a, b) ∧ (α→ U(U( f )))(a) ∧ U(U(1))(b)

≤ α→ δR(U( f ), U(1)).
(P) Since R is symmetric, then we have δR(U( f ), U(1)) =

∨
a,b∈X

R(a, b) ∧ U(U( f ))(a) ∧ U(U(1))(b) =
∨

b,a∈X
R(b, a) ∧

U(U(1))(b) ∧ U(U( f ))(a) = δR(U(1),U( f )),
(P5) Since R is reflexive and transitive. Then,

∨
b∈X

R(b, c) ∧R(a, b) = R(a, c). For all f , 1 ∈ LX, let U
∗

(h)(b) =∨
a∈X

R(a, b)∧ U( f )(a).∧
h∈LX

(δR(U( f ),U(h))∨δR(U
∗

(h),U(1))) =
∧

h∈LX

(
(
∨

a,b∈X
(R(a, b)∧U(U( f ))(a)∧U(U(h))(b)))∨ (

∨
b,c∈X

(R(b, c)∧U (U
∗

(h))(b)

∧U (U(1))(c)))
)
≤
∧

h∈LX

(
(
∨

a,b∈X
(R(a, b)∧U( f )(a)∧U(h)(b)))∨ (

∨
b,c∈X

(R(b, c)∧U
∗

(h)(b)∧U(1)(c)))
)
≤
∧

h∈LX
(
∨
b∈X

(U
∗

(h)(b)
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∧U(h)(b)))∨
( ∨

a,b,c∈X
(R(b, c)∧ (R(a, b)∧U( f )(a)∧U(1)(c))))

)
=⊥∨

( ∨
a,c∈X

R(a, c)∧U( f )(a)∧U(1)(c))
)
=
∨

a,c∈X
R(a, c)

∧ U(U( f ))(a) ∧ U(U(1))(c) = δR(U( f ), U(1)).

(2) Since R is reflexive and transitive, then δRX (UX (η←( f )), UX(η←(1))) =
∨

a,b∈X

(
RX(a, b) ∧ UX (UX(η←( f )))(a)

∧ UX(UX (η←(1)))(b)
)
≤
∨

a,b∈X

(
RX(a, b) ∧ UX(η←( f ))(a) ∧ UX(η←(1))(b)

)
≤
∨

a,b∈X

(
RX(a, b) ∧ η←(UY( f ))(a) ∧

η←(UR(1))(b)
)
≤
∨

a,b∈X

(
RY(η(a), η(b))∧UY( f )(η(a))∧UY(1)(η(b))

)
≤
∨

c,w∈Y

(
RY(c,w)∧UY(UY( f ))(c)∧UY(UY(1))(w)

)
=

δRY (UY( f ), UY(1)).

From Proposition 3.15 , we get a concrete functor Ω : CL-FRR→ ACL-FRPRX is a functor defined by
Ω(X,RX) = (X, δRX ), Ω(η) = η.

Example 3.16. Let X be a set and R ∈ LX×X. Define a function δR : LX
× LX

→ L as in Proposition 3.15. By
Theorem 3.5, we obtain L-fuzzy rough closure operator Cδ : LX

→ LX as follows
CδR ( f )(a) = δR(U(⊤a), U( f )) =

∨
a,b∈X

R(a, b) ∧ U(U(⊤a))(a) ∧ U(U( f )))(b) =
∨
b∈X

R(a, b) ∧ U( f )(b) =
∨
b∈X

R(a, b) ∧

U(
∨

( f (b) ∧⊤b))(b) =
∨
b∈X

R(a, b) ∧ f (b) ∧ U(⊤b)(b) =
∨
b∈X

R(a, b) ∧ f (b) = U( f )(a).

(1) If R = ⊤X×X is given. From Proportion 3.15, we have δ1( f , 1) =
∨

a,b∈X
U( f )(a) ∧ U(1)(b). Hence, δ1 is

CL-FRPRX. And from Theorem 3.5, we obtain the operator CL-FRC as Cδ : LX
→ LX as follows CδR ( f )(a) =

δR(U(⊤a), U( f )) ≥ U( f )(a).

(2) If R = △X×X is given by

△X×X(a, b) =
{
⊤, if b = a,
⊥, o.w.

