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Comparison theorems for nonnegative splittings of tensors

Yan-Cun Lia,∗, Shu-Xin Miaoa

aCollege of Mathematics and Statistics, Northwest Normal University, Lanzhou, 730070, P.R. China

Abstract. In this paper, by analogy with the definition of the nonnegative splitting of a matrix, we introduce
the definition of the nonnegative splitting of a tensor. Considering the case that nonnegative splitting of a
strongM-tensor is not necessarily convergent, we establish a new convergence theorem. Since comparison
theorems involving the spectral radius of iterative tensors are useful tools in the analysis of convergence
rate of tensor splitting iterative (TSI) methods, we derive several comparison theorems for nonnegative
splittings of tensors in this paper. These results generalize the previous ones.

1. Introduction

In recent years, multi-linear systems have found increasing applications in engineering and scientific
computing, drawing significant attention from researchers. Examples include higher-order Markov chains,
graph analysis, chemometrics, diffusion tensor imaging, image processing, and the multilinear PageRank
problem, see, e.g. [1, 3, 5, 8, 18, 21] and the references therein.

Consider a multi-linear system:

Axm−1 = b, (1)

whereA is an order m dimension n tensor, b is an n-dimension vector,Axm−1 is an n-dimension vector, and
the i-th component ofAxm−1 is defined as [16]:

(
Axm−1

)
i
=

n∑
i2,··· ,im=1

aii2···im xi2 · · · xim , i = 1, 2, · · · ,n, (2)

where xi denotes the i-th component of x.
In order to solve the multi-linear system with tensor splitting iterative (TSI) method [10, 11], the

coefficient tensorA is split into

A = E − F , (3)
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where E is left-nonsingular [12], then an iterative scheme for solving the system (1) can be described as
follows

xk =
[
M(E)−1

F xm−1
k−1 +M(E)−1b

][ 1
m−1 ]
, k = 1, 2, · · · , (4)

where x0 is an arbitrarily chosen initial vector and tensor M(E)−1
F is called the iterative tensor. The

choice of different splitting tensors E and F corresponds to different iterative methods for solving (1).
Therefore, selecting optimal E and F is crucial for enhancing the convergence rate of the TSI method. In
[10], the authors analyzed the convergence rate of the TSI method and demonstrated that the spectral radius
ρ
(
M(E)−1

F

)
can serve as an approximate convergence rate of the iteration (4). Numerical examples in [10]

further verified that ρ
(
M(E)−1

F

)
effectively characterizes the proposed approximate convergence rate of

the iteration (4). These results imply that a smaller ρ
(
M(E)−1

F

)
corresponds to faster convergence of the

iterative scheme (4).
In matrix analysis, the comparison theorems for splittings of matrices serve as a useful tool for analyzing

the convergence rates of iterative methods [20]. In 2018, by analogy with the comparison theorems for
(weak) regular splittings of matrices, Liu, Li and Vong established analogous comparison theorems for
(weak) regular splittings of tensors [11]. It is well-known that nonnegative splitting of a matrix has a larger
range and fewer constraints than (weak) regular splitting of a matrix [6, 20, 22]. However, prior works have
not extended the concept of nonnegative splitting to the tensor setting. In this paper, we investigate the
nonnegative splitting of a tensor and analyze the comparison of the proposed approximate convergence
rate for tensor splitting iterative methods.

The contributions of this paper are twofold. First, we define the nonnegative splitting of a tensor,
and establish a novel convergence theorem for nonnegative splitting of a tensor. Second, we propose
comparison theorems for nonnegative splittings of tensors, which are more computationally tractable and
require fewer constraints.

The structure of this paper is organized as follows. In Section 2, we introduce fundamental definitions,
notations and preliminary lemmas that are used in subsequent sections. Section 3 presents the concept
of nonnegative splitting of a tensor and establishes a novel convergence theorem. Based on the theory
of nonnegative tensors, we develop comparison theorems for nonnegative splittings of tensors in Section
4. Numerical experiments in Section 5 demonstrate the validity of the proposed comparison theorems.
Finally, concluding remarks are provided in Section 6.

2. Preliminaries

For convenience we shall now briefly explain some of the terminology used in the next section.
Let n be a positive integer, by ⟨n⟩we denote the set {1, · · · ,n}. A tensorA consists of n1 × · · · × nm entries

in the real field R :
A =

(
ai1···im

)
, ai1···im ∈ R, i j ∈

〈
n j

〉
, j = 1, · · · ,m.

If n1 = · · · = nm = n,A is called an order m dimension n tensor. We denote the set of all order m dimension n
tensors byR[m,n]. When m = 2,R[2,n] denotes the set of all n×n real matrices. When m = 1,R[1,n] is simplified
as Rn, which is the set of all n-dimension real vectors. Similarly, the above notions can be generalized to
the complex number field C.

Let 0, O,O denote a zero vector, a zero matrix and a zero tensor, respectively. LetA andB be two tensors
with the same sizes. The order A ≥ B (A > B) means that each entry of A is no less than (larger than)
corresponding one of B, callingA nonnegative ifA ≥ O. These definitions can be applied immediately to
matrices by identifying them with order 2 dimension n tensors.

Next we introduce the definition of several special tensors.

