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sets

Reham M. Ahmed?, Abdelfattah El Atik?, Ahmed A. Ramadan?

?Mathematics Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
b Mathematics Department, Faculty of Science, Tanta University, Tanta, EQypt

Abstract. Cech L-fuzzy rough proximity spaces build upon proximities under the wing of the L-fuzzy
notion and extend it using the Cech completion process. The Cech completion is a technique commonly
used in topology to turn a given topological space into a complete space. This approach provides a
more refined understanding of closeness and connectivity in spaces with fuzzy or uncertain relationships
between points, contributing to the development of fuzzy topology and its applications in various fields.
The primary objective of this study is to explore the junction between the categories of Cech proximity
(and closure) spaces, specifically in relation to L-fuzzy rough sets, where L is a complete distributive lattice.
Additionally, we will discuss their properties. Further, we introduce L-fuzzy rough ideal creation and the
mutual relation between ideals and proximity spaces according to the L-fuzzy rough notion. Finally, we
apply the results in a model of a fuzzy topological graph, yielding valid observations.

Nomenclature

Symbols

R

L-FAPS
CL-FRPRX
ACL-FRPRX
CL-FRCS
ACL-FRCS
L-FRIS
AL-FRIS

L-fuzzy relation.

L-fuzzy approximation spaces.

Cech L-fuzzy rough proximity spaces.
Alexandrov CL-FRPRX.

Cech L-fuzzy rough closure spaces.
Alexandrov CL-FRCS.

L-fuzzy rough ideal space.
AlexandrovL-FRIS.

2020 Mathematics Subject Classification. Primary 54A40; Secondary 03E73, 03G10, 06A15, 54A05.
Keywords. Distributive lattice, approximation space, rough proximity, rough closure, L-fuzzy, concrete functors, fuzzy graph,

fuzzy topological graph.

Received: 17 August 2024; Revised: 27 October 2025; Accepted: 03 November 2025

Communicated by Ljubisa D. R. Ko¢inac
* Corresponding author: Reham M. Ahmed

Email addresses: rehammohamedahmed@science.bsu.edu.eg (Reham M. Ahmed), aelatik55@yahoo. com (Abdelfattah El Atik),
ahmed.ramadan@science.bsu.edu.eg (Ahmed A. Ramadan)

ORCID iDs: https://orcid.org/0000-0002-9218-231X (Reham M. Ahmed), https://orcid.org/0000-0002-5309-2741
(Abdelfattah El Atik), https://orcid.org/0000-0002-6584-9238 (Ahmed A. Ramadan)



R. M. Ahmed et al. / Filomat 40:2 (2026), 601-617 602
1. Introduction

Relations are fundamental concepts for expressing preferences, but the two-valued concept is not useful
for expressing the complexity of real-life preferences. Pawlak [31, 32] introduced rough set theory, which
is an excellent and helpful tool for processing uncertainty and incomplete information. Axiomatic and
constructive approaches are continuously driving the development of theoretical research and practical
applications in rough set theory. Researchers in literature [26, 51] generalized the commitment of rough
sets, recommending other forms of arbitrary relation instead of the equivalence one. To overcome this
limitation, fuzzy relations are generally used. Dubois and Prade [12] used fuzzy relations to bring up a
fuzzy version of rough sets rather than crisp ones.

Recently, merging fuzzy sets with rough sets was served by fuzzy logic with binary fuzzy relation in
[13, 30, 33], where fuzzy implications [29, 34, 35, 47, 49] make a major change in the extensions of fuzzy rough
sets, at which L-fuzzy topological structures are an extremely important part of it [14, 15, 22, 44, 48, 53].

Respectively, Zhou [22, 52] discussed the most important features of closure spaces in the L-fuzzy notion
(see [5]), while Bélohlavek and Hohle widely investigated the category aspects. Using closure spaces to
induce new topologies according to the L-fuzzy concept attracted the attention of many researchers (Fang
[13-15], Pang [30]). There were several other contributions by many authors ([40, 41, 50, 52, 54]) that
discussed some properties.

Proximity structure is another topological construct that has found various applications in pattern
recognition, feature selection, digital image classification, data analysis, cluster analysis, multidimensional
scaling, concept analysis, computational biology, and many other fields [21]. Fuzzy proximity structures
in a completely distributive lattice were introduced by Katsaras [23, 24]. Bayoumi [3] extends L-fuzzy
proximity structures, Katsaras’s definition, in a slightly different sense than Cimoka and Sostak [11]. Kim
[25] and Ramadan [36-38] gave valuable efforts in this area. In other words, the nearness in L-fuzzy between
the topological structures that are respected by two sets can also help clarify the nearness between the sets.
Cech closure spaces [10] and proximity spaces [42, 43, 45] are closely related and come from the same field.
They are both topological spaces that have been extended. The Cech closure operator [10] can be induced
by every basic proximity structure. The theory of filters is also related to proximity spaces [39].

Cech closure spaces and Cech proximity spaces are closely related and come from the same field. They
are both topological spaces that have been extended. A Cech closure operator can be induced by every
basic proximity structure. The relationship of Cech rough proximity spaces and Cech closure spaces was
studied in [27, 45]. We further find the relationship between Cech L-fuzzy rough proximity, closure, and
ideals.

Graph theory, such an important mathematical tool discussed by Chartrand et al. [9], has several
applications in many fields, including civil engineering, networking problems, mechanism analysis, electric
engineering, graphics, medical, genetics, etc. Because of its involvement in the same fields of work as
topology, many researchers are inclined to mix them in various applications. Nada et al. [28] studied the
concept of topological structures via a graph based on neighborhoods. Recently, Atef et al. [2] initially
introduced fuzzy topological structures via fuzzy graphs, which included very useful applications in real-
life health problems.

This research will be divided into five sections as follows: the basic definitions and important results
will be stated in Section 2. Section 3 used to introduce the Cech L-fuzzy rough proximity and studies its
relation with a Cech fuzzy rough closure space. In Section 4, we define rough ideals under the notion of
L-fuzzy with a discussion of their connection toward Cech fuzzy rough proximity spaces. In Section 5, we
apply the results to a 3-vertex fuzzy topological graph. Section 6 is a conclusion and future work.

