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Equivalence of some factorization properties in topological algebra
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Abstract. We show that the original concept of R-factorizability, as well as some of its modifications,
examined in the realms of topological, paratopological, and semitopological groups possess an essential
feature of absoluteness when transitioning to a broader category. This resolves a certain ambiguity in
the research conducted to date and enables us to keep ‘old’ notation for formally different notions of
factorizability.

It is also shown that a paratopological group G is R-factorizable if and only if its Ti-reflection, Ti(G),
is R-factorizable for some (equivalently, for each) i ∈ {0, 1, 2, 3}, which in turn is equivalent to the regular
reflection Re1(G) of G being R-factorizable. When substituting the aforementioned reflections with the
quotient group G/N, where N is the closure of the singleton {eG}, this result holds true for every topological
group G. The latter results indicate a specific form of stability regarding the concept of R-factorizability.
Several routes for further investigation are outlined at the end of the article.
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1. Introduction

The concept of R-factorizability in topological groups was defined in [23] and studied in detail in [4,
Chapter 8]. It has been demonstrated that R-factorizable topological groups exhibit numerous noteworthy
properties, in particular in relation to dimensionality and cardinal characteristics. R-factorizable topological
groups include precompact groups and Lindelöff groups, and they share several important features with
these groups.

Numerous variations of the original concept of R-factorizability have been proposed to date. These
include m-factorizability [4, Section 8.5], M-factorizability [13, 32, 33], sm-factorizability [5, 29, 30], PR-
factorizability [14] and Ψω-factorizability [34]. Other four variations are introduced in [10]. The list
of modifications of the concept continues to grow. Furthermore, several of the aforementioned sources,
including those co-authored by the author of this article, apply the concepts of factorizability indistinctively
across various categories of topological algebra, such as topological groups, paratopological groups, and
semitopological groups. This leads to a number of conceptual and notational issues.

This article has two primary objectives. Initially, in Subsection 1.1, we aim to standardize the notations
for various types of factorization in topological algebra. The universality and precision of the proposed
notation incurs a cost in terms of length. To mitigate this issue, we suggest two methods for abbreviating
the new notation.

The second and main objective is to demonstrate that the concept ofR-factorizability, as well as specific
variations, remains consistent when the category in which one operates is expanded. Again, this is further
clarified with necessary details in Subsection 1.1. Consequently, nearly all results regardingR-factorizability
and its variations that have been established in a context of ambiguity are now validated, albeit occasionally
requiring additional thorough verification. Furthermore, Theorems 4.13, 4.16, 4.17, 4.22, 4.23, and 4.27
demonstrate that it is possible to retain the traditional notation for various well-established concepts, such
as R-factorizability and M-factorizability, without the necessity of designating one of the four categories
(topological, paratopological, quasitopological, or semitopological groups). To put it simply, the theorems
assert that a topological (paratopological, quasitopological) group G that is factorizable in the broader
category SG of semitopological groups remains factorizable in its own category TG of topological groups
(respectively, in the categoriesPG orQG of paratopological or quasitopological groups).1) This is referred to
as the absoluteness of factorization properties. In a sense, our results expand upon the research conducted in
[28], which demonstrates that the notions of R0-, R1-, R2-, and R3-factorizability in paratopological groups
are equivalent to R-factorizability, where no separation restrictions are imposed on groups.

The proofs of the main results rely on the concept of quasitopological group associated to a semitopological
group, which we introduce and discuss in Section 3. A similar concept for paratopological groups was
previously considered by T. Banakh and A. Ravsky in [7]. In categorical terms, a quasitopological group
associated to a given semitopological group G, and denoted by G∗, is algebraically the same group that
possesses the coarsest quasitopological group topology, which is finer than the topology of G. We also
examine the connections between G and G∗, and establish a number of helpful facts that are crucial to
Section 4. Both constructions mentioned are partial instances of the concept known as symmetrization
within the framework of bitopological spaces (refer to [2] for further details).

A considerable amount of our discussion focuses on preserving R-factorizability in (para)topological
and semitopological groups when taking reflections of the groups, as defined by the author in [26, 27].
The research in this direction started in [15] by L.-X. Peng and Y.-M. Deng. They demonstrated, among
other results, that a semitopological group G is FR-factorizable (resp., Fm-factorizable) if and only if the
Hausdorff reflection of G, T2(G), possesses the same property. Also, according to [15, Theorem 3.12], a
paratopological group G is FR-factorizable (resp., Fm-factorizable) if and only if so is the regular reflection
of the group G, denoted by Re1(G).

We prove in Theorem 4.18 that a paratopological group G is R-factorizable if and only if Ti(G) is R-
factorizable for some i ∈ {0, 1, 2, 3} if and only if Re1(G) is R-factorizable, where Ti(G) is the Ti-reflection of

1)It is important to inform the reader that the proofs regarding quasitopological groups in Theorems 4.6 and 4.27 are dependent
upon the additional assumption of complete regularity of the groups.
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G. An analogous result holds true for a topological group G (see Theorem 4.17). In the latter case, however,
the five reflections of G considered in Theorem 4.18 merge into a singular object namely the quotient group
G/N. Here, N is the closure in G of the singleton {e}, where e is the identity of G. Therefore, a topological
group G is R-factorizable if and only if so is G/N (see Corollary 2.8).

A significant amount of attention has been dedicated to M-factorizable groups, which are topological
groups that admit a continuous factorization of continuous real-valued functions through a continuous
homomorphism onto a Hausdorff first-countable (equivalently, metrizable) topological group [13, 32, 33].
There has been a lack of extensive research on a similar concept in the category of paratopological groups.
One of the reasons for this is that regular first-countable paratopological groups are not necessarily metriz-
able or even normal. In Theorem 4.16, we show that the factorizability of continuous real-valued functions
on a paratopological group G in first-countable semitopological groups is equivalent to the factorizability
of these functions on G in first-countable paratopological groups. Theorem 4.19 asserts that the continuous
real-valued functions on a paratopological group G are factorizable through first-countable paratopological
groups if and only if the regular reflection of G, Re1(G), has the same property. In Theorems 4.22 and 4.23,
we extend the conclusions of the aforementioned results to M-factorizable (para)topological groups.

Theorem 4.25 shows that the factorizability of the continuous real-valued functions on a completely
regular semitopological group G in first-countable (resp., second-countable) semitopological groups is
equivalent to their factorizability in completely regular first-countable (resp., second-countable) semitopo-
logical groups. We do not know, however, whether the regular or Tychonoff reflection of an arbitrary
R-factorizable semitopological group isR-factorizable (see Problems 6.1 and 6.2). We conclude by comple-
menting Theorem 4.25 with Theorems 4.26, 4.27, and Corollary 4.28.

In a sense, the validity of our main results on the absoluteness (that is, non-dependence on a category
of objects and/or axioms of separation) and stability (non-dependence on taking reflections and/or quotient
groups) of the aforementioned factorization properties is due to a strong categorical flavor of the original
definition of R-factorizability. However, our proofs also contain a substantial topological component.
In particular, we frequently use the celebrated result by T. Banakh and A. Ravsky from [8] stating that a
regular paratopological group is completely regular. A more general form of the latter result, for topological
monoids with open shifts, is given by the same authors in [8, Corollary 4]. Proposition 4.4 and Lemma 4.24,
which connect the continuity of operations in a subgroup of a Cartesian product of semitopological groups
or the complete regularity of the subgroup with those of its projections to countable subproducts, are also
crucial components of our research.

Additionally, in Remark 4.29 and in a brief Section 5, we suggest a program for further study in the field.
In Section 6, several open problems are presented, aimed at determining which equivalencies established

in Theorems 4.13, 4.18 and 4.25 continue to hold for semitopological or quasitopological groups. Also, we
recall two open problems from [21] regarding the behavior of R-factorizability in paratopological groups
and the associated topological groups.

1.1. Notation, terminology, and preliminary facts

The identity element of a group G is denoted by eG or, in instances where no ambiguity arises, simply
by e. The kernel of a group homomorphism p : G→ H is denoted as ker p.

A semitopological group G is ω-narrow if for each neighborhood U of the identity in G, there is a
countable set C ⊂ G such that CU = G = UC. The aforementioned equalities for a quasitopological group
G can be reduced into a single one, G = UC or, alternatively, G = CU (see [4, Section 3.4]).

We adhere to [4] in terms of notation and terminology pertaining to topological algebra, with the
exception that we do not require a priori that the objects we are considering satisfy the T1 separation axiom.

For every i ∈ {0, 1, 2, 3, r, 3.5, t} we consider the classes of spaces and groups with topologies satisfying
the Ti separation axiom, with ‘r’ reserved for ‘regular’ and ‘t’ for ‘Tychonoff’. If a space satisfies both the
T3 and T1 separation axioms, the space is said to be regular or a Tr-space. Similarly, completely regular
(equivalently, Tychonoff) spaces are exactly T1-spaces in which continuous real-valued functions separate
points and closed sets. In other words, Tychonoff = T3.5 & T1. This is in contrast to [11], in which T3-spaces
are defined as regular T1-spaces.
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When factoring a continuous mapping f : G→ X of a given topological (paratopological, quasitopolog-
ical, semitopological, etc.) group G to a space X from a class X (say, X is Hausdorff second-countable or
metrizable), one chooses a class O of objects of topological algebra and a classH of continuous homomor-
phisms.

Definition 1.1. A group G with a topology is (X,O,H)-factorizable if for every continuous mapping f : G→
X to a space X ∈ X, there exists a continuous surjective homomorphism p : G→ H, where H ∈ O and p ∈H,
such that f = 1 ◦ p, for some continuous mapping 1 : H→ X.

We introduce the following notation:

• R is the class that contains only one space, the real line R;

• SC is the class of second-countable spaces (no separation restrictions on spaces are imposed);

• TG, PG, QG, and SG are the classes of topological, paratopological, quasitopological and semitopo-
logical groups, respectively;

• FCTG, FCPG, FCQG, and FCSG are the classes of first-countable topological, paratopological,
quasitopological and semitopological groups, respectively;

• SCTG, SCPG, SCQG, and SCSG are the classes of second-countable topological, paratopological,
quasitopological and semitopological groups, respectively;

• MS is the class of metrizable spaces;

• MTG,MPG,MQG, andMSG are the classes of metrizable topological, paratopological, quasitopo-
logical and semitopological groups, respectively;

• Given k ∈ {0, 1, 2, 3, r, 3.5, t} (with r standing for regular and t for Tychonoff ), and a topological or
topological algebra category O, we denote by Ok the full subcategory of O consisting of the objects
G ∈ O that satisfy the Tk separation axiom;

• CH is the class of continuous homomorphisms (of arbitrary objects of topological algebra where the
concept of homomorphism is defined);

• PH is the class of perfect homomorphisms;

• OH is the class of open continuous homomorphisms.

By Definition 1.1, we see that the (R, SCTG2,CH)-factorizability or, by Proposition 2.4, (R, SCTG,CH)-
factorizability of a topological group abbreviates to R-factorizability. Likewise, the R-factorizability
of a paratopological group G abbreviates its (R, SCPG,CH)-factorizability. According to [28, Theo-
rem 3.8], the latter property is equivalent to (R, SCPG2,CH)-factorizability, which in turn is equivalent
to (R, SCPGr,CH)-factorizability of G.

Further, openly factorizable topological groups, a concept that implicitly traces back to [6], are exactly
(SCr, SCTG2,OH)-factorizable. Also, M-factorizable topological groups introduced and studied in [32], [33]
and [13] are (R,MTG,CH)-factorizable groups. FR- and Fm-factorizable semitopological groups from
[15] are, respectively, (R,FCSG,CH)- and (MS,FCSG,CH)-factorizable groups. To somewhat finalize
this list, we note that PR-factorizable topological groups, as defined in [14], correspond to (R, SCTG,PH)-
factorizable groups, whileΨω-factorizable groups in [34] are (R,Ψω,CH)-factorizable, whereΨω is the class



M. Tkachenko / Filomat 40:2 (2026), 619–648 623

of topological groups with countable pseudocharacter. It is worth noting that in the last two paragraphs,R
can be replaced with SCr (see Proposition 2.1 and Corollary 2.2 or [17, Lemma 2.3]).

The new notation seems to be heavily formalized. Nonetheless, it enables us to bypass an issue that
requires our attention here.

Every topological group is naturally a paratopological and quasitopological group, and every paratopo-
logical group can be considered as a semitopological group. Given a topological group G, one can formally
apply four different definitions of R-factorizability to the group:

• (R, SCTG,CH)-factorizability,

• (R, SCPG,CH)-factorizability,

• (R, SCQG,CH)-factorizability, and

• (R, SCSG,CH)-factorizability.

The new notation reveals the difference between the four notions, while the “generic” reference to R-
factorizability of G is ambiguous because it does not mention the category we use to factorize continuous
real-valued functions on G. A second-countable codomain, H, of a continuous homomorphism p : G → H
may be a topological, paratopological, quasitopological, or semitopological group, contingent upon the
selection of a rigorous definition of R-factorizability. A similar, somewhat less critical issue occurs in
the case of a paratopological group G, to which the second and fourth notions mentioned are naturally
applicable.

To shorten new notation, we apply the following simple rules:

(A) The “old” short notation is used for ‘well-established’ concepts, likeR-factorizable topological (paratopo-
logical, quasitopological) group or M-factorizable topological (paratopological, quasitopological) group.

(B) The third argument, CH, of the parenthetical modifier is omitted if p : G → H is a continuous
homomorphism (not a perfect or open one) in the definition of some kind of factorizability, that is,
p ∈ CH. [In particular, (R, SCSG,CH)-factorizability shortens to (R, SCSG)-factorizability.]

