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the stochastic linearly damped Hamiltonian systems
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Abstract. In this paper, the linearly damped stochastic differential equations with invariants are exam-
ined. These invariants follow a linear differential equation with coefficients that are either linear constants
or time-dependent. To preserve the essential characteristics of these linearly damped stochastic differential
equations, a stochastic exponential integrator is utilized. Moreover, the stochastic pseudo-conformal sym-
plectic methods are constructed and their pseudo-conformal symplectic orders for the stochastic damped
Hamiltonian systems with additive noises are analyzed. All of these methods are explicit so that the imple-
mentations become more easier than implicit methods. Particularly, these methods have desired properties
in accuracy and approximately preserved symplectic structure of the systems through some numerical
experiments, especially including Schrödinger equation.

1. Introduction

Stochastic differential equations (SDEs) play a vital role in modeling real-life systems influenced by noise.
Despite their practical significance, the number of exact solutions known is still limited, necessitating the
use of numerical integration methods to solve these equations. However, it is challenging to construct
numerical schemes that can efficiently approximate accurate solutions for the underlying dynamics and
how to preserve its structure is remain concern. Moreover, when applying numerical methods, the decision
to maintain certain geometric attributes of SDEs is crucial, especially during long-term integration. It is
just as significant as in deterministic scenarios [6, 7, 21]. Forturately, numerous notable studies have been
conducted in this domain [10, 11, 15–17].

In the deterministic realm, Aubry and Chartier [1] introduced pseudo-symplectic methods tailored for
Hamiltonian systems. Later on, in the stochastic setting, the relationship between preserving quadratic
invariants and the symplectic structure was explored in [8]. Under certain conditions, an SRK (stochastic
Runge-Kutta) method preserving quadratic invariants is established, which is symplectic in nature. In a
subsequent study [19], three distinct pseudo-symplectic methodologies were developed, and their orders of
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pseudo-symplectic were confirmed. Recently, [4] pinpointed similar conditions for SRK methods regarding
the near-preservation of quadratic invariants and pseudo-symplectic traits. Alongside, they proposed a
methodology to formulate explicit SRK pseudo-symplectic schemes, leveraging colored trees and B-series
to address order conditions.

A key consideration in modeling classical mechanics and quantum systems is incorporating dissipation.
However, traditional structure preserving methods are unable to maintain the dissipation of the system.
Consequently, accurately simulating the dissipation in these systems remains an urgent and unresolved
issue. Addressing this challenge would lead to significant advancements in simulating and understanding
complex systems subject to stochastic influences and dissipation.

Several structure-preserving algorithms for damped systems have been developed in the literature. For
instance, [12] introduced the concept of a conformal symplectic structure for Hamiltonian ordinary differen-
tial equations with linear damping, which is referred as the conformal Hamiltonian system. This idea was
expanded to multisymplectic PDEs by Moore in [18]. For stochastic systems, [14] offers a thorough examina-
tion of the stochastic Hamiltonian system and its corresponding algorithms. In another work, [2] presented
exponential Runge–Kutta (RK) and partitioned exponential RK methods to efficiently solve linearly damped
ordinary differential equations with either constant or time-dependent coefficients. Furthermore, in [22] it
not only discusses the development of structure-preserving stochastic exponential integrators tailored for
conservative stochastic differential equations (SDEs) with potential linear, time-dependent damping terms
but also demonstrates their application in solving damped stochastic differential equations using the con-
formal exponential integrator. Moreover, [5] constructs the exponential integrators that incorporate both
the linear drift and diffusion terms by employing the entire class of stochastic SRK schemes and a stochas-
tic extension of Lawson-type schemes for both Stratonovich and Itô integrals. It is well recognized that
these stochastic conformal symplectic methods are inherently implicit when applied to general stochastic
damped Hamiltonian systems, inevitably leading to increased computational complexity.

This article addresses a set of stochastic pseudo-conformal symplectic methods for stochastic damped
Hamiltonian systems, concentrating on the research of the following system:

dP = f (P,Q) dt − α (t) P (t) dt +
∑m

r=1 σr (t) dWr (t) ,
dQ = 1 (P,Q) dt − β (t) Q (t) dt +

∑m
r=1 γr (t) dWr (t) ,

f (P,Q) = − ∂H(P,Q)
∂Q , 1 (P,Q) = ∂H(P,Q)

∂P ,

(1)

where P,Q, f , 1, σr, γr are n−dimensional column-vectors, H is a Hamiltonian, and damped parts α(t) and
β(t) are depend on time, Wr are independent standard Wiener process on a probability space (Ω,F ,P),
r = 1, · · · ,m. The Hamiltonians are assumed to belong to the set C K

b for certain K ∈ N, where the function
space consists of functions that are K−times continuously differentiable with bounded derivatives up to
order K.