2. Preliminaries

In our quest, L indicates (L, <, A, V) as a complete lattice, where each subfamily A C L contains its own
joins (suprema) and meets ( infima). In particular, T # L where T is a top and L is a bottom elements in L.
In lattice, we use \/ and A for the case of finite arbitrary families of elements. If L satisfied the first infinite
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distributive law, it would be completely distributive [8]. In other words, a A (\/ b)) = V(@A D), Va €L,
L€y L€y
{b}.cy € L. The implication binary operation can also induced by Aas: aAb<cea<b—cVabcelL.
Here, suppose * will be define by a vV b = (a* A b*)", 4" =a — L as an order reversing involution whom made
(L, <, A%) as complete lattice.
The proposition below is considered as a collection of some basic characteristics of A and the implication

— that may be found in [4, 17, 18, 20, 22, 46].
Proposition 2.1. Fora,b,c,a,, b, w € L and 1 € y, we have the following properties:

(1) a—»b=\{cellanc<b}

2) Toa=a,LAa=1,

(3) Ifb<c thena—>b<a—-candc—-a<b-—ag,

(4) a<boa—-b=T,

(5) (\b) = \/ b and (\/ b) = \b,

(6) a— (Vb) = Vi@~ b)and (\a) > b= Via - b)

(7)a—>(/\b) /\(a—>b)and(\/a)—>b—/\(al—>b)

(8) \/a, - \/b > /\(aL —>b)and/\al - /\b > /\(al — b).

(9) a/\b_(a—>b*),avb—a —>banda—>b—b*—>a,
(10) @—>b)A(c>w)<(aAc)— (bAw),
(I11) a-»b<s@anc)> bAc)and(a > D)A (b —>c)<a—cg,
(12) @aAD)A(cVw)<(@nc)V(bAw),
(13) @—>b)A(c>w)<(@ve)—> (bVw),
(14) @a—>b)V(c—-ow)<(anc)—> (bVw),
(15) an(@—>b)<b,b<a—(aAb)and (a > b) - b >a,
(16) an(b—-c)<b—o(anc)andaN(b—c)<(a—>b) >
(17) c»a<(@—-b)-> (c—>bandb—>c<(@—>b)—> (a—>o),
(18) (aAb) > c=a—->b—-oc)=b—>@—c)anda<(a—b) - b,
L¥ is used to pointing to all L-fuzzy sets [19] which defined on a universal set X. In addition, Tx and
Lx are denoted by sets in a fuzzy L that given as Tx(a) = T and Lx(a) = L, ¥ a € X, are called the universal
greatest and smallest bound (upper and lower, respectively) in LX.
We do not differentiate between « € L as an element and & : X — L as a constant function with a(a) = «,

Y a element on X. Every algebraic operation on LX is considered as the extension of that in L. Such for any
Ta, f, g sets in fuzzy lattice, a € X, @ € L, for f enough to be less than or equal to g if f(a) < g(a), moreover

(f Ag)a) = f(a) A g(a), and (f — g)(a) = f(a) — g(a),

T, ifb=a, . 1, ifb=ag,
ro={ 7 e me={y L

In this paper, all the categories are concrete.

Definition 2.2. ([1]) Given X as a category, the functor M is faithful, where M : X — Set. Then, (X, M)isa
concrete category, write X (for short) if it is clear. If a set A is considered as X-object, the underlying set of A
is M(A). Take (X, M) and (Y, N) as concrete categories. Thus, the functor between them is G : X — Y with
M = N oG, which refers to the sets changes w. r. to G. The necessary two conditions to define G : X — Y as
a concrete functor are stated as follows, firstly, we consider the set A for each X-object and G(A) for Y-object
where N(G(A)) = M(A). Secondly, we make sure that if Q : M(A) — M(B) be a X-morphism mapping
A — B, then also be Y-morphism G(A) — G(B).
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Definition 2.3. ([4]) If R defined on a nonempty set X, where R(a,b) means the junction of a and b out of
degree tenet, then V 4, b, c € X the relation R is said to be
(i) reflexive if R(a,a) =T,
(ii) symmetricif R(b,a) = R(a,b),

(iii) transitive if R(b,c) A R(a,b) < R(a, c).
Moreover, it is an L-fuzzy preorder if it achieves (i), (iii), tolerance if it achieves (i), (ii), and equivalence
if R satisfies all previous conditions.

Suppose X is a universe with R. Then, (X, R) be L-FAPS. Upper (lower) approximation that is recalled
in the definition below, used by many researchers [33, 35, 36, 48, 49, 53].

Definition 2.4. Assume that R : LX — LX defined on X. A function £, U : LX — LX for f, g € LX,”a” element
in X defined as:

L(f)@) = A R(@,b) - f(b)) and U(f)(a) = b\E/X(f (b) A R(a, b)).

beX
£( ) are called lower (upper) L-FAP operators, respectively. Moreover (£(f), 2(f)) consider as L-fuzzy
rough of f out of (X, R).

The distinctive features of upper (lower) approximation in L-fuzzy notion, that collected below, are from
[4, 12,33, 35, 36, 48, 49, 53].

Proposition 2.5. If (X, R) be L-FAPS and ﬁ(g), be textbfL-FAP(upper, lower. respectively) approximation operator
on X. Then,V f, f, € LX,a € X and a € L, we receive that :
(1) being, R, reflexive lead to 1(T,) = T,, U(Lx) = Lx, U(Tx) = Tx,
(2) being, R, reflexive, then £(Lx) = Lx, L(Tx) = Txand £(f) < f < ﬁ(f),
(3) Sa(f, 9) < SaU(f), W(g)) and Su(f, 9) < Sa(L(F), L)),
(4) U(f v g) = U(f) v U(g) and U(f A g) < U(f) A U(g),
(5) L(f Ang)=2(f) AL(g) and L(f V g) = £(f) V £(9),
(6) LA £) = A Lf) and WV f) =V U(f),
ey ey

LE}/ [G)/
(7) La - f)=a— &f)and Wa A f) = a AU(f),
(8) U — f)<a— U(f)and La A f) = a A L(f),
(9) If R is transitive, then WQA(f)) < U(f) and L(f) < L(L(f)),

(10) If R is reflexive then, L(2(f)) < L(f) < f and f < U(f) < UQU(F)).
One may notice that:

(i) If f < g, then W(f) < U(g)) and £(f) < L(g)),
(ii) If R is reflexive and transitive, then (L(f)) = L(f) and U(f) = UQ(f)),
(iii) T (f) = L(F) and L (f) = W(f).
For any L-FAPS (X, Rx) and (Y, Ry). L-FAP map is the function 7 : X — Y with n=E,(f) < L, (f)
and 1= Uy (f) = Ux(n(f), V f € LX.

Definition 2.6. ([4, 53]) For L-fuzzy sets f, g, the maps Sy, N, : LX X LX — L are, respectively, defined by
(i) The subsethood degree of f, g and it define by Su(f, 9) = A (f(a) — g(a)).
aeX
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(ii) The degree of intersection of f, g and it define by N4(f,9) = V f(a) A g(a).
aeX

Subsethood (intersection) degree properties are collected, [4, 14, 30, 47, 49, 53], in Proposition 2.7..

