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Abstract. An initial value problem involving mixed (ordinary and fractional) derivatives for non-
autonomous variable-order differential equations is presented. We investigate the existence and uniqueness
of solutions, as well as their Ulam-Hyers stability. Finally, we illustrate our results through numerical ex-
amples.

1. Introduction

Functional differential equations find extensive applications across diverse disciplines, including bi-
ology, physics, and engineering; see, for example, [2, 4, 8]. In recent years, variable-order fractional
calculus of variations has emerged as an effective tool in research, control, and optimization, providing
robust analytical and numerical methods to model complex phenomena under varying conditions. An
advanced extension of variable-order fractional calculus has also been developed; for further details, see
[1, 5–7, 10, 11, 18–21]. In this framework, the order function, originally denoted by ℑ(ℓ), is generalized to a
modified form, ℑ(ℓ, ℏ(ℓ)), to capture more intricate dynamic behaviors.

In [12], the authors investigated the existence of solutions for a specific class of variable-order fractional
differential equations, which are formulated as follows:{

Dℑ(ℓ,ℏ(ℓ))
ς+ ℏ(ℓ) = Θ(ℓ, ℏ(ℓ)),
ℏ(h) = ℏ0,
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where the operatorDℑ(ℓ,ℏ(ℓ))
h+ denotes the Riemann-Liouville fractional derivative of variable orderℑ(ℓ, ℏ(ℓ)),

and Θ is a continuous function defined within the problem framework.
Motivated by these developments, we investigate a related non-autonomous initial value problem

(NAVOIVP) involving variable-order fractional derivatives, formulated as follows:{
Dℑ(ℓ,ℏ(ℓ))

0+ ℏ(ℓ) + ςℏ
′

(ℓ) = Θ(ℓ, ℏ(ℓ)), ℓ ∈ ψ̃ℓ := [0, ℓ̃],
ℏ(0) = 0.

(1)

In this context, the interval is defined as 0 < ℓ̃ < +∞, with ς being a positive parameter. The functions are
specified as ℑ : ψ̃ℓ ×R→ (0, 1) and Θ : ψ̃ℓ ×R→ R, both of which are continuous. The operatorDℑ(ℓ,ℏ(ℓ))

0+
denotes the Riemann-Liouville fractional derivative of variable order ℑ(ℓ, ℏ(ℓ)).

The main objective of this study is to establish novel criteria for the existence and uniqueness of solutions
to the NAVOIVP (1). Numerical examples are presented at the end to illustrate and validate the theoretical
results.

2. Preliminary

This section introduces some of the notations, definitions, and basic concepts used in this work. Note
that E = C(ψ̃ℓ,R) denotes the Banach space of continuous functions ℏ mapping ψ̃ℓ into R, equipped with
the norm

∥ℏ∥ = sup{|ℏ(ℓ)| | ℓ ∈ ψ̃ℓ}.

Definition 2.1. [13, 16, 17] Letℑ : ψ̃ℓ ×R→ (0, 1) be a continuous function. The left Riemann-Liouville fractional
integral of variable order ℑ(ℓ, ℏ(ℓ)) for the function ℏ(ℓ) is defined by

Iℑ(ℓ,ℏ(ℓ))
0 ℏ(ℓ) =

∫ ℓ

0

(ℓ − ℵ)ℑ(ℵ,ℏ(ℵ))−1

Γ(ℑ(ℵ, ℏ(ℵ)))
ℏ(ℵ) dℵ, ℓ > 0, (2)

where Γ(·) is the gamma function.

Definition 2.2. [14, 17, 22] Consider a continuous function ℑ : ψ̃ℓ × R → (0, 1). The left Riemann-Liouville
fractional derivative of variable order ℑ(ℓ, ℏ(ℓ)), applied to the function ℏ(ℓ), is defined as

Dℑ(ℓ,ℏ(ℓ))
0 ℏ(ℓ) =

( d
dℓ

)
I1−ℑ(ℓ,ℏ(ℓ))

0 ℏ(ℓ) =
( d
dℓ

) ∫ ℓ

0

(ℓ − ℵ)−ℑ(ℵ,ℏ(ℵ))

Γ(1 − ℑ(ℵ, ℏ(ℵ)))
ℏ(ℵ) dℵ, ℓ > 0. (3)

Remark 2.3. [24–26] When examining general functions such as ℑ(ℓ, ℏ(ℓ)) and v(ℓ, ℏ(ℓ)), it becomes evident that
the semigroup property does not hold, i.e.,

Iℑ(ℓ,ℏ(ℓ))
a+ Iv(ℓ,ℏ(ℓ))

a+ ℏ(ℓ) , Iℑ(ℓ,ℏ(ℓ))+v(ℓ,ℏ(ℓ))
a+ ℏ(ℓ).