Definition 2.1. Let I =
(
δi1···im

)
∈ R[m,n]. I is called the unit tensor if δi1···im satisfies

δi1···im =

1, i1 = · · · = im,
0, else.
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Definition 2.2. ([19]) Let A ∈ R[m,n]. A is called row diagonal if aii2···im can take nonzero value only when
i2 = ... = im.

Definition 2.3. ([15]) LetA ∈ R[m,n]. The majorization matrix associated to the tensorA is the matrix of coefficients
of the non-mixed terms and is denoted M(A), i.e., M(A)i j = aii2...im where i2 = · · · = im = j.

Definition 2.4. ([19]) LetA ∈ R[m,n]. ThenA is row diagonal if and only ifA =M(A)I.

Definition 2.5. ([12]) Let A ∈ R[m,n]. If M(A) is a nonsingular matrix and A = M(A)I, then A is called
left-invertible or left-nonsingular, M(A)−1 is called the order 2 left-inverse ofA.

We now define the product between a matrix and a tensor, which is a special case of the tensor product
introduced in [2, 18].

Definition 2.6. ([10]) Let A = (ai j) be an n-dimensional square matrix and B =
(
bi1···im

)
is an order m dimension n

tensor, then tensor C = AB is an order m dimension n tensor, and its entries are gives as follows:

c ji2···im =

n∑
j2=1

a j j2 b j2i2···im , 1 ≤ j, ir ≤ n, r = 2, ...,m. (5)

The formula (5) can be expressed as follows [8]

C(1) = (AB)(1) = AB(1). (6)

Where C(1) and B(1) are the matrix obtained from C and B flattened along the first index [8, 9]. For
example, if Bi jk is an order 3 dimension n tensor, then

B(1) =


b111 · · · b1n1 b112 · · · b1n2 · · · b11n · · · b1nn
b211 · · · b2n1 b212 · · · b2n2 · · · b21n · · · b2nn
...

. . .
...

...
. . .

...
...

...
. . .

...
bn11 · · · bnn1 bn12 · · · bnn2 · · · bn1n · · · bnnn

 . (7)

The definitions of tensor eigenvalues and eigenvectors are introduced as follows.

Definition 2.7. ([13, 16]) Let A ∈ R[m,n]. A pair (λ, x) ∈ C × (Cn
\{0}) is called an eigenvalue-eigenvector (or

simply eigenpair) ofA if they satisfy the equation

Axm−1 = λx[m−1],

where x[m−1] =
(
xm−1

1 , . . . , xm−1
n

)T
. We call (λ, x) an H-eigenpair if both λ and x are real.

Let σ(A) be the set of all eigenvalues of A, the spectral radius of A is defined by ρ(A) = max{|λ| | λ ∈
σ(A)}.

In [7], Ding, Qi and Wei gave the definitions of theZ-tensor,M-tensor and strongM-tensor.

Definition 2.8. ([7]) LetA ∈ R[m,n]. A is called aZ-tensor if its off-diagonal entries are non-positive. A is called
anM-tensor if there exist a nonnegative tensor B and a positive real number η ≥ ρ(B) such that

A = ηI − B.

If η > ρ(B), thenA is called a strongM-tensor.

Based on this definition, Liu, Li and Vong [10] gave the definition of the tensor splitting.
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Definition 2.9. ([10]) Let A, E, F ∈ R[m,n]. A = E − F is said to be a splitting of A if E is left-nonsingular; a
regular splitting of A if E is left-nonsingular with M(E)−1

≥ O and F ≥ O; a weak regular splitting of A if E is
left-nonsingular with M(E)−1

≥ O and M(E)−1
F ≥ O; a convergent splitting if ρ

(
M(E)−1

F

)
< 1.

The following are equivalent conditions for a strongM-tensor based on tensor splitting.

Lemma 2.10. ([10, 11]) IfA ∈ R[m,n] is aZ-tensor, then the following conditions are equivalent:
(1)A is a strongM-tensor.
(2) There exist an inverse-positiveZ-matrix B and a semi-positiveZ-tensor C withA = BC.
(3)A has a convergent (weak) regular splitting.
(4) All (weak) regular splittings ofA are convergent.

To facilitate subsequent proofs, we introduce the following lemmas regarding tensor properties.

Lemma 2.11. ([4, 23]) (weak Perron-Frobenius theorem) If A ∈ R[m,n] is a nonnegative tensor, then there exist
vector x ≥ 0, x , 0 such that

Axm−1 = ρ(A)x[m−1].

Lemma 2.12. ([23, Lemma 3.3 and Lemma 3.5]) LetA, B ∈ R[m,n]. If O ≤ A ≤ (<)B, then ρ(A) ≤ ρ(B).

Lemma 2.13. LetA ∈ R[m,n] be a nonnegative tensor, and µ, ν ∈ R :
(1) [11] If µx[m−1]

≤ (<)Axm−1, x ≥ 0, x , 0 such that µ ≤ (<)ρ(A).
(2) [17] If υx[m−1]

≥ Axm−1, x > 0 such that υ ≥ ρ(A).

3. Nonnegative splitting and convergence theorem

We can define the definition of nonnegative splitting of a tensor.

Definition 3.1. LetA, E,F ∈ R[m,n]. A = E−F is said to be a splitting ofA ifE is left-nonsingular; a nonnegative
splitting ofA if M(E)−1

F ≥ O.

The concept of nonnegative splitting of a tensor generalizes the nonnegative splitting of a matrix. When
m = 2, the tensorA reduces to a matrix case. Note that for matrices, the left inverse of a matrix is equal to
the right inverse. However, this property does not hold for the general tensors [18].