Proposition 2.7. For f,g,h,k, f.(t € y) € LX and a € L, we have
(S1) Sa(f,9)=Teog=f,
(82) Sa(f Nk, g Ah) = Sa(f, 9) A Salk, h), Sa(f V k, gV h) = Sa(f, g) A Sa(k, h),
(53) Sa(h, f) = Sa(h, g) 2 Sa(f, 9), Sa(g, h) — Sa(f, 1) = Sa(f, ),
(54) Sa(f,9) = Sa(f,9) A Sa(g, h), Sa(f,9) = g = fand g > Sa(f,9) A f,
(S5) Sa(f,a A g) = a ASa(f,g) and Sq(f,9) = Sa(g", f*),
(N1) Na(Lx, Tx) = Na(Tx, Lx),
(N2) Na(g, f) = Na(f, 9),
(N3) f < gimplies Ny(h, f) < Na(h, 9), Na(f, h) < Na(g, h),
(N4) Nu(f, V f) = l\e/yNd(f'ﬁ)’

ey
(N5) a ANy(f, k) = Na(f,a A k),
(N6) a — Ny(f, k) > Nu(f,a — k),
(N7) Ny(f, k) = a=Si(f, k— a),
(N8) ifn: X — Y be a function, then Ny(h, k) > Na(n=(h), n=(k)), for h, k € LY.
Definition 2.8. ([6]) A fuzzy subset is defined as 0 : X — [0,1] on X, and the fuzzy relation on X is a fuzzy

subset of X x X. Then, for f,g € [0,11%, f V g (join) is defined as (f V g)(a) = max(f(a), g(a)) for every a in X.
Moreover f A g (meet) given by (f A g)(a) = min(f(a), g(a)) per a in X.

Definition 2.9. ([7]) A fuzzy graph is a triplet G = (X, 0, R), in which Xis a universe, o is a fuzzy subset of X
with R on o satisfying R(a, b) < o(a) A o(b), for all a,b € X. The fuzzy set ¢ and R are called the fuzzy vertex
and fuzzy edge set of G, respectively.

3. Cech L-fuzzy rough proximities and Cech L-fuzzy closure operators

Here, we axiomatize Cech L-fuzzy rough proximity spaces. Some basic results on Cech L-fuzzy rough
proximity space are proved. Throughout this paper, (X, R) is L-FAPS, with equivalence R on X.

Definition 3.1. Let (X, R) is L-FAPS. CL-FRPRX is a function 6y : LX x LX — Lif V¥ fr9.hke LX satisfies:
(P1) SrQU(f), W(Lx)) = 6rAU(Lx), U(f)) = L,
(P2) Sr(f, k) = NaQU(f), U(K)),
(P3) Sa(U(f), U(k)) < 6r(U(S), U(g)) — or(U(K), U(g)),
SaQU(F), U(K)) < 6r(U(g), U())) — 6r(U(g), U(k)),
(P4) SrQU(), W(f) V U(g)) < SrQU(R), W(f)) V 5rQAU(R), (7)) and

SrQU(f) V W(g), W(h) < 5rQU(f), U(h)) V 5r(AU(g), U(R)).
Then the pair (X, 0g) is CL-FRPRX. Furthermore, it is ACL-FRPRX if satisfies:

(AL) for each family {f,, g, : t € y} subset or equal of L%, _ L
6R(L\E</ U(f), W(g)) < t\G/y or(U(f.), U(g)) and 6r (U(S), L\E/V U(g)) < [\4/ or(U(f), U(g.)).

A binary relation 6y is called a basic CL-FRPRX, if it a Cech proximity and additionally satisfies the
following axioms:
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(P) 8 = dr, where 03 (U(f), U(9)) = or (U(), W())-
A binary relation 6 is CL-FRPRY, if it is Cech L-fuzzy basic rough proximity and additionally satisfies
the following axioms:

(P5) 5rQU(f), W(g) = A OrQU(f), (k) v 5x(U()*, U(g)). In this study, we will not consider the axiom(P5).
helX

A functionn : (X, 0r,) = (Y, Or,) between two CL-FRPRXS is LF-proximity map if Og, (ﬁx =), ﬁx(n“(k)))
< Or, Uy(f), Uy (k) ¥ f, ke LY.

Remark 3.2. If (X, 0g) be a CL-FRPRX, then for all « € L and f, g, h subsets in LX. We have from (P3):
(1) If U(f) < U(g), then 6rQAU(f), U(h) < 5r(W(g), W(I)) and SrAU(R), U(f)) < 6 AU(H), U(g)).
2) Srla AU(f), U(g)) = a A SRS, W(g)) & Sr(a — U(f), U(g)) < o > SrQU(S), W(g)),
(3) SrQU(f), a A U(g)) = a A SRAU(S), U(g)) & SrQAU(f), @ — U(g)) < a — SrQAU(S), U(g)).

(4) If 6r _is Alexindrov, then bz axio_m (P3), we have_ _ L
Or(U(f), l\e/y U(g.) = [\E/V Or(U(f), U(g.)) and 6R(l\€/y U(f), W) = V orU(f), W(g))-

i€y
Definition 3.3. Given (X, R) as L-FAPS, a function Cy : LX — LX is said to be Cech L-fuzzy rough closure
operator on Xif V £, g, f, € L%, it satisfies:

(LC1) Cr(Lx) = Lx,

(LC2) Cr(f) = U(f),

(LC3) Sa(f,9) < Sa(Cr(f), Cr(9)),

(LC4) Cr(fV g) < Cr(f) V Cr(9).
Then the pair (X, Cr) is CL-FRCS. Furthermore, it is ACL-FRCS if satisfies

(AL) Cr(V f) =V Cr(f). in addition, called topological CL-FRCS if it satisfies

(5% ey

(T) Cr(Cr(f)) < Cr(f)-

An LF-closure map is a function 7 : (X, Cr,) — (Y, Cr,) satisfing
Tr_(CRy(f)) > CRX(T](_(f))/ A f € LY’

Remark 3.4. Let (X, Cg) be an CL-FRCS. Then, by (LC3), we have
(1) f < gimplies that Cr(f) < Cr(9),
(2) Crla A f) 2 a ACr(f), equivalently, Cr(a — f) < a — Cr(f).

Theorem 3.5. Let &g be CL-FRPRX. Define a function Cs, : LX — L* as Cs,(f)(a) = 0rQU(T,), U(f)). Then, we
have

(1) (X,Cs) is CL-FRCS with Csi (@ A f) = a A Csi (f),
(2) if g is Alexandrov, then Cs, is so.

(3) if SrQU(f), @ AU(g)) = a A SRQU(f), U(g)) and 5y is ACL-FRPRX, then Cs, (f)(a) = b\/X F(b) ASRQU(T ), U(Ty)).
Proof. To prove (1), it must satisfy the following conditions:

(LC1) Since 6r(U(T,), U(Lx)) = L, then Cs, (Lx)(@) = Sr(T,), W(Lx) = L.

(LCD) Cor(H@) = V. W(To)(@) A A(f)(a) > V Tal@) A U(F)(@) > U()(a).