The stochastic pseudo-conformal symplectic method and stochastic pseudo-conformal symplectic order
for numerical method is defined as follows. The time interval [t0, t0 + T] is divided into N equal segments,
producing a partition t0 < t1 < · · · < tN = t0 + T. Let h = T/N be the step size, denote tn = t0 + nh
and tn+ 1

2
= tn+tn+1

2 . We denote the approximations of the solution to the equation at time tn by Pn and
Qn, respectively, and represent yn = (Pn,Qn). Then use the form yn+1 = ϕh(yn) to represent one-step
approximation.

Definition 1.1. If a numerical method based on the one-step approximation yn+1 = ϕh
(
yn

)
with mean-square order

M for the stochastic damped Hamiltonian systems (1) satisfy∥∥∥∥∥∥
(
∂ϕh

∂yn

)⊤
J
(
∂ϕh

∂yn

)
− Je−

∫ tn+1
tn

A(s)ds

∥∥∥∥∥∥
L2(Ω)

:=

E

∥∥∥∥∥∥
(
∂ϕh

∂yn

)⊤
J
(
∂ϕh

∂yn

)
− Je−

∫ tn+1
tn

A(s)ds

∥∥∥∥∥∥
2

1/2

= O(hL+1),

with L > M, J =
(

0 I
−I 0

)
, I denotes the identity matrix and A(t) = α(t) + β(t), then this method is called a

pseudo-conformal symplectic method of mean-square order (M,L), and L is called the pseudo-conformal symplectic
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order.

The reminder of this paper is structured as follows. In Sect. 2, a series of pseudo-conformal symplectic
methods for (1) are constructed and present their pseudo-conformal symplectic orders. In Sect. 3, numerical
experiments for three pseudo-conformal symplectic methods are conducted and compared with the Euler-
Maruyama method to demonstrate their favorable properties in long-time simulations . Furthermore,
the pseudo-conformal symplectic midpoint method is applied to damped-driven stochastic Schrödinger
equation [20], showing that it also preserves relevant properties, such as charge conservation, when applied
to partial differential equations. Finally, in Sect. 4, a summary of completed work is provided.

2. Stochastic pseudo-conformal symplectic method for stochastic damped Hamiltonian systems

2.1. Pseudo-conformal symplectic methods based on midpoint and trapezoidal methods
In this section, we will construct a class of pseudo-conformal symplectic methods based on commonly

used Euler, midpoint and trapezoidal techniques.
Denote δnWr :=Wr(tn + h) −Wr(tn), r = 1, · · · ,m, n = 0, · · · ,N, p = Pn, q = Qn and definep̃ = e−

∫ tn+1
tn

α(s)ds (p + f
(
p, q

)
h +

∑m
r=1 σr (tn) δnWr

)
,

q̃ = e−
∫ tn+1

tn
β(s)ds (q + 1 (p, q) h +

∑m
r=1 γr (tn) δnWr

)
.

(2)

For a ∈ [0, 1], defineP̄ = e−
∫ tn+1

tn
α(s)ds (p + a f (p, q)h

)
+ (1 − a) f (p̃, q̃)h + e−

∫ tn+1
tn

α(s)ds ∑m
r=1 σr (tn) δnWr,

Q̄ = e−
∫ tn+1

tn
β(s)ds (q + a1(p, q)h

)
+ (1 − a) 1(p̃, q̃)h + e−

∫ tn+1
tn

β(s)ds ∑m
r=1 γr (tn) δnWr,

(3)

and 

P̂ = e−
∫ tn+1

tn
α(s)dsp + e

−

∫ tn+1
tn+ 1

2
α(s)ds

 f (ae

∫ tn+1
t
n+ 1

2

α(s)ds
p + (1 − a) e

−

∫ tn+1
t
n+ 1

2

α(s)ds
p̃,

ae

∫ tn+1
t
n+ 1

2

β(s)ds
q + (1 − a) e

−

∫ tn+1
t
n+ 1

2

β(s)ds
q̃)h +

∑m
r=1 σr (tn) δnWr

 ,
Q̂ = e−

∫ tn+1
tn

β(s)dsq + e
−

∫ tn+1
t
n+ 1

2

β(s)ds
1(ae

∫ tn+1
t
n+ 1

2

α(s)ds
p + (1 − a) e

−

∫ tn+1
t
n+ 1

2

α(s)ds
p̃,

ae

∫ tn+1
t
n+ 1

2

β(s)ds
q + (1 − a) e

−

∫ tn+1
t
n+ 1

2

β(s)ds
q̃)h +

∑m
r=1 γr (tn) δnWr

 .
(4)

We called (2) + (3) and (2) + (4) as pseudo-conformal symplectic trapezoidal (PCST) method and pseudo-
conformal symplectic midpoint (PCSM) method respectly.