Clearly, we can draw the following corollary from the Definition 2.9 and Definition 3.1.

Corollary 3.2. Any regular splitting ofA is a weak regular splitting ofA, and any weak regular splitting ofA is a
nonnegative splitting ofA. In general, the converses are not true.

The following example will show that the nonnegative splitting is not necessarily a weak regular
splitting.

Example 3.3. IfA ∈ R[3,2]. Let

A(1) =

(
−2 0.25 0.25 0.25

0.25 0.25 0.25 −2

)
,

be splitted asA = E − F , where

E(1) =

(
−2 0 0 0

0.25 0 0 −2

)
and F(1) =

(
0 −0.25 −0.25 −0.25
0 −0.25 −0.25 0

)
.

Some calculation gives

M(E)−1 =

(
−0.5 0
−0.0625 −0.5

)
and (M(E)−1

F )(1) =

(
0 0.125 0.125 0.125
0 0.1406 0.1406 0.0156

)
.

It is easy to check that M(E)−1
≤ O, M(E)−1

F ≥ O. Then the splitting is nonnegative, and is not weak regular.
So the nonnegative splitting is not necessarily weak regular splitting.
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Recall that the regular (weak regular) splitting of a strongM-tensor is a convergent splitting by Lemma
2.10 (see also [10, Theorem 3.18]). However, unlike the regular (weak regular) splitting, this property does
not hold for nonnegative splitting of a tensor in general. The following example demonstrates that the
nonnegative splitting of a strongM-tensor may not be convergent.

Example 3.4. IfA = (ai jk) ∈ R[3,2] with a111 = 2, a222 = 2 and all other entries ai jk = −0.25. Clearly,A is a strong
M-tensor [11, Remark 3.5]. Let

E(1) =

(
0 −0.25 −0.25 −0.25
−0.25 −0.25 −0.25 0

)
and F(1) =

(
−2 0 0 0
0 0 0 −2

)
.

We get

M(E)−1 =

(
0 −4
−4 0

)
and (M(E)−1

F )(1) =

(
0 0 0 8
8 0 0 0

)
.

It is easy to check that M(E1)−1
F ≥ O. Then the splitting A = E − F is nonnegative, and by using the power

method [14] that we get ρ
(
M(E)−1

F

)
= 8 > 1. In this case, the nonnegative splitting of a strongM-tensor is not

convergent splitting.

For nonnegative splitting of a tensor, we have the following convergence theorem.

Theorem 3.5. LetA, E, F ∈ R[m,n]. Suppose thatA = E−F is a nonnegative splitting. Let x be the Perron vector
of M(E)−1

F . Then the following statements are equivalent:
(1) ρ

(
M(E)−1

F

)
< 1.

(2) IfAxm−1
≥ 0, then F xm−1 > 0.

(3) M(E)−1
Axm−1

≤ x[m−1].
(4) ρ

(
M(E)−1

A

)
> 0.

Proof. As A = E − F is a nonnegative splitting, then M(E)−1
F ≥ O. By the weak Perron-Frobenius

theorem (see Lemma 2.11), there exists a vector x ≥ 0, x , 0 such that

M(E)−1
F xm−1 = ρ

(
M(E)−1

F

)
x[m−1].

It is easy to see that
M(E)−1

A =M(E)−1(E − F ) = I −M(E)−1
F .

By post-multiplying by xm−1 we get

M(E)−1
Axm−1 = (I −M(E)−1

F )xm−1 = (1 − ρ(M(E)−1
F ))x[m−1]. (8)

Based on (8), the following proof are dived into four parts.
First, we prove ”(1)⇒ (2)”. It is obvious that

Axm−1 = (1 − ρ
(
M(E)−1

F

)
)Exm−1.

By ρ
(
M(E)−1

F

)
< 1 andAxm−1

≥ 0, we have

Axm−1 < Exm−1,

Hence,
F xm−1 > 0.

Second, we prove ”(2)⇒ (1)”. SinceAxm−1
≥ 0 and F xm−1 > 0, we have

M(E)x[m−1] > 0.



Y.-C. Li, S.-X. Miao / Filomat 40:2 (2026), 661–675 666

Moreover, since

0 ≤ Axm−1 =M(E)(I −M(E)−1
F )xm−1 = (1 − ρ

(
M(E)−1

F

)
)M(E)x[m−1]

and M(E)x[m−1] > 0, we get ρ
(
M(E)−1

F

)
< 1.

Third, we prove (1)⇔ (3). By relation (8) and the fact that x ≥ 0 with x , 0, we have

M(E)−1
Axm−1

≤ x[m−1]
⇔ (1 − ρ(M(E)−1

F ))x[m−1]
≤ x[m−1]

⇔ 0 < 1 − ρ
(
M(E)−1

F

)
< 1

⇔ ρ
(
M(E)−1

F

)
< 1.

Last, we prove (1)⇔ (4). From (8), we get that 1 − ρ
(
M(E)−1

F

)
is an eigenvalues of M(E)−1

A. Then

ρ
(
M(E)−1

A

)
≥ 1 − ρ

(
M(E)−1

F

)
.

Hence,
ρ
(
M(E)−1

A

)
> 0⇔ 0 < 1 − ρ

(
M(E)−1

F

)
< 1⇔ ρ

(
M(E)−1

F

)
< 1.