Lemma 2.4. [27] Suppose ℑ : ψ̃ℓ ×R→ (0, 1) is a continuous mapping. Then, for any function y belonging to the
space

Cδ(ψ̃ℓ,R) := {y(ℓ) ∈ C(ψ̃ℓ,R) | ℓδy(ℓ) ∈ C(ψ̃ℓ,R), 0 ≤ δ < minℑ(ℓ, ℏ(ℓ))},

the fractional integral of variable order, denoted by Iℑ(ℓ,ℏ(ℓ))
0+ y(ℓ), is well-defined for every ℓ in the domain ψ̃ℓ.

Lemma 2.5. [27] Let ℑ ∈ C(ψ̃ℓ ×R, (0, 1]) be a continuous function. Then, for any y ∈ C(ψ̃ℓ,R),

Iℑ(ℓ,ℏ(ℓ))
0+ y(ℓ) ∈ C(ψ̃ℓ,R).

Theorem 2.6. [3] Let K be a closed, bounded, and convex subset of a real Banach space ℑ, and let ℘1 and ℘2 be
operators on K satisfying the following conditions:

1. ℘1(K) + ℘2(K) ⊂ K,
2. ℘1 is continuous on K and ℘1(K) is relatively compact subset of ℑ,
3. ℘2 is a strict contraction on K, i.e, there exists p̃ ∈ [0, 1) such that

|| ℘2(ℏ) − ℘2(κ) ||≤ p̃ || ℏ − κ ||,

for every ℏ, κ ∈ K. Then, there exists ℏ ∈ K such that ℘1(ℏ) + ℘2(ℏ) = ℏ.
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3. Conditions for Existence

We now present the following hypotheses:

(SY1) There exist positive constants 0 < σ < minℑ(ℓ, ℏ(ℓ)) and Λ > 0 such that the expression ℓσΘ remains
continuous over the domain ψ̃ℓ ×R, and

ℓσ
∣∣∣Θ(ℓ, ℏ(ℓ)) −Θ(ℓ, y(ℓ))

∣∣∣ ≤ Λ ∣∣∣ℏ(ℓ) − y(ℓ)
∣∣∣, ∀ ℏ, y ∈ R, ℓ ∈ ψ̃ℓ.

(SY2) ℑ : ψ̃ℓ ×R→ (0,ℑ∗] is a continuous function such that

0 ≤ ℑ(ℓ, ℏ(ℓ)) ≤ ℑ∗ < 1.

Remark 3.1. [23]

1. The function Γ(2 − ℑ(ℓ, ℏ(ℓ))) arises from the composition of two continuous functions and is therefore itself
continuous. Consequently, we define

MΓ = max
∣∣∣∣ 1
Γ(2 − ℑ(ℓ, ℏ(ℓ)))

∣∣∣∣.
2. Due to the continuity of the function ℑ(ℓ, ℏ(ℓ)), we have

ℓ̃1−ℑ(ℓ,ℏ(ℓ))
≤ 1 if 1 ≤ ℓ̃ < ∞, and ℓ̃1−ℑ(ℓ,ℏ(ℓ))

≤ ℓ̃1−ℑ∗ if 0 ≤ ℓ̃ ≤ 1.

Therefore, we conclude that
ℓ̃1−ℑ(ℓ,ℏ(ℓ))

≤ max{1, ℓ̃1−ℑ∗
} = ℓ̃∗.

Remark 3.2. [9] Assuming that X and Y are two real numbers, then

| ςX − βY |≤ 2 max(ς, β) | X − Y |,

where ς and β are positive real numbers.

Lemma 3.3. [23] Let (SY2) hold and let ℏn, ℏ ∈ C[0, ℓ̃]. Assume that ℏn(ℓ)→ ℏ(ℓ) for all ℓ ∈ [0, ℓ̃] as n→∞. Then∫ ℓ

0

(ℓ − ℵ)−ℑ(ℵ,ℏn(ℵ))

Γ(1 − ℑ(ℵ, ℏn(ℵ)))
ℏn(ℵ) dℵ −→

∫ ℓ

0

(ℓ − ℵ)−ℑ(ℵ,ℏ(ℵ))

Γ(1 − ℑ(ℵ, ℏ(ℵ)))
ℏ(ℵ) dℵ, ℓ ∈ [0, ℓ̃],

as n→∞.

Furthermore, the following lemma will be needed to solve the NAVOIVP (1).

Proposition 3.4. The function ℏ ∈ E forms a solution of the NAVOIVP (1) if and only if ℏ fulfills the integral
equation

ℏ(ℓ) =
1
ς

[ ∫ ℓ

0
Θ(ℵ, ℏ(ℵ)) dℵ −

∫ ℓ

0

(ℓ − ℵ)−ℑ(ℵ,ℏ(ℵ))

Γ(1 − ℑ(ℵ, ℏ(ℵ)))
ℏ(ℵ) dℵ

]
. (4)

Proof Utilizing the definition of the variable-order fractional derivative given in (3), the NAVOIVP in (1)
can be reformulated as follows:

(
d
dt

)
∫ ℓ

0

(ℓ − ℵ)−ℑ(ℵ,ℏ(ℵ))

Γ(1 − ℑ(ℵ, ℏ(ℵ)))
ℏ(ℵ) dℵ + ςℏ

′

(ℓ) = Θ(ℓ, ℏ(ℓ)).