(LC3) SalCor(f), Con(9)) = N\ Con(A@ = Cor(@(@) = N ORQU(T L), U() = SRQAU(T,), W(g)) = SaU(f), W(g)) >
Sa(f, 9)-
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(LcC4<)f cézgp)(a) V Cs (9)(@) = Sr(QU(T ), U()) V Sr(U(T,), W(g)) = Sr AU(Ta), U(F) V U(9)) = SrA(T,), U(f V g)) =
sx ([ V h)a).
Cop(@ A f)(@) = 0rQUT,), W A £)) = 6rQA(T,), @ A ﬁ( ) = a ASRQUT,), U(f)) = a A Cs (f)(@).

(2) If 6 is Alexandrov, then C{)R(\/ )@ = SrQUTL), WV £)) = SrQU(T), \/ UL)) = V 6rQU(T), U(F)) =
ey ey
L\e/v Cox (f)(@).

(3) Since f = V(f()) A Ty). Then, we get Co (@) = ORQU(T,), U(S)) = 6R<ﬁm),ﬁ<bvx (f(b) A T)) =
ORQU(T,), v U(f(b) A Tp)) = Sr(QAU(T,), v f®) A U(Ty)) = v f®) A SRQAU(T L), W(Tp). O

Remark 3.6. Let (X, R) be an L-FAPS and (X, Cr) be a CL-FRCS. Then,
(1) If 5xA(T,), ﬁ(CaR (N < Or(U(T,), ﬁ(f)), then Cs, is a a fuzzy topology,

(2) SQU(f), U@) < Coc(f) = Coc(9):
From Theorem 3.7, a Cech L-fuzzy rough proximity induced by a Cech L-fuzzy rough closure operator

is obtained.
Theorem 3.7. Given (X, R) as L-FAPS and (X, Cr) as CL-FRCS. Define a function d¢c, : LXXLX — Las 6¢c,(f, g) =
Na(Cr(g), W(f) Y £, g € LX. We obtain the following:

(1) 6¢, is a CL-FRPRX on X with 6c,(U(f), a A U(g)) = a A d¢, AU(f), W(g)) and dc, (@ — U(f),U(g)) < a —
Ocx (U(f), U(g))-

(2) if Cr is Alexandrov, then Oc, is Alexandrov.

(3) Cog, = Crand if 5r(f, 9) = ll(f)(a) A ll(g)(a) then d¢,, < Or.

Proof. (1) It is sufficient to prove the following conditions

(P1) Since Cr(M(Lx)) = Lx and UAU(Tx)) = Tx, seting 8¢, (U(Tx), U(Lx)) = Na(Cr( (Lx)), UA(Tx))) =
L, 0¢; (U(Lx), W(Ta)) = Na(Cr (U(T,)), UAU(Lx))) =

(P2) Since Cr(g) > M(g), we obtain d¢,(f, 9) = Nd<cR<g> () > Na(Ul(g), () = NyQL(f), TW(g)).

(P3) Since R is reflexive and transitive, we receive 6¢, (2( ), U(h)) - b¢, (lI(g) U(h)) = Ny(Cr (U(R)), U (U( )

~ NuCr(w), Tl = ( V. Cr@m)@ A TAN@) = ( V Cx @m)o) A TAe)®) = A AA)@

- UU(g)@) = SAUU(S), u(H(g ) = Sa((f), W(g)), ~
oc, (), () = da, (AL, Wg) = Na(CrAXF), WU = Na(Cr(@), UAM) = ((V CrAl(H)@) A
U))@)) - ( V CrUQU@N@ A AU (@) = ACRAUN@ = CrAU@@) = SaCrOU(P), CrU(@) =
SaQ(f), W(g)).

(P4) d¢, (U(f), W(g)) V S, (U(F), W(h)) = Na(UQU(£)), Cr(W(9))) VN4UAU(f)), Cr (1)) = Ny(U(f)), Cr(2W(7))

v CrQU()) = NaQUQ(f)), Cr(U(g) V U(H))) = N4(IAU(f)), Cr(Ug V h))) = ¢, (U(f), U(g V h))). By similarity,
the other case is proved Finally, From Remark 3.2, we have 6(;,{(11( f), a A lI(g)) N, ), Cr(a A lI(g)))

NaUQI()), & A CrQ(9))) = a A NaQIQI()), Cr((9))) = @ A 6, AU(f), 2(9)),
dex(@ = U(f), U(g)) = Na(CQL(g)), Wa — U(f)) < @ = Na(CQU(f)), UQU(f))) = a — ¢, (U(f), U(g)). Hence,
6CR(21 f),an H(g)) >a A 6CR(21 ), u(g)) and 6¢, (@ — u(f) ll(g) )<a— 6CR(u(f) ll(g
(2) By Proposition 2.7 (N1) and (N4)), we have &¢, (V U(f), 2(g)) = Na(CrQU(9)), WAV £))) = V Na(Cr
ey ey ey
(W(g)), WQAU(S)) = v b QU(f), Wg)),

Oe, (A, V M(g) = NaQUALP), Cr(Y Wg) < V NaUQU(S)), Crlg) = V b, (U, Wg),
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(3) Coe, (@) = dc, AT, W(F)) = Na(UQA(T,)), CRQAUF))) = NaQU(T,), Cr(f)) = v U(T,)(@) A Cr(f)a) =
T A Cr(f)(@) = Cr(f)(@). Finally, 5¢, (f,9) = V U(f)@) ACs(9)@) = V U(F)a) A V. Or( (Ta), () <

aeX aeX

\e/X U(f)(@) A \e/X U(g)(a) < \e/X U(f)(@a) A W(g)(@a) = Or(f, ). Hence, 6¢,, <Or. O

Corollary 3.8. Given (X,R) as L-FAPS. Let d¢, : LX x LX — L be a function identified by ¢, (f, 9) = Na(U(g),
Cr(f)). Then, 6¢, is a CL-FRPRX on X.

We can easily prove Theorem 3.9 is the same as Theorem 3.7. So, it will be omitted.
Theorem 3.9. Given (X, R) as L-FAPS. Let (X, Cr) be an CL-FRCSand ¢, : LX x LX — L be a function defined by
oci(f,9) = Na(Cr(9), CR(f)) Y f, g9 € LX. Which is coming are hold
(1) 6¢y is an L-fuzzy rough basic proximity on X,
(2) if Cr is Alexandrov, then 6¢, is Alexandrov.
Theorem 3.10 shows L-FAPS'’s category can be incorporated into the category of L-FPRXS.
Theorem 3.10. If (X, R) is an L-FAPS and 6g : LX X LX — L be a function defined for all f,g € LX by 6r(f,g) =
Na(U(g),%(f)). Then,
(1) (X, Or) present as a L-fuzzy rough basic proximity space,
(2) b¢y, = Or,
(3) if n:(X,Rx) = (Y, Ry) be a LF-approximation function. Then, ) : (X, 0r,) — (Y, Or,) is a LF-proximity function.