From this we can obtain the required results. □

4. The comparison theorem

In this section, we investigate comparison results for different splittings of a given tensor A. To this
end, consider the following two splittings

A = E1 − F1 = E2 − F2, (9)

where E1 and E2 are left-nonsingular.
When one splitting is a nonnegative splitting and the other is a weak regular splitting in (9), we obtain

the following comparison results.

Theorem 4.1. Let the splittings given in (9) be convergent, where the first splitting is a nonnegative splitting and
the second is a weak regular splitting. Suppose there exists a constant α ∈ (0, 1] such that

F1 ≤ αF2.

Then, the inequality ρ
(
M(E1)−1

F1

)
≤ ρ

(
M(E2)−1

F2

)
< 1 holds when α = 1, and the strict inequality ρ

(
M(E1)−1

F1

)
< ρ

(
M(E2)−1

F2

)
< 1 holds when 0 < α < 1.

Proof. Noting that the splittings given in (9) are convergent, it follows that ρ
(
M(E1)−1

F1

)
< 1 and

ρ
(
M(E2)−1

F2

)
< 1. Therefore, it suffices to prove the inequality ρ

(
M(E1)−1

F1

)
≤ (<) ρ

(
M(E2)−1

F2

)
.

Because A = E1 − F1 is a nonnegative splitting, then M(E1)−1
F1 ≥ O. By the weak Perron-Frobenius

theorem (see Lemma 2.11), there exists a vector x ≥ 0, x , 0 such that

M(E1)−1
F1xm−1 = ρ

(
M(E1)−1

F1

)
x[m−1],

which implies:

F1xm−1 = ρ
(
M(E1)−1

F1

)
M(E1)x[m−1] = ρ

(
M(E1)−1

F1

)
E1xm−1. (10)

By E1 = A + F1 and (10), we get
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ρ
(
M(E1)−1

F1

)
Axm−1 = (1 − ρ

(
M(E1)−1

F1

)
)F1xm−1.

By ρ
(
M(E1)−1

F1

)
< 1 and F1 ≤ αF2, we get

α(1 − ρ
(
M(E1)−1

F1

)
)F2xm−1

≥ (1 − ρ
(
M(E1)−1

F1

)
)F1xm−1 = ρ

(
M(E1)−1

F1

)
Axm−1. (11)

Noting thatA = E2 − F2. Then by (11) we get

(α − αρ
(
M(E1)−1

F1

)
+ ρ

(
M(E1)−1

F1

)
)F2xm−1

≥ ρ
(
M(E1)−1

F1

)
M(E2)x[m−1].

By M(E2)−1
≥ O, we have

(α − αρ
(
M(E1)−1

F1

)
+ ρ

(
M(E1)−1

F1

)
)M(E2)−1

F2xm−1
≥ ρ

(
M(E1)−1

F1

)
x[m−1],

i.e.,

M(E2)−1
F2xm−1

≥ ρ
(
M(E1)−1

F1

)
/(α − αρ

(
M(E1)−1

F1

)
+ ρ

(
M(E1)−1

F1

)
)x[m−1]. (12)

Which, by Lemma 2.13 and (12), implies

ρ
(
M(E2)−1

F2

)
≥ ρ

(
M(E1)−1

F1

)
/(α − αρ

(
M(E1)−1

F1

)
+ ρ

(
M(E1)−1

F1

)
).

From this we can obtain the required results, ρ
(
M(E1)−1

F1

)
≤ ρ

(
M(E2)−1

F2

)
< 1 whenever α = 1 and

ρ
(
M(E1)−1

F1

)
< ρ

(
M(E2)−1

F2

)
< 1 whenever 0 < α < 1. □

For the case when α = 1 and F1 ≤ F2 the equality ρ
(
M(E1)−1

F1

)
≤ ρ

(
M(E2)−1

F2

)
< 1 can be proved by

[11, Theorem 3.4 (1)].

Theorem 4.2. Let the splittings given in (9) be convergent, where the first splitting is a nonnegative splitting and
the second is a weak regular splitting. If there exists α with 0 < α ≤ 1 such that

M(E1) ≤ αM(E2).

Then, the inequalityρ
(
M(E1)−1

F1

)
≤ ρ

(
M(E2)−1

F2

)
< 1 holds whenα = 1, and the strict inequalityρ

(
M(E1)−1

F1

)
<

ρ
(
M(E2)−1

F2

)
< 1 holds when 0 < α < 1.

Proof. In what follows, it suffices to prove that ρ
(
M(E1)−1

F1

)
≤ ρ

(
M(E2)−1

F2

)
or ρ

(
M(E1)−1

F1

)
<

ρ
(
M(E2)−1

F2

)
, since both splittings are assumed to be convergent.

Because A = E1 − F1 is a nonnegative splitting, then M(E1)−1
F1 ≥ O. By Lemma 2.11, there exists a

vector x ≥ 0, x , 0 such that
M(E1)−1

F1xm−1 = ρ
(
M(E1)−1

F1

)
x[m−1].