Then, δ2( f , 1) =
∨

a∈X(U( f )(a) ∧ U(1)(a)). Hence, δ2 is a CL-RPRX.

For each reflexive relation R, we obtain Alexandrov L-fuzzy rough closure operator as CR : LX
→ LX

as CR( f )(a) =
∨
b∈X

(R(a, b) ∧ U( f )(b). By Theorem 3.5, we obtain Alexandrov L-fuzzy rough proximity δCR

as δCR ( f , 1) =
∨
a∈X

(U( f )(a) ∧ CR(1))(a)) =
∨
a∈X

(U( f )(a) ∧
∨
b∈X

(R(a, b) ∧ U(1)(b)) =
∨

a,b∈X
(R(a, b) ∧ U( f )(a) ∧ U(1)(b)) =

δR( f , 1).

4. The relationships between L-fuzzy rough proximities and L-fuzzy rough ideals

The implication between Čech L-fuzzy rough proximity spaces and L-fuzzy rough ideal spaces is
provided in the following section.

Definition 4.1. Given (X,R) as an L-FAPS. L-FRIS is the functionDR : LX
→ L that satisfies:

(I1) DR(⊥X) = ⊤ andDR(⊤X) = ⊥,

(I2) Sd(U( f ), U(1)) ≤ DR(1)→DR( f ) ∀ f , 1 ∈ LX,

(I3) DR(U( f ) ∨ U(1)) ≥ DR(U( f )) ∧ DR(U(1)) ∀ f , 1 ∈ LX.
L-FRIS with Alexandrov condition (AL) will be AL-FRIS where

(AL) DR(
∨
ι∈γ
U( fι)) ≥

∧
ι∈γ
DR(U( fι)) ∀ { fι : ι ∈ γ} ⊆ LX,

Take (X,DRX ) and (Y,DRY ) as L-FRIS. A function η : X→ Y is LF-ideal function for f ∈ LY iffDRY (UY( f ))
≤ DRX (UX(η←( f ))).
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Theorem 4.2. Given (X,R) as an L-FAPS, (X, δR) as a CL-FRPRX. DefineDk
δR

: LX
−→ L a function is defined as

follows

D
k
δR

( f ) =
{
δ∗R(U(k),U( f )), if f , ⊤X
⊤, if f = ⊤X.

Where δ∗R(U( f ),U(1)) = (δR(U( f ),U(1)))∗ = (
∨
a∈X
U( f )(a)∧U(1)(a))∗ =

∧
a∈X
U
∗

( f )(a)∨U
∗

(1)(a). Then,Dk
δR

is L-fuzzy

rough ideal. Moreover, if δR is Alexandrov, thenDk
δR

is so.

Proof. (I1) By dentitionDk
δR

(⊥X) = δ∗R(U(k), U(⊥X)) = ⊤ andDk
δR

(⊤X) = ⊤.

(I2) For any two fuzzy sets f , 1,
[Case 1:] if f = ⊤X, 1 = ⊤X, thenDk

δR
(1)→Dk

δR
( f ) = ⊤ ≥ Sd(U( f ), U(1)).

[Case 2:] if f , ⊤X and 1 , ⊤X, then Dk
δR

(1)→ Dk
δR

( f ) = δ∗R(U(k), U(1)) → δ∗R(U(k), U( f )) = δR(U(k),

U( f ))→ δR(U(k), U(1)) ≥ Sd(U( f ),U(1)).

(I3) For any f , 1 ∈ LX, we have
[Case 1:] if f ∨ 1 = ⊤X, thenDk

δR
(U( f ) ∨ U(1)) = ⊤ ≥ Dk

δR
(U( f )) ∧ Dk

δR
(U(1)).

[Case 2:] if f ∨ 1 , ⊤X, then f , ⊤X and 1 , ⊤X. So,Dk
δR

(U( f )) ∧ Dk
δR

(U(1)) = δ∗R (U(k), U(U( f ))) ∧

δ∗R (U(k), U(U(1))) ≤ δ∗R (U(k), U(U( f )) ∨ U(U(1))) = δ∗R(U(k), U(U( f ) ∨ U(1))) =Dk
δR

(U( f ) ∨ U(1))).