Proof.

(1) Itis sufficient to prove 4 conditions as in the proof of Theorem 3.7(1).
@ dc,, (fr) = V CoeN@ A M@@) = V oxA(Ta), WA AW(@)@) = V (Y WTo)@) A (@) A U(g)(a) =
\V U(f)(@) A U(g)(a) = Or(f, 9).

aeX
(3) The proof is given in the same manner. [J

We have the concrete functor @ : L-FAPS — CL-FRPRX, according to Theorems 3, 4 by the following
D(X, Rx) = (X, 0ry), P(1) = 1.

Example 3.11. If the universal fuzzy set given as X = {(a1,0.4), (a2,0.3), (a3,0.5), (24,0.7)} with a fuzzy
tOPOIOgy T = {f = O/ e = {(ﬂ1,0.4)}, d= {(ﬂ1,0.4), (113, 05)}/ c = {(all 04)/ (ﬂz, 03)}/ b = {(ﬂ1,0.4), (lZZ/ 03)/
(a3,0.5)}, a = {(a1,0.4), (a2,0.3), (a3,0.5), (a4,0.7)}} and shown in Fig. 1. Define R : X x X — [0,1] as

1 09 1 1
101 1 1
R=1"09 08 1 1
07 06 08 1

Where ﬁ(f)(a[) = V R(a,, aj) A f(a;). Then, we have for each a,,a; € X,i,j € {1,2,3,4}
a/'EX

Uf)@) =0 Uf)az) =0  Uf)3) =0  U(f)(as) =0;
U(a)(a1) = 0.7 Wa)(ax) =0.7 Ua)(az) = 0.7 W(a)(as) = 0.7;
WUD)a1) =05 Ub)(ax) =05 Ub)az) =05 Ub)(as) = 0.5;
WUC)a) =04 U)m) =04 UC)(az) =04 U(c)(ay) = 0.4;
WUd)(a) =05 Ud)(a) =05 Ud)(az) =05 U(d)(ay) = 0.5
We)ar) =04  Ue)a) =04 Ue)az) =04 Ue)(ay) = 0.4.
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ZN

v of

Figure 1: A fuzzy topological graph

Define 0r(a,b) = N (ﬁ(a), ﬁ(b). For each a,b € 7, we have
Or(e,c) =04  Or(f,e)=0 Or(e,d)=04  Or(f,c)=0
or(e,b) =04  Or(f,d)=0 Or(a,e) =04 Or(f,d)=0
Or(c,d) =04 Or(f,b) =0 Or(c,b) =04 0Or(a, f)=0
Or(a,c) =04 Or(a,b) =05 0Or(d,b)=05 06r(a,d) =05

Define Cr(f)(a) = \/X R(a, aj) A f(a))

Cr(f)@) =0  Cr(f)@2)=0  Cr(f)@)=0  Cr(f)(a)=0;
Cr@)(a1) =0.7 Cr(a)(a2) =0.7 Cr(a)(as) =07  Cr(as) =0.7;
Cr(D)(@1) =05 Cr(b)(@2) =0.5 Cr(b)(a3) =0.5 Cr(b)(as) =0.5;
Cr()(@) =04 Cr(c)(a2) =04 Cr(c)(a3) =04 Cr(c)(as) = 0.4;
Cr(@d)(@) =05 Cr(d)(@2) =05 Cr(d)as) =05 Cr(d)(as) = 05
Cr(e)(@1) =04 Cr(e)(a2) =04 Cr(e)(a3) =04 Cr(e)(as) = 0.4.

Where ¢, (f, 9) = Na(Cr(9), U(f)). Then, we have

Ocele,c) =04  Oc.(f,e) =0  Ocple,d) =04  O¢.(f,c)=0
Oci(e,b) =04  Oc (f,d)=0  0Ocple,a) =04 O¢,(f,d) =0
Ocpc,d) =04 O¢,(f,0) =0  0Oci(c,b) =04  O¢i(f,a) =0
Son(c,a) =04 bc.(b,a) =07 Sond,b)=05 oc.(d,a)=05

Theorem 3.12. If (X, R) is an L-FAPS and 1 : (X, 6r,) — (Y, 0r,) be LF-proximity function, then 1 : (X, Cs, ) —
(Y, Csy, ) is LF-closure function.

Proof. Foreach f €LY,

17 (Cor, (N)@) = Cor, (HN(@) = Or, Wy (T ya), Uy ()
> 5k, (U (T (T @), Ux (1~ (F)))
> Or, (Ux(Ta), Ux(7(f))) = Cor, (1 (f))(@).

Getting the concrete functor A : CL-FRPRX — CL-FRCS, according to Theorems 3.5 and 3.12, by
A(X, Ory) = (X, Coy, ), A1) = 1. If the functor A : CL-FRPRX — CL-FRCS to the category ACL-FRPRX is still
written, then by Theorem 3.5, A : ACL-FRPROX — ACL-FRCS considered as a concrete functor. [J

Theorem 3.13. If (X, R) is an L-FAPS and 1 : (X, Cr,) — (Y, Cr,) be a LF-closure function, then 1 : (X, 6¢,, ) —
(Y, 6¢y, ) is a LE-proximity function.



R. M. Ahmed et al. / Filomat 40:2 (2026), 601-617 610

Proof. Since Cr, (17 (9)) £ 17 (Cr,(9)),and by (N6) in Proposition 2.5, then we have,

Scr, Wx (™ (), U (™ (9))) = N(CRX (ﬁx(ﬂ(_(g)))/ﬁx(ﬁx(n(_(f)))))
< N(Cr (1~ Ay (9)), 1A ())) < N(n™(Cr, (9)), n~ QUx(f)))
< N(Cr, (9), Ux(f)) < N(Cr, Q(9), Wy Uy () = bc,,, A (), Wn(g).

O

By Theorems 3.5 and 3.13, we obtain a concrete functor Y : CL-FRCS — CL-FRPRX by Y(X, Cg,) =
(X, 6cr, ), Y(1n) = 1. By Theorem 3.5(3), we have A(Y(X, Cr)) = (X, Cs,) = (X, Cr). Thus, A is a left inverse of
Y. If the restriction of the functor Y : CL-FRCS — CL-FRPROX to the full subcategory ACL-FRCS is still
written, then by Theorem 3.5, Y : ACL-FRCS — ACL-FRPRX forms a concrete functor.

The proof of Theorem 3.14 is obvious. Then, the proof is omitted.

Theorem 3.14. (A,Y) forms a Galois connection between the category CL-FRPRX and the category CL-FRCS.