By F1 = E1 −A, we get
M(E1)−1(E1 −A)xm−1 = ρ

(
M(E1)−1

F1

)
x[m−1],

which implies:

M(E1)−1
E1xm−1

−M(E1)−1
Axm−1 = ρ

(
M(E1)−1

F1

)
x[m−1]. (13)

By E1 =M(E1)I and (13), we get

M(E1)−1
Axm−1 = (1 − ρ

(
M(E1)−1

F1

)
x[m−1].
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Multiply both sides of M(E1) ≤ αM(E2) by (1 − ρ
(
M(E1)−1

F1

)
x[m−1] gives us

Axm−1 = (1 − ρ
(
M(E1)−1

F1

)
)M(E1)x[m−1]

≤ α(1 − ρ
(
M(E1)−1

F1

)
)M(E2)x[m−1].

By M(E2)−1
≥ O, we have

M(E2)−1(E2 − F2)xm−1
≤ α(1 − ρ

(
M(E1)−1

F1

)
)x[m−1].

We have

M(E2)−1
F2xm−1

≥ (1 − α(1 − ρ
(
M(E1)−1

F1)
)
)x[m−1]. (14)

Which, by Lemma 2.13 and (14), implies

ρ
(
M(E2)−1

F2

)
≥ 1 − α + αρ

(
M(E1)−1

F1

)
.

From this we can obtain the required results, ρ
(
M(E1)−1

F1

)
≤ ρ

(
M(E2)−1

F2

)
< 1 whenever α = 1 and

ρ
(
M(E1)−1

F1

)
< ρ

(
M(E2)−1

F2

)
< 1 whenever 0 < α < 1. □

Now, according to Theorem 4.2, the Corollary 4.3 is given.

Corollary 4.3. Let the splittings given in (9) be convergent, where the first splitting is a nonnegative splitting and the
second is a weak regular splitting. If M(E1) <M(E2), then there exists α with 0 < α < 1 such that M(E1) ≤ αM(E2)
and the strict inequality ρ

(
M(E1)−1

F1

)
< ρ

(
M(E2)−1

F2

)
< 1 is valid.

Proof. Denoting
M(E1) =

(
m(1)

i j

)
n×n
, M(E2) =

(
m(2)

i j

)
n×n
.

From M(E1) <M(E2) it gets
m(1)

i j < m(2)
i j , i, j = 1, 2, ...,n.

If there exists m(1)
i j > 0 then let

α = max
1≤i, j≤n

m(1)
i j

m(2)
i j

| m(1)
i j > 0

 .
Otherwise m(1)

i j ≤ 0, i.e., M(E1) ≤ O, then 0 < α < 1 is arbitrary.
We get 0 < α < 1 and

m(1)
i j ≤ αm(2)

i j , i, j = 1, 2, ...,n,

i.e.,

M(E1) ≤ αM(E2). (15)

By the Theorem 4.2 and (15) we can prove that strict inequality ρ
(
M(E1)−1

F1

)
< ρ

(
M(E2)−1

F2

)
< 1 is

true. □
We now discuss why some hypotheses in the results of Theorem 4.1, Theorem 4.2 and Corollary 4.3

cannot be weakened. For instance, if the given splittings are replaced by both nonnegative splittings,
Theorem 4.1 may no longer hold. The following example demonstrates that even when the splittings in (9)
are nonnegative, the comparison results stated in Theorem 4.1 are not valid.
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Example 4.4. IfA ∈ R[3,2]. Let

A(1) =

(
−2 0.25 0.25 0.25

0.25 0.25 0.25 −2

)
,

and let

(E1)(1) =

(
−2 0 0 0
0 0 0 −2

)
, (F1)(1) =

(
0 −0.25 −0.25 −0.25
−0.25 −0.25 −0.25 0

)
,

(E2)(1) =

(
−2 0 0 0

0.25 0 0 −2

)
, (F2)(1) =

(
0 −0.25 −0.25 −0.25
0 −0.25 −0.25 0

)
.

We get

M(E1)−1 =

(
−0.5 0

0 −0.5

)
,M(E2)−1 =

(
−0.5 0
−0.0625 −0.5

)
,

(M(E1)−1
F1)(1) =

(
0 0.125 0.125 0.125

0.125 0.125 0.125 0

)
, (M(E2)−1

F2)(1) =

(
0 0.125 0.125 0.125
0 0.1406 0.1406 0.0156

)
.

It is easy to check that A = E1 − F1 = E2 − F2 are two nonnegative splittings with M(E1)−1
F1 ≥ O and

M(E2)−1
F2 ≥ O. Moreover, since F1 ≤ F2, it follows from Theorem 4.1 that ρ

(
M(E1)−1

F1

)
< ρ

(
M(E2)−1

F2

)
. But

by calculating that we get ρ
(
M(E1)−1

F1

)
= 0.3750 > ρ

(
M(E2)−1

F2

)
= 0.3273 < 1. In this case, theorem 4.1 is not

true.
Similarly, if the above splittings is replaced by both nonnegative splittings then theorem 4.2 and Corollary 4.3

may not hold. we see from example 4.4 that ρ
(
M(E1)−1

F1

)
= 0.3750 > ρ

(
M(E2)−1

F2

)
= 0.3273 < 1, when

M(E1) ≤M(E2).

When both splittings in (9) are nonnegative splittings, the following comparison results hold.

Theorem 4.5. Let the splittings given in (9) be convergent and nonnegative. Suppose there exists a constant
α ∈ (0, 1] such that

αM(E1)−1
≥M(E2)−1.