Our Theorems 4.6, 4.13, 4.17, 4.22 and 4.23 support the convention in the aforementioned item (A) by
stating that the concept remains unaffected by the choice of a broader category for codomains of continuous
homomorphisms p : G→ H in the cases of R- or M-factorizability.

2. Elementary results

In this section, we compile several results regarding the equivalence of a variety of factorization prop-
erties. The proofs of these results are either easily obtainable from previously established facts or are of
elementary complexity.

As usual, a class O of groups with topologies is called countably productive if the Cartesian product∏
n∈ω Gn is in O, provided each factor Gn is in O. Additionally, if every subgroup H of a group G ∈ O with

the topology inherited from G is also in O, we say that the class O is hereditary.
The following proposition has its origin in [4, Lemma 8.1.2]; it elucidates the reasoning behind the

substitution of the real line with the class SCr of regular second-countable spaces in various modifications
of R-factorizability. Also, it presents a considerably more general version of [17, Lemma 2.3]. In fact, our
argument in the proof of the proposition is close to the one in [4].

Proposition 2.1. Let O be a countably productive and hereditary class of groups with topologies and assume that
H ∈ {CH,PH}. Then (R,O,H)-factorizability and (SCr,O,H)-factorizability coincide.
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Proof. It is clear that (SCr,O,H)-factorizability implies (R,O,H)-factorizability. So we must derive the
converse implication.

Let G be an (R,O,H)-factorizable group with a topology and f : G→ X be a continuous mapping of G to
a regular second-countable space X. According to [11, Theorem 2.3.23], we can identify X with a subspace
of Rω. For every n ∈ ω, denote by pn the projection of Rω to the nth factor. Then pn ◦ f is a continuous
real-valued function on G, so we can find a continuous homomorphism πn : G → Kn onto a group Kn ∈ O
and a continuous real-valued function 1n on Kn such that πn ∈ H and pn ◦ f = 1n ◦ πn. Denote by π the
diagonal of the family {πn : n ∈ ω}. Then π : G →

∏
n∈ω Kn is a continuous homomorphism and the image

K = π(G) is a subgroup of the group Π =
∏

n∈ω Kn, where Π ∈ O. Since the class O is hereditary, we see
that K ∈ O. If H = PH, then each πn is a perfect homomorphism, and so is the diagonal π of the family
{πn : n ∈ ω} (see [11, Theorem 3.7.10]). Hence, π ∈ PH as well. If each πn is in CH, so is π.

For every n ∈ ω, let qn : Π → Kn be the projection. Then the equality πn = qn ◦ π holds for each n ∈ ω.
Finally, denote by 1 the Cartesian product of the family {1n : n ∈ ω} (equivalently, the diagonal of the family
{1n ◦ qn : n ∈ ω}). Then the mapping 1 : Π→ Rω is continuous. In addition, the diagram below commutes.

G
f //

πn

  
π

��

X �
� // Rω

pn

��
Kn

1n // R(n)

K �
� // Π

qn

OO

1

XX

Indeed, it suffices to verify that f = 1 ◦ π or, equivalently, that pn ◦ f = pn ◦ 1 ◦ π for each n ∈ ω. The
latter equality follows from our definition of 1 and π:

pn ◦ 1 ◦ π = 1n ◦ qn ◦ π = 1n ◦ πn = pn ◦ f .

Therefore, the homomorphism π : G → K and the mapping h = 1↾K satisfy the equality f = h ◦ π. This
proves that G is (SCr,O,H)-factorizable.

The subsequent assertion is derived from Proposition 2.1, as the classes of Hausdorff second-countable
or metrizable topological (paratopological, quasitopological, semitopological) groups are countably pro-
ductive and hereditary.

Corollary 2.2. The notions of factorizability in each of items (1)–(8) below coincide, whereH ∈ {CH,PH}:

(1) (R, SCSG,H)-factorizability and (SCr, SCSG,H)-factorizability in the category of semitopological groups.
(2) (R, SCQG,H)-factorizability and (SCr, SCQG,H)-factorizability in the category of quasitopological groups.
(3) (R, SCPG,H)-factorizability and (SCr, SCPG,H)-factorizability in the category of paratopological groups.
(4) (R, SCTG,H)-factorizability and (SCr, SCTG,H)-factorizability in the category of topological groups.
(5) (R,MTG,H)-factorizability and (SCr,MTG,H)-factorizability in the category of topological groups.
(6) (R,MPG,H)-factorizability and (SCr,MPG,H)-factorizability in the category of paratopological groups.
(7) (R,MQG,H)-factorizability and (SCr,MQG,H)-factorizability in the category of quasitopological groups.
(8) (R,MSG,H)-factorizability and (SCr,MSG,H)-factorizability in the category of semitopological groups.

In reference to the categories of topological, paratopological, etc., groups mentioned in items (1) through
(8), we indicate that the group G in Definition 1.1 comes from one of these categories.

Since the classesFCSG,FCQG,FCPG andFCTGof first-countable groups are also countably productive
and hereditary, one can add four new items pertaining to these categories to Corollary 2.2. In particular,
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forH ∈ {CH,PH}, the notions of (R,FCPG,H)- and (SCr,FCPG,H)-factorizability coincide in the class of
paratopological groups.

It is natural to ask whether items (1)–(4) of Corollary 2.2 are valid for the classH = OH of continuous
open homomorphisms. The difficulty is that, even in the category of Hausdorff topological groups, the
diagonal of a family of continuous open homomorphisms can fail to be open. We answer this question
affirmatively in Proposition 4.1.

When G is a topological group, the following lemma is well-known. We skip the lemma’s proof because
its extension to quasitopological groups is nearly automatic.

Lemma 2.3. Let G be a quasitopological group, N be the closure of the singleton {e} in G, where e is the identity of
G, and π the canonical mapping of G onto G/N. Then the following hold:

(a) N is a closed invariant subgroup of G,π is an open continuous homomorphism, and the quotient quasitopological
group G/N is a T1-space.

(b) Every open set U in G satisfies U = π−1π(U).
(c) For every continuous mapping f : G → X to a T0-space X, there exists a continuous mapping h : G/N → X

satisfying f = h ◦ π. If in addition X is a semitopological group and f is a continuous homomorphism, then h
is also a continuous homomorphism.

Lemma 2.3 can be regarded as a very special case of a considerably more general construction of the
Tk-reflection, for k ∈ {0, 1, 2, 3, r, 3.5, t}, of a semitopological group, as defined in [26]. We employ ‘r’ and ‘t’
to abbreviate ‘regular’ and ‘Tychonoff’, respectively, as in [26]. According to Proposition 2.5 of [26], for
every semitopological group G, there exists a continuous canonical homomorphism φG,k : G → Tk(G) onto a
semitopological group Tk(G) with the following properties:

(i) The group Tk(G) satisfies the Tk separation axiom.
(ii) For every continuous mapping f : G → X to a Tk-space X, there exists a continuous mapping

h : Tk(G) → X satisfying f = h ◦ φG,k. [Hence, if X is a semitopological group and f is a continu-
ous homomorphism, then h is also a continuous homomorphism.]

The group Tk(G), also referred to as the Tk-reflection of G, is unique up to a topological isomorphism, which
allows a natural triangle diagram to commute.

It is now clear that the quotient group G/N in Lemma 2.3 is both the T0-reflection and T1-reflection of
the quasitopological group G. Furthermore, if G is a topological group, then the group G/N is also the
Tk-reflection of G for each k ∈ {0, 1, 2, r, t}. Hence, G/N = Tt(G) = Tych(G), the Tychonoff reflection of G.

If G is a paratopological group, then each Tk-reflection of G is also a paratopological group [27, pp. 201–
202]. An easy verification shows that the similar statement is valid for quasitopological groups as well. It
is important to note that each topological group is a T3-space.

Throughout the article, we will frequently employ the T2- and Tr-reflections of semitopological and
paratopological groups. Let us demonstrate how Hausdorff reflections work.

For a given classO of objects (semitopological groups, paratopological groups, etc.), we denote by SCO
(resp., FCO,MO) the class of second countable (resp., first-countable or metrizable) objects from the class
O. This convention will be applied in Propositions 2.4, 2.5, and 2.6.

In the special case of a semitopological or paratopological group G andX = R, item (b) of the next result
can be found in [15, Lemma 3.3].

Proposition 2.4. Let X be a class of Hausdorff spaces, O ∈ {SG,QG,PG,TG}, and assume that G ∈ O. Then the
properties of G in each of the items below are equivalent:

(a) (X, SCO)-factorizability and (X, SCO2)-factorizability;
(b) (X,FCO)-factorizability and (X,FCO2)-factorizability.
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Proof. We start with item (a) and assume that the group G is (X, SCO)-factorizable. Let f : G → X be a
continuous mapping to a space X ∈ X. By the assumption, we can find a continuous homomorphism
p : G→ H onto a second-countable group H ∈ O and a continuous mapping h : H → X such that f = h ◦ p.
Denote by φH,2 the canonical homomorphism of H onto the Hausdorff reflection T2(H) of H. According
to [26, Proposition 2.5], the homomorphism φH,2 is open, so T2(H) is a quotient group of H. Hence, the
Hausdorff group T2(H) is in the same class O. In addition, the quotient group T2(H) is second-countable.
Hence, T2(H) is a Hausdorff second-countable group. Applying property (ii) of the Hausdorff reflection
T2(H), we infer that there exists a continuous mapping h2 : T2(H)→ X satisfying h = h2 ◦ φH,2.

T2(H)

h2
((

H
h

��

φH,2oo G

ψ

~~ poo

f
��

X

Hence, the continuous homomorphism ψ = φH,2 ◦ p of G onto T2(H) and a continuous mapping h2 of T2(H)
to X satisfy the equality f = h2 ◦ ψ. This implies that G is (X, SCO2)-factorizable. The converse implication
is evident.

A similar argument applies to item (b), as continuous open homomorphisms preserve first-countability.

As of now, we have examined various factorization properties for the same group. Conversely, a
particular factorization property may be examined within various interrelated objects of topological algebra.
We start this in the following proposition that will be applied in the proof of Proposition 2.6 and in Section 4.
In the proposition, the case where O = TG is partially addressed by Lemma 2.3 (see also Theorem 4.23).

Proposition 2.5. Let O ∈ {SG,QG,PG,TG} and k ∈ {0, 1, 2, 3, r, 3.5, t}. The following are equivalent for a group
G ∈ O:

(a) G is (R,FCOk)-factorizable (resp., (R, SCOk)-factorizable);
(b) Tk(G) is (R,FCOk)-factorizable (resp., (R, SCOk)-factorizable).

Furthermore, the group G is (R,MO)-factorizable if and only if so is Tk(G).

Proof. Since the argument in the parenthetical case of (R, SCOk)-factorizability in items (a) and (b) is almost
the same, we only take into consideration the case of (R,FCOk)-factorizability.

Let φk : G → Tk(G) be the canonical homomorphism. The implication (b) ⇒ (a) is almost evident.
Indeed, let f be a continuous real-valued function on G. Assume that the group Tk(G) is (R,FCOk)-
factorizable. Since the real lineR is a Tk-space, the definition of Tk(G) implies that there exists a continuous
real-valued function h on Tk(G) satisfying f = h ◦ φk. By the above assumption, we can find a continuous
homomorphism p : Tk(G)→ H onto a first-countable group H ∈ O satisfying the Tk separation axiom and a
continuous function h∗ on H such that h = h∗ ◦ p. Then the continuous homomorphism ψ = p ◦φk of G onto
H satisfies f = h∗ ◦ ψ. It follows that G is (R,FCOk)-factorizable.

Conversely, assume that G is (R,FCOk)-factorizable and let h be a continuous real-valued function on
Tk(G). By our assumption, the continuous function f = h ◦ φk on G can be represented as the composition
f = h∗ ◦ p, where p is a continuous homomorphism of G onto a first-countable semitopological group H ∈ O
satisfying the Tk separation axiom, and h∗ a continuous function on H. Then, by the definition of the
reflection Tk(G), there exists a continuous homomorphism ψ : Tk(G) → H satisfying p = ψ ◦ φk. We have
therefore that h = h∗ ◦ ψ, which implies the (R,FCOk)-factorizability of the group Tk(G).

Metrizable spaces satisfy the Tk separation axiom for each k ∈ {0, 1, 2, 3, r, 3.5, t}. Therefore, repeating the
above argument in the case of (R,MO)-factorizability, with a metrizable group H ∈ O, we obtain the last
statement of the proposition.
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The list of equivalences in Proposition 2.4 can be expanded further by comparing factorization properties
of the groups G and T2(G). Item (b) of the following proposition, in the special case of a semitopological or
paratopological group G, follows from [15, Lemma 3.8].

Proposition 2.6. Let O ∈ {SG,QG,PG,TG} and assume that G ∈ O. Then the following are valid:

(a) G is (R, SCO)-factorizable iff T2(G) is (R, SCO2)-factorizable;
(b) G is (R,FCO)-factorizable iff T2(G) is (R,FCO2)-factorizable;
(c) G is (R,MO)-factorizable iff T2(G) is (R,MO)-factorizable iff the regular reflection of G, Re1(G), is (R,MO)-

factorizable.

Proof. It suffices to combine Proposition 2.4 with X = R and Proposition 2.5, taking k = 2 and k = r in the
latter one.

Proposition 2.6 asserts that the study of well-established variants of the concept of R-factorizability is
entirely reducible to the Hausdorff context. Given thatR-factorizability fundamentally involves continuous
real-valued functions, it is reasonable to presume that this reduction can be extended to the Tychonoff
scenario. We will demonstrate in Theorems 4.13, 4.22, and 4.19 that this is the case for the category of
paratopological groups, whereas Theorems 4.25 and 4.26 partially validate the hypothesis for completely
regular semitopological groups.