(AL) For each family { fι : ι ∈ γ}, we have
[Case 1:] if

∨
ι∈γ

fι = ⊤X, thenDk
δR

(
∨
ι∈γ
U( fι)) = ⊤ ≥

∧
ι∈γ
D

k
δR

(U( fι)).

[Case 2:] if
∨
ι∈γ

fι , ⊤X, then fι , ⊤X for each i ∈ γ. So, Dk
δR

(
∨
ι∈γ
U( fι)) = δ∗R(U(k),

∨
ι∈γ
U( fι)) ≥

∧
ι∈γ
δ∗R

(U(k), U( fι)) =
∧
ι∈γ
D

k
δR

( fι).

Now, let D(X) be the family of all L-fuzzy rough ideals and P(X) be the family of all L-fuzzy rough
proximities on X.

Theorem 4.3. If (X,R) is an L-FAPS andH : P(X) ×D(X)→D(X) is a function defined as

H(δR,DR)( f ) =
∨
1∈LX

(
δ∗R(U(1),U( f )) ∧DR( f )

)
.

Then,

(1) H(δR,DR) ∈ D(X),

(2) H(δR,Dk
δR

) =Dk
δR

.

Proof. (1) We prove the following conditions by considering f , 1 ∈ LX.

(I1) H(δR,DR)(⊥X) =
∨
1∈LX

(
δ∗R (U(1), U(⊥X)) ∧DR(⊥X)

)
= ⊤.

(I2) H(δR, DR)(1)→H(δR,DR)( f ) =
∨

h∈LX

(
δ∗R (U(h), U(1)) ∧ DR(1)

)
→
∨

k∈LX

(
δ∗R(U(k), U( f )) ∧DR( f ))

)
≥
∨

h∈LX

(
δ∗R

(U(h),U(1))∧DR(1)
)
→

(
δ∗R (U(h),U( f ))∧DR( f )

)
≥
∨

h∈LX

(
δ∗R (U(h),U(1))→ δ∗R (U(h),U( f ))

)
∧

(
DR(1)→DR( f )

)
=∨

h∈LX

(
δR (U(h), U( f ))→ δR(U(h), U(1)) ∧

(
DR(1)→DR( f )

)
≥ Sd(U( f ), U(1)) ∧ Sd(U( f ), U(1)) = Sd(U( f ), U(1)).
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(I3) Let f , h ∈ LX. Then, H(δR, DR) (U( f ) ∨U(h)) =
∨
1∈LX

(
δ∗R (U(1), U( f ) ∨ U(h)) ∧DR (U( f )∨ U(h))

)
≥
∨
1∈LX

(
(δ∗

(U(1), U( f ))∧ δ∗ (U(1), U(h))∧ (DR(U( f ) ∧ DR(U(h))
)
=
∨
1∈LX

(
δ∗ (U(1), U( f )) ∧DR(U( f ))

)
∧
∨
1∈LX

(
δ∗ (U(1), U(h)))

∧DR (U(h))
)
=H(δR,DR) (U( f )) ∧ H(δR,DR) (U(h)).

(2) Let f ∈ LX, thenH(δR,Dk
δR

)( f ) =
∨
1∈LX

(
δ∗R (U(1), U( f )) ∧ Dk

δR
( f )
)
≤ ⊤ ∧D

k
δ( f ) =Dk

δ( f ). Conversely,H(δR,

D
k
δR

)( f ) =
∨
1∈LX

(
δ∗R (U(1), U( f )) ∧ Dk

δR
( f )
)
=
∨
1∈LX

(
δ∗R (U(1), U( f )) ∧δ∗R (U(k), U( f ))

)
≥ δ∗R (U(k), U( f )) ∧ δ∗R (U(k),

U( f )) = δ∗R (U(k), U( f )) =Dk
δR

( f ). Hence,H(δR,Dk
δR

) =Dk
δR

.

Theorem 4.4. Given (X,R) as an L-FAPS, (X,DR) as a L-FRIS such thatDR(1) ≤ U
∗

(1)(a), ∀ a ∈ X and 1 ∈ LX.
Define a function δDR : LX

× LX
→ L by δDR ( f , 1) =

∨
a∈X

(
U( f )(a) ∧ D∗R(1)

)
. Then, δDR be a CL-FRPRX on X.