If the Perron vector x of M(E1)−1
F1 satisfies Axm−1

≥ 0, then the inequality ρ
(
M(E1)−1

F1

)
≤ ρ

(
M(E2)−1

F2

)
< 1

holds when α = 1 and the strict inequality ρ
(
M(E1)−1

F1

)
< ρ

(
M(E2)−1

F2

)
< 1 holds when 0 < α < 1.

Proof. BecauseA = E1 −F1 is a nonnegative splitting, then M(E1)−1
F1 ≥ O. By Lemma 2.11, M(E1)−1

F1
has a Perron vector x such that

M(E1)−1
F1xm−1 = ρ

(
M(E1)−1

F1

)
x[m−1].

By F1 = E1 −A , we get
M(E1)−1(E1 −A)xm−1 = ρ

(
M(E1)−1

F1

)
x[m−1],

which implies:

M(E1)−1
E1xm−1

−M(E1)−1
Axm−1 = ρ

(
M(E1)−1

F1

)
x[m−1]. (16)

By E1 =M(E1)I and (16), we get

M(E1)−1
Axm−1 = (1 − ρ

(
M(E1)−1

F1

)
)x[m−1].

Because the Perron vector x of M(E1)−1
F1 satisfies Axm−1

≥ 0. Multiply both sides of αM(E1)−1
≥ M(E2)−1

byAxm−1 gives us
αM(E1)−1

Axm−1
≥M(E2)−1

Axm−1,
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i.e.,

α(1 − ρ
(
M(E1)−1

F1

)
)x[m−1]

≥M(E2)−1
Axm−1. (17)

ByA = E2 − F2 and (17), we have

M(E2)−1
F2xm−1

≥ (1 − α(1 − ρ
(
M(E1)−1

F1)
)
)x[m−1]. (18)

Which, by Lemma 2.13 and (18), implies

ρ
(
M(E2)−1

F2

)
≥ 1 − α + αρ

(
M(E1)−1

F1

)
.

From this we can obtain the required results, ρ
(
M(E1)−1

F1

)
≤ ρ

(
M(E2)−1

F2

)
< 1 whenever α = 1 and

ρ
(
M(E1)−1

F1

)
< ρ

(
M(E2)−1

F2

)
< 1 whenever 0 < α < 1. □

For the case when α = 1 and M(E1)−1
≥ M(E2)−1 the equality ρ

(
M(E1)−1

F1

)
≤ ρ

(
M(E2)−1

F2

)
< 1 can be

proved by [11, Lemma 5.3].

Corollary 4.6. Let the splittings given in (9) be convergent and nonnegative. If the Perron vector x of M(E1)−1
F1

satisfies Axm−1
≥ 0 and M(E1)−1 > M(E2)−1, then there exists α with 0 < α < 1 such that αM(E1)−1

≥ M(E2)−1

and the strict inequality ρ
(
M(E1)−1

F1

)
< ρ

(
M(E2)−1

F2

)
< 1 is valid.

Proof. Denoting
M(E1)−1 =

(
m(1)

i j

)
n×n
, M(E2)−1 =

(
m(2)

i j

)
n×n
.

From M(E1)−1 >M(E2)−1 it gets
m(1)

i j > m(2)
i j , i, j = 1, 2, ...,n.

If there exists m(1)
i j > 0 then let

α = max
1≤i, j≤n

m(1)
i j

m(2)
i j

| m(1)
i j > 0

 .
Otherwise m(1)

i j ≤ 0, i.e., M(E1)−1
≤ O, then 0 < α < 1 is arbitrary.

We get 0 < α < 1 and
αm(1)

i j ≥ m(2)
i j , i, j = 1, 2, ...,n,

i.e.,

αM(E1)−1
≥M(E2)−1. (19)

By the Theorem 4.5 and (19) we can prove that strict inequality ρ
(
M(E1)−1

F1

)
< ρ

(
M(E2)−1

F2

)
< 1 is

true. □

Theorem 4.7. Let the splittings given in (9) be convergent and nonnegative.
(1) If either M(E1)−1M(E2) ≥ I or M(E2)−1M(E1) ≤ I, then

ρ
(
M(E1)−1

F1

)
≤ ρ

(
M(E2)−1

F2

)
< 1. (20)

(2) If there exists α with 0 < α < 1 such that either M(E1)−1M(E2) ≥ 1/αI or M(E2)−1M(E1) ≤ αI, then

ρ
(
M(E1)−1

F1

)
< ρ

(
M(E2)−1

F2

)
< 1. (21)
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Proof. BecauseA = E1 −F1 is a nonnegative splitting, then M(E1)−1
F1 ≥ O. By Lemma 2.11, M(E1)−1

F1
has a Perron vector x such that

M(E1)−1
F1xm−1 = ρ

(
M(E1)−1

F1

)
x[m−1],

which implies:

F1xm−1 = ρ
(
M(E1)−1

F1

)
M(E1)x[m−1]. (22)

By F1 = E1 −A and (22), we get

Axm−1 = (1 − ρ
(
M(E1)−1

F1

)
)M(E1)x[m−1],

i.e.,

M(E2)−1
Axm−1 = (1 − ρ

(
M(E1)−1

F1

)
)M(E2)−1M(E1)x[m−1]. (23)

Let β = 1 or α. If M(E2)−1M(E1) ≤ βI. Because splittings given in (9) be convergent, then ρ
(
M(E1)−1