By adhering to the notation of Lemma 2.3, we can observe that T0(G) = T1(G) = G/N for any quasitopo-
logical group G. The equalities T2(G) = Tych(G) = G/N are also valid if G is a topological group. Therefore,
the subsequent two results follow from the combination of Lemma 2.3 and Proposition 2.6.

Proposition 2.7. Let G be a quasitopological group with identity e and N be the closure of the singleton {e} in G.
Then the following are equivalent:

(a) G is (R, SCQG)-factorizable (resp., (R,FCQG)-factorizable);
(b) G is (R, SCQG2)-factorizable (resp., (R,FCQG2)-factorizable);
(c) G/N is (R, SCQG2)-factorizable (resp., (R,FCQG2)-factorizable).

In presenting the subsequent result, immediate from (c) of Proposition 2.6 and Proposition 2.7, we
follow the convention outlined in (A) on page 623. Theorem 4.17 will furnish a complete justification for
undertaking this action.

Corollary 2.8. Let G be a topological group with identity e and N be the closure of the singleton {e} in G. Then
the group G is R-factorizable if and only if the Hausdorff topological group G/N is R-factorizable. Similarly, G is
M-factorizable if and only if so is G/N.

3. Quasitopological group associated to a semitopological group

All R-factorizable topological groups are ω-narrow, by virtue of [4, Proposition 8.1.3]. Nonetheless, it
is assumed that all spaces and topological groups in [4] satisfy the T1 separation axiom. For this reason, a
more general result is necessary, where semitopological and paratopological groups are not subject to any
separation restrictions. This requires the notion of quasitopological group associated to a semitopological group.

Given a semitopological group G with topology τ, we consider the semitopological group topology
τ−1 = {U−1 : U ∈ τ} on G. Clearly, the groups (G, τ) and (G, τ−1) are homeomorphic. Consider the family

B = {U ∩U−1 : e ∈ U ∈ τ},

where e is the identity of G. It is easy to verify that B is a local base at the identity of G for a quasitopological
group topologyλ on G which is finer than both τ and τ−1. The group (G, λ) is referred to as the quasitopological
group associated to G and is denoted by G∗. The identity mapping of G∗ onto G is a continuous homomorphism.
If G is a paratopological group, then G∗ is a topological group (see [9] or [25, Section 4.1]).

In some special cases, the following auxiliary lemma is well-known (see Corollary 3.2).
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Lemma 3.1. Let p : G→ H be a continuous homomorphism of a quasitopological group G to a semitopological group
H. Then p remains continuous as a homomorphism of G to the associated quasitopological group H∗.

Proof. Since both G and H are semitopological groups, it suffices to verify the continuity of the homo-
morphism p : G → H∗ at the identity element e of G. Take an open neighborhood U of the identity eH in
H∗. By the definition of H∗, there exists an open neighborhood V of eH in H such that V ∩ V−1

⊂ U. As
p : G → H is continuous, there exists an open symmetric neighborhood O of e in G such that p(O) ⊂ V.
Then the image p(O) is a symmetric subset of H, so p(O) = (p(O))−1

⊂ V−1. Hence, we have the inclusions
p(O) ⊂ V ∩ V−1

⊂ U. This proves the continuity of the homomorphism p : G→ H∗.

Corollary 3.2. If p : G→ H is a continuous homomorphism of a topological group G to a paratopological group H,
then p remains continuous as a homomorphism of G to the associated topological group H∗.

The subsequent definition originates from [1] concerning the specific instance of property P as countable
compactness within the category of paratopological groups.

Definition 3.3. Let P be a topological (or an algebraic-topological) property. A semitopological group G is
said to be totally P if the associated quasitopological group G∗ has P.

A set of properties P is conveyed from a paratopological group G to the associated topological group
G∗. Metrizability, first-countability, countable weight, countable network weight, and σ-compactness (with
the requirement of the T1 separation property of G in the latter case) are all found among these properties,
as referenced in [25, Corollary 4.3]. A similar result, excluding σ-compactness, is valid for semitopological
groups.

Proposition 3.4. Let G be a semitopological group and G∗ the quasitopological group associated to G. If G possesses
any of the following properties, then G∗ does as well:

(a) metrizability;
(b) first-countability;
(c) countable weight;
(d) countable network;
(e) the Ti separation property, for i ∈ {0, 1, 2, 3, r, 3.5, t}.

Proof. Let τ be the topology of the group G. We denote the semitopological group (G, τ−1) be G′. Consider
the diagonal in the product G × G′, ∆ = {(x, x) : x ∈ G}, and let p1 and p2 be the projections of G × G′ to the
first and second factor, respectively. Let also N(e) be the family of open neighborhoods of the identity e in
G. It is clear that the family

{U ×U−1 : U ∈ N(e)}

constitutes a neighborhood base at the identity (e, e) of the product group G × G′. Also, ∆ is a subgroup of
G × G′. Notice that the equality

(U ×U−1) ∩ ∆ = {(x, x) : x ∈ U ∩U−1
}

holds for every U ∈ N(e). Therefore, it follows from the definition of the group G∗ that the correspondence
(x, x) 7→ x, for x ∈ G, is a topological isomorphism of ∆ onto G∗. Therefore, we can identify G∗ with the
subgroup ∆ of G × G′.

Each of the properties in (a)–(e) of the proposition is finitely productive and hereditary, while the spaces
G and G′ are homeomorphic. Hence, if G possesses one of these properties, so does the diagonal ∆ as a
subspace of G × G′.

To examine the preservation of σ-compactness in the transition from G to G∗, we recall that a bitopological
space (X, τ, σ) is called 2-Hausdorff if for every pair of distinct points x, y ∈ X, there exist elements U ∈ τ and
V ∈ σ such that x ∈ U, y ∈ V, and U ∩ V = ∅.
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Lemma 3.5. The following are equivalent for a semitopological group G with topology τ and identity element e:

(a) the diagonal ∆ is closed in G × G′, where G′ = (G, τ−1);
(b) {e} =

⋂
{U2 : e ∈ U ∈ τ};

(c) the bitopological space (G, τ, τ−1) is 2-Hausdorff.

Proof. (a)⇒ (b). Take an arbitrary point (x, y) ∈ G × G′ with x , y. Since ∆ is closed in G × G′, we can find
an open neighborhood U of e in G such that the open neighborhood xU× yU−1 of the point (x, y) in G×G′ is
disjoint from ∆. The latter implies that the sets xU and yU−1 are disjoint, so x−1y < U2. Hence, (b) follows.

(b) ⇒ (c). If x, y ∈ G and x , y, choose an open neighborhood U of e in G such that x−1y < U2. Then
y < xU2, so the sets xU and yU−1 are disjoint. We see that the space (G, τ, τ−1) is 2-Hausdorff.

(c)⇒ (a). This implication is clear after the above arguments.

Proposition 3.6. Let G be a σ-compact semitopological group such that for every x ∈ G distinct from the identity
element e, there exists a neighborhood U of e in G such that x < U2. Then the quasitopological group G∗ associated to
G is also σ-compact.

Proof. According to the assumptions of the proposition, G satisfies (b) of Lemma 3.5, so the diagonal ∆ is
closed in G×G′. Since the spaces G and G′ are homeomorphic, we see that the product G×G′ and its closed
subspace ∆ are σ-compact. It remains to note that ∆ is topologically isomorphic with the group G∗.

The proofs of the two subsequent results are evident, hence omitted.

Lemma 3.7. Let H be a subgroup of a semitopological group G. Then H∗ is naturally topologically isomorphic to a
subgroup of G∗.

Proposition 3.8. Let Π =
∏

i∈I Si be the Cartesian product of a family of semitopological groups. Then the qua-
sitopological group Π∗ associated to Π is topologically isomorphic to the Cartesian product

∏
i∈I S∗i .

Another important property of semitopological groups is total ω-narrowness. The following fact will
be used in Section 4.

Proposition 3.9. Every subgroup of the Cartesian product Π =
∏

i∈I Si of a family of semitopological groups with
countable networks is totally ω-narrow.

Proof. Let H be an arbitrary subgroup of the Cartesian product Π. Applying Lemmas 3.7 and 3.8, we can
identify H∗, algebraically and topologically, with a subgroup ofΠ∗ �

∏
i∈I S∗i . So it suffices to show that this

subgroup is ω-narrow.
For a nonempty subset J of the index set I, let pJ be the projection ofΠ∗ onto Π∗J =

∏
i∈J S∗i . Take an open

neighborhood U of the identity e in H∗. There exists a canonical open set V in Π∗ such that e ∈ H∗ ∩ V ⊂ U.
Then V = p−1

J pJ(V), for a finite subset J of I. By (d) of Proposition 3.4, the semitopological groupΠ∗J �
∏

i∈J S∗i
and its subgroup K = pJ(H∗) have countable networks, so the group K is ω-narrow. Since O = pJ(V) is an
open neighborhood of the identity element inΠ∗J, there exists a countable set C ⊂ K such that K ⊂ CO∩OC.
Choose a countable set F ⊂ H∗ such that pJ(F) = C. Let us show that H∗ ⊂ FV ∩ VF.

Take an arbitrary element h ∈ H∗. Then pJ(h) ∈ yO, for some y ∈ C. Choose x ∈ F with pJ(x) = y. Then
pJ(h) ∈ pJ(xV) or, equivalently, pJ(x−1h) ∈ pJ(V). Since V = p−1

J pJ(V), we conclude that x−1h ∈ V, whence
h ∈ xV. This implies that H∗ ⊂ FV. A similar argument shows that H∗ ⊂ VF. Finally, since F ⊂ H∗ and H∗

is a subgroup of Π∗, the latter inclusions imply that H∗ = F(H∗ ∩ V) and H∗ = (H∗ ∩ V)F. This proves that
FU = H∗ = UF, so the group H∗ is ω-narrow. Therefore, the group H is totally ω-narrow.

Remark 3.10. The condition on the factors Si in Proposition 3.9 is close to being optimal. Indeed, the second
diagonal in the square of the Sorgenfrey line is a typical example of how the product of two hereditarily
separable, hereditarily Lindelöf paratopological groups can contain a closed discrete subgroup of cardinality
2ω.



M. Tkachenko / Filomat 40:2 (2026), 619–648 630

4. Absoluteness of various concepts of factorizability

To begin, we extend Corollary 2.2 to the class OH of open continuous homomorphisms, restricted to
(para)topological groups. As we noted following Corollary 2.2, the challenge is that, even when viewed as
a mapping onto its image, the diagonal of a family of open continuous homomorphisms need not be open.

Proposition 4.1. The notions of factorizability in each of items (1), (2) and (3) below coincide for each topological
group G:

(1) (SCr,FCTG2,OH)-factorizability and (R,FCTG,OH)-factorizability;
(2) (SCr, SCTG2,OH)-factorizability and (R, SCTG,OH)-factorizability;
(3) (SCr,MTG,OH)-factorizability and (R,MTG,OH)-factorizability.

Proof. We only prove the equivalences in items (1) and (2), the reader is left to perform a similar verifica-
tion in (3). Clearly, it suffices to verify that in topological groups, (R,FCTG,OH)-factorizability implies
(SCr,FCTG2,OH)-factorizability and, similarly, (R, SCTG,OH)-factorizability implies (SCr, SCTG2,OH)-
factorizability. So we assume that the group G is (R,FCTG,OH)-factorizable (resp., (R, SCTG,OH)-
factorizable). Let us prove that G has the following important property:
Claim. For every closed subgroup P of type Gδ in G, the quotient space G/P is first-countable (second-countable).

Let P be a closed subgroup of type Gδ in G. Take a family {Un : n ∈ ω} of open neighborhoods of the
identity e in G such that P =

⋂
n∈ω Un. By induction we define a sequence {Vn : n ∈ ω} of open symmetric

neighborhoods of the e in G such that V0 ⊂ U0 and V2
n+1 ⊂ Vn ∩ Un for each n ∈ ω. According to [4,

Lemma 3.3.10], there exists a continuous prenorm N on the group G satisfying

{x ∈ G : N(x) < 1/2n
} ⊂ Vn ⊂ {x ∈ G : N(x) ≤ 2/2n

},

for each n ∈ ω. By our choice of N, the closed subgroup K = {x ∈ G : N(x) = 0} of G satisfies K =
⋂

n∈ω Vn ⊂ P.
Considering N as a continuous real-valued function on G and making use of our assumption about G, we find
an open continuous homomorphism π : G→ H onto a first-countable (resp., second-countable) topological
group H and a continuous real-valued function h on H such that N(x) = h(π(x)), for each x ∈ G. The
latter equality implies that kerπ ⊂ K, because h(eH) = N(e) = 0. Also, since K ⊂ P, there exists a mapping
φ : H → G/P satisfying p = φ ◦ π, where p : G→ G/P is the canonical quotient mapping. As the mappings
π and p are continuous, open and surjective, so is φ. Therefore, the space G/P is first-countable (resp.,
second-countable) as an open continuous image of the first-countable (resp., second-countable) space H.
This proves the claim.

Let f : G → X be a continuous mapping to a regular second-countable space X. We can consider X
as a subspace of Rω. By (4) of Corollary 2.2 (with H = CH) and (a) of Proposition 2.4 (with X = SCr
and O = TG), the group G is (SCr,FCTG2,CH)-factorizable (resp., (SCr, SCTG2,CH)-factorizable). Hence,
there exists a continuous homomorphism π of G onto a Hausdorff first-countable (resp., second-countable)
topological group H such that f = k ◦ π, for some continuous real-valued function k on H.

Let P be the kernel of the homomorphism π. Clearly, P is closed subgroup of type Gδ in G. Denote by
p the quotient homomorphism of G onto G/P. By the above Claim, the Hausdorff topological group G/P
is first-countable (resp., second-countable). There exists a continuous bijection j of G/P onto H such that
j◦ p = π. Then f = k ◦π = k ◦ j◦ p, where k ◦ j is a continuous mapping of G/P to X. We conclude, therefore,
that the group G is (SCr,FCTG2,OH)-factorizable (resp., (SCr, SCTG2,OH)-factorizable).