Moreover, ifDR is Alexandrov , then δDR is so.

Proof. The following conditions will be proved under f , 1, h ∈ LX.

(P1) DR(⊥X) = ⊤ ⇒ δDR (U( f ), U(⊥X)) =
∨
a∈X
U(U( f ))(a) ∧D∗R(U(⊥X)) = ⊥, δDR (U(⊥X), U( f )) =

∨
a∈X
U (U(⊥X))(a)

∧D
∗

R(U( f )) = ⊥.

(P2) DR(1) ≤ U
∗

(1)(a)⇒ δDR ( f , 1) =
∨
a∈X

(
U( f )(a) ∧ D∗R(1))

)
≥
∨
a∈X
U( f )(a) ∧ U(1)(a).

(P3) δDR (U(h),U( f ))→ δDR (U(h),U(1)) =
( ∨

a∈X
U(U(h))(a)∧D∗R(U( f ))

)
→

( ∨
a∈X
U(U(h))(a) ∧D∗R (U(1))

)
≥

( ∧
a∈X

(U

(U(h))(a)→ U (U(h))(a)
)
∧

(
D
∗

R (U( f ))→D∗R (U(1))
)
≥ Sd(U (U( f )), U(U(1))) = Sd(U( f ), U(1)). The other case is

proved similarly.

(P4) δDR (U(h),U( f ) ∨ U(1)) =
∨
a∈X

(
U (U(h))(a) ∧D∗R (U( f ) ∨ U(1))

)
≤
∨
a∈X
U (U(h))(a) ∧

(
D
∗

R (U( f )) ∨D∗R (U(1))
)
≤( ∨

a∈X
U (U(h))(a) ∧D∗R (U( f ))

)
∨

( ∨
a∈X
U (U(h))(a) ∧D∗R (U(1))

)
= δDR (U(h), U( f )) ∨δDR (U(h), U(1)).

Theorem 4.5. Given (X,DRX ) and (Y,DRY ) be L-FRIS and η : (X,DRX ) → (Y,DRY ) be an LF-ideal function, it
follows that η : (X, δDRX

)→ (Y, δDRY
) is a LF-proximity function.

Proof. For every f , 1 ∈ LY,we have δDRX
(UX(η←( f )), UX(η←(1))) =

∨
a∈X

(
UX (UX(η←( f )))(a) ∧D∗RX

(UX (η←(1)))
)

≤
∨
a∈X

(
UX(η←( f ))(a) ∧ D∗RY

(UY(1))
)
≤
∨
a∈X

(
UY( f ) (η(a)) ∧ D∗RY

(UY(1))
)
≤
∨
y∈Y
UY(UY( f ))(b) ∧D∗RY

(UY(1)) =

δDRY
(UY( f ), UY(1)).

Theorem 4.6. If η : (X, δRX )→ (Y, δRY ) is a LF-proximity function, then η : (X,DδRX
)→ (Y,DδRY

) is an LF-ideal
function.

Proof. For every f ∈ LY,we haveDk
δRY

(UY( f )) = δ∗RY
(UY(k),UY (UY( f ))) = δ∗RY

(UY(k),UY( f ))≤ δ∗RX
(UX(η←(k))),

UX(η←( f )))) = δ∗RX
(UX(η←(k))), UX(UX (η←( f )))) =Dη

←(k))
δRX

(UX(η←( f ))).

From Theorems 4.3 and 4.5, we obtain a concrete functorΥ : L-FRIS→CL-FRPRX. Also from Theorems
4.4 and 4.6, we obtain a concrete functor Ω : CL-FRPRX→ L-FRIS.

Example 4.7. (1) Define D1 : LX
→ L as D1( f ) =

∧
a∈X
U
∗

( f )(a), D1 is AL-FRIS. By Theorem 4.4, we have

δD1 ( f , 1) =
∨

a∈X U( f )(a) ∧D∗1(1) =
∨
a∈X
U( f )(a) ∧

∨
b∈X
U(1)(b).
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(2) DefineD2 : LX
→ L asD2( f ) = U

∗

( f )(a). Hence,D2 is AL-FRIS. By Theorem 4.4, we have δD2 ( f , 1) =
∨
a∈X

U( f )(a) ∧ D∗2(1) =
∨
a∈X
U( f )(a) ∧ U(1)(a).