M. S. Souid et al. / Filomat 40:2 (2026), 649–659 652

Then,∫ ℓ

0

(ℓ − ℵ)−ℑ(ℵ,ℏ(ℵ))

Γ(1 − ℑ(ℵ, ℏ(ℵ)))
ℏ(ℵ) dℵ + ςℏ(ℓ) =

∫ ℓ

0
Θ(ℵ, ℏ(ℵ)) dℵ + c1. (5)

Now, the evaluation of equation (5) at ℓ = 0 give us c1 = 0. Thus, we have∫ ℓ

0

(ℓ − ℵ)−ℑ(ℵ,ℏ(ℵ))

Γ(1 − ℑ(ℵ, ℏ(ℵ)))
ℏ(ℵ) dℵ + ςℏ(ℓ) =

∫ ℓ

0
Θ(ℵ, ℏ(ℵ)) dℵ,

so

ℏ(ℓ) =
1
ς

[ ∫ ℓ

0
Θ(ℵ, ℏ(ℵ)) dℵ −

∫ ℓ

0

(ℓ − ℵ)−ℑ(ℵ,ℏ(ℵ))

Γ(1 − ℑ(ℵ, ℏ(ℵ)))
ℏ(ℵ) dℵ

]
.

On the other hand, differentiating both sides of the equation (4), we have

(
d
dt

)
∫ ℓ

0

(ℓ − ℵ)−ℑ(ℵ,ℏ(ℵ))

Γ(1 − ℑ(ℵ, ℏ(ℵ)))
ℏ(ℵ) dℵ + ςℏ

′

(ℓ) = Θ(ℓ, ℏ(ℓ),

which means the NAVOIVP (1).
Now, we will prove the existence of solutions for the NAVOIVP (1). Theorem 2.6 forms the basis of the first
finding.

Theorem 3.5. Suppose that the assumptions (SY1) and (SY2) are satisfied. If the inequality

MΓ, ℓ̃ℓ̃

1 − ℑ
+ Λ,

ℓ̃−σ+1

−σ + 1
< ς, (6)

holds, then the (NAVOIVP) given in (1) admits at least one solution in the space E.

Proof First, we introduce and define the following operators

℘1, ℘2 : E→ E,

as

℘1ℏ(ℓ) =
1
ς

[
−

∫ ℓ

0

(ℓ − ℵ)−ℑ(ℵ,ℏ(ℵ))

Γ(1 − ℑ(ℵ, ℏ(ℵ)))
ℏ(ℵ) dℵ

]
, ℘2ℏ(ℓ) =

1
ς

∫ ℓ

0
Θ(ℵ, ℏ(ℵ)) dℵ.

Next, consider the set
BR = {ℏ ∈ E, || ℏ ||≤ R},

where

R ≥
Θ∗ ℓ̃
ς

1 − 1
ς

[
MΓ ℓ̃∗ ℓ̃
1−ℑ∗ + Λ

ℓ̃−σ+1

−σ+1

] ,
and

Θ∗ = sup
ℓ∈ψ̃ℓ

| Θ(ℓ, 0) | .

It is evident that BR is nonempty, bounded, convex, and closed. Next, we aim to demonstrate that the
functions ℘1 and ℘2 satisfy the conditions stated in Theorem 2.6. This will be established through the
following four-step approach:
Step 1:℘1(BR) + ℘2(BR) ⊆ BR. For ℏ ∈ BR, we obtain

| ℘1ℏ(ℓ) + ℘2ℏ(ℓ) | ≤
1
ς

[
|

∫ ℓ

0
Θ(ℵ, ℏ(ℵ)) dℵ | + |

∫ ℓ

0

(ℓ − ℵ)−ℑ(ℵ,ℏ(ℵ))

Γ(1 − ℑ(ℵ, ℏ(ℵ)))
ℏ(ℵ) dℵ |

]
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≤
1
ς

[ ∫ ℓ

0
| Θ(ℵ, ℏ(ℵ)) −Θ(ℵ, 0) + Θ(ℵ, 0) | dℵ +

∫ ℓ

0

(ℓ − ℵ)−ℑ(ℵ,ℏ(ℵ))

Γ(1 − ℑ(ℵ, ℏ(ℵ)))
| ℏ(ℵ) | dℵ

]
≤

1
ς

[ ∫ ℓ

0
ℵ
−σ
ℵ
σ
| Θ(ℵ, ℏ(ℵ)) −Θ(ℵ, 0) | dℵ +

∫ ℓ

0
| Θ(ℵ, 0) | dℵ

+ MΓ

∫ ℓ

0
ℓ̃−ℑ(ℵ,ℏ(ℵ))