Theorem 2.1. Assume that H ∈ C 2
b . Then there exists a positive constant C1 = C1(H, a) such that the methods (2)

+ (3) and (2) + (4) for the system satisfy∥∥∥∥∥∥
(
∂(P̄, Q̄)
∂(p, q)

)⊤
J
(
∂(P̄, Q̄)
∂(p, q)

)
− Je−

∫ tn+1
tn

A(s)ds

∥∥∥∥∥∥
L2(Ω)

= C1h2 +O
(
h3

)
. (5)

Moreover, if H ∈ C 4
b , then there exists a positive constant C2 = C2(H) such that∥∥∥∥∥∥

(
∂(P̄, Q̄)
∂(p, q)

)⊤
J
(
∂(P̄, Q̄)
∂(p, q)

)
− Je−

∫ tn+1
tn

A(s)ds

∥∥∥∥∥∥
L2(Ω)

= |2a − 1|C2h2 +O
(
h3

)
. (6)
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Proof. We prove the result for the method (2) + (3). Rewrite (2) + (3) as

F̃ := p̃ − e−
∫ tn+1

tn
α(s)ds

p + f (p, q)h +
m∑

r=1

σr (tn) δnWr

 = 0,

G̃ := q̃ − e−
∫ tn+1

tn
β(s)ds

p + 1(p, q)h +
m∑

r=1

γr (tn) δnWr

 = 0,

and

F̄ := P̄ − e−
∫ tn+1

tn
α(s)dsp − e−

∫ tn+1
tn

α(s)dsah f (p, q) − (1 − a)h f (p̃, q̃) − e−
∫ tn+1

tn
α(s)ds

m∑
r=1

σr (tn) δnWr = 0,

Ḡ := Q̄ − e−
∫ tn+1

tn
β(s)dsq − e−

∫ tn+1
tn

β(s)dsah1(p, q) − (1 − a)h1(p̃, q̃) − e−
∫ tn+1

tn
β(s)ds

m∑
r=1

γr (tn) δnWr = 0.

According to the hypothesis of the H ∈ C 2
b , we have

∂(F̄, Ḡ)
∂(P̄, Q̄)

·
∂(P̄, Q̄)
∂(p, q)

+
∂(F̄, Ḡ)
∂(p̃, q̃)

·
∂(p̃, q̃)
∂(p, q)

+
∂(F̄, Ḡ)
∂(p, q)

= 0,

then
∂(P̄, Q̄)
∂(p, q)

= −
∂(F̄, Ḡ)
∂(p̃, q̃)

·
∂(p̃, q̃)
∂(p, q)

−
∂(F̄, Ḡ)
∂(p, q)

=:
(
Σ11 Σ12
Σ21 Σ22

)
.

Denote

H̃pp =
∂2H(p̃, q̃)
∂p2 , H̃pq =

∂2H(p̃, q̃)
∂p∂q

, H̃qq =
∂2H(p̃, q̃)
∂q2 ,

Hpp =
∂2H(p, q)
∂p2 , Hpq =

∂2H(p, q)
∂p∂q

, Hqq =
∂2H(p, q)
∂q2 .

Simple calculations yield

∂(F̄, Ḡ)
∂(P̄, Q̄)

=

(
I 0
0 I

)
,

∂(F̄, Ḡ)
∂
(
p̃, q̃

) = (
(1 − a)H̃pqh (1 − a)H̃qqh
−(1 − a)H̃pph −(1 − a)H̃pqh

)
,

∂(p̃, q̃)
∂(p, q)

=

e−
∫ tn+1

tn
α(s)ds

(
I −Hpqh

)
−e−

∫ tn+1
tn

α(s)dsHqqh

e−
∫ tn+1

tn
β(s)dsHpph e−

∫ tn+1
tn

β(s)ds(I +Hpqh)

 ,
∂(F̄, Ḡ)
∂(p, q)

=

−e−
∫ tn+1

tn
α(s)ds(I − aHpqh) e−

∫ tn+1
tn

α(s)dsaHqqh

−e−
∫ tn+1

tn
β(s)dsaHpph −e−

∫ tn+1
tn

β(s)ds(I + aHpqh)

 .
For convenience, denote that

m = e−
∫ tn+1

tn
α(s)ds, n = e−

∫ tn+1
tn

β(s)ds.