5. Application(proximity induced by fuzzy graph)

A fuzzy topological graph, as defined by El-Atik et al., is a fuzzy topological structure created from a
fuzzy set graph that provides useful models for three or more sets of topological spaces.

Algorithm. Input: a Universal set (X), a Fuzzy topological space (τ), a Fuzzy relation (R).
Output: U, δR,CR,DR,CδR , δCR ,CδCR

, δCδR ,D
b
δR
, δDR .

∀a, b, c ∈ τ, aι, a j ∈ X and ι, j ∈ {1, 2, 3}
Step 1: U(a)(aι) =

∨
a j∈X

R(aι, a j) ∧ a(a j).

Step 2: δR(a, b) =
∨

aι∈X
U(a)(aι) ∧ U(b)(aι).

Step 3: CR(a)(aι) =
∨

a j∈X
R(aι, a j) ∧ a(a j).

Step 4: DR(a) =
∧

a j∈X
R∗(aι, a j) ∨ a∗(a j).

Step 5:CδR (a)(aι) = δR(U(⊤aι ),U(a)).
Step 6:δCR (a, b) =

∨
aι∈X
CR(b)(aι) ∧ U(a)(aι).

Step 7: CδCR
(a)(aι) = δCR (U(⊤aι ), U(a)).

Step 8:δCδR (a, b) =
∨

aι∈X
CδR (b)(aι) ∧ U(a)(aι).

Step 9: Db
δR

(a) =
{
δ∗R(U(b),U(a)), if a , ⊤X
⊤, if a = ⊤X.

Step 10: δDR (a, b) =
∨

aι∈X
U(a)(aι) ∧ D∗R(b).

Example 5.1. Given a universal fuzzy set X = {(a1, 0.4), (a2, 0.6), (a3, 0.2)}, and τ = {d = 0, a = {(a1, 0.4)},
b = {(a1, 0.4), (a2, 0.6)}, c = {(a1, 0.4), (a2, 0.6), (a3, 0.2)}} is a fuzzy topological graph on X as presented in Fig. 2.
If (L = [0, 1], ∧,→, ∗, 0, 1) is a complete residuated lattice with for every aι, a j ∈ X, aι → a j = min{1− aι+ a j, 1}.
Define R as R(aι, a j) = aι → a j,. Then, R = {((a1, a1), 1), ((a1, a2), 1), ((a1, a3), 0.8), ((a2, a1), 0.8), ((a2, a2), 1),
((a2, a3), 0.6), ((a3, a1), 1), ((a3, a2), 1), ((a3, a3), 1)}.

To evaluate δR between any two fuzzy subsets, we calculate the upper approximation of eachelement
”a ” in τ, where U(a)(aι) =

∨
a j∈X

R(aι, a j) ∧a(a j). Then, we have

U(a)(a1) = 0.4 U(a)(a2) = 0.4 U(a)(a3) = 0.4;
U(b)(a1) = 0.6 U(b)(a2) = 0.6 U(b)(a3) = 0.6;
U(c)(a1) = 0.6 U(c)(a2) = 0.6 U(c)(a3) = 0.6;
U(d)(a1) = 0 U(d)(a2) = 0 U(d)(a3) = 0.

Define δR(a, b) =
∨

aι∈X
U(a)(aι)∧ U(b)(aι). For a, b ∈ τ, we have

δR(a, b) = 0.4 δR(a, c) = 0.4 δR(a, d) = 0
δR(b, c) = 0.6 δR(b, d) = 0 δR(c, d) = 0

Define CR(a)(aι) =
∨

a j∈X
R(aι, a j) ∧a(a j),

CR(a)(a1) = 0.4 CR(a)(a2) = 0.4 CR(a)(a3) = 0.4;
CR(b)(a1) = 0.6 CR(b)(a2) = 0.6 CR(b)(a3) = 0.6;
CR(c)(a1) = 0.6 CR(c)(a2) = 0.6 CR(c)(a3) = 0.6;
CR(d)(a1) = 0 CR(d)(a2) = 0 CR(d)(a3) = 0.
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Figure 2: A fuzzy topological graph for 3 points