(ℓ − ℵ
ℓ̃

)−ℑ(ℵ,ℏ(ℵ))
| ℏ(ℵ) | dℵ

]
≤

1
ς

[ ∫ ℓ

0
Λ | ℏ(ℵ) | ℵ−σdℵ +

∫ ℓ

0
Θ∗dℵ +MΓℓ̃

∗

∫ ℓ

0

(ℓ − ℵ
ℓ̃

)−ℑ(ℵ,ℏ(ℵ))
| ℏ(ℵ) | dℵ

]
≤

1
ς

[
Λ || ℏ ||

ℓ−σ+1

−σ + 1
+ Θ∗ℓ +

MΓℓ̃∗

ℓ̃−ℑ∗
|| ℏ ||

∫ ℓ

0
(ℓ − ℵ)−ℑ

∗

dℵ
]

≤
1
ς

[
Λ || ℏ ||

ℓ̃−σ+1

−σ + 1
+ Θ∗ℓ̃ +

MΓℓ̃∗

ℓ̃−ℑ∗
ℓ1−ℑ∗

(1 − ℑ∗)
|| ℏ ||

]
≤

1
ς

[
Λ || ℏ ||

ℓ̃−σ+1

−σ + 1
+ Θ∗ℓ̃ +

MΓℓ̃∗ℓ̃

(1 − ℑ∗)
|| ℏ ||

]
≤

1
ς

[MΓℓ̃∗ℓ̃

1 − ℑ∗
+ Λ

ℓ̃−σ+1

−σ + 1

]
|| ℏ || +

Θ∗ℓ̃
ς

≤
1
ς

[MΓℓ̃∗ℓ̃

1 − ℑ∗
+ Λ

ℓ̃−σ+1

−σ + 1

]
R +
Θ∗ℓ̃
ς

≤ R,

which means that ℘1(BR) + ℘2(BR) ⊆ BR.
Step 02: The function ℘1 is continuous. Consider a sequence ℏn in E such that ℏn → ℏ. For a fixed ℓ ∈ ψ̃ℓ,
we proceed to derive an estimate:

| ℘1ℏn(ℓ) − ℘1ℏ(ℓ) | ≤
1
ς

[
|

∫ ℓ

0

(ℓ − ℵ)−ℑ(ℵ,ℏn(ℵ))

Γ(1 − ℑ(ℵ, ℏn(ℵ)))
ℏn(ℵ)dℵ −

∫ ℓ

0

(ℓ − ℵ)−ℑ(ℵ,ℏ(ℵ))

Γ(1 − ℑ(ℵ, ℏ(ℵ)))
ℏ(ℵ)dℵ |

]
.

By using lemma 3.3, we have
|| ℘1ℏn(ℓ) − ℘1ℏ(ℓ) ||→ 0, n→∞.

The preceding analysis confirms that the operator ℘1 is continuous on the space E.
Step 3: We now demonstrate the compactness of ℘1. To do so, we aim to show that the image ℘1(BR) is
relatively compact, which directly implies that ℘1 is a compact operator. From Step 1, it follows that ℘1(BR)
is uniformly bounded. Specifically, we observe:

℘1(BR) = {℘1(ℏ) : ℏ ∈ BR} ⊂ ℘1(BR) + ℘2(BR) ⊂ BR,

which indicates that for all ℏ ∈ BR, the norm || ℘1(ℏ) ||≤ R thus confirming uniform boundedness of the image
set ℘1(BR). Now, consider the function defined as w(ℓ) = aℓ − bℓ for ℓ ∈ (−1, 0) with constants 0 < a < b < 1.
This function is strictly decreasing. Indeed, given that ln a < ln b < 0 and aℓ > bℓ > 0, we compute:

w′(ℓ) = aℓ ln a − bℓ ln b < bℓ ln a − bℓ ln b = bℓ(ln a − ln b) < 0,

which confirms the monotonicity of w(ℓ). Applying this idea, consider the expressionκ(ℵ) =
(
ℓ1−ℵ

ℓ̃

)−ℑ(ℵ,ℏ(ℵ))
−(

ℓ2−ℵ

ℓ̃

)−ℑ(ℵ,ℏ(ℵ))
, where the ratios satisfy 0 < ℓ1−ℵ

ℓ̃
< ℓ2−ℵ

ℓ̃
< 1. Noting the structural similarity to w(ℵ), we

deduce that κ(ℵ) also decreases as the exponent −ℑ(ℵ, ℏ(ℵ)) increases. Consequently, for ℓ1, ℓ2 ∈ ψ̃ℓ with
ℓ1 < ℓ2, and for any ℏ ∈ BR, we find that

| ℘1ℏ(ℓ2) − ℘1ℏ(ℓ1) | ≤
1
ς

[
|

∫ ℓ1

0

(ℓ1 − ℵ)−ℑ(ℵ,ℏ(ℵ))

Γ(1 − ℑ(ℵ, ℏ(ℵ))))
ℏ(ℵ) −

∫ ℓ2

0

(ℓ2 − ℵ)−ℑ(ℵ,ℏ(ℵ))