Proposition 3.15. If R € LXX is defined on a set X, and a function 6g : LX x LX — L is defined by 6r(f, g)) =
\/ R(a,b) A U(f)(@a) A U(g)(). Then,

a,beX
(1) Og, is ACL-FRPRX with Sr Q1(f), Warg)) = anorU(f), Wg)) and 6x e — £),1(g)) < o = SrU(f), U(g)),
(2) ifn : (X, Rx) = (Y, Ry) is an order preserving function, this lead ton : (X, Or,) = (Y, Or, ) is LF-proximity function.

Proof. (1) The conditions (P1), (P3), and (AL) can be proved easily. So, we omit it. _ _
(P2): Since R is reflexive, then 6r(f,9) = V R(a,b) A U(f)@a) A U(g)(b) = V R(a,a) A U(f)(a) A U(g)(a) =
a,beX aeX

N QU(f), W(9)). o o __ __
(P4) Since R is transitive, then 5g(2(f), U(g)) V 5r(U(k), () = ( V (R(a,b) A UU(H)(@) A UAU(g))(D))) V
a,beX

(b,XX(R(b' o) A UQUR)(B)) A U A(g))(0)) < A ( V (R(@,b) AR(b,0) AUg)(E) A M(g)e) A U@ v U(k)(b))))
<V (R@@,¢) A W(g)(0) AQU(f) v (W) (@)) = 5xUU(F) v U(h), W(g))-

Next, ox((f), Wa A g)) = V. Rla,b) A UAUFY@) A WU A O = V Ra,b) A U@ ra A
UQA@)E) = an V R(@,b) A VU@ A MAU@)E) = @ A dxAU(S), UWg))
or(ll@ = N Ag) = V Riab) AU = @A AU < V R@,0) A = VAN A AU(@)E)

a,beX
< a = orQU(f), U(g)). o _ __
(P) Since R is symmetric, then we have 6r(U(f), U(g)) = V R(a,b) A WQU())(a) A UQA(g)(B) = V R(b,a) A
a,beX b,

,a€X
UU(9)(b) A UA(N) (@) = 5r (), U(F), B
(P5) Since R is reflexive and transitive. Then, \/ R(b,c) AR(a,b) = R(a,c). For all f,g € LX, let U (h)(b) =

_ beX
a\E/X R(a, b)A U(f)(a).
A GrRQI(F), W) Vor QT (1), W) = A (( V (R(a,b) AU @ AUAEEN V ( V R0 A W ())(b)

helX helX

AT = A ((V (R, b) AU(f)(@) AA(R)D)) v (V RN W (1)(b) A U(g)(c)) < ALY (U (1) (b)

helX © a,beX eLX beX
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ARGV V <R<b,c>A<R<a,b>Aﬁ<f><a>Aﬁ<g><c>>»):lv(ﬂcvewa,c)Aﬁ<f)<a>Aﬁ<g)(c>>):

a,b,ceX
A TQAU(f))(@) A UA)(e) = orAU(S), U(G)).
(2) Since R is reflexive and transitive, then 6z, Ux (1(f)), Ux(n~(9))) = V (Rx(a, b) A Ux Ux(n<(f)))(a)
beX

R(a, c)
X

a,ce

A Ux(Ux (7= (@N)B)) < XX(RXW, b) A Wx(= (M@ A Ux(=(@)b)) < ZQX(RX(% b) A 1= QU(f))@) A
1= Ur@)O)< Y (Rr(1(@),n0) AUNH@@) A Wr@0®))< V. (Rele,w) AyUr()(e) A N (Ay(@)) (@) =

Ory, QAy(f), Uy(g). O

From Proposition 3.15 , we get a concrete functor Q3 : CL-FRR — ACL-FRPRX is a functor defined by
OQ(X,Rx) = (X, 6RX)/ Q(’?) =1

Example 3.16. Let X be a set and R € L¥*X. Define a function 6g : L* x LX — L as in Proposition 3.15. By
Theorem 3.5, we obtain L-fuzzy rough closure operator Cs : LX — LX as follows

Cop(f)(@) = 6R(U(T,), U(f)) = V Ria,b) A UQA(T))(@) A UQU(f)))(b) = V Ria,b) A U(f)(b) = v R(a,b) A
UV (Fb) ATy)(b) = v R(a,b) A fO) A U(T)(b) = V Ri@,b) Af) = U(f)(a).

(1) If R = Txxx is given. From Proportion 3.15, we have 61(f,g) = V ﬁ(f)(a) A ﬁ(g)(b). Hence, 0 is
a,beX

CL-FRPRX. And from Theorem 3.5, we obtain the operator CL-FRC as C; : LX — L as follows Cy,(f)(a) =
Or(U(Ta), U(f)) = U(f)(a).
(2) If R = Axxx is given by

T, ifb=a,
1, ow.

Axxx(a,b) = {

Then, 5,(f, 9) = V.aex(U(f)(@) A U(g)(a)). Hence, 6, is a CL-RPRX.

For each reflexive relation R, we obtain Alexandrov L-fuzzy rough closure operator as Cg : LX — LX

as  Cr(f)@) = V (R(a,b) A 2A( £)(b). By Theorem 3.5, we obtain Alexandrov L-fuzzy rough proximity dc,
beX

as oc(f,9) = V. QU(f)(@) A Cr(9))@) = V. QU(f)(a) A v (RG@,b) A U(g)(b) = V (RG@,b) A U(f)(a) A U(g)(b)) =
Sr(f, 9). '

4. The relationships between L-fuzzy rough proximities and L-fuzzy rough ideals

The implication between Cech L-fuzzy rough proximity spaces and L-fuzzy rough ideal spaces is
provided in the following section.
Definition 4.1. Given (X, R) as an L-FAPS. L-FRIS is the function Dg : LX — L that satisfies:
(I1) Dr(Lx) =T and Dr(Tx) = L,

(12) S4QU(f), U(g)) < Dr(g) = Dr(f) Y f,g € L,

(13) DrQUf) v U(g) = DrU(F) A Dr(U()) ¥ f, g € L.
L-FRIS with Alexandrov condition (AL) will be AL-FRIS where

(AL) Dr(V U(f)) > Qy DrQA() Y {fi ey} X,

ey
Take (X, Dg,) and (Y, D, ) as L-FRIS. A function 17 : X — Y is LF-ideal function for f € LY iff Dy, Uy ( )
< Dr, (Ux(n™()))-
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Theorem 4.2. Given (X, R) as an L-FAPS, (X, 6r) as a CL-FRPRX. Define Z)I(;R : LX — L a function is defined as
follows
¢ opy o | SRR, i f £ Tx
Déﬂ(f)_{T, iff=Tx.
Where 85, (1(), {(g)) = Gx (), W)Y =(V WH@ A M@@) = A T (@) VT (9)a). Then, D} is L fuzzy
ae. ae

rough ideal. Moreover, if Or is Alexandrov, then Z)kéR is so.