We extend Proposition 4.1 to paratopological groups, but at the expense of additional technical details.
This requires the subsequent lemma.

Lemma 4.2. Let p be a continuous homomorphism of an (R,FCPG,OH)-factorizable (resp., (R, SCPG,OH)-
factorizable) paratopological group G to a semitopological group H with a countable family γ of open neighborhoods
of the identity eH such that {eH} =

⋂
U∈γ U. Then there exist continuous homomorphisms q : G → L and r : L → H

satisfying p = r ◦ q, where q is open and L is a Hausdorff first-countable (resp., second-countable) paratopological
group.
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Proof. It follows from the assumptions of the lemma and the homogeneity of H that the space H is Hausdorff.
Let γ = {Un : n ∈ ω}. For every n ∈ ω, put Vn = p−1(Un). Then each Vn is an open neighborhood
of the identity eG in G. It follows from the continuity of p that p(Vn) ⊂ Un for each n ∈ ω. Therefore,
ker p = p−1(eH) =

⋂
n∈ω Vn.

According to [8, Corollary 3], for every n ∈ ω, there exists a continuous real-valued function fn on G
with values in [0, 1] such that fn(eG) = 0 and f−1

n ([0, 1)) ⊂ Vn. Then the real-valued function f =
∑

n∈ω 2−n fn
on G is continuous and satisfies f−1(0) ⊂ ker p.

By the lemma’s assumptions, we can find an open continuous homomorphism π of G onto a first-
countable (second-countable) paratopological group K and a continuous real-valued function h on K sat-
isfying f = h ◦ π. Let φ2 be the canonical homomorphism of K onto the Hausdorff reflection T2(K) of the
group K. By [26, Proposition 2.5], the homomorphism φ2 is open and onto. Hence, the group T2(K) is also
first-countable (second-countable). It follows from the definition of T2(K) that this group is Hausdorff and
that there exists a continuous real-valued function h2 on T2(K) such that h = h2 ◦φ2. Clearly, q = φ2 ◦π is an
open continuous homomorphism of G onto T2(K) satisfying f = h2 ◦ q. Notice that h2(e2) = f (eG) = 0, where
e2 is the identity of T2(G).

G
p //

f

""
π

��
q

""

H

K h //

φ2

��

R

T2(K)
h2

<<

r

NN

It is easy to see that ker q ⊂ ker p. This follows from the inclusions

ker q = q−1(e2) ⊂ q−1(h−1
2 (0)) = f−1(0) ⊂ ker p.

Therefore, there exists a homomorphism r of L = T2(K) to H satisfying p = r ◦ q. Since p is continuous and q
is open, we conclude that the homomorphism r is continuous. This completes the proof.

Proposition 4.3. The notions of factorizability in each of items (1)–(3) below coincide for every paratopological group
G:

(1) (R,FCPG,OH)-factorizability, (SCr,FCPG,OH)-factorizability, and
(SCr,FCPG2,OH)-factorizability;

(2) (R, SCPG,OH)-factorizability, (SCr, SCPG,OH)-factorizability, and
(SCr, SCPG2,OH)-factorizability;

(3) (R,MPG,OH)-factorizability and (SCr,MPG,OH)-factorizability.

Proof. First, we simultaneously establish the equivalence of the three notions in items (1) and (2). It suffices to
show that (R,FCPG,OH)-factorizability of a given paratopological group G implies its (SCr,FCPG2,OH)-
factorizability and, similarly, (R, SCPG,OH)-factorizability of G implies its (SCr, SCPG2,OH)-factoriz-
ability.

Let f : G → X be a continuous mapping of an (R,FCPG,OH)-factorizable (resp., (R, SCPG,OH)-
factorizable) paratopological group G to a regular second-countable space X. By (3) of Corollary 2.2, the
group G is (SCr,FCPG,CH)-factorizable (resp., (SCr, SCPG,CH)-factorizable). Therefore, we can find a
continuous homomorphism p : G → H onto a first-countable (resp., second-countable) paratopological
group H and a continuous mapping h : H → X such that f = h ◦ p. Let φ : H → T2(H) be the canonical
open homomorphism of H onto the Hausdorff reflection T2(H) of H. Since the space X is regular (hence,
Hausdorff), there exists a continuous mapping h2 : T2(H)→ X satisfying h = h2◦φ. Notice that the Hausdorff
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group T2(H) is first-countable (resp., second-countable) as an open continuous image of H. In either case,
T2(H) is first-countable, so there exists a countable family γ of open neighborhoods of the identity e in
T2(H) such that the intersection of the closures of the elements of γ contains only the identity e. Applying
Lemma 4.2, we find an open continuous homomorphism q : G→ L onto a Hausdorff first-countable (resp.,
second-countable) paratopological group L and a continuous homomorphism r : L → T2(H) satisfying
φ ◦ p = r ◦ q.

L
r

""
G

q
??

f ��

p // H
φ //

h
��

T2(H)

h2||
X

Therefore, the continuous mapping 1 = h2 ◦ r of L to X satisfies the equality f = 1 ◦ q, where q is an
open continuous homomorphism. This proves that the group G is (SCr,FCPG2,OH)-factorizable (resp.,
(SCr, SCPG2,OH)-factorizable).

The argument is a little bit shorter for item (3). Given a continuous mapping f : G → X of an
(R,MPG,OH)-factorizable paratopological group G to a regular second-countable space X, we use item
(6) of Corollary 2.2 to find a continuous (not necessarily open) homomorphism p : G→ H onto a metrizable
paratopological group H and a continuous mapping h : H → X such that f = h ◦ p. Since H is metrizable,
we can find a continuous real-valued function 1 on H such that 1−1(0) = {eH}. Then the continuous function
1∗ = 1 ◦ p on G satisfies 1−1

∗ (0) = ker p. By the assumption about G, there exists an open continuous homo-
morphism q : G → L onto a metrizable paratopological group L such that 1∗ = j ◦ q, for some continuous
real-valued function j on L. It is clear that j(eL) = 0. Therefore, ker q = q−1(eL) ⊂ 1−1

∗ (0) = ker p. The latter
inclusion implies that there exists a homomorphism φ : L → H satisfying p = φ ◦ q. Since q is an open
continuous homomorphism, we conclude that the homomorphism φ is continuous.

The continuous mapping h∗ = h ◦φ of the metrizable paratopological group L to X satisfies the equality
f = h∗ ◦ q. This proves that the group G is (SCr,MPG,OH)-factorizable.

The following two results, each with its own value, are necessary to unify diverse notions of factoriz-
ability of a (para)topological group in multiple topological-algebraic categories.

Proposition 4.4. Let a topological (paratopological, quasitopological) group G be embedded, algebraically and topo-
logically, as a subgroup to a product Π =

∏
i∈I Si of first-countable semitopological groups. Then for every countable

subset C of the index set I, there exists a countable set J with C ⊂ J ⊂ I such that the subgroup pJ(G) of ΠJ =
∏

i∈J Si
is a topological (paratopological, quasitopological) group, where pJ : Π→ ΠJ is the projection.

Proof. We exclusively examine the case of a topological group G. Several simplifications are evident in our
argument when considering a paratopological or quasitopological group G. To shorten the argument, we
assume that for some i0 ∈ I, the factor Si0 is a singleton.

We let J0 = C ∪ {i0} and B0 = {Π}. Suppose that for some n ∈ ω, we have defined countable subsets
J0 ⊂ · · · ⊂ Jn of I and countable families B0 ⊂ · · · ⊂ Bn of canonical open neighborhoods of the identity e in
Π. For every V ∈ Bn, we choose a finite set FV ⊂ I such that V = p−1

FV
pFV (V). Then

Jn+1 = Jn ∪
⋃{

FV : V ∈ Bn

}
is a countable subset of I and Jn ⊂ Jn+1. Let Nn+1 be a countable local base at the identity en+1 of the
semitopological group ΠJn+1 . Since G is a topological group and the projection pJn+1 is continuous, we can
choose a countable family Bn+1 of canonical open neighborhoods of e in Π with Bn ⊂ Bn+1 such that for
each element U ∈ Nn+1, there exists V ∈ Bn+1 satisfying

V ∪ (G ∩ V)−1
∪ (G ∩ V)2

⊂ p−1
Jn+1

(U). (1)
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This completes our construction of the sets Jn and countable families Bn of canonical open neighborhoods
of e in Π, where n ∈ ω.

Let J =
⋃

n∈ω Jn and B =
⋃

n∈ωBn. Clearly, C ⊂ J0 ⊂ J and both J and B are countable. Notice that the
equality V = p−1

J pJ(V) holds for each V ∈ B. We claim that the subgroup pJ(G) of ΠJ is a paratopological
group when endowed with the subspace topology.

Let eJ be the identity element of ΠJ. Since K = pJ(G) is a semitopological group, as a subgroup of ΠJ, it
suffices to verify the continuity of multiplication at the identity eJ of the group K. Take an arbitrary open
neighborhood O of eJ in the groupΠJ. We can assume without loss of generality that O is a canonical open
set in ΠJ. Hence, O depends on a finite set of coordinates, say, F ⊂ J. Then F ⊂ Jk, for some integer k ≥ 1.
Since Nk is a local base at the identity of ΠJk , there exists an element U ∈ Nk such that U ⊂ pJ

Jk
(O), where pJ

Jk

is the projection of ΠJ onto ΠJk . It follows from the above inclusion and F ⊂ Jk that p−1
Jk

(U) ⊂ p−1
J (O). By the

definition of Bk (see (1)), we can find an element V ∈ Bk satisfying V ⊂ p−1
Jk

(U) and (G ∩ V)2
⊂ p−1

Jk
(U). Take

arbitrary elements x, y ∈ K ∩ pJ(V). There exist elements a, b ∈ G such that pJ(a) = x and pJ(b) = y. It follows
from the equality V = p−1

J pJ(V) that a, b ∈ V. We see that a, b ∈ G ∩ V, so our choice of the set V implies
that ab ∈ (G ∩ V)2

⊂ p−1
Jk

(U) ⊂ p−1
J (O). Therefore, we have that xy = pJ(ab) ∈ pJp−1

J (O) = O. This proves that
(K ∩ pJ(V))2

⊂ O. So, multiplication in K = pJ(G) is jointly continuous at eJ. We conclude that the subgroup
K of ΠJ is a paratopological group.

Using the set V that we selected in (1), a similar argument shows that the inclusion
(
K ∩ pJ(V)

)−1
⊂ O is

valid. The latter inclusion implies that inversion in K is continuous at the identity element. Hence, inversion
in K is continuous since K is a semitopological group. As a result, pJ(G) = K is a topological group.

Lemma 4.5. Let O be a class of semitopological (quasitopological, paratopological) groups. Let also G be a group
with topology and assume that G is completely regular and (R,O)-factorizable. Then G is topologically isomorphic to
a subgroup of the Cartesian product of a subfamily of O.

Proof. Denote by I = C(G) the family of continuous real-valued functions on G. Since G is (R,O)-factorizable,
for every f ∈ I, we can find a group H f ∈ O, a continuous surjective homomorphism p f : G → H f and a
continuous real-valued function h f on H f satisfying f = h f ◦ p f . It is easy to see that the diagonal p of the
family {p f : f ∈ I} is a topological monomorphism of G to the Cartesian product

∏
f∈I H f .

When an (R,FCSG)-factorizable quasitopological group G is (R,FCQG)-factorizable and when the
(R, SCSG)-factorizability of G implies its (R, SCQG)-factorizability are questions addressed by the following
theorem. A stronger form of this result will be presented in Theorem 4.27.

Theorem 4.6. For a completely regular quasitopological group G, the following are equivalent:

(a) G is (R,FCSG)-factorizable (resp., (R, SCSG)-factorizable);
(b) G is (R,FCQG)-factorizable (resp., (R, SCQG)-factorizable);
(c) G is (R,FCQG2)-factorizable (resp., (R, SCQG2)-factorizable).

Proof. We focus on (R,FCSG)-factorizability, thus leaving an analogous verification of the parenthetical
part of the theorem to the reader.

Clearly, (b) implies (a), while (b) and (c) of the theorem are equivalent by item (b) of Proposition 2.4,
where X = R and O = QG. Therefore, it suffices to show that (a) implies (b). So we assume that the group
G is (R,FCSG)-factorizable.

Since G is completely regular and (R,FCSG)-factorizable, Lemma 4.5 implies that G is topologically
isomorphic to a subgroup of the topological product of a family of first-countable semitopological groups,
say,Π =

∏
i∈I Si. Let iG : G→ Π be a topological monomorphism. For every nonempty subset J of the index

set I, we denote by pJ the projection of Π onto ΠJ =
∏

i∈J Si.
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Let f be a continuous real-valued function on the quasitopological group G. According to the theorem’s
assumption regarding G, it is possible to find a first-countable semitopological group H and a continuous
homomorphism φ from G onto H such that f = h ◦ φ, where h is a continuous real-valued function on H.
Since the group H is first-countable, we can apply [4, Lemma 8.5.4] to find a countable subset C of I and a
continuous homomorphism φK of K = pC(iG(G)) to H satisfying φ = φK ◦ pC ◦ iG.

By Proposition 4.4, there exists a countable set J ⊂ I with C ⊂ J such that the subgroup L = pJ(iG(G)) of
ΠJ is a quasitopological group. Clearly, the groups ΠJ and L are first-countable. Denote by pJ

C the natural
projection of ΠJ to ΠC satisfying pC = pJ

C ◦ pJ. Note that K = pJ
C(L). Then the continuous homomorphism

r = pJ
C↾L satisfies φ = φK ◦ r ◦ pJ ◦ iG. Let iK and iL be the identity embeddings of K to ΠC and L to ΠJ,

respectively.