Γ(1 − ℑ(ℵ, ℏ(ℵ)))
ℏ(ℵ)dℵ |

]
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≤
1
ς

[
|

∫ ℓ1

0

(ℓ2 − ℵ)−ℑ(ℵ,ℏ(ℵ))

Γ(1 − ℑ(ℵ, ℏ(ℵ)))
ℏ(ℵ) −

(ℓ1 − ℵ)−ℑ(ℵ,ℏ(ℵ))

Γ(1 − ℑ(ℵ, ℏ(ℵ)))
ℏ(ℵ)dℵ |

+ |

∫ ℓ2

ℓ1

(ℓ2 − ℵ)−ℑ(ℵ,ℏ(ℵ))

Γ(1 − ℑ(ℵ, ℏ(ℵ)))
ℏ(ℵ)dℵ |

]
≤

1
ς

[ ∫ ℓ1

0
|

1
Γ(1 − ℑ(ℵ, ℏ(ℵ)))

|| (ℓ2 − ℵ)−ℑ(ℵ,ℏ(ℵ))
− (ℓ1 − ℵ)−ℑ(ℵ,ℏ(ℵ))

|| ℏ(ℵ) | dℵ

+

∫ ℓ2

ℓ1

(ℓ2 − ℵ)−ℑ(ℵ,ℏ(ℵ))

Γ(1 − ℑ(ℵ, ℏ(ℵ)))
| ℏ(ℵ) | dℵ

]
≤

1
ς

[
MΓ || ℏ ||

∫ ℓ1

0
(ℓ1 − ℵ)−ℑ(ℵ,ℏ(ℵ))

− (ℓ2 − ℵ)−ℑ(ℵ,ℏ(ℵ))dℵ

+

∫ ℓ2

ℓ1

(ℓ2 − ℵ)−ℑ(ℵ,ℏ(ℵ))

Γ(1 − ℑ(ℵ, ℏ(ℵ)))
| ℏ(ℵ) | dℵ

]
≤

1
ς

[
MΓ || ℏ ||

∫ ℓ1

0
ℓ̃−ℑ(ℵ,ℏ(ℵ))

((ℓ1 − ℵ

ℓ̃

)−ℑ(ℵ,ℏ(ℵ))
−

(ℓ2 − ℵ

ℓ̃

)−ℑ(ℵ,ℏ(ℵ)))
dℵ

+ MΓ || ℏ ||

∫ ℓ2

ℓ1

ℓ̃−ℑ(ℵ,ℏ(ℵ))
(ℓ2 − ℵ

ℓ̃

)−ℑ(ℵ,ℏ(ℵ))
dℵ
]

≤
1
ς

[
MΓ || ℏ || ℓ̃

∗

∫ ℓ1

0

((ℓ1 − ℵ

ℓ̃

)−ℑ∗
−

(ℓ2 − ℵ

ℓ̃

)−ℑ∗)
dℵ +MΓ || ℏ || ℓ̃

∗

∫ ℓ2

ℓ1

(ℓ2 − ℵ

ℓ̃

)−ℑ∗
dℵ
]

≤
MΓ || ℏ || ℓ̃∗

ς[ℓ̃−ℑ∗ (1 − ℑ∗)]

[
(ℓ1)1−ℑ∗

− (ℓ2)1−ℑ∗ + 2(ℓ2 − ℓ1)1−ℑ∗
]
.

Hence, | ℘1ℏ(ℓ2) − ℘1ℏ(ℓ1) |→ 0 as ℓ2 → ℓ1. It implies that ℘1(BR) is equicontinuous.
Step 4: ℘2 is a strict contraction. For ℏ, κ ∈ E and ℓ ∈ ψ̃ℓ, we obtain

| ℘2ℏ(ℓ) − ℘2κ(ℓ) | ≤
1
ς

[ ∫ ℓ

0
ℵ
−σ
ℵ
σ
| Θ(ℵ, ℏ(ℵ)) −Θ(ℵ, κ(ℵ)) | dℵ

]
≤

1
ς

[
Λ || ℏ − κ ||

∫ ℓ

0
ℵ
−σdℵ

]
≤

1
ς

[
Λ || ℏ − κ ||

ℓ−σ+1

−σ + 1

]
≤
Λ

ς

[ ℓ̃−σ+1

−σ + 1

]
|| ℏ − κ || .

Consequently by (6), the operator ℘2 is a strict contraction.
Therefore, all conditions of Theorem 2.6 are fulfilled. We infer that the NAVOIVP (1) has at least one
solution in E.

4. Results of Uniqueness

In the next result, we shall demonstrate the uniqueness of solutions for the NAVOIVP (1) using the
Banach contraction principle.

Theorem 4.1. Assume that conditions (SY1) and (SY2) hold. If

1
ς

[
Λ
ℓ̃−σ+1

−σ + 1
+ 4MΓℓ̃

∗ℓ̃

]
< 1, (7)

then the NAVOIVP (1) has a unique solution in E.
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Proof Consider the operator
℘ : E→ E,

as follows
℘ℏ(ℓ) = ℘1ℏ(ℓ) + ℘2ℏ(ℓ), f or ℏ ∈ E.