Proof. (1) By dentition D% (1x) = 6;(I(k), U(Lx)) = T and D (Tx) = T.
(I2) For any two fuzzy sets f, g,
[Case 1:] if f = Tx, g = Tx, then D (9) = Df (f) = T = S4(U(f), U(9)).
[Case 2] if f # Tx and g # T, then D (9) = D (f) = 6, (k) U(g)) — S QU(K), U(f)) = or(U(K),
U() = SrAUK), W(g)) = SaU(f), U(g)).
(I3) For any f,g € LX, we have
[Case 1:] if f V g = Tx, then D (U(f) v U(g)) = T = D A(f)) A D (U(g)).
[Case 2:] if f V g # Tx, then f # Tx and g # Tx. So, Df_(U(f)) A D (W(g)) = 6, QU(K), WQAU(S))) A
&y (U(R), UQAU(g))) < 83, (U(K), W) v UQU(g))) = 6, A(K), UQAL(f) v U(g)) = D, A(f) v U(g))).
(AL) For each family {f, : t € y}, we have
[Case L] if V/ f, = Tx, then D} (V U(£)) = T = A\ D (U(f))-
€y ey

ey

[Case 2:] if \/ f, # Tx, then f, # Tx for each i € y. So, Dt (\V U(f) = 6,QUK), V U(£)) = A &
LEY L€y

ey ey

U, UE) = A Dy (). D

Now, let D(X) be the family of all L-fuzzy rough ideals and P(X) be the family of all L-fuzzy rough
proximities on X.

Theorem 4.3. If (X, R) is an L-FAPS and H : P(X) X D(X) — D(X) is a function defined as

H(or, DR)(F) = \/ (5: (), W) A Dr(f))

geLX

Then,
(1) H(6r, Dr) € D(X),
(2) H(or, D) = Dy,

Proof. (1) We prove the following conditions by considering f, g € L.
(1) H©Er, DR)(Lx) =V (55 Wg), W(Lx)) ADr(Lx)) = T.

geLX
12) Hor, D) = Hor, D) = V. (5% AUw), (g)) A Dr(g)) - Vv (5 UK), W) ADR(f))) 2 V. (57
(), W(g)) A Dr(9)) = (87 A, W) ADR(S) = Vv (67 QL) W(g)) — 63, (L), W(F)) A(Dr(g) = Dr(f)) =
V (8r QU(k), W(f)) = 5r Q) W) A(Dr(9) = Dr()) 2 SaQUS), W) A SaQU(f), W(g)) = SaQL(f), W(g)).

helX
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(I3) Let f,h € LX. Then, H(6g, Dr) QU(f) V() = \{ (57 Q(g), W) v Um) ADR AU(f)V U(h)) 2 \{ (&
geLx geLX

Q(g), W) A 5" U(g), W) A (DRI A Dr(U(R))) = v (5" ((g), W) ADRA(S)) A v (&6 ((g), Why))
geLX geLX
ADg (U(1)) = H(6x, Dr) AU(f) A H(Er, Dr) U(W)).
(2) Let f € L, then H(dx, D%, )(f) = (5 Q(g), W) A D () < T AD(f) = DE(f). Conversely, H(or,

D)) = (5 (U(g), u(f»wk (f)) (6 U(g), W(F)) A8y UK), W(F))) = 57 (k) W(f)) A 5 ((K),
u(f) =&, <u<k U(f)) = D (f). Hence, fH«sR Diy=0k . O

Theorem 4.4. Given (X, R) as an L-FAPS, (X, Dg) as a L-FRIS such that Dg(g) < ﬁ*(g)(a), YaeXandgelLX
Define a function dp, : LX x LX — L by 6p,(f, 9) = (ll(f )a) A Z)R(g)) Then, &g, be a CL-FRPRX on X.

Moreover, if Dy is Alexandrov , then dp, is so.
Proof. The following conditions will be proved under f, g, h € LX.

(P1) Dr(Lx) =T = 5p, (U(f), U(1x)) = v NQAU(f))(@) A D AU(Lx)) = L, 5, AU(Lx), U(f)) = v U U(Lx))(a)
ADLU(f)) =

(P2) Dr(g) < U (9)(a) = b, (f,9) = V (UH@ A Dy(@)) = V WH@) A N(g)a).

(P3) 50, (U(), U(f)) = S0, U(h), (g)) =( V M) @) A D (W) )e( V Mm@ A Dy ((g)) = ( A @
(n))(@) — W AUm)(@)) A(Dy (H(f))—>D <u(g>>)>sd(u (), u(ll(g»)-sd U(H), U(g)). Theothercasels

proved similarly.
(P4) o, (), W) v U(g) = V(W AUM)@) D} QL) v U(gh) < V W AM@) A(Dy, Q) VD (W) <
(VW)@ Ay Q) v( VA A AD; A(g)) = 00, QL) W(FH) Voo, AL, Wg)). O

Theorem 4.5. Given (X, Dr,) and (Y, Dr,) be L-FRIS and 1 : (X, Dr,) — (Y, Dr,) be an LF-ideal function, it
follows that 1) : (X, 6, ) = (Y, 00y, ) is a LF-proximity function.

Proof. Forevery f,g € LY, we have p, (Ux(7~(f)), Ux(n=(9))) = \E/X(ﬁx Ux(1= (M@ ADy (Ux (17 (9)))

< V (Tt (D@ A D @x(@) < V (T (@) A Dy, T(@) < V Tl f)0) AD;, (Wlg) =
ae ae ye

S, Uy(f), Uy(g). O

Theorem 4.6. If 1) : (X, 0r,) — (Y, Or,) is a LF-proximity function, then 1 : (X, Dy, ) — (Y, Dy, ) is an LF-ideal
function.

Proof. Forevery f € LY, wehave D (y(f)) =8¢, (Wy(k), Uy (Uy())) = 8, Wy (K), Wy (f) < 0} Ax(n (K))),
Ux(n= () = &, Wx(n= kD), Ux(Wx (=) = D] ¥ Wx(n=(M). O

From Theorems 4.3 and 4.5, we obtain a concrete functor Y : L-FRIS — CL-FRPRX. Also from Theorems
4.4 and 4.6, we obtain a concrete functor Q : CL-FRPRX — L-FRIS.

Example 4.7. (1) Define D; : LX — L as D4(f) = /\ ﬁ* (f)(a), Dn is AL-FRIS. By Theorem 4.4, we have
00,(f,9) = Vaex W(f)(@) AD;(9) = u(f )(@) A \/ u(!7)(19)
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(2) Define D, : LX — L as Dy(f) = ﬁ*(f)(a) Hence, D, is AL-FRIS. By Theorem 4.4, we have 0p,(f,9) = V
aeX

U(f)(a) A Dy(9) = u(f )(@) A U(g)(a).