G
iG //

φ

��

f

��

Π
pJ //

pC

��

ΠJ
pJ

C

~~

L? _
iLoo

r

��
ΠC K? _

iKoo

φK

vv
R Hhoo

Then the continuous real-valued function hL = h ◦ φK ◦ r on L satisfies f = hL ◦ (pJ ◦ iG). Since L is a
first-countable quasitopological group, the latter equality implies that G is (R,FCQG)-factorizable. Hence,
(b) follows from (a).

It is not clear whether one can weaken the complete regularity of G in Theorem 4.6 to regularity or even
the Hausdorff separation property (see Problems 6.6 and 6.7).

We provide the reader with two helpful results regarding Tychonoff reflections of semitopological
groups before going deeper into various types of factorizability in (para)topological and semitopological
groups. Although not stated directly in [26], the following facts are simple consequences of the information
presented there.

Proposition 4.7. Let φt : G → Tych(G) be the canonical homomorphism of a semitopological group G onto its
Tychonoff reflection Tych(G). Then for each cozero set O in G, the equality O = φ−1

t φt(O) is valid and φt(O) is cozero
set in Tych(G). Hence, φt sends zero-sets in G to zero-sets in Tych(G). In particular, the mapping φt is z-closed.

Proof. Let O be a nonempty cozero set in G. There exists a continuous real-valued function f on G with
values in [0, 1] such that O = f−1(J), where J = (0, 1] ⊂ R. By the definition of Tych(G), we can find a
continuous real-valued function 1 on Tych(G) satisfying f = 1 ◦ φt. The latter equality implies that the
cozero set U = 1−1(J) in Tych(G) satisfies O = f−1(J) = φ−1

t

(
1−1(J)

)
= φ−1

t (U). Hence, O = φ−1
t φt(O), where

φt(O) = U = 1−1(U) is a cozero set in Tych(G).
The remaining statements of the proposition are evident since the complement of a cozero set is a

zero-set.

Let K = Tych(G) be the Tychonoff reflection of a semitopological group G andφt : G→ K be the canonical
homomorphism. Denote by C(G) and C(K) the families of continuous real-valued functions on G and K,
respectively. We define a mapping Φ : C(K) → C(G) by letting Φ(h) = h ◦ φt, for each h ∈ C(K). Since
K = φt(G), the mapping Φ is injective.

Further, according to the definition of K = Tych(G), for every f ∈ C(G), there exists a continuous real-
valued function h f on K that satisfies f = h f ◦ φt. Such a function h f is obviously unique. By allowing
Λ( f ) = h f , we obtain a mapping Λ : C(G) → C(K). The following proposition explains the properties of Φ
and Λ.
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Proposition 4.8. The mapping Φ is a bijection of C(K) onto C(G), while Λ is bijection of C(G) onto C(K). Also, Λ
is the inverse of Φ, so Φ ◦Λ is the identity mapping of C(G) onto itself.

Proof. It follows from the definitions of Φ and Λ that Φ(Λ( f )) = Φ(h f ) = h f ◦ φt = f , for each f ∈ C(G).
This implies the last statement of the proposition. Also, it follows from the unicity of h f that the equalities
Λ(Φ(h)) = Λ(h ◦ φt) = h are valid for each h ∈ C(K). Hence, Φ and Λ are bijections and Λ is the inverse of
Φ.

Remark 4.9. Propositions 4.7 and 4.8 are evidently valid if the Tychonoff reflection Tych(G) is replaced with
the regular reflection, Re1(G), of a semitopological group G. This follows from the existence of a continuous
homomorphism ψ : Re1(G)→ Tych(G) satisfying φt = ψ ◦ φr, where φr : G→ Re1(G) and φt : G→ Tych(G)
are canonical homomorphisms (see [26, Proposition 3.5]).

The equality Re1(G) = Tych(G) does not necessarily apply to a semitopological or quasitopological group
G. According to [18], there exists a regular quasitopological group G with |G| = 2c, where c = 2ω, such that
every continuous real-valued function on G is constant. Therefore, G = Re1(G), while Tych(G) is the trivial
one-element group. Nevertheless, the equality Tych(G) = Re1(G) holds for every paratopological group G,
because the regular paratopological group Re1(G) is Tychonoff according to a Banakh–Ravsky theorem in
[8].

The subsequent lemma shows that, notwithstanding the phenomenon outlined in Remark 4.12, (R, SCSG)-
factorizable semitopological (hence, paratopological) groups possess a property inherently linked to ω-
narrowness.

Lemma 4.10. If G is an (R, SCSG)-factorizable semitopological group, then the Tychonoff reflection of G, Tych(G),
is totally ω-narrow. Furthermore, every (R, SCSG)-factorizable topological group G is ω-narrow.

Proof. Let φG : G → Tych(G) be the canonical continuous surjective homomorphism and f be an arbitrary
continuous real-valued function on Tych(G). Then f ∗ = f ◦ φG is a continuous function on G. Since G is
(R, SCSG)-factorizable, we can find a second-countable semitopological group S and a continuous surjective
homomorphism p : G → S such that f ∗ = 1 ◦ p, for some continuous real-valued function 1 on S. Denote
by φS the canonical continuous homomorphism of S onto Tych(S). By the definition of Tych(S), there exists
a continuous real-valued function h on Tych(S) satisfying 1 = h ◦ φS. Then φ∗ = φS ◦ p is a continuous
homomorphism of G onto the completely regular semitopological group H f = Tych(S). The group H f has
a countable network as a continuous image of the second-countable group S. Proposition 3.5 from [26]
implies that there exists a continuous homomorphismψ : Tych(G)→ Tych(S) satisfying φ∗ = ψ◦φG. Hence,
we have the equalities

f ◦ φG = f ∗ = 1 ◦ p = h ◦ φS ◦ p = h ◦ φ∗ = h ◦ ψ ◦ φG,

so the diagram below commutes.

G
φG //

f ∗

��
p

��

Tych(G)
f

{{
ψ

��

R

S

1

??

φS // Tych(S)

h

cc

We see, therefore, that f = h ◦ ψ. It follows that every continuous real-valued function f on Tych(G) factor-
izes through a continuous homomorphism of Tych(G) onto a semitopological group H f with a countable
network. Since the semitopological group Tych(G) is completely regular, we conclude that Tych(G) is topo-
logically isomorphic to a subgroup of the Cartesian product

∏
f∈I H f of semitopological groups H f with
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countable networks, where I is the family of all continuous real-valued functions on Tych(G). Applying
Proposition 3.9, we conclude that the semitopological group Tych(G) is totally ω-narrow, thus implying the
first statement of the lemma.

Assume that G is an (R, SCSG)-factorizable topological group and let N be the closure of the singleton
{e} in G. The quotient group G/N is Hausdorff and regular, where e is the identity of G. Hence, it is easy
to show that the group G/N is the Tychonoff reflection of G, Tych(G) = G/N. Consequently, the topological
group G/N is ω-narrow, as we have just shown. Denote by π the quotient homomorphism of G onto G/N.

Let U be an open neighborhood of the identity e in G. Take an open neighborhood V of e such that
V2
⊂ U. Then O = π(V) is an open neighborhood of the identity in G/N, so there exists a countable set

C ⊂ G/N such that CO = G/N. There exists a countable set F ⊂ G such that π(F) = C. Let us show that
FU = G. Indeed, we have the equalities G/N = CO = π(F)π(V) = π(FV). Since N is the kernel of π, it
follows from G/N = π(FV) that G = FVN. Our definition of N as the closure of the singleton {e} implies
that N ⊂ V. Hence, G = FVN ⊂ FVV ⊂ FU, and we conclude that G = FU. This proves that the group G is
ω-narrow.

The next result follows immediately from Lemma 4.10 since the equality Tych(G) = Re1(G) holds for
each paratopological group G (see Remark 4.9).

Corollary 4.11. If G is an (R, SCSG)-factorizable paratopological group, then the regular reflection Re1(G) of G is
totally ω-narrow.

The conclusion of Corollary 4.11 will be improved in Theorem 4.13, where it is demonstrated that if
G is an (R, SCSG)-factorizable paratopological group, then both G and its regular reflection, Re1(G), are
(R, SCPG)-factorizable.

Remark 4.12. An (R, SCPG)-factorizable paratopological group is not necessarily ω-narrow, so the conclu-
sion of Corollary 4.11 is not valid for the group G in place of Re1(G). Indeed, consider the additive group
of a linearly ordered field F endowed with a topology τ whose base is {[x,∞) : x ∈ F} (see [12]). Then
F∗ = (F, τ) is a first-countable paratopological group satisfying the T0 separation axiom. It is clear that if
U and V are open subsets of F∗, then either U ⊂ V or V ⊂ U. Therefore, every continuous real-valued
function on F∗ is constant and F∗ is both (R, SCPGr)- and (R, SCTG2)-factorizable as an additive paratopo-
logical group. Nevertheless, if the cofinal character of the linear order on F is uncountable, then F∗ is not
ω-narrow. A more complicated example of a Hausdorff (R, SCTG2)-factorizable paratopological group G
that fails to be ω-narrow can be found in [22, Theorem 1]. To see that the group G = (Σ, σ) in [22] is
(R, SCTG2)-factorizable, it suffices to verify that the semiregularization of the group G coincides with the
countably compact dense subgroup Σ of the compact topological group Tω1 , where T is the torus group.
Here Σ denotes the Σ-product of ω1 copies of the group T considered as a subgroup of Tω1 . We note that
all subgroups of compact topological groups are precompact, hence R-factorizable [4, Corollary 8.1.17].

We can now show that the two ‘R-factorizabilities’ of an arbitrary paratopological group in the categories
of second countable paratopological and semitopological groups are equivalent. In other words, none
of the two previously listed categories need to be specified when discussing the R-factorizability of a
paratopological group.

By [19, Corollary 4], a regular paratopological group G is topologically isomorphic to a subgroup of a
Cartesian product of regular second-countable paratopological groups if and only if G is totally ω-narrow.
Equivalently, for every neighborhood U of the identity element in the group G, there exists a continuous
homomorphism p : G→ H onto a regular second-countable paratopological group H such that p−1(V) ⊂ U,
for some neighborhood V of the identity in H (see [28, Lemma 2.6]). In other words, every totally ω-narrow
paratopological group is projectively second-countable. This equivalence is used in the proof of the subsequent
theorem.

A real-valued function f on a semitopological group G is called left (resp., right) ω-quasi-uniformly con-
tinuous if for every ε > 0, one can find a countable family γ of open neighborhoods of the identity element
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e in G with the property that for every x ∈ G, there exists U ∈ γ such that the inequality | f (ux) − f (x)| < ε
(resp., | f (xu) − f (x)| < ε) holds for each u ∈ U. Clearly, every left (resp., right) ω-quasi-uniformly con-
tinuous function on G is continuous. If a function is both left and right ω-quasi-uniformly continuous, it
is said to be ω-quasi-uniformly continuous. A semitopological group G has property ω-QU if every con-
tinuous real-valued function on G is ω-quasi-uniformly continuous [28]. Notice that every first-countable
semitopological group has property ω-QU.

We recall that a continuous mapping f : X→ Y is called d-open if for every open subset U of X, the image
f (U) is a dense subset of an open set V in Y. Equivalently, f (U) is a subset of the interior of its closure f (U)
in Y.

Theorem 4.13. For a paratopological group G, the following are equivalent:

(a) G is (R, SCSG)-factorizable;
(b) G is (R, SCPG)-factorizable;
(c) G is (R, SCPGr)-factorizable, that is, (R, SCPGt)-factorizable;
(d) the regular reflection of G, Re1(G), is (R, SCPG)-factorizable.

Proof. The implications (c)⇒ (b)⇒ (a) are evident. Items (b) and (c) in the theorem are equivalent due to
[28, Theorem 3.8]. Also, it follows from Proposition 2.5, with O = PG and k = r, that (d) implies (b). It only
remains to show that (a) implies (d). Suppose that the group G is (R, SCSG)-factorizable.
Claim. The group G has property ω-QU.

Our proof of the claim is very close to the one of [28, Lemma 3.7]. Let f be a continuous real-valued
function on the group G. Then we can find a continuous homomorphismψ : G→ S onto a second-countable
semitopological group S and a continuous function 1 on S such that f = 1 ◦ ψ. Let γ be a countable local
base at the identity of S. Put λ = {ψ−1(U) : U ∈ γ}. One can easily verify that λ is a countable family of
open neighborhoods of the identity in G having the property that for every point x ∈ G and every ε > 0,
there exists an element U ∈ λ such that | f (x) − f (ux)| < ε and | f (x) − f (xu)| < ε for each u ∈ U. Hence, f is
ω-quasi-uniformly continuous. So G has property ω-QU. This proves our Claim.

The canonical surjective homomorphism φ : G → Re1(G) is d-open, by [26, Proposition 3.1]. Apply-
ing [31, Proposition 2.4], we conclude that the group Re1(G) also has property ω-QU. Also, by Corol-
lary 4.11, the group Re1(G) is totally ω-narrow and, hence, projectively second-countable. According to [16,
Lemma 3.7], where P is the class of second-countable paratopological groups, every projectively second-
countable paratopological group with property ω-QU is (R, SCPG)-factorizable. Hence, the group Re1(G)
is (R, SCPG)-factorizable. This proves that (a) implies (d) and completes the proof of the theorem.

It turns out that the conclusion of Theorem 4.13 remains valid if second-countability is substituted with
first-countability. To establish this fact we need three lemmas.