F1

)
< 1

and ρ
(
M(E2)−1

F2

)
< 1. By ρ

(
M(E1)−1

F1

)
< 1, M(E2)−1M(E1) ≤ βI and (23), we get

(1 − ρ
(
M(E1)−1

F1

)
)M(E2)−1M(E1)x[m−1]

≤ β(1 − ρ
(
M(E1)−1

F1

)
)Ix[m−1],

i.e.,

M(E2)−1
Axm−1

≤ β(1 − ρ
(
M(E1)−1

F1

)
)x[m−1]. (24)

ByA = E2 − F2 and (24), we get

M(E2)−1
F2xm−1

≥ (1 − β + βρ
(
M(E1)−1

F1

)
)x[m−1]. (25)

Which, by Lemma 2.13 and (25), implies

ρ
(
M(E2)−1

F2

)
≥ 1 − β + βρ

(
M(E1)−1

F1

)
.

Then (20) is valid whenever β = 1 and the strict inequality (21) is valid whenever β = α.
For the case when β = 1 or α, If M(E1)−1M(E2) ≥ 1/βI, the proof is similar. □

Corollary 4.8. Let the splittings given in (9) be convergent and nonnegative. If either M(E1)−1M(E2) > I or
M(E2)−1M(E1) < I, then the strict inequality ρ

(
M(E1)−1

F1

)
< ρ

(
M(E2)−1

F2

)
< 1 is valid.

Proof. If M(E1)−1M(E2) > I then we denote M(E1)−1M(E2) =
(
m̃i j

)
n×n

and we define α by

α = max
1≤i≤n

{ 1
m̃ii

}
.

If M(E2)−1M(E1) < I then we denote M(E2)−1M(E1) =
(
m̂i j

)
n×n

and define α by

α = max
1≤i≤n

{m̂ii | m̂ii > 0} ,

whenever there exists at least a diagonal element m̂ii > 0. Otherwise, 0 < α < 1 is arbitrary.
It is easy to verify that 0 < α < 1 and

M(E1)−1M(E2) ≥ 1/αI,

whenever M(E1)−1M(E2) > I or

M(E2)−1M(E1) ≤ αI,

whenever M(E2)−1M(E1) < I. By the Theorem 4.7 (2) we can prove that strict inequality ρ
(
M(E1)−1

F1

)
<

ρ
(
M(E2)−1

F2

)
< 1 is true. □
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Theorem 4.9. Let the splittings given in (9) be convergent and nonnegative. If M(E1)−1
F1 ≤ (<)M(E2)−1

F2, then
ρ
(
M(E1)−1

F1

)
≤ ρ

(
M(E2)−1

F2

)
< 1.

Proof. BecauseA = E1−F1 = E2−F2 are nonnegative splittings, then M(E1)−1
F1 ≥ O and M(E2)−1

F2 ≥ O.
By Lemma 2.12 and M(E1)−1

F1 ≤ (<)M(E2)−1
F2, we have ρ

(
M(E1)−1

F1

)
≤ ρ

(
M(E2)−1

F2

)
. Noting the

splittings given in (9) be convergent, from this we can obtain the required results. □

5. Numerical examples

In this section, we will demonstrate the validity of the comparison theorems through several elementary
multi-linear systems. All tests will be done in MATLAB R2016b with the configuration: Intel(R) Core(TM)i7-
8750H CPU 2.20 GHz and 2.21 GHz.

All numerical experiments were initialized with an appropriate starting value x0, and the iterative
process was terminated when either of the following criteria was met: (1) xk satisfies

RES = ∥b −Axm−1
k ∥2 ≤ 10−7

or (2) the number of the prescribed maximum iteration steps 1000 is exceeded. In the following examples,
two aspects are given to check the efficiency of the proposed comparison theorems: the number of iteration
steps (denoted by IT), the CPU time in seconds (denoted by CPU(s)).

Example 5.1. IfA ∈ R[3,2]. Let

A(1) =

(
2 −0.5 −0.5 −0.5
−0.5 −0.5 −0.5 2

)
,

and let

(E1)(1) =

(
2 0 0 −0.5
−0.5 0 0 2

)
, (F1)(1) =

(
0 0.5 0.5 0
0 0.5 0.5 0

)
,

(E2)(1) =

(
2 0 0 0
0 0 0 2

)
, (F2)(1) =

(
0 0.5 0.5 0.5

0.5 0.5 0.5 0

)
.

We get

M(E2)−1 =

(
0.5 0
0 0.5

)
,

(M(E1)−1
F1)(1) =

(
0 0.3333 0.3333 0
0 0.3333 0.3333 0

)
, (M(E2)−1

F2)(1) =

(
0 0.25 0.25 0.25

0.25 0.25 0.25 0

)
.

It is easy to check that M(E1)−1
F1 ≥ O, M(E2)−1

≥ O and M(E2)−1
F2 ≥ O. So the splittings are nonnegative

and weak regular, respectively, and F1 ≤ F2. By Theorem 4.1, we get ρ
(
M(E1)−1

F1

)
< ρ

(
M(E2)−1

F2

)
. This

result is further confirmed numerically using the power method, which yields ρ
(
M(E1)−1

F1

)
= 0.6666 <

ρ
(
M(E2)−1

F2

)
= 0.7500.

We set b = [2, 3]T and initial vector x0 = [0.1, 0.1]T. By the power method and the TSI method, we get
Table 1. As seen in Table 1, the spectral radius of iteration tensor, the number of iteration steps and CPU
time of choice E1, F1 outperform choice E2, F2.