By introducing these notations, we can express Σ as

Σ11 =mI −m
(
aHpq + (1 − a)H̃pq

)
h + (1 − a)

(
mH̃pqHpq − nH̃qqHpp

)
h2,

Σ12 = −
(
maHqq + n(1 − a)H̃qq

)
h + (1 − a)

(
mH̃pqHqq − nH̃qqHpq

)
h2,

Σ21 =
(
naHpp +m(1 − a)H̃pp

)
h − (1 − a)

(
mH̃ppHpq − nH̃pqHpp

)
h2,

Σ22 =nI + n
(
aHpq + (1 − a)H̃pq

)
h − (1 − a)

(
mH̃ppHqq − nH̃pqHpq

)
h2,
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thus (
∂(P̄, Q̄)
∂(p, q)

)⊤
J
(
∂(P̄, Q̄)
∂(p, q)

)
=

(
Σ⊤11Σ21 − Σ

⊤

21Σ11 Σ⊤11Σ22 − Σ
⊤

21Σ12
Σ⊤12Σ21 − Σ

⊤

22Σ11 Σ⊤12Σ22 − Σ
⊤

22Σ12

)
.

In what follow we only estimate Σ⊤11Σ21 − Σ
⊤

21Σ11, while an analogous idea can be applied to estimate
the term Σ⊤11Σ22 − Σ

⊤

21Σ12, Σ⊤12Σ21 − Σ
⊤

22Σ11 and Σ⊤12Σ22 − Σ
⊤

22Σ12. Direct calculations yield that∥∥∥Σ⊤11Σ21 − Σ
⊤

21Σ11

∥∥∥
L2(Ω)

=
∥∥∥∥mna2

(
HppHpq −HpqHpp

)
+m2(1 − a)2

(
H̃ppH̃pq − H̃pqH̃pp

)
− (1 − a)m2

(
H̃ppHpq −HpqH̃pp

)
− (1 − a)mn

(
HppH̃pq − H̃pqHpp

)
+mna(1 − a)

(
HppH̃pq − H̃pqHpp

)
+m2a(1 − a)

(
H̃ppHpq − H̃pqHpp

)∥∥∥∥
L2(Ω)

h2

+O
(
h3

)
.

(7)

Thus (5) holds for certain C1.
We prove the result for the method (2) + (4). For convenience, denote that

j = e
−

∫ tn+1
t
n+ 1

2

α(s)ds
, v = e

∫ tn+1
t
n+ 1

2

α(s)ds
, k = e

−

∫ tn+1
t
n+ 1

2

β(s)ds
, w = e

∫ tn+1
t
n+ 1

2

β(s)ds
.

Rewrite (4) as

F̂ := P̂ −mp − j

 f
(
avp + (1 − a) jp̃, awq + (1 − a) kq̃

)
h +

m∑
r=1

σr (tn) δnWr

 = 0,

Ĝ := Q̂ − nq − k

1 (avp + (1 − a) jp̃, awq + (1 − a) kq̃
)

h +
m∑

r=1

γr (tn) δnWr

 = 0.

Simple calculations yield

∂(F̂, Ĝ)

∂(P̂, Q̂)
=

(
I 0
0 I

)
,

∂(F̂, Ĝ)
∂
(
p̃, q̃

) = (
j2(1 − a)H̃pqh jk(1 − a)H̃qqh
−kj(1 − a)H̃pph −k2(1 − a)H̃pqh

)
,

∂(p̃, q̃)
∂(p, q)

=

(
m

(
I −Hpqh

)
−mHqqh

nHpph n(I +Hpqh)

)
,

∂(F̂, Ĝ)
∂(p, q)

=

(
−(mI − jvaHpqh) jwaHqqh
−kvaHpph −(nI + kwaHpqh)

)
.

Then

∂(P̂, Q̂)
∂(p, q)

= −
∂(F̂, Ĝ)
∂(p̃, q̃)

·
∂(p̃, q̃)
∂(p, q)

−
∂(F̂, Ĝ)
∂(p, q)

=:
(
η11 η12
η21 η22

)
.

By introducing these notations, we can express η as

η11 =mI −
(
jvaHpq + j2m(1 − a)H̃pq

)
h + (1 − a)