Let us recall that a semitopological group G is ω-balanced if for every neighborhood U of the identity in
G, one can find a countable family γ of open neighborhoods of the identity in G such that for every x ∈ G,
there exists V ∈ γ satisfying x−1Vx ⊂ U. The family γ as above is said to be subordinated to U. It is clear
that every first-countable semitopological group is ω-balanced and that every subgroup of an ω-balanced
group is ω-balanced. Also, it is easy to verify that the Cartesian product of a family of ω-balanced groups
is ω-balanced (see [3, Sections 8 and 9] or [4, Section 3.4]).

The following auxiliary fact can be obtained by combining Theorem 3.12 and Lemma 3.16, both from
[15]. We present a direct argument here.

Lemma 4.14. Let G be an (R,FCSG)-factorizable paratopological group. Then the group Re1(G) is ω-balanced.

Proof. By a theorem in [8], the regular paratopological group H = Re1(G) is completely regular. Denote by
φ the canonical homomorphism of G onto H.

Let U be an open neighborhood of the identity element eH in H. Take an open neighborhood U∗ of eH in
H such that U∗ ⊂ U. There exists a continuous real-valued function f on H with values in [0, 1] such that
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eH ∈ O = f−1(J) ⊂ U∗, where J = (0, 1]. In particular, f (eH) , 0 and f equals zero at the points of H \U∗. Then
f ∗ = f ◦ φ is a continuous real-valued function on G and f ∗(eG) = f (eH) , 0. By the lemma’s assumptions,
we can find a continuous homomorphism p : G → S onto a first-countable semitopological group S and a
continuous real-valued function 1 on S such that f ∗ = 1 ◦ p. Notice that 1(eS) , 0, so eS ∈W = 1−1(J).

Let N = {Vn : n ∈ ω} be a local base at the identity of the group S. For every n ∈ ω, Un = p−1(Vn) is an
open neighborhood of e in G. It is clear from our choice of the family N that it is subordinated to the open
set W. Since p is a continuous homomorphism of G onto S, the family {Un : n ∈ ω} is subordinated to the
open neighborhood p−1(W) of eG in G.

It follows from [26, Proposition 3.1] that the homomorphism φ is d-open. Hence, for every n ∈ ω, there
exists an open set On in H containing the set φ(Un) as a dense subset. Clearly, eH ∈ φ(Un) ⊂ On.

G
φ //

p
��

f ∗

��

H

f
��

S
1 // R

We claim that the family {On : n ∈ ω} is subordinated to the open neighborhood U of the identity in
G. Indeed, our definition of the sets O ⊂ H and W ⊂ S and the equalities 1 ◦ p = f ∗ = f ◦ φ imply that
φ−1(O) = ( f ∗)−1(J) = p−1(W). Take an arbitrary element y ∈ H and choose x ∈ G such that y = φ(x). Since
the family {Un : n ∈ ω} is subordinated to p−1(W), there exists n ∈ ω such that x−1Unx ⊂ p−1(W). As φ is a
homomorphism, we have the inclusions

y−1φ(Un) y ⊂ φ
(
p−1(W)

)
= φ
(
φ−1(O)

)
= O.

Making use of the continuity of φ and the density of φ(Un) in On, we conclude that y−1On y ⊂ O ⊂ U∗ ⊂ U.
Hence, the group H = Re1(G) is ω-balanced.

According to [20, Theorem 2.17], a T0 paratopological group G is topologically isomorphic to a subgroup
of a Cartesian product of first-countable T0 paratopological groups if and only if G is ω-balanced. In an
equivalent formulation, for every neighborhood U of the identity element in the ω-balanced group G, there
exists a continuous homomorphism p : G → H onto a first-countable paratopological group H satisfying
the T0 separation axiom such that p−1(V) ⊂ U, for some open neighborhood V of the identity in H. By
excluding ‘T0’ from this result and replicating the reasoning presented in the proof found in [20], we derive
the subsequent assertion, which is applied in the proof of Theorem 4.16.

Lemma 4.15. Let U be a neighborhood of the identity in an ω-balanced paratopological group G. Then there exists
a continuous homomorphism p : G → H onto a first-countable paratopological group H such that p−1(V) ⊂ U, for
some open neighborhood V of the identity in H. Therefore, every ω-balanced paratopological group is projectively
first-countable.

The general scheme of reasoning that was employed to prove Theorem 4.13 is also applicable to the
proof of the subsequent result. Certain aspects of the argument must be clarified, as we will be employing
Lemmas 4.14 and 4.15.

Theorem 4.16. For a paratopological group G, the following are equivalent:

(a) G is (R,FCSG)-factorizable;
(b) G is (R,FCPG)-factorizable;
(c) G is (R,FCPGr)-factorizable.

Proof. Since the class of first-countable paratopological groups is countably productive and hereditary,
items (b) and (c) of the theorem are equivalent, by [15, Theorem 3.12]. Therefore, it suffices to show that (a)
implies (b). So we assume that the group G is (R,FCSG)-factorizable.
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Since every first-countable semitopological group has propertyω-QU, it is clear that G also has property
ω-QU. The canonical homomorphism φ : G → Re1(G) is d-open, by [26, Proposition 3.1]. Applying [31,
Proposition 2.4], we see that the group Re1(G) has propertyω-QU as well. Also, it follows from Lemma 4.14
that the paratopological group K = Re1(G) is ω-balanced. Hence, Lemma 4.15 implies that K is projectively
first-countable. According to [16, Lemma 3.7], every projectively first-countable paratopological group
with property ω-QU is (R,FCPG)-factorizable. It follows that K is (R,FCPG)-factorizable. Applying [15,
Theorem 3.12] once again, we deduce that K is (R,FCPGr)-factorizable. To conclude that G is (R,FCPGr)-
factorizable, we use Proposition 2.5 with O = PG and k = r. This proves the implication (a)⇒ (b) and the
theorem.

Clearly, the subindex “r” in (c) of Theorem 4.16 can be replaced with “t” because every regular paratopo-
logical group is completely regular.

By employing Theorem 4.13, we arrive at our next conclusion.

Theorem 4.17. For a topological group G, the following are equivalent:

(a) G is (R, SCSG)-factorizable;
(b) G is (R, SCPG)-factorizable;
(c) G is (R, SCTG)-factorizable;
(d) G is (R, SCTG2)-factorizable, equivalently, R-factorizable.

Proof. The equivalence of items (a) and (b) follows directly from Theorem 4.13. The equivalence of (c) and
(d) is a consequence of item (a) from Proposition 2.4 (with X = R). Clearly, (c) implies (b), so it remains to
show that (b) implies (c).

Let f be a continuous real-valued function on the group G. By (b), we can find a continuous homomor-
phism p : G→ H onto a second-countable paratopological group H and a continuous real-valued function
h on H such that f = h ◦ p. The group H∗ associated to H is a topological group. According to (c) of
Proposition 3.4, H∗ is second-countable. Denote by p∗ the homomorphism of G to H∗ coinciding with p
pointwise. By Lemma 3.1, p∗ is continuous. Denote by h∗ the function on H∗ that coincides with h pointwise.
Evidently, h∗ is continuous. The following diagram commutes, where iH : H∗ → H is the identity mapping.

G
p∗

~~

f

��
p
��

H∗
iH //

h∗

@@H h // R

The equality f = h∗ ◦ p∗ implies that the group G is (R, SCTG)-factorizable.

Let us examine the relationship between various kinds of factorizability in topological and paratopolog-
ical groups as well as their Hausdorff and regular reflections. The research in this direction was started by
L.-X. Peng and Y.-M. Deng in [15, Section 3]. Rephrasing their results using the current terminology, they
demonstrate that the (R,FCSG)-factorizability of a semitopological group G is equivalent to the (R,FCSG)-
factorizability of the group T2(G). Also, according to [15, Theorem 3.12], a paratopological group G is
(R,FCPG)-factorizable if and only if any (each) of the groups T2(G) and Re1(G) is (R,FCPG)-factorizable.
We extend the latter result to (R, SCPG)-factorizability and add T0-, T1-, and T3-reflection in item (b) of the
next theorem. In other words, an analogue of Corollary 2.8 is valid for paratopological groups. Additionally,
we complement the list of equivalencies in Theorem 4.13.

Theorem 4.18. The following are equivalent for a paratopological group G:

(a) G is (R, SCPG)-factorizable;
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(b) Tk(G) is (R, SCPG)-factorizable for some k ∈ {0, 1, 2, 3};
(c) Re1(G) is (R, SCPG)-factorizable;
(d) Re1(G) is (R, SCPGr)-factorizable.

Proof. The equivalence of items (a) and (c) follows from Theorem 4.13, while [28, Theorem 3.8] implies that
(c) and (d) are also equivalent. Let us show that (a) and (b) are equivalent as well.

First, we show that (a) implies (b). Assume that (a) is valid, so the group G is (R, SCPG)-factorizable.
Take any k ∈ {0, 1, 2, 3} and let φk : G→ Tk(G) be the canonical continuous homomorphism. Also, let f be a
continuous real-valued function on the group Tk(G). Then f ∗ = f ◦φk is a continuous function on G. Since G
is (R, SCPG)-factorizable, we can apply the equivalence of (b) and (c) in Theorem 4.13 (or [28, Theorem 3.8])
to find a continuous homomorphism p : G → H onto a regular second-countable paratopological group H
and a continuous real-valued function h on H such that f ∗ = h ◦ p. The definition of Tk(G) implies that there
is a continuous homomorphism π : Tk(G) → H satisfying p = π ◦ φk, because the regular paratopological
group H satisfies the Tk separation axiom.

H
h

""
Tk(G)

π

::

cc

id ##

G

p

OO

φkoo f ∗ //

φk

��

R

Tk(G)
f

==

In the diagram, id stands for the identity mapping of Tk(G) onto itself. We see, therefore, that f = h◦π, so our
choice of H shows that the group Tk(G) is (R, SCPGr)-factorizable. Hence, Tk(G) is (R, SCPG)-factorizable,
which shows that (a) implies (b).

It remains to establish that (b) implies (a). Again, take any k ∈ {0, 1, 2, 3} and assume that the group
Tk(G) is (R, SCPG)-factorizable. Consider an arbitrary continuous real-valued function 1 on G. By the
definition of Tk(G), there exists a continuous function 1∗ on Tk(G) such that 1 = 1∗ ◦ φk. Since Tk(G) is
(R, SCPG)-factorizable, one can find a continuous homomorphism π : Tk(G)→ K onto a second-countable
paratopological group K and a continuous function h on K such that 1∗ = h ◦π. Then 1 = h ◦ (π ◦φk), where
π ◦ φk is a continuous homomorphism of G onto the second-countable paratopological group K.

G
1 //

φk

��

R

Tk(G) π //

1∗
<<

K

h

OO

This shows that G is (R, SCPG)-factorizable. Therefore, (b) implies (a). It follows that (a)–(d) of the theorem
are equivalent.

The next result is an analogue of Theorem 4.18 for (R,FCSG)- and FCPG-factorizability. Combining
Theorem 3.12 from [15] and our Theorem 4.16 suffices to deduce it. To avoid ambiguity, we present a brief
proof of the theorem.

Theorem 4.19. The following are equivalent for a paratopological group G:

(a) G is (R,FCPG)-factorizable;
(b) Tk(G) is (R,FCPG)-factorizable for some k ∈ {0, 1, 2, 3};
(c) Re1(G) is (R,FCPG)-factorizable;
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(d) Re1(G) is (R,FCPGr)-factorizable.

Proof. Evidently, (d) implies (c). Since every regular space satisfies the Tk separation axiom for each
k ∈ {0, 1, 2, 3}, the definition of the reflections Re1(G) and Tk(G) implies that there exists a continuous
homomorphism ψk : Re1(G)→ Tk(G) satisfying φk = ψk ◦ φr, where φr : G→ Re1(G) and φk : G→ Tk(G) are
canonical homomorphisms. One can easily demonstrate that (c) implies (b) and (b) implies (a) via the fact
that the homomorphism ψk is surjective.

Therefore, all we have to do is to show that (a) implies (d). Let G be an (R,FCPG)-factorizable
paratopological group. By [15, Theorem 3.12], the group Re1(G) is also (R,FCPG)-factorizable. Applying
the equivalence of (b) and (c) in Theorem 4.16 we conclude that the group Re1(G) is (R,FCPGr)-factorizable.
Thus, (d) follows from (a), as claimed.

A version of Theorem 4.16 for (R,MPG)-factorizability is what we intend to present next. This requires
a lemma that admits multiple forms for various categories of topological algebra, from which we choose
the one below.

Lemma 4.20. Suppose that p : G→ H is a continuous homomorphism of an (R,FCSG)-factorizable paratopological
group G onto a first-countable semitopological group H. If either G is regular or H is completely regular, then one
can find a regular first-countable paratopological group K and continuous surjective homomorphisms π : G→ K and
ψ : K→ H satisfying p = ψ ◦ π.

Proof. First we assume that the semitopological group H is completely regular. Let {Vn : n ∈ ω} be a
countable local base at the identity eH of H. We can assume that Vn+1 ⊂ Vn and that the closed sets Vn+1
and H \ Vn are functionally separated, for every n ∈ ω. Take a continuous real-valued function hn on
H with values in [0, 1] such that hn(Vn+1) = {1} and hn(H \ Vn) = {0}. Then h =

∑
n∈ω 2−n−1hn is also a

continuous function on H with values in [0, 1] satisfying h(eH) = 1 and h−1(Pn) ⊂ Vn for each n ∈ ω, where
Pn = (1 − 2−n, 1].

Let f = h ◦ p. By the lemma’s assumption, the group G is (R,FCSG)-factorizable. It follows from
Theorem 4.16 that G is (R,FCPGr)-factorizable. Therefore, we can find a continuous homomorphism
π : G→ K onto a regular first-countable paratopological group K and a continuous real-valued function fK
on K such that f = fK ◦ π. Notice that fK(eK) = f (eG) = h(eH) = 1.