DefineDR(a) =
∧

a j∈X
R∗(aι, a j) ∨ a∗(a j),

DR(a)(a1) = 0.6 DR(a)(a2) = 0.6 DR(a)(a3) = 0.6;
DR(b)(a1) = 0.4 DR(b)(a2) = 0.4 DR(b)(a3) = 0.4;
DR(c)(a1) = 0.4 DR(c)(a2) = 0.4 DR(c)(a3) = 0.4;
DR(d)(a1) = 1 DR(d)(a2) = 1 DR(d)(a3) = 1.

As CδR (a) = δR(U(⊤aι ), U(a)) and ⊤aι (a j) =
{

1, if a j = aι,
0, O.W., . Then,

CδR (a)(a1) = 0.4 CδR (a)(a2) = 0.4 CδR (a)(a3) = 0.4;
CδR (b)(a1) = 0.6 CδR (b)(a2) = 0.6 CδR (b)(a3) = 0.6;
CδR (c)(a1) = 0.6 CδR (c)(a2) = 0.6 CδR (c)(a3) = 0.6;
CδR (d)(a1) = 0 CδR (d)(a2) = 0 CδR (d)(a3) = 0.

Where δCR (a, b) = Nd(CR(b), U(a)), where Nd(a, b) =
∨

aι∈X
a(aι) ∧b(aι). Then, we have

δCR (a, b) = 0.4 δCR (a, c) = 0.4 δCR (a, d) = 0
δCR (b, c) = 0.6 δCR (b, d) = 0 δCR (c, d) = 0

Now, we find that
δCδR (a, b) = 0.4 δCδR (a, c) = 0.4 δCδR (a, d) = 0
δCδR (b, c) = 0.6 δCδR (b, d) = 0 δCδR (c, d) = 0

Consequently, we also find that
CδCR

(a)(a1) = 0.4 CδCR
(a)(a2) = 0.4 CδCR

(a)(a3) = 0.4;
CδCR

(b)(a1) = 0.6 CδCR
(b)(a2) = 0.6 CδCR

(b)(a3) = 0.6;
CδCR

(c)(a1) = 0.6 CδCR
(c)(a2) = 0.6 CδCR

(c)(a3) = 0.6;
CδCR

(d)(a1) = 0 CδCR
(d)(a2) = 0 CδCR

(d)(a3) = 0.

we find out that, CδCR
≥ CR and δR ≥ δCδR .
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According to Theorem 4.3 , we define

D
b
δR

(a) =
{
δ∗R(U(b),U(a)), if a , ⊤X
⊤, if a = ⊤X.

D
a
δR

(b) = 0.6 D
d
δR

(a) = 1 D
a
δR

(c) = 0.6
D

d
δR

(b) = 1 D
b
δR

(c) = 0.4 D
d
δR

(c) = 1

Define, δDR (a, b) =
∨

aι∈X
U(a)(aι) ∧ D∗R(b).

δDδR (a, b) = 0.4 δDδR (a, c) = 0.4 δDδR (a, d) = 0
δDδR (b, c) = 0.6 δDδR (b, d) = 0 δDδR (c, d) = 0

6. Conclusion and works ahead

In such consideration, we study the relationships between Čech L-fuzzy rough proximities and Čech
L-fuzzy rough closure spaces. We prove that there exists a functor connecting between Čech L-fuzzy rough
proximity spaces and Čech L-fuzzy rough closure spaces; in light of that, we discuss the relations between
their categories. Additionally, we introduce L-fuzzy rough ideals and discover the connection between
L-fuzzy rough ideals and Čech L-fuzzy rough proximity spaces. A direction worthy of future work is to
study the theory of topogenous and uniformity via rough sets.
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[20] P. Hájek, Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 1998.
[21] C. Henry, J. F. Peters, Image pattern recognition using near sets, in Proc. 11th Int. Workshop on Rough Sets, Fuzzy Sets, Data Mining,

and Granular-Soft Computing, Vol. 4482 (Springer, Berlin, 2007), pp. 475–482.
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