For ℏ, ℏ∗∈ E, we can write

| ℘ℏ(ℓ) − ℘ℏ∗(ℓ) | ≤
1
ς

[ ∫ ℓ

0
ℵ
−σ
ℵ
σ
| Θ(ℵ, ℏ(ℵ)) −Θ(ℵ, ℏ∗(ℵ)) | dℵ

+ |

∫ ℓ

0

(ℓ − ℵ)−ℑ(ℵ,ℏ(ℵ))

Γ(1 − ℑ(ℵ, ℏ(ℵ)))
ℏ(ℵ)dℵ −

∫ ℓ

0

(ℓ − ℵ)−ℑ(ℵ,ℏ∗(ℵ))

Γ(1 − ℑ(ℵ, ℏ∗(ℵ)))
ℏ∗(ℵ)dℵ |

]
≤

1
ς

[
Λ || ℏ − ℏ∗ ||

∫ ℓ

0
ℵ
−σdℵ

+ |

∫ ℓ

0

(ℓ − ℵ)−ℑ(ℵ,ℏ(ℵ))

Γ(1 − ℑ(ℵ, ℏ(ℵ)))
ℏ(ℵ)dℵ −

∫ ℓ

0

(ℓ − ℵ)−ℑ(ℵ,ℏ∗(ℵ))

Γ(1 − ℑ(ℵ, ℏ∗(ℵ)))
ℏ∗(ℵ)dℵ |

]
≤

1
ς

[
Λ || ℏ − ℏ∗ ||

ℓ−σ+1

−σ + 1

+ 2
∫ ℓ

0

(
sup
ℓ∈ψ̃ℓ

(ℓ − ℵ)−ℑ(ℵ,ℏ(ℵ))

Γ(1 − ℑ(ℵ, ℏ(ℵ)))
+ sup
ℓ∈ψ̃ℓ

(ℓ − ℵ)−ℑ(ℵ,ℏ∗(ℵ))

Γ(1 − ℑ(ℵ, ℏ∗(ℵ)))

)
| ℏ − ℏ∗ | dℵ

]
≤

1
ς

[
Λ
ℓ̃−σ+1

−σ + 1
|| ℏ − ℏ∗ || +2 || ℏ − ℏ∗ ||

∫ ℓ

0
(MΓℓ̃

∗ +MΓℓ̃
∗)dℵ
]

≤
1
ς

[
Λ
ℓ̃−σ+1

−σ + 1
|| ℏ − ℏ∗ || +4MΓℓ̃

∗
|| ℏ − ℏ∗ || ℓ

]
≤

1
ς

[
Λ
ℓ̃−σ+1

−σ + 1
+ 4MΓℓ̃

∗ℓ̃
]
|| ℏ − ℏ∗ || .

As a consequence of Equation (7), the operator ℘ acts as a contraction. Therefore, by applying the Banach
fixed-point theorem, we conclude that ℘ has a unique fixed point, which corresponds to the unique solution
of the NAVOIVP (1) in the space E.

5. Ulam-Hyers Stability

Definition 5.1. [15] In connection with the NAVOIVP (1), consider the inequality

|Dℑ(ℓ,ϑ(ℓ))
0+ ϑ(ℓ) + ςϑ

′

(ℓ) −Θ(ℓ, ϑ(ℓ))| ≤ ϵ, ℓ ∈ ψ̃ℓ. (8)

We say that the NAVOIVP (1) exhibits Ulam-Hyers stability if there exists a constant cΘ > 0 such that, for any ϵ > 0
and for every function ϑ ∈ C(ψ̃ℓ,R) satisfying inequality (8), there exists a solution ℏ ∈ C(ψ̃ℓ,R) of the original
problem (1) for which

|ϑ(ℓ) − ℏ(ℓ)| ≤ cΘϵ, ℓ ∈ ψ̃ℓ.

Theorem 5.2. Suppose that assumptions (SY1) and (SY2), along with inequality (7), are satisfied. Then the
NAVOIVP (1) is Ulam-Hyers stable.

Proof Let ϵ > 0 be any arbitrary number. Suppose a function ϑ(ℓ) ∈ C(ψ̃ℓ,R) satisfies the inequality

|Dℑ(ℓ,ϑ(ℓ))
0+ ϑ(ℓ) + ςϑ

′

(ℓ) −Θ(ℓ, ϑ(ℓ))| ≤ ϵ, ℓ ∈ ψ̃ℓ, (9)
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integrating both sides of the above (9), we have∣∣∣∣ϑ(ℓ) +
1
ς

[ ∫ ℓ

0

(ℓ − ℵ)−ℑ(ℵ,ℏ(ℵ))

Γ(1 − ℑ(ℵ, ℏ(ℵ)))
ℏ(ℵ) dℵ −

∫ ℓ

0
Θ(ℵ, ℏ(ℵ)) dℵ

]∣∣∣∣ ≤ ϵℓ̃.
Let ℓ ∈ ψ̃ℓ, then

| ϑ(ℓ) − ℏ(ℓ) | =
∣∣∣∣ϑ(ℓ) +

1
ς

[ ∫ ℓ

0

(ℓ − ℵ)−ℑ(ℵ,ℏ(ℵ))

Γ(1 − ℑ(ℵ, ℏ(ℵ)))
ℏ(ℵ) dℵ −

∫ ℓ

0
Θ(ℵ, ℏ(ℵ)) dℵ

]∣∣∣∣
=
∣∣∣∣ϑ(ℓ) +

1
ς

[ ∫ ℓ

0

(ℓ − ℵ)−ℑ(ℵ,ℏ(ℵ))

Γ(1 − ℑ(ℵ, ℏ(ℵ)))
ℏ(ℵ) dℵ −

∫ ℓ

0
Θ(ℵ, ℏ(ℵ)) dℵ

]
+

1
ς

[ ∫ ℓ

0

(ℓ − ℵ)−ℑ(ℵ,ϑ(ℵ))

Γ(1 − ℑ(ℵ, ϑ(ℵ)))
ϑ(ℵ) dℵ −

∫ ℓ

0

(ℓ − ℵ)−ℑ(ℵ,ϑ(ℵ))

Γ(1 − ℑ(ℵ, ϑ(ℵ)))
ϑ(ℵ) dℵ

]
+

1
ς

[ ∫ ℓ

0
Θ(ℵ, ϑ(ℵ)) dℵ −

∫ ℓ

0
Θ(ℵ, ϑ(ℵ)) dℵ

]∣∣∣∣
=
∣∣∣∣ϑ(ℓ) +

1
ς

[ ∫ ℓ

0

(ℓ − ℵ)−ℑ(ℵ,ϑ(ℵ))

Γ(1 − ℑ(ℵ, ϑ(ℵ)))
ϑ(ℵ) dℵ −

∫ ℓ

0
Θ(ℵ, ϑ(ℵ)) dℵ

]∣∣∣∣
+

1
ς

[∣∣∣∣ ∫ ℓ

0

(ℓ − ℵ)−ℑ(ℵ,ℏ(ℵ))

Γ(1 − ℑ(ℵ, ℏ(ℵ)))
ℏ(ℵ) dℵ −

∫ ℓ

0

(ℓ − ℵ)−ℑ(ℵ,ϑ(ℵ))

Γ(1 − ℑ(ℵ, ϑ(ℵ)))
ϑ(ℵ) dℵ

∣∣∣∣]
+

1
ς

[ ∫ ℓ

0
| Θ(ℵ, ϑ(ℵ)) −Θ(ℵ, ℏ(ℵ)) | dℵ

]
≤ ϵℓ̃ +

1
ς

[
2
∫ ℓ

0

(
sup
ℓ∈ψ̃ℓ

(ℓ − ℵ)−ℑ(ℵ,ℏ(ℵ))

Γ(1 − ℑ(ℵ, ℏ(ℵ)))
+ sup
ℓ∈ψ̃ℓ

(ℓ − ℵ)−ℑ(ℵ,ϑ(ℵ))

Γ(1 − ℑ(ℵ, ϑ(ℵ)))

)
| ℏ − ϑ | dℵ

+

∫ ℓ

0
ℵ
−σ
ℵ
σ
| Θ(ℵ, ϑ(ℵ)) −Θ(ℵ, ℏ(ℵ)) | dℵ

]
≤ ϵℓ̃ +

1
ς

[
2 || ϑ − ℏ ||

∫ ℓ

0
(MΓℓ̃

∗ +MΓℓ̃
∗)dℵ + Λ || ϑ − ℏ ||

∫ ℓ

0
ℵ
−σdℵ

]
≤ ϵℓ̃ +

1
ς

[
4MΓℓ̃

∗
|| ϑ − ℏ ||

∫ ℓ

0
dℵ + Λ || ϑ − ℏ ||

ℓ−σ+1

−σ + 1

]
≤ ϵℓ̃ +

1
ς

[
4MΓℓ̃

∗ℓ || ϑ − ℏ || +Λ
ℓ̃−σ+1

−σ + 1
|| ϑ − ℏ ||

]
≤ ϵℓ̃ +

1
ς

[
4MΓℓ̃

∗ℓ̃ || ϑ − ℏ || +Λ
ℓ̃−σ+1

−σ + 1
|| ϑ − ℏ ||

]
≤ ϵℓ̃ +

1
ς

[
4MΓℓ̃

∗ℓ̃ + Λ
ℓ̃−σ+1

−σ + 1

]
|| ϑ − ℏ ||,

then

|| ϑ − ℏ ||
(
1 −

1
ς

[
4MΓℓ̃

∗ℓ̃ + Λ
ℓ̃−σ+1

−σ + 1

])
≤ ϵℓ̃.

Now, for each ℓ ∈ ψ̃ℓ, we have

| ϑ(ℓ) − ℏ(ℓ) |≤|| ϑ − ℏ ||≤
ℓ̃

1 − 1
ς

[
4MΓℓ̃∗ℓ̃ + Λ ℓ̃−σ+1

−σ+1

]ϵ = cΘϵ.

Thus, the NAVOIVP (1) is Ulam-Hyers stable.
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6. Numerical Examples

Example 6.1. Consider the following NAVOIVP: D
ℓ
3+

1
2 ℏ(ℓ) + 3ℏ

′

(ℓ) = exp(−ℓ+4)
√

2πℓ+ 5
6

(ℓ2) + 1
3ℏ, ℓ ∈ [0, 1],

ℏ(0) = 0.
(10)

Also, assume ς = 3 andℑ(ℓ, ℏ(ℓ)) = ℓ
3+

1
2 . Then,ℑ is a continuous function with 0 < ℑ(ℓ, ℏ(ℓ)) < 1

3+
1
2 =

5
6 = ℑ

∗ < 1,
and minℓ∈ψ̃ℓ | ℑ(ℓ, ℏ(ℓ)) |= 1

2 , and

ℓ
1
6 | Θ(ℓ, ℏ) −Θ(ℓ, y) | = ℓ

1
6 |

exp(−ℓ + 4)
√

2πℓ + 5
6

(ℓ2) +
1
3
ℏ −

exp(−ℓ + 4)
√

2πℓ + 5
6

(ℓ2) −
1
3

y |

= ℓ
1
6 |

1
3
ℏ −

1
3

y |

≤ ℓ
1
6

1
3
| ℏ − y |

≤
1
3
| ℏ − y | .

Hence, the conditions (SY1) and (SY2) are fulfilled with the parameters Λ = 1
3 and σ = 1

6 . Moreover, we compute the
following:

1
ς

[
Λ
ℓ̃−σ+1

−σ + 1
+ 4MΓℓ̃

∗ℓ̃
]
=

1
3

[1
3

1
5
6

+ 4
1
√
π

]
=

1
3

[1
3

6
5
+

4
√
π

]
=

1
3

[2
5
+

4
√
π

]
=

1
3

[2√π + 20
5
√
π

]
=

23.54
26.58

≂ 0.89 < 1.

Therefore, by invoking Theorem 4.1, the NAVOIVP (10) possesses a unique solution. Furthermore, Theorem 5.2
guarantees that this problem also exhibits Ulam-Hyers stability.

Example 6.2. Consider the following NAVOIVP:{
D

ℓ
2+

1
4 ℏ(ℓ) + 6ℏ

′

(ℓ) = 8(ℓ+1)
4
√

2π
+ (exp(

√
ℓ + 1)) + π

4 ℏ, ℓ ∈ [0, 1],
ℏ(0) = 0,

(11)

and assume ς = 6 andℑ(ℓ, ℏ(ℓ)) = ℓ
2 +

1
4 . Then,ℑ is a continuous function with 0 < ℑ(ℓ, ℏ(ℓ)) < 1

2 +
1
4 =

6
8 = ℑ

∗ < 1,
and minℓ∈ψ̃ℓ | ℑ(ℓ, ℏ(ℓ)) |= 1

4 . Furthermore, we have

ℓ
1
16 | Θ(ℓ, ℏ) −Θ(ℓ, y) | = ℓ

1
16 |

8(ℓ + 1)

4
√

2π
+ (exp(

√

ℓ + 1)) +
π
4
ℏ −

8(ℓ + 1)

4
√

2π
− (exp(

√

ℓ + 1)) −
π
4

y |

≤ ℓ
1
16
π
4
| ℏ − y |

≤
π
4
| ℏ − y | .

So (SY 1), (SY 2) satisfied with Λ = π
4 and σ = 1

16 . In addition to this, we have

1
6

[
Λ
ℓ̃−σ+1

−σ + 1
+ 4MΓℓ̃

∗ℓ̃
]
=

1
6

[π
4

1
15
16

+ 4 × (1.2254)
]
=

1
6

[π
4

16
15
+ 4.9016

]
=

1
6

[4π
15
+ 4.9016

]
≂ 0.96 < 1.

According to Theorem 4.1, the NAVOIVP (11) has a unique solution. Moreover, by Theorem 5.2, the NAVOIVP (11)
is Ulam-Hyers stable.
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7. Conclusion

In this study, we rigorously established the existence, uniqueness, and Ulam-Hyers stability of solutions
to the NAVOIVP (1), which modeled non-autonomous differential equations of variable fractional order,
encompassing both classical and fractional derivatives with 0 < ℑ(ℓ, ℏ(ℓ)) < 1. The theoretical analysis
leveraged the Ulam-Hyers stability framework (Theorem 5.2) in conjunction with fixed-point techniques,
as formalized in Theorems 3.5 and 4.1. The analytical results were further substantiated through represen-
tative numerical examples. These findings provided a robust foundation for the study of variable-order
fractional differential equations and suggested potential applications across a broad spectrum of scientific
and engineering problems.
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