We claim that there exists a continuous homomorphism ψ : K → H satisfying p = ψ ◦ π. According to
[4, Proposition 1.5.10] it suffices to verify that for every neighborhood V of the identity in H, there exists
an open neighborhood O of the identity in K such that π−1(O) ⊂ p−1(V). For a given neighborhood V of
the identity in H, take n ∈ ω such that Vn ⊂ V. It follows from our choice of the function h on H that
h−1(Pn) ⊂ Vn. Since f = h ◦ p, we have that f−1(Pn) = p−1(h−1(Pn)) ⊂ p−1(Vn) ⊂ p−1(V). Clearly, O = f−1

K (Pn)
is an open neighborhood of the identity eK in K, because fK(eK) = 1. Applying the equality f = fK ◦ π, we
conclude that the set O satisfies π−1(O) ⊂ p−1(V).

K

fK ��

ψ

��
G

f
��

p //πoo H

h��
R

This proves our claim and the lemma in the case of a completely regular group H.
Assume that the paratopological group G is regular. Then G is completely regular, by a Banakh–Ravsky

theorem in [8]. Take a local base {Vn : n ∈ ω} at the identity of H and for each n ∈ ω, let Un = p−1(Vn).
Since G is completely regular, we can choose a sequence {Wn : n ∈ ω} of open neighborhoods of the identity
in G such that Wn ⊂ Un, Wn+1 ⊂ Wn, and the sets Wn+1 and G \Wn are functionally separated for each



M. Tkachenko / Filomat 40:2 (2026), 619–648 642

n ∈ ω. Similarly to the first part of the proof, we define a continuous real-valued function f on G with
values in [0, 1], such that f (eG) = 1 and f−1(Pn) ⊂ Wn for every n ∈ ω, where Pn = (1 − 2−n, 1]. Since G is
(R,FCPGr)-factorizable, there exists a continuous homomorphism π : G→ K onto a regular first-countable
paratopological group K such that f = fK ◦ π, for some continuous real-valued function fK on K. Our
choice of f , π and fK implies that for every neighborhood V of the identity in H, there exists n ∈ ω such
that π−1

(
f−1
K (Pn)

)
⊂ p−1(V). Therefore, applying [4, Proposition 1.5.10] once again, we find a continuous

homomorphism ψ : K→ H satisfying p = ψ ◦ π. This completes the proof of the lemma.

The following proposition is a crucial step in proving Theorem 4.22.

Proposition 4.21. Every (R,MSG)-factorizable paratopological group is (R,MPG)-factorizable.

Proof. Assume that G is an (R,MSG)-factorizable paratopological group. By (c) Proposition 2.6, with
O = SG, the group Re1(G) is also (R,MSG)-factorizable. Since the regular paratopological group K = Re1(G)
is completely regular, it follows from Lemma 4.5 that K is topologically isomorphic to a subgroup of the
product of a family of metrizable semitopological groups, say, M =

∏
i∈I Mi. For every nonempty subset J

of I, denote by πJ the projection of M onto the subproduct MJ =
∏

i∈J Mi of M.
Let f be a continuous real-valued function on G. By the assumption, there exists a continuous homo-

morphism p : G → L onto a metrizable semitopological group L such that f = 1 ◦ p, for some continuous
real-valued function 1 on L. It is clear that the space L is normal, hence regular. Hence, there exists a con-
tinuous homomorphism ψ : K→ L satisfying p = ψ ◦ φ, where φ : G→ K is the canonical homomorphism.

Since the group L is first-countable, we can apply [4, Lemma 8.5.4] to find a nonempty countable subset
C of I and a continuous homomorphism q : πC(K)→ L such that ψ = q ◦πC↾K. Let r be the restriction of the
projection πC to K. Then ψ = q ◦ r.

G

p

��

φ //

f

��

K
ψ

||
r
��

R L
1oo πC(K)

qoo

By Proposition 4.4, there exists a countable set J ⊂ I such that C ⊂ J and M∗ = πJ(K) is a paratopological
group when considered as a subgroup of the semitopological group MJ. Since J is countable, the groups MJ

and M∗ are metrizable. Let πJ
C be the projection of MJ onto MC. Clearly, πJ

C is a continuous homomorphism
satisfying r = πC↾K = π

J
C ◦ πJ↾K. We denote the restriction πJ↾K by s, thus implying that r = πJ

C ◦ s. Hence,
λ = s ◦ φ is a continuous homomorphism of G onto the metrizable paratopological group M∗ satisfying the
equality f = (1 ◦ q ◦ πJ

C) ◦ λ, where 1 ◦ q ◦ πJ
C↾M

∗ is a continuous real-valued function on M∗. We conclude
that the group G is (R,MPG)-factorizable.

Theorem 4.22. For a paratopological group G, the following are equivalent:

(a) G is (R,MSG)-factorizable;
(b) G is (R,MPG)-factorizable;
(c) Tk(G) is (R,MPG)-factorizable for some (every) k ∈ {0, 1, 2, 3, r}.

Proof. The equivalence of items (a) and (b) of the theorem follows from Proposition 4.21.
The implication (b)⇒ (c) is quite simple. Indeed, let φk : G → Tk(G) be the canonical homomorphism,

where k ∈ {0, 1, 2, 3, r}. Then one uses the fact that for every continuous homomorphism p : G → M to a
metrizable paratopological group M, there exists a continuous homomorphism ψ : Tk(G) → M satisfying
p = ψ ◦ φk. This is a direct consequence of the regularity of M and the definition of Tk(G).

Finally, to deduce the implication (c) ⇒ (b), it suffices to notice that for every continuous real-valued
function f on G, there exists a continuous real-valued function h on Tk(G) satisfying f = h ◦ φk. Actually,
the proof of the implication (c)⇒ (b) adheres to the pattern established in the proof of Theorem 4.18.



M. Tkachenko / Filomat 40:2 (2026), 619–648 643

There exists a counterpart to Theorem 4.22 applicable to topological groups. The proof is omitted, as it
is now evident following the aforementioned theorem and Corollary 2.8.

Theorem 4.23. Let G be a topological group with identity e and N be the closure of the singleton {e} in G. Then the
following are equivalent:

(a) G is (R,MSG)-factorizable;
(b) G is (R,MPG)-factorizable;
(c) G is (R,MTG)-factorizable or, equivalently, M-factorizable;
(d) the quotient group G/N is (R,MTG)-factorizable.

It is plausible to conjecture that every continuous real-valued function on a Tychonoff (R,FCSG)-
factorizable semitopological group can be factorized via a continuous homomorphism onto a Tychonoff
first-countable semitopological group. This is proved in Theorem 4.25 below, which complements [15,
Lemma 3.3] and item (b) of Proposition 2.4.

First, we present a key lemma that, conceptually, parallels Proposition 4.4.

Lemma 4.24. Let S be a subgroup of a product Π =
∏

i∈I Gi of first-countable semitopological groups. If S is
completely regular and (R,FCSG)-factorizable, then for every countable set C ⊂ I, there exists a countable set J
with C ⊂ J ⊂ I such that the subgroup πJ(S) of ΠJ =

∏
i∈J Gi is also completely regular, where πJ : Π → ΠJ is the

projection.

Proof. Since C is countable and the factors Gi are first-countable, the groupΠC is first-countable as well. We
put J0 = C. Let e be the identity element of S.

Assume that for some n ∈ ω, we have defined countable subsets J0 ⊂ · · · ⊂ Jn of the index set I. Take a
countable local base γn at the identity element of the groupΠJn . For every U ∈ γn, there exists a continuous
real-valued function fU on S such that fU(e) = 1 and fU(S \ π−1

Jn
(U)) = {0}. Since S is (R,FCSG)-factorizable,

we can find a continuous homomorphism φU of S onto a first-countable semitopological group KU and a
continuous real-valued function hU on KU such that fU = hU ◦ φU. According to [4, Lemma 8.5.4], there
exist a countable set AU ⊂ I and a continuous homomorphism rU : πAU (S)→ KU satisfying φU = rU ◦πAU↾S.
Hence, we have the equality fU = hU ◦ rU ◦ πAU↾S. Then Jn+1 = Jn ∪

⋃
{AU : U ∈ γn} is a countable subset of

the index set I with Jn ⊂ Jn+1.
Clearly, J =

⋃
n∈ω Jn is a countable subset of I and C = J0 ⊂ J. We claim that the subgroup S∗ = πJ(S) ofΠJ

is completely regular. By the homogeneity argument, it suffices to verify that for every open neighborhood
V of the identity e∗ in ΠJ, there exists a continuous real-valued function 1 on S∗ such that 1(e∗) = 1 and
1(S∗ \ V) = {0}.

Take a canonical open neighborhood O of e∗ in ΠJ such that O ⊂ V. Then there exists a finite set F ⊂ J
such that O = p−1

F pF(O), where pF : ΠJ → ΠF is the projection. It follows from the definition of J that there
exists n ∈ ω such that F ⊂ Jn. Since γn is a local base at the identity of the group ΠJn , there exists U ∈ γn

satisfying pJn
F (U) ⊂ pF(O), where pJn

F : ΠJn → ΠF is the projection. Then p−1
Jn

(U) ⊂ p−1
F pF(O) = O ⊂ V. At

the step n of the above inductive construction, we have chosen a continuous real-valued function fU on S
satisfying fU(e) = 1 and fU(S \ π−1

Jn
(U)) = {0}. Since fU = hU ◦ rU ◦ πAU↾S and AU ⊂ Jn+1 ⊂ J, we can define

a real-valued function 1 on S∗ by letting 1(πJ(x)) = fU(x), for each x ∈ S. It follows from our definition of 1
that the equality 1 = hU ◦ rU ◦ pAU↾S∗ holds, where pAU : ΠJ → ΠAU is the projection. So, the definition of 1 is
correct and 1 is continuous. It also clear that 1(e∗) = fU(e) = 1, while the inclusion p−1

Jn
(U) ⊂ V and the choice

of fU imply that 1(S∗ \ V) = {0}. Hence, the function 1 is as required and the group S∗ = πJ(S) is completely
regular.

Theorem 4.25. The following hold for a completely regular semitopological group G:

(a) The (R,FCSG)- and (R,FCSGt)-factorizability of G are equivalent.
(b) The (R, SCSG)- and (R, SCSGt)-factorizability of G are equivalent.
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Proof. Clearly, it suffices to verify that the (R,FCSG)-factorizability of G implies its (R,FCSGt)-factoriz-
ability and, similarly, the (R, SCSG)-factorizability of G implies its (R, SCSGt)-factorizability. We prove both
implications simultaneously, noting in parentheses the required modifications to the argument for item (b).

Since G is completely regular and (R,FCSG)-factorizable (resp., (R, SCSG)-factorizable), it follows from
Lemma 4.5 that G is a subgroup of the Cartesian product of a family {Gi : i ∈ I} of first-countable (resp.,
second-countable) semitopological groups. Let Π =

∏
i∈I Gi. If f is a continuous real-valued function on

G, we can find a continuous homomorphism φ : G → H onto a first-countable (resp., second-countable)
semitopological group H and a continuous real-valued function h on H satisfying f = h ◦ φ. By [4,
Lemma 8.5.4], the homomorphism φ can be represented as the composition φ = ψ ◦ πC↾S, where C is a
countable subset of I, πC : Π→ ΠC is the projection and ψ : πC(G)→ H is a continuous homomorphism. It
follows that f = h ◦ ψ ◦ πC↾S.

By Lemma 4.24, there exists a countable subset J of I with C ⊂ J such that the subgroup G∗ = πJ(G) ofΠJ

is completely regular. The inclusion C ⊂ J implies that the continuous real-valued function 1 = h◦ψ◦πJ
C↾G

∗

on G∗ satisfies the equality f = 1 ◦ πJ↾S, where πJ
C : ΠJ → ΠC is the projection. Since J is countable, the

group ΠJ and its subgroup G∗ are first-countable (resp., second-countable). We have thus shown that G is
(R,FCSGt)-factorizable (resp., (R, SCSGt)-factorizable).

Theorem 4.25 is complemented by the following result, in which the semitopological group G is not
assumed to satisfy any separation axiom.

Theorem 4.26. The following are equivalent for a semitopological group G:

(a) G is (R,FCSGt)-factorizable (resp., (R, SCSGt)-factorizable);
(b) Tych(G) is (R,FCSG)-factorizable (resp., (R, SCSG)-factorizable);
(c) Tych(G) is (R,FCSGt)-factorizable (resp., (R, SCSGt)-factorizable).

Proof. It suffices to consider the case of (R,FCSG)- and (R,FCSGt)-factorizability. Clearly, (c) implies (b),
while (a) and (c) are equivalent by Proposition 2.5, whereO is the class of semitopological groups and k = t.
Finally, (b) implies (c) according to Theorem 4.25.

A version of Theorem 4.25 for quasitopological groups is given below. It refines Theorem 4.6.

Theorem 4.27. The following are equivalent for every completely regular quasitopological group G:

(a) G is (R,FCSG)-factorizable (resp., (R, SCSG)-factorizable);
(b) G is (R,FCQG)-factorizable (resp., (R, SCQG)-factorizable);
(c) G is (R,FCQGt)-factorizable (resp., (R, SCQGt)-factorizable).

Proof. The proof of the parenthetical part of the theorem is left to the reader. Since, by Theorem 4.6, the
properties in items (a) and (b) of the theorem are equivalent for every completely regular quasitopological
group, it suffices to verify that (b) implies (c).

It follows from the assumption in (b) and Lemma 4.5 that G is a subgroup of the product of a family
{Gi : i ∈ I} of first-countable quasitopological groups. Let Π =

∏
i∈I Gi. Assume that f is a continuous real-

valued function on the group G. Arguing as in the proof of Theorem 4.25 and keeping notation introduced
there, we find a countable subset J of the index set I and a continuous function 1 on the subgroup G∗ = πJ(G)
ofΠJ such that the group G∗ is completely regular and the equality f = 1 ◦πJ↾G∗ holds. Since the subgroup
G∗ of the group ΠJ is first-countable, we conclude that G is (R,FCQGt)-factorizable.