To further demonstrate the efficiency of Theorem 4.1, in Figure 1 (a), we plot the values of residuals
(RES) of E1 and E2 with respect to the iteration steps (IT). From Figure 1 (a), comparing E1 and E2, we find
that E1 is more effective and practical than E2.



Y.-C. Li, S.-X. Miao / Filomat 40:2 (2026), 661–675 673

Table 1 Comparison results of the Example 5.1.

E and F IT CPU (s) ρ
(
M(E)−1

F

)
E1, F1 44 0.0015 0.6666
E2, F2 62 0.0021 0.7500
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(a) Example 5.1
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(b) Example 5.2

Figure 1: RES versus IT for (a) Example 5.1 and (b) Example 5.2.

Example 5.2. IfA ∈ R[3,2]. Let

A(1) =

(
2 −0.25 −0.25 −0.25
−0.25 −0.25 −0.25 2

)
,

and let

(E1)(1) =

(
2 0 0 0
0 0 0 2

)
, (F1)(1) =

(
0 0.25 0.25 0.25

0.25 0.25 0.25 0

)
,

(E2)(1) =

(
2 0 0 −0.25
−0.25 0 0 2

)
, (F2)(1) =

(
0 0.25 0.25 0
0 0.25 0.25 0

)
.

We get

M(E1) =
(

2 0
0 2

)
,M(E2) =

(
2 −0.25
−0.25 2

)
,

(M(E1)−1
F1)(1) =

(
0 0.125 0.125 0.125

0.125 0.125 0.125 0

)
, (M(E2)−1

F2)(1) =

(
0 0.1429 0.1429 0
0 0.1429 0.1429 0

)
.

It is easy to check that M(E1)−1
F1 ≥ O, M(E2)−1 > O and M(E2)−1

F2 ≥ O. So the first splitting is a
nonnegative and the second is a weak regular, and M(E1) ≥ M(E2). It follows from Theorem 4.2 that
ρ
(
M(E1)−1

F1

)
> ρ

(
M(E2)−1

F2

)
. In fact, we have ρ

(
M(E1)−1

F1

)
= 0.3750 > ρ

(
M(E2)−1

F2

)
= 0, 2858.

In this example, we choose b = [2, 3]T and initial vector x0 = [0.1, 0.1]T. From Table 2 and Figure 1 (b),
we can validate the conclusions of Theorem 4.2.
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Table 2. Comparison results of the Example 5.2.

E and F IT CPU (s) ρ
(
M(E)−1

F

)
E1, F1 19 0.0010 0.3750
E2, F2 15 6.1725e-04 0.2858

Example 5.3. IfA ∈ R[3,2]. Let

A(1) =

(
−3 0.3 0.3 0.3
0.3 0.3 0.3 −3

)
,

and let

(E1)(1) =

(
−3 0 0 0.3
0 0 0 −3

)
, (F1)(1) =

(
0 −0.3 −0.3 0
−0.3 −0.3 −0.3 0

)
,

(E2)(1) =

(
−3 0 0 0
0 0 0 −3

)
, (F2)(1) =

(
0 −0.3 −0.3 −0.3
−0.3 −0.3 −0.3 0

)
.

We get

M(E1)−1 =

(
−0.3333 −0.0333

0 −0.3333

)
,M(E2) =

(
−3 0
0 −3

)
,

(M(E1)−1
F1)(1) =

(
0.01 0.11 0.11 0
0.1 0.1 0.1 0

)
, (M(E2)−1

F2)(1) =

(
0 0.1 0.1 0.1

0.1 0.1 0.1 0

)
.

It is easy to check that M(E1)−1
F1 ≥ O and M(E2)−1

F2 ≥ O. So the splittings are nonnegative. The
condition M(E1)−1M(E2) ≥ I of Theorem 4.7 is satisfied, hence, ρ

(
M(E1)−1

F1

)
< ρ

(
M(E2)−1

F2

)
. In fact, we

have ρ
(
M(E1)−1

F1

)
= 0.2572 < ρ

(
M(E2)−1

F2

)
= 0.3000.

In Example 5.3, we take b = [2, 3]T and initial vector x0 = [0.1, 0.1]T. From Table 3, we observe that the
spectral radius of iteration tensor, number of iteration steps and CPU time of choice E1, F1 outperform
choice E2, F2. From Figure 2, comparing E1 and E2, we find that E1 is more effective and practical than E2.
These results confirm the validity of Theorem 4.7.

Table 3 Comparison results of the Example 5.3.

E and F IT CPU (s) ρ
(
M(E)−1

F

)
E1, F1 14 4.9451e-04 0.2572
E2, F2 16 6.4237e-04 0.3000

6. Concluding remark

In this paper, we present the definition of nonnegative splitting of a tensor. We establish a new conver-
gence theorem that addresses the case where nonnegative splitting of strong M-tensor is not necessarily
convergent. Theoretically, we prove comparison theorems for nonnegative splittings of tensors. Numerical
examples demonstrate that the comparison theorems for nonnegative splittings of tensors are effective for
solving multi-linear systems using the TSI method. The obtained results improve and/or generalize the
previous results. Applications of these comparison results to evaluate the efficiency of preconditioners for
multi-linear systems warrant further study.
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Figure 2: RES versus IT for Example 5.3
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