5. Application(proximity induced by fuzzy graph)

A fuzzy topological graph, as defined by El-Atik et al., is a fuzzy topological structure created from a
fuzzy set graph that provides useful models for three or more sets of topological spaces.
Algorithm. Input: a Universal set (X), a Fuzzy topological space (1), a Fuzzy relation (R).
Output: 1_1, Or, Cr, Dr, Csz, Oy, C5CR , 6051% , Z)ZR, Opp-
Ya,b,c€1,a,a;€ Xand (,j € {1,2,3}
Step 1: U(a)(a) = V R(a,a)) A a(a)).
ajeX

Step 2: 6r(a,b) = \/ W(a)(a,) A U(b)(a,).
a,eX

Step 3: Cr(a)(a,) = \/ R(a,, aj) A a(a;).

Step 4: Dr(a) = /\ R (a,a;) v a*(a)).

Step 5:Cs,(a)(a,) = 6R(II(T[,(), 11(112.

Step 6:0¢c,(a,b) = \V/ Cr(b)(a,) A U(a)(a,).

a,eX
Step 7: s, (a)(a,) = 6¢, (U(T,), W(a)).
Step 8:6% (a,b) = \/ Csp(b)(a,) A u(a)(a)

Step 9: DY (@)= { 67? U(b), U(a)), ¥f a# Ty
i ifa="Tx.
Step 10: dp,(a,b) = \/ W(a)(a,) A D (b).

a,eX

Example 5.1. Given a universal fuzzy set X = {(a1,0.4), (a2,0.6), (a3,0.2)}, and © = {d = 0,a = {(a1,0.4)},
b = {(a1,0.4), (a2,0.6)}, c = {(a1,0.4), (a2, 0.6), (a3,0.2)}} is a fuzzy topological graph on X as presented in Fig. 2.
If (L = [0,1], A, —,%,0,1) is a complete residuated lattice with for every a,,a; € X, a, — a; = min{l —a, +a;,1}.
Define R as R(a,,a;) = a, — aj,. Then, R = {((a1,m),1), ((a1,a2),1), ((a1,a3),0.8), ((a2,a1),0.8), ((a2,42),1),
((a2,a5),0.6), ((a3,a1), 1), ((a3,42), 1), (a3, a3), 1)}.
To evaluate Or between any two fuzzy subsets, we calculate the upper approximation of eachelement
"a” in T, where ﬁ(a)(a,) = \/XR(aL,a,-) Aa(a;). Then, we have
ﬂjE
@) (@) =04 U@)a) =04 Ua)(as) = 0.4
WUDb)a1) = 0.6 Ub)a) =0.6 Ub)(as) = 0.6
W) a) =06  UC)(a) =0.6 Uc)(as) = 0.6
Ud)a) =0  Ud)a)=0  Ud)(as3) =0
Define 6g(a,b) = \/ U(a)(a,)A U(b)(a,). Fora,b € T, we have

a,eX
Or(a,b) =04 Or(a,c) =04 O6r(a,d)=0
Or(b,c)=0.6 Or(b,d)=0 Or(c,d)=0
Define Cr(a)(a,) = V R(a, a;j) Aa(aj),
ﬂjEX

Cr(@)(a1) =04 Cr(a)(a) =04 Cr(a)(az) =04
Cr(b)(@) = 06 Cr(b)(@) = 0.6 Cr(b)(as) = 0.6
CrO)(@) = 0.6 Cr(©)@) =06 Cr(c)(as) = 0.6
Cr@)(@1)=0  Crd)(@)=0  Cr(d)(a3)=0
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d.

Figure 2: A fuzzy topological graph for 3 points

Define Dr(a) = A R*(a, ﬂj) 4 a*(a]-),

ajeX
Dr(@)(a1) = 0.6  Dr(a)az) =0.6  Dgr(a)(as) = 0.6;
Dr()(@a1) =04  Dg(b)(az) =04  Dr(b)(az) = 0.4;
Dr(c)(a1) =04  Dr(c)(a2) =04  Dgr(c)(az) = 0.4;
Dr(d)(@) =1  Dr(d)a2) =1  Dr(d)(as) = 1.
As Cs,(a) = 0rQA(T,), U(@)) and T, (aj) = { (1): gi/]\i b Then,
Csp(@)(m) =04 Csi(a)(a2) =04  Cs(a)(az) = 04;
Co(0)(@1) = 0.6 Cy(b)(@2) = 0.6 Cs, (b)(a3) = 0.6;
Co (@) = 0.6  Ciy(0)a2) = 0.6  Cs, (C)(a) = 0.6;
Cor(@d)(a1) =0  Cor(d)(a2) =0  Csr(d)(az) = 0.

Where 6¢, (a,b) = Ny(Cr(D), U(a)), where Ny(a,b) = \/ a(a,) Ab(a,). Then, we have

a,eX
Ocr(a,b) =04  6cp(a,c) =04  O¢p(a,d)=0
Ocp(b,c) =0.6  O¢(b,d) =0  O¢p(c,d) =0

Now, we find that
oc;, (a,b) =04 ocs, (a,c)=04 ¢y, (a,d)=0
(5ch (b, C) =0.6 6CoR (b, d) =0 (5ch (C, d) =0

Consequently, we also find that
Coc, (@)(a1) =04 Cosp, (a)(a2) =04 Csg, (a)(a3) = 0.4;
Co, (0)(@1) = 0.6 Cs,, (0)(@2) = 0.6 Cyg, (0)(@a3) = 0.6;
Cog, (0)(@1) = 0.6 Csg, (0)(a2) = 0.6 Csg, (c)(as) = 0.6;
Cooy@(@) =0 Coo, @)(@) =0 Cag, (@)as) = 0.

we find out that, C deg 2 Cr and 6y > 6CoR'
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According to Theorem 4.3 , we define

D (0) = { 5, (W), U@), ifas Tx
R T, ifa="Ty.
D (0)=06  Df@=1 2% (c)=06
D b)=1 DL()=04 (=1

Define, dp,(a,b) = V U(a)(a,) A Di(b).

a,eX

0p,,(a,b) =04 6o, (a,c) =04 069, (a,d) =0
0p,, (b,c) =0.6  0p, (b,d)=0 Op, (c,d)=0

6. Conclusion and works ahead

In such consideration, we study the relationships between Cech L-fuzzy rough proximities and Cech

L-fuzzy rough closure spaces. We prove that there exists a functor connecting between Cech L-fuzzy rough
proximity spaces and Cech L-fuzzy rough closure spaces; in light of that, we discuss the relations between
their categories. Additionally, we introduce L-fuzzy rough ideals and discover the connection between
L-fuzzy rough ideals and Cech L-fuzzy rough proximity spaces. A direction worthy of future work is to
study the theory of topogenous and uniformity via rough sets.
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