We recall that a nonempty open subset U of a semitopological group G is ω-good [15, 24] if there exists a
countable family γ of open neighborhoods of the identity in G such that for each x ∈ U, one can find V ∈ γ
with xV ⊂ U. A semitopological group G is locally ω-good if it has a base of ω-good sets. Clearly, every
first-countable semitopological group is locally ω-good. Every paratopological group is locally ω-good [24,
Lemma 2.5], yet this assertion does not hold for semitopological groups.
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The following result appears as Lemma 3.16 in [15]. We offer a shorter alternative proof of it based on
Theorem 4.25. The definition of the index of regularity of a regular semitopological group G, denoted by
Ir(G), can be found in [24].

Corollary 4.28. Every completely regular (R,FCSG)-factorizable semitopological group G is ω-balanced, locally
ω-good, and satisfies Ir(G) ≤ ω. Also, every completely regular (R, SCSG)-factorizable semitopological group G is
totally ω-narrow.

Proof. By (a) of Theorem 4.25, the group G is (R,FCSGt)-factorizable. Hence, by Lemma 4.5, G is topologi-
cally isomorphic to a subgroup of the Cartesian productΠ of a familyλ of completely regular first-countable
semitopological groups. Each element H ∈ λ is an ω-balanced locally ω-good group satisfying Ir(H) ≤ ω.
Since each group H ∈ λ is (completely) regular, and each of the three properties considered in the corollary
is productive and hereditary with respect to taking arbitrary subgroups, we can apply [24, Corollary 3.4]
and [15, Lemma 3.15] to conclude that every subgroup of Π has the required properties. This proves the
first statement of the corollary.

If a completely regular semitopological group G is (R, SCSG)-factorizable, then G = Tych(G), so the
group G is is totally ω-narrow according to Lemma 4.10.

Remark 4.29. Several results presented in Section 4 can be extended to other factorization properties, in-
cludingFm-, PR-, and Pm-factorizability, contingent upon the appropriate reformulation of these properties
in accordance with the new framework outlined in Subsection 1.1. This also pertains to factorization prop-
erties that are expressed in terms of the classes OH and PH of open and perfect homomorphisms. We
delegate this task to readers who are interested due to space constraints.

5. Further generalizations, a discussion

The properties of groups within the classes SG, QG, and PG show significant sensitivity to separation
axioms, even with the presence of good factorization properties (see e.g. Corollary 4.11 and Remark 4.12).
This is why we pay much attention to separation axioms in Sections 2–4. Nonetheless, there exist several
important subclasses within the aforementioned categories that have demonstrated a close relationship
with certain classes of “factorizable” groups. It is sufficient to refer to precompact topological groups or to
arbitrary subgroups of regular σ-compact paratopological groups. The groups from both subclasses are
R-factorizable, as established in [4, Corollary 8.1.17] and [21, Corollary 3.14], respectively. In other terms,
various weak compactness properties imply R-factorizability or similar characteristics within the classes
TG and PG, particularly when these properties are combined with suitable separation axioms.

Therefore, it would be natural and quite helpful to reformulate (and generalize) the results of this article
in terms of subvarieties of SG,QG,PG and TG and reflections of groups in those subvarieties. Let us present
a very succinct description of the suggested program.

Let C be a PS-variety of groups, that is, a subclass of SG closed under arbitrary Cartesian products and
taking arbitrary subgroups. Given a semitopological group G, one defines a C-reflection of G as a pair(
H, φC

G

)
, where H ∈ C and φC

G : G→ H is a continuous onto homomorphism such that for every continuous
homomorphism p : G → C with C ∈ C, one can find a continuous homomorphism q : H → C satisfying
p = q ◦ φC

G. An argument similar to the one in the proof of [26, Theorem 2.3] shows that a C-reflection of G
exists and is unique up to a topological isomorphism. We denote the group H as above by C(G) and abusing
of terminology also call it the C-reflection of G.

For example, we can introduce the subvarietiesTN(ω)∩PG andTN(ω)∩TG of the respective varieties
PG and TG, where TN(ω) stands for “totally ω-narrow”. Also, one can replace total ω-narrowness with
the property of being ω-balanced, locally ω-good, etc. We can thus deal with totally ω-narrow reflections
and ω-balanced reflections of the groups from the varieties PG and TG in the case of total ω-narrowness
and the four varieties SG,QG,PG and TG in the case of ω-balancedness or local ω-goodness. Noteworthy,
the corresponding reflection C(G) of G is in the same basic variety the group G belongs to. Incorporating
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algebraic restrictions into groups or merging algebraic and topological constraints provides an additional
method for defining noteworthy subvarieties of the four basic varieties deserving of examination.

Let us call a category of topologized groups a PSQ-category if it is a PS-category closed with respect
to taking quotient groups. With the concept of C-reflection in hand, we can generalize Proposition 2.4 as
follows:

Proposition 5.1. Let C be a PSQ-subvariety of SG and G be semitopological group. Then the following hold:

(a) The group G is (R, SCC)-factorizable iff G is (R, SCC2)-factorizable iff T2(G) is (R, SCC2)-factorizable.
(b) The group G is (R,FCC)-factorizable iff G is (R,FCC2)-factorizable iff T2(G) is (R,FCC2)-factorizable.

It would be interesting to find out if the results from Sections 2 and 4 can be generalized to PS- or
PSQ-subvarieties of the four basic varieties, or to provide particular examples of subvarieties where such
generalization is possible. Proposition 5.1 is an example of how this strategy works.

6. Open problems and comments

In addition to potential generalizations of the results discussed in Sections 2–4 and proposed in Section 5,
there are several specific questions that are closely connected to the subject matter of this article.

We do not know whether all the items in Theorems 4.13 and 4.19 remain equivalent in the category of
semitopological groups:

Problem 6.1. Let G be an (R, SCSG)-factorizable semitopological group. Is the group Re1(G) or Tych(G) (R, SCSG)-
factorizable?

We pose a similar problem for (R,FCSG)-factorizability:

Problem 6.2. Let G be an (R,FCSG)-factorizable semitopological group. Is the group Re1(G) or Tych(G) (R,FCSG)-
factorizable?

Since the canonical homomorphism φG,k : G → Tk(G) is open for every semitopological group G and
every k = 0, 1, 2, Proposition 2.4 and items (a) and (b) of Proposition 2.6 (see also Lemmas 3.3 and 3.8 from
[15]) can be complemented as follows:

Proposition 6.3. For every semitopological group G, the following are equivalent:

(a) G is (R,FCSG)-factorizable (resp., (R, SCSG)-factorizable);
(b) G is (R,FCSG2)-factorizable (resp., (R, SCSG2)-factorizable);
(c) Tk(G) is (R,FCSG)-factorizable (resp., (R, SCSG)-factorizable) for each k ∈ {0, 1, 2}.

Consequently, we inquire in Problems 6.1 and 6.2 if it is possible to add the new item, containing the
regular reflection Re1(G) or the Tychonoff reflection Tych(G) of G, to item (c) of Proposition 6.3.

The following open problem arises from the equivalence of (a) and (b) in Proposition 6.3. The question
examines the possibility of dropping the assumption of complete regularity of the group G in Theorem 4.27
without loosing the equivalence of items (a) and (b) of the theorem.

Problem 6.4. Let G be an (R, SCSG)-factorizable semitopological group. Is G (R, SCSGr)-factorizable?

It is easy to see that the affirmative response to Problem 6.4 implies that the answer to Problem 6.1 is
also affirmative. Indeed, assume that a semitopological group G is (R, SCSGr)-factorizable. Denote byφ the
canonical homomorphism of G onto Re1(G). Let 1 be a continuous real-valued function on the group Re1(G).
Then f = 1 ◦ φ is a continuous real-valued function on G, so we can find a continuous homomorphism p
of G onto a regular second-countable semitopological group H and a continuous real-valued function h on
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H satisfying f = h ◦ p. Since H is regular, there exists a continuous homomorphism ψ : Re1(G) → H such
that p = ψ ◦ φ. Therefore, the equality 1 = h ◦ ψ is valid, implying that the group Re1(G) is (R, SCSGr)-
factorizable. The same argument works for the group Tych(G) because the regular second-countable group
H in the above argument is normal, hence completely regular.

The following is a version of Problem 6.4 for (R,FCSG)-factorizability:

Problem 6.5. Does the (R,FCSG)-factorizability of a semitopological group G imply its (R,FCSGr)-factorizability
or even (R,FCSGt)-factorizability?

Again, the affirmative response to Problem 6.5 implies that the answer to Problem 6.2 is affirmative in
the case of the group Re1(G).

The following two problems offer a way of generalizing Theorem 4.6.

Problem 6.6. Does the (R,FCSG)-factorizability of a quasitopological group G imply its (R,FCQG)-factorizability?
What if G is regular?

Problem 6.7. Does the (R, SCSG)-factorizability of a quasitopological group G imply its (R, SCQG)-factorizability?
What if G is regular?

The first step in addressing Problems 6.1 and 6.4 may involve resolving the subsequent three problems:

Problem 6.8. Let G be a second-countable semitopological (quasitopological) group. Is the regular reflection Re1(G)
or the Tychonoff reflection Tych(G) of G second-countable?

Problem 6.9. Let G be a first-countable semitopological (quasitopological) group. Is the regular reflection Re1(G) or
the Tychonoff reflection Tych(G) of G first-countable?

Since the group Re1(G) in Problem 6.8 is a continuous homomorphic image of G, the former group has
a countable network. We also note that for T2(G) in place of Re1(G), the answer to Problems 6.8 and 6.9 is
affirmative because the Hausdorff reflection T2(G) of G is an open continuous homomorphic image of G
[26, Proposition 2.5].

The index of regularity of regular semitopological and paratopological groups is defined in [24, Section 3].

Problem 6.10. Is it true that every regular semitopological group G with a countable network has countable index of
regularity?

According to [24, Proposition 3.5], every regular Lindelöf paratopological group has countable index of
regularity.

Problem 6.11. Is every Hausdorff (or regular) σ-compact semitopological group R-factorizable?

For a regular paratopological group G, the answer to Problem 6.11 is affirmative, see [21, Corollary 3.14].
Actually, the regularity of G can be omitted, in accordance with Theorem 4.13.

We also recall two open problems that were formulated as a single Problem 5.1 in [21]. We believe they
have a close connection to the subject matter of this article.

Problem 6.12. Let G be a regular R-factorizable paratopological group. Is the associated topological group G∗

R-factorizable?

For Hausdorff R-factorizable paratopological groups, the response to Problem 6.12 is negative. In-
deed, as it is mentioned in Remark 4.12, there exists a Hausdorff paratopological group G such that the
semiregularization (hence, the regular reflection) of G is a countably compact topological group, which is
R-factorizable, but G is not ω-narrow. Since the topology of the associated topological group G∗ is finer
than the topology of G, the group G∗ is not ω-narrow either. We conclude that G∗ cannot be R-factorizable
since every R-factorizable topological group is ω-narrow, as stated in [4, Proposition 8.1.3]. It should be
noted that the the group Re1(G) is R-factorizable if and only if so is G, by Theorem 4.18. Thus, while G∗ is
not R-factorizable, the group G is.
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Problem 6.13. Let G be a paratopological group such that the associated topological group G∗ isR-factorizable. Must
the group G be R-factorizable? What if G is regular?

References

[1] O. Alas, M. Sanchis, Countably compact paratopological groups, Semigroup Forum 74 (2007), 423–438.
[2] S. Andima, R. Kopperman, P. Nickolas, S. Popvassilev, A family of asymmetric Ellis-type theorems, Houston J. Math. 36 (2010),

181–198.
[3] A. V. Arhangel’skii, Classes of topological groups, Russian Math. Surveys 36 (1981), 151–174. Russian original in: Uspekhy

Mat. Nauk 36 no. 3 (1981), 127–146.
[4] A. V. Arhangel’skii, M. G. Tkachenko, Topological Groups and Related Structures, Atlantis Studies in Mathematics, vol. 1, Atlantis

Press, Paris; World Scientific Publishing Co. Pte. Ltd., Hackensack, New York, 2008 (xiv+781 pp.) ISBN: 978-90-78677-06-2.
[5] A. V. Arhangel’skii, M. G. Tkachenko, C-extensions of topological groups, Topol. Appl. 235 (2018), 54–72.
[6] T. Banakh, S. Dimitrova, Openly factorizable spaces and compact extensions of topological semigroups, Comment. Math. Univ. Carolinae

51 (2010), 113–131.
[7] T. Banakh, A. Ravsky, On subgroups of saturated or totally bounded paratopological groups, Algebra Discrete Math. no. 4 (2003), 1–20.
[8] T. Banakh, A. Ravsky, Each regular paratopological group is completely regular, Proc. Amer. Math. Soc. 145 (2017), 1373–1382.
[9] T. Banakh, A. Ravsky, The regularity of quotient paratopological groups, Mat. Studii 49 no. 2 (2018), 144–149.

[10] M. Bao, X. Xu, On some kinds of factorizable topological groups, arXiv:2205.01511v2 [math.GN], May 14, 2022.
[11] R. Engelking, General Topology, Heldermann Verlag, Berlin 1989.
[12] P. Hafner, G. Mazzola, The cofinal character of uniform spaces and ordered fields, Z. Math. Logik Grundl. 17 (1971), 377–384.
[13] W. He, D. Peng, M. Tkachenko, H. Zhang, M-factorizable feathered topological groups, Topol. Appl. 289 (2021), 107481.
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