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Comparison theorems for nonnegative splittings of tensors

Yan-Cun Li**, Shu-Xin Miao?®

?College of Mathematics and Statistics, Northwest Normal University, Lanzhou, 730070, P.R. China

Abstract. In this paper, by analogy with the definition of the nonnegative splitting of a matrix, we introduce
the definition of the nonnegative splitting of a tensor. Considering the case that nonnegative splitting of a
strong M-tensor is not necessarily convergent, we establish a new convergence theorem. Since comparison
theorems involving the spectral radius of iterative tensors are useful tools in the analysis of convergence
rate of tensor splitting iterative (TSI) methods, we derive several comparison theorems for nonnegative
splittings of tensors in this paper. These results generalize the previous ones.

1. Introduction

In recent years, multi-linear systems have found increasing applications in engineering and scientific
computing, drawing significant attention from researchers. Examples include higher-order Markov chains,
graph analysis, chemometrics, diffusion tensor imaging, image processing, and the multilinear PageRank
problem, see, e.g. [1, 3, 5, 8, 18, 21] and the references therein.

Consider a multi-linear system:

Ax" L =, (1)
where A is an order m dimension # tensor, b is an n-dimension vector, Ax"~! is an n-dimension vector, and
the i-th component of Ax"! is defined as [16]:

n

-1 /

i im=1

where x; denotes the i-th component of x.

In order to solve the multi-linear system with tensor splitting iterative (TSI) method [10, 11], the
coefficient tensor A is split into

A=E-F, 3)
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where & is left-nonsingular [12], then an iterative scheme for solving the system (1) can be described as
follows

1
X = [M(S)’I’Fx,’:’_’ll + M(S)’lb][”’”], k=1,2,---, (4)
where xq is an arbitrarily chosen initial vector and tensor M(E)™'F is called the iterative tensor. The
choice of different splitting tensors & and # corresponds to different iterative methods for solving (1).
Therefore, selecting optimal & and ¥ is crucial for enhancing the convergence rate of the TSI method. In
[10], the authors analyzed the convergence rate of the TSI method and demonstrated that the spectral radius

P (M(S)‘lT) can serve as an approximate convergence rate of the iteration (4). Numerical examples in [10]
further verified that p (M(S)‘l?') effectively characterizes the proposed approximate convergence rate of

the iteration (4). These results imply that a smaller p (M(S)*l?') corresponds to faster convergence of the
iterative scheme (4).

In matrix analysis, the comparison theorems for splittings of matrices serve as a useful tool for analyzing
the convergence rates of iterative methods [20]. In 2018, by analogy with the comparison theorems for
(weak) regular splittings of matrices, Liu, Li and Vong established analogous comparison theorems for
(weak) regular splittings of tensors [11]. It is well-known that nonnegative splitting of a matrix has a larger
range and fewer constraints than (weak) regular splitting of a matrix [6, 20, 22]. However, prior works have
not extended the concept of nonnegative splitting to the tensor setting. In this paper, we investigate the
nonnegative splitting of a tensor and analyze the comparison of the proposed approximate convergence
rate for tensor splitting iterative methods.

The contributions of this paper are twofold. First, we define the nonnegative splitting of a tensor,
and establish a novel convergence theorem for nonnegative splitting of a tensor. Second, we propose
comparison theorems for nonnegative splittings of tensors, which are more computationally tractable and
require fewer constraints.

The structure of this paper is organized as follows. In Section 2, we introduce fundamental definitions,
notations and preliminary lemmas that are used in subsequent sections. Section 3 presents the concept
of nonnegative splitting of a tensor and establishes a novel convergence theorem. Based on the theory
of nonnegative tensors, we develop comparison theorems for nonnegative splittings of tensors in Section
4. Numerical experiments in Section 5 demonstrate the validity of the proposed comparison theorems.
Finally, concluding remarks are provided in Section 6.

2. Preliminaries

For convenience we shall now briefly explain some of the terminology used in the next section.
Let 1 be a positive integer, by (n) we denote the set {1,--- , n}. A tensor A consists of ny X - - - X n,,, entries
in the real field R :
A= (ail...i,,,),ail...im eR, Z] [S <7’l]‘>, ] =1,---,m.

Ifny =--- =n, = n, Ais called an order m dimension n tensor. We denote the set of all order m dimension n
tensors by RI™". When m = 2, R>"l denotes the set of all n x 1 real matrices. When m = 1, Rl is simplified
as R", which is the set of all n-dimension real vectors. Similarly, the above notions can be generalized to
the complex number field C.

Let0, O, O denote a zero vector, a zero matrix and a zero tensor, respectively. Let A and B be two tensors
with the same sizes. The order A > B (A > B) means that each entry of A is no less than (larger than)
corresponding one of B, calling A nonnegative if A > O. These definitions can be applied immediately to
matrices by identifying them with order 2 dimension # tensors.

Next we introduce the definition of several special tensors.

Definition 2.1. Let I = (6;,..;,) € R, T is called the unit tensor if ;,..., satisfies

6' i _ 1/ Z’1:"'21‘141/
It =
! 0, else.
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Definition 2.2. ([19]) Let A € R, A is called row diagonal if ay,.., can take nonzero value only when
i) = ... = Iy

Definition 2.3. ([15]) Let A € R"". The ma]orzzutzon matrix associated to the tensor A is the matrix of coefficients
of the non-mixed terms and is denoted M(A), i.e., M(A);j = aj,..,, where iy = =iy =]

Definition 2.4. ([19]) Let A € R"™". Then A is row diagonal if and only if A = M(A)L.

Definition 2.5. ([12]) Let A € R, If M(A) is a nonsingular matrix and A = M(A)L, then A is called
left-invertible or left-nonsingular, M(A)™ is called the order 2 left-inverse of A.

We now define the product between a matrix and a tensor, which is a special case of the tensor product
introduced in [2, 18].

Definition 2.6. ([10]) Let A = (a;;) be an n-dimensional square matrix and B = (b;,...,,) is an order m dimension n
tensot, then tensor C = A8 is an order m dimension n tensor, and its entries are gives as follows:

n
Cliyeriyy = Z a]']'zbjziz-"imr 1< j, i, <nr=2,..,m. (5)
j2=1

The formula (5) can be expressed as follows [8]

Ca) = (AB)a) = AB). (6)

Where C(1y and B(j) are the matrix obtained from C and B8 flattened along the first index [8, 9]. For
example, if B;j is an order 3 dimension 7 tensor, then

bin -+ b bz o0 b -+ bun o bim
boin -+ bun b2 0 boa - boiw ccr Do

B = : .. : : - : : : . o )
bnll e bnnl ban e bnnZ e bnln e bnnn

The definitions of tensor eigenvalues and eigenvectors are introduced as follows.

Definition 2.7. ([13, 16]) Let A € RI"™". A pair (A,x) € C x (C"\{0}) is called an eigenvalue-eigenvector (or
simply eigenpair) of A if they satisfy the equation

ﬂxm—l — /\X[m_ll,
T
where xI"1 = (x{”’l, e x;"*l) . We call (A, x) an H-eigenpair if both A and x are real.
Let o(A) be the set of all eigenvalues of A, the spectral radius of A is defined by p(A) = max{|A| | A €
o(A)}.
In [7], Ding, Qi and Wei gave the definitions of the Z-tensor, M-tensor and strong M-tensor.

Definition 2.8. ([7]) Let A € R, A is called a Z-tensor if its off-diagonal entries are non-positive. A is called
an M-tensor if there exist a nonnegative tensor B and a positive real number n > p(8B) such that

A=nl-8.
Ifn > p(B), then A is called a strong M-tensor.

Based on this definition, Liu, Li and Vong [10] gave the definition of the tensor splitting.
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Definition 2.9. ([10]) Let A, &, F € R"". A = & — F is said to be a splitting of A if & is left-nonsingular; a
reqular splitting of A if & is left-nonsingular with M(E)™ > O and F > O; a weak regular splitting of A if & is
left-nonsingular with M(E)™ > O and M(E)™'F > O; a convergent splitting if p (M(S)‘lT) <1

The following are equivalent conditions for a strong M-tensor based on tensor splitting.

Lemma 2.10. ([10, 11]) If A € R is a Z-tensor, then the following conditions are equivalent:
(1) A is a strong M-tensor.

(2) There exist an inverse-positive Z-matrix B and a semi-positive Z-tensor C with A = BC.

(8) A has a convergent (weak) regular splitting.

(4) All (weak) regular splittings of A are convergent.

To facilitate subsequent proofs, we introduce the following lemmas regarding tensor properties.

Lemma 2.11. ([4, 23]) (weak Perron-Frobenius theorem) If A € R is a nonnegative tensor, then there exist
vector x > 0,x # 0 such that
A = p( AL,

Lemma 2.12. ([23, Lemma 3.3 and Lemma 3.5]) Let A, B € R, IfO < A < (<)B, then p(A) < p(B).

Lemma 2.13. Let A € R pe g nonnegative tensor, and p1, v € R :
(1) [11] If pxm=11 < (<) AX™ 1, x > 0, x # 0 such that u < (<)p(A).
(2) [17] If ox"=11 > Ax™1, x > 0 such that v > p(A).

3. Nonnegative splitting and convergence theorem
We can define the definition of nonnegative splitting of a tensor.

Definition 3.1. Let A, &, F € R, A = E—F is said to be a splitting of A if & is left-nonsingular; a nonnegative
splitting of A if M(E)'F = O.

The concept of nonnegative splitting of a tensor generalizes the nonnegative splitting of a matrix. When
m = 2, the tensor A reduces to a matrix case. Note that for matrices, the left inverse of a matrix is equal to
the right inverse. However, this property does not hold for the general tensors [18].

Clearly, we can draw the following corollary from the Definition 2.9 and Definition 3.1.

Corollary 3.2. Any regular splitting of A is a weak reqular splitting of A, and any weak reqular splitting of Ais a
nonnegative splitting of A. In general, the converses are not true.

The following example will show that the nonnegative splitting is not necessarily a weak regular
splitting.

Example 3.3. If A € RBZ. Let
A = -2 025 025 025
M= 025 025 025 -2 )

be splitted as A = & — F, where

-2 00 0 0 -025 -025 -0.25
6<1>‘(0.25 00 —2)””d 7:“)‘(0 -025 -025 0 )

Some calculation gives

-0.5 0

-0.0625 -0.5

_1_
M(&) —( 0 0.1406 0.1406 0.0156

)and (M(S)‘lﬁf)(l):( 0 0125 0125 0.125 )

It is easy to check that M(E)™ < O, M(E)'F > O. Then the splitting is nonnegative, and is not weak regular.
So the nonnegative splitting is not necessarily weak regular splitting.
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Recall that the regular (weak regular) splitting of a strong M-tensor is a convergent splitting by Lemma
2.10 (see also [10, Theorem 3.18]). However, unlike the regular (weak regular) splitting, this property does
not hold for nonnegative splitting of a tensor in general. The following example demonstrates that the
nonnegative splitting of a strong M-tensor may not be convergent.

Example 3.4. If A = (a;5) € R with ayyy = 2, azn = 2 and all other entries a;j = —0.25. Clearly, A is a strong
M-tensor [11, Remark 3.5]. Let

0 -025 -025 -025 200 0
8<1>=(—o.25 ~025 -025 0 )””d }71):( 0 00 —2)'
We get
a_( 0 -4 - 0008
M(&) 1:( 4 0 )and (M(&) 15")(1)=( 800 0 )

It is easy to check that M(E1)"'F > O. Then the splitting A = & — F is nonnegative, and by using the power
method [14] that we get p (M(S)‘lf) = 8 > 1. In this case, the nonnegative splitting of a strong M-tensor is not
convergent splitting.

For nonnegative splitting of a tensor, we have the following convergence theorem.

Theorem 3.5. Let A, &, F € R, Suppose that A = E—F is a nonnegative splitting. Let x be the Perron vector
of M(E)"'F . Then the following statements are equivalent:

M) p(ME)'F) < 1.

(2) If Ax™1 > 0, then Fx"~1 > 0.
(3) M(&E) 1 Ax" 1 < xIm-1,

@) p(ME)A) > 0.

Proof. As A = &— F is a nonnegative splitting, then M(E)"!F > O. By the weak Perron-Frobenius
theorem (see Lemma 2.11), there exists a vector x > 0, x # 0 such that

ME)FX" = p(M(E)F)xm .

It is easy to see that

ME) ' A=METE-F) =T -M©E)'F.
By post-multiplying by x"~! we get
ME)AX T = (I - ME)'F X" = (1 - p(ME) T F )" ®)

Based on (8), the following proof are dived into four parts.
First, we prove (1) = (2)”. It is obvious that

A" = (1 - p (ME)'F))Ex"
By p (M(S)‘l?') <1and Ax"™! > 0, we have

ﬂxm—l < axm—ll

Hence,
Fx" 1 > 0.

Second, we prove ”(2) = (1)”. Since Ax"~! > 0 and Fx"~! > 0, we have

M@Ex™1 > 0.
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Moreover, since

0 < AX" ™ = ME)T - M@E)'FX"t=(1-p (M(S)*T))M(S)xlm-”

and M(E)xI"-1 > 0, we get p (M(S)‘lT) <1.
Third, we prove (1) & (3). By relation (8) and the fact that x > 0 with x # 0, we have

ME) A < X" o (1 - pME) T F )R < X
e0<1 —p(M(S)‘l?') <1
& p(ME)F) < 1.
Last, we prove (1) © (4). From (8), we get that 1 — p (M(S)‘l?' ) is an eigenvalues of M(E) "\ A. Then

p(ME)'A) 2 1 - p(ME)'F).

Hence,
P(M(S)-lﬂ) >00<1- p(M(g)—lgr) <] e p(M(S)‘l?‘) <1

From this we can obtain the required results. O

4. The comparison theorem

In this section, we investigate comparison results for different splittings of a given tensor A. To this
end, consider the following two splittings

A=E-F1=6E-%, )

where &; and &, are left-nonsingular.
When one splitting is a nonnegative splitting and the other is a weak regular splitting in (9), we obtain
the following comparison results.

Theorem 4.1. Let the splittings given in (9) be convergent, where the first splitting is a nonnegative splitting and
the second is a weak regular splitting. Suppose there exists a constant a € (0,1] such that

F1 < af,.
Then, the inequality p (M(Sl)’lﬁ) <p (M(Sz)’l?'z) < 1 holds when a = 1, and the strict inequality p (M(Sl)’lﬂ)
< p(M(&)'F2) < 1 holds when 0 < a < 1.

Proof. Noting that the splittings given in (9) are convergent, it follows that p (M(Sl)‘lﬁ) < 1 and
p (M(&2)7'%2) < 1. Therefore, it suffices to prove the inequality p (M(&:)7'71) < (<) p (M(&)™'F2).

Because A = & — 7 is a nonnegative splitting, then M(&;)"'F7 > O. By the weak Perron-Frobenius
theorem (see Lemma 2.11), there exists a vector x > 0, x # 0 such that

M(E)TFx" = p (M(E) )",
which implies:
Fix"1 = p (M(E)F) MEDX" = p (M(E) ' F1) Ex . (10)

By & = A+ 1 and (10), we get
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p(M(E) ) A" = (1= p (M(&) 7)) Fax" .

By p(M(&1)'%1) < 1and 71 < af, we get

a(1 - p (M@E) ' F)Fax"" = (1 - p (ME) ' F)NFix"" = p(ME)F1) Ax" . (11)
Noting that A = &, — 7. Then by (11) we get

(= ap (ME)'F1) + p (ME) ' F1 ) Fax" ! 2 p (M(E1) ™' F1 ) M(E)x" 1,
By M(&,)"! > O, we have
(= ap (ME) 1) + p (M(E) ' F1))M(E) " Fox" ! 2 p (M(E) 777 ) x" Y,

ie.,

M(&)'Fox" 2 p (M(E)'F1) /(@ = ap (ME) ') + p (M(E) 7' ))x" . (12)
Which, by Lemma 2.13 and (12), implies

p(M&)'72) 2 p (ME)'F1) /(& - ap (ME)'F1) + p (M(E)'F1)).

From this we can obtain the required results, p (M(&)'1) < p(M(&)'2) < 1 whenever a = 1 and

p(M(Sl)‘lﬂ) <p (M(Sz)‘lfz) <1wheneverO<a<1. O

For the case when o = 1 and 7 < %> the equality p (M(Sl)’lﬂ) <p (M(Sz)’lﬁ’:z) < 1 can be proved by
[11, Theorem 3.4 (1)].

Theorem 4.2. Let the splittings given in (9) be convergent, where the first splitting is a nonnegative splitting and
the second is a weak reqular splitting. If there exists a with 0 < a <1 such that

M(&E1) < aM(&).

Then, the inequality p (M(Sl)‘lﬂ> <p (M(Sz)‘lﬁ) < 1holdswhen a = 1, and the strict inequality p (M(SQ‘W—]) <
o (M(82)717"2> < 1 holds when 0 < a < 1.

IA

Proof. In what follows, it suffices to prove that p(M(Sl)‘lﬁ) p(M(Sz)‘l?}) or p(M(Sl)‘lﬂ) <

p (M(Sz)‘lﬁ), since both splittings are assumed to be convergent.

\%

Because A = &; — ¥ is a nonnegative splitting, then M(&E) '
vector x > 0, x # 0 such that

O. By Lemma 2.11, there exists a

M) Fix" " = p(M(&) 71«

By 1 = &1 — A, we get
M(al)_l(sl - ﬂ)xm—l =p (M(al)_lﬂ) x[m—l],

which implies:
M(E)1EX" = M(E1) A = p (M(E1) 7 ) . (13)
By & = M(&1)1 and (13), we get

M(E) A = (1 - p (M(E) 17 ) x" 1,
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Multiply both sides of M(E;) < aM(E;) by (1 - p (M(&)‘lﬂ) xm=1l gives us
A" = (1= p (MED)'F)MENR" < a(1 - p (ME1) ' F1 ) M(Ex" .
By M(&)7! > O, we have
M(E)7 (& = FX" ™ < a1 = p (M(E) I )xdm1.

We have

M(&) X" = (1 - a(l = p (M(E) ' F) X", (14)
Which, by Lemma 2.13 and (14), implies

p (M(Sz)_lﬂ) >l-a+ap (M(Sl)_lﬂ) .

From this we can obtain the required results, p (M(SQ‘W’]) <p (M(Sz)‘l?'z) < 1 whenever &« = 1 and
p (M(Sl)‘lﬂ) <p (M(Sz)‘lﬁ) <1wheneverO<a<1. O

Now, according to Theorem 4.2, the Corollary 4.3 is given.

Corollary 4.3. Let the splittings given in (9) be convergent, where the first splitting is a nonnegative splitting and the
second is a weak regular splitting. If M(E1) < M(&,), then there exists o with 0 < a < 1 such that M(&1) < aM(Ey)

and the strict inequality p (M(Sl)’lﬂ) <p (M(Sz)’l"f'g) < 1is valid.

Proof. Denoting
e =), M=o,
From M(&) < M(&;) it gets

@

M < m:.
ij ’

m.. m
)

i,j=12,..,n

If there exists mf]l) > 0 then let

w o
a = max —|m(“)>0 .
1<ij<n | @ U
if
Otherwise mf]l) <0,ie, M(E1) <O, then 0 < a < 1is arbitrary.
Weget0 <a <1and
mzq) < am(,z,), ,j=12,..,n,
j if
ie.,
M(&) < aM(&). (15)

By the Theorem 4.2 and (15) we can prove that strict inequality p (M(Sl)’lﬂ) <p (M(Sz)’l?'z) <1lis
true. O

We now discuss why some hypotheses in the results of Theorem 4.1, Theorem 4.2 and Corollary 4.3
cannot be weakened. For instance, if the given splittings are replaced by both nonnegative splittings,
Theorem 4.1 may no longer hold. The following example demonstrates that even when the splittings in (9)
are nonnegative, the comparison results stated in Theorem 4.1 are not valid.
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Example 4.4. If A € R2.. Let
A ~2 025 025 025
M=l 025 025 025 -2 )

and let
-2 00 0 0 -025 -025 —-0.25
(61)“)‘( 0 00 —2)'(@(”‘(—0.25 -025 -025 0 )
-2 00 0 0 -025 -025 -0.25
(82)<1>:(0.25 00 -2 )'(7:2)@:(0 -025 -025 0 )
We get

a_(-05 0 a_ 05 0
M(&) ‘( 0 -05 |"MET={ _g0625 -05 |

0 0125 0125 0125 0 0125 0125 0.125
-1 _ -1 —
(M(&) (ﬂ)(l)‘(o.m 0125 0125 0 )'(M(SZ) 7:2)<1>‘(0 0.1406 0.1406 0.0156)'

It is easy to check that A = & — F1 = &, — F» are two nonnegative splittings with M(E)'F1 > O and
M(E)71F> > O. Moreover, since F1 < F, it follows from Theorem 4.1 that p (M(Sl)‘lﬁ) <p (M(Sz)‘lﬁ). But

by calculating that we get p (M(Sl)‘lﬁ) =0.3750 > p (M(Sz)‘l?"z) = 0.3273 < 1. In this case, theorem 4.1 is not
true.
Similarly, if the above splittings is replaced by both nonnegative splittings then theorem 4.2 and Corollary 4.3

may not hold. we see from example 4.4 that p(M(&)‘lﬁ) = 0.3750 > p(M(E}z)‘lﬁ) = 0.3273 < 1, when
M(&E) < M(Ep).

When both splittings in (9) are nonnegative splittings, the following comparison results hold.

Theorem 4.5. Let the splittings given in (9) be convergent and nonnegative. Suppose there exists a constant
a € (0,1] such that
aM(E)) 7! > M(&y) L

If the Perron vector x of M(E1)™'F7 satisfies Ax™1 > 0, then the inequality p (M(Sl)‘lﬂ) <p (M(Sz)‘lﬂ) <1
holds when a = 1 and the strict inequality p (M(Sl)’lﬂ) <p (M(Sz)’lﬁ) < 1 holds when 0 < a < 1.

Proof. Because A = & — 7 is a nonnegative splitting, then M(E;)"1F; > O. By Lemma 2.11, M(&) '
has a Perron vector x such that

ME)'Fix" ™" = p(M(E) ' F1)x "

By 1 =& — A, we get
M(Sl)_l(al - ﬂ)xm—l =p (M(81)_17:1) X[m—l],

which implies:
M(E) ' EX = ME) A = p (M(E) 1) <, (16)
By & = M(&1)1 and (16), we get
M(@E) A" = (1= p (M(E) " 71 )x!" .
Because the Perron vector x of M(&;)™1 %7 satisfies Ax"~! > 0. Multiply both sides of aM(&;)™ > M(E,)™!

by Ax"! gives us
aM (&) AT = M(E) T A,
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ie.,
a(l - p (ME) ' F )" > M(Ey) 7 Ax" (17)

By A = &, — 2 and (17), we have

M(E) ' Fax" ! 2 (1 - a(l = p (M(E) ') x"1, (18)
Which, by Lemma 2.13 and (18), implies
p (M(Sz)_lﬂ) >l-a+ap (M(Sl)_lﬂ) .

From this we can obtain the required results, p (M(Sl)‘lﬂ) <p (M(&z)‘lﬁ) < 1 whenever ¢ = 1 and
p(M(&)'F1) < p(M(&E)'F2) < 1 whenever 0<a < 1. O

For the case when a = 1 and M(&;)7! > M(E,)! the equality p (M(Sl)‘lﬂ) <p (M(Sz)‘lﬂ) <1 canbe
proved by [11, Lemma 5.3].

Corollary 4.6. Let the splittings given in (9) be convergent and nonnegative. If the Perron vector x of M(E1)™'F1
satisfies AX"1 > 0 and M(E1)™! > M(Ey) 7, then there exists a with 0 < a < 1 such that aM(E1)™' > M(E,)7!

and the strict inequality p (M(Sl)‘lﬂ) <p (M(Sz)‘lﬁ) < 1is valid.

Proof. Denoting
-1 _ (4, (D -1 _ (@
ME)™ = (), ME = ()

From M(&1)™! > M(&,) 7! it gets
> m,

i
ij @
a=max {— |m;” >03.
1<ij<n | @ U

ij

i,j=1,2,..,n

If there exists mfjl) > 0 then let

Otherwise ml(.;) <0,ie, M) <O, then0<a<1is arbitrary.
Weget0 <a <1and
ozml(.;) > ml(.Jz.), i,j=1,2,..,n,
ie.,
aM(E))7! > M(&y) L (19)

By the Theorem 4.5 and (19) we can prove that strict inequality p (M(Sl)‘lﬂ) <p (M(Bz)‘lﬂfz) <lis
true. 0O

Theorem 4.7. Let the splittings given in (9) be convergent and nonnegative.
(1) If either M(E1)"'M(E2) > T or M(E2)TM(E1) < 1, then

p(M@E)'F) < p(ME)'F2) < 1. (20)
(2) If there exists a with 0 < a < 1 such that either M(E1)"'M(E,) > 1/al or M(E)'M(&E1) < al, then

p(ME)'F1) < p (M(&) ' 72) < 1. (21)
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Proof. Because A = & — 7 is a nonnegative splitting, then M(E1)"1F; > O. By Lemma 2.11, M(&) '
has a Perron vector x such that

M(E)'Fx" = p (M(&) ) K,
which implies:
Fix" = p (ME) 1) MEx" . (22)
By 71 = & — Aand (22), we get
A" = (1= p (M(&) ' ))MEDK" T,
ie.,
M(E) " AX" = (1= p (M(E1) 7' F7 ))M(E2)  M(Epx"1), (23)
Let § =1 or a. If M(&,)'M(&)) < BI. Because splittings given in (9) be convergent, then p (M(&))7'#71) < 1
and p (M(&)7'%2) < 1. By p (M(E)7'F1) < 1, M(E)'M(&1) < pl and (23), we get
(1— p (ME)'F1))M(E) " MEX" < (1 - p (M(E) 72 ))ix" ),
ie.,
M(&) A" < (1 — p (M(E) 77 )x" . (24)
By A = &, — ¥, and (24), we get
M(E)FxX" 2 (1= B+ Bp (M(E) 7 F ), (25)
Which, by Lemma 2.13 and (25), implies
p(ME)'F2) 21— B+ pp (MEDNT'F).

Then (20) is valid whenever = 1 and the strict inequality (21) is valid whenever g = a.
For the case when 8 = 1 or a, If M(E1)'M(&,) > 1/BI, the proof is similar. O

Corollary 4.8. Let the splittings given in (9) be convergent and nonnegative. If either M(E1)*M(Ey) > I or
M(E2)\M(&1) < I, then the strict inequality p (M(E1)F1) < p (M(&E)™'F2) < 1 s valid.

Proof. If M(E1)"'M(&;) > I then we denote M(E;) ' M(E,) = (mij) _ and we define a by

nx
()
a=maxX\— -

1<i<n \ M

If M(E2)"'M(&1) < I then we denote M(E,)"M(&r) = (1) _and define a by

nx

a = max {1f1;; | ri; > 0},
1<i<n

whenever there exists at least a diagonal element #1; > 0. Otherwise, 0 < a < 1 is arbitrary.
It is easy to verify that 0 < a < 1 and

M(E1)'M(&) = 1/al,
whenever M(&1)"'M(&E,) > I or

M(&)'M(&y) < al,
whenever M(E;)'M(E;) < I. By the Theorem 4.7 (2) we can prove that strict inequality p (M(81)‘17:1) <
p(M(Sz)‘l?}) <listrue. O
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Theorem 4.9. Let the splittings given in (9) be convergent and nonnegative. If M(E1)™'F1 < ()M(Ep) 1 F2, then
p(ME)'F) < p(M(E)1F2) < 1.

Proof. Because A = & —F; = &;—F are nonnegative splittings, then M(E;) ' F1 > Oand M(E,) %> > O.
By Lemma 212 and M(&)"'F1 < (SIM(E2)"'F2, we have p(M(E)'F1) < p(M(E)7'F2). Noting the
splittings given in (9) be convergent, from this we can obtain the required results. O

5. Numerical examples

In this section, we will demonstrate the validity of the comparison theorems through several elementary
multi-linear systems. All tests will be done in MATLAB R2016b with the configuration: Intel(R) Core(TM)i7-
8750H CPU 2.20 GHz and 2.21 GHz.

All numerical experiments were initialized with an appropriate starting value xo, and the iterative
process was terminated when either of the following criteria was met: (1) x; satisfies

RES = |[b - Ax" ||, <1077

or (2) the number of the prescribed maximum iteration steps 1000 is exceeded. In the following examples,
two aspects are given to check the efficiency of the proposed comparison theorems: the number of iteration
steps (denoted by IT), the CPU time in seconds (denoted by CPU(s)).

Example 5.1. IfA € RB2. Let

Ao = 2 -05 -05 -05
=1 - 05 -05 -05 2 [

and let
2 0 0 -05 0 05 05 0
(81)<1>:(—0.5 00 2 )'(ﬁ)“):(o 05 05 0)'
200 0 0 05 05 05
(82)<1>=(o 0 0 2),(%)(1):(0_5 05 05 0 )
We get

_ 05 0
M(&)™! =( 0 05 )

ey [0 03333 03333 0 e [ 0 025 025 025
(M(&) 71)“)‘( 0 03333 03333 0 )’(M(SZ) TZ)@‘( 025 025 025 0 )

Itis easy to check that M(E1)"1F7 > O, M(E;)! > Oand M(E,)"'F, > O. So the splittings are nonnegative
and weak regular, respectively, and 1 < #,. By Theorem 4.1, we get p (M(Sl)’lfl) <p (M(Sz)’lfz). This
result is further confirmed numerically using the power method, which yields p (M(Sl)‘lﬂ) = 0.6666 <
p (M(&2)'F2) = 0.7500.

We set b = [2,3]" and initial vector xy = [0.1,0.1]". By the power method and the TSI method, we get
Table 1. As seen in Table 1, the spectral radius of iteration tensor, the number of iteration steps and CPU
time of choice &, 1 outperform choice &, 7».

To further demonstrate the efficiency of Theorem 4.1, in Figure 1 (a), we plot the values of residuals

(RES) of &; and &, with respect to the iteration steps (IT). From Figure 1 (a), comparing &; and &, we find
that &; is more effective and practical than &,.
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Table 1 Comparison results of the Example 5.1.

EandF IT CPU(s) p(ME)'F)
&, 71 44  0.0015 0.6666
) 62 0.0021 0.7500

10° ‘
——1
—*—2

100,

102

1%}

[0

o

10

108

108 L L L L L L 10'8 L L L L L L L L L
0 10 20 30 40 50 60 70 0 2 4 6 8 10 12 14 16 18 20
I 1y
(a) Example 5.1 (b) Example 5.2

Figure 1: RES versus IT for (a) Example 5.1 and (b) Example 5.2.

Example 5.2. If A € RI2. Let

Ao = 2 -025 -025 -025
M=\ -025 -025 -025 2 J

and let
2000 0 025 025 025
(81)<1>=(0 0 0 2)'(71)“):(0.25 025 025 0 )
2 00 -025 0 025 025 0
(82)“)‘(—0.25 00 2 )'(%)“)‘(o 025 0.25 o)
We get

M(&) =( é g )'M(‘SZ) :( —02.25 _0225 )

_ 0 0.125 0.125 0.125 0 0.1429 0.1429 0O
ME) " F)) = ( )

-1 _
0125 0.125 0125 0 )'(M(SZ) 7:2)0)‘(0 0.1429 0.1429 0

It is easy to check that M(E1)"'F1 > O, M(&)™ > O and M(&E) 1%, > O. So the first splitting is a
nonnegative and the second is a weak regular, and M(&;) > M(&E,). It follows from Theorem 4.2 that
p (M) F1) > p (M(E)™'F2). In fact, we have p (M(E1)7'F1) = 03750 > p (M(&)"'F2) = 0,2858.

In this example, we choose b = [2,3]" and initial vector xo = [0.1,0.1]7. From Table 2 and Figure 1 (b),
we can validate the conclusions of Theorem 4.2.
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Table 2. Comparison results of the Example 5.2.

EandF IT CPU(s)  p(ME)'F)
&1, 7 19 0.0010 0.3750
&, 15 6.1725e-04 0.2858

Example 5.3. If A € RB2. Let

A = -3 03 03 03
=103 03 03 -3/

and let
30 0 03 0 -03 -03 0
(81)<1>‘( 0 00 -3 )'(Tl)“)‘( 03 -03 -03 0)'
300 0 0 -03 —03 —03
(Sz)a)—( 0 0 0 _3),(@(1)_( ~03 -03 03 0 )
We get

(03333 —-0.0333 (-3 0
M@ ‘( 0 —0.3333)'M(82)‘( 0 —3)'

0.01 011 011 O 0 01 01 01
-1 _ -1 _
(M(&1)" F1)a) —( 01 01 01 0 ),(M(SZ) F2)a) —( 01 01 01 0 )

It is easy to check that M(&)™'F; > O and M(E;) "', > O. So the splittings are nonnegative. The
condition M(E1)'!M(&,) > I of Theorem 4.7 is satisfied, hence, p (M(Sl)‘lﬁ) <p (M(82)‘17:2). In fact, we
have p (M(&1)71%1) = 0.2572 < p (M(&)™'F2) = 0.3000.

In Example 5.3, we take b = [2, 3]7 and initial vector x¢ = [0.1,0.1]7. From Table 3, we observe that the
spectral radius of iteration tensor, number of iteration steps and CPU time of choice &;, 1 outperform

choice &,, #>. From Figure 2, comparing &; and &, we find that &; is more effective and practical than &,.
These results confirm the validity of Theorem 4.7.

Table 3 Comparison results of the Example 5.3.

EandF IT CPU(s)  p(ME)'F)
&, 7 14 49451e.04 02572
&, F 16 64237e-04 0.3000

6. Concluding remark

In this paper, we present the definition of nonnegative splitting of a tensor. We establish a new conver-
gence theorem that addresses the case where nonnegative splitting of strong M-tensor is not necessarily
convergent. Theoretically, we prove comparison theorems for nonnegative splittings of tensors. Numerical
examples demonstrate that the comparison theorems for nonnegative splittings of tensors are effective for
solving multi-linear systems using the TSI method. The obtained results improve and/or generalize the
previous results. Applications of these comparison results to evaluate the efficiency of preconditioners for
multi-linear systems warrant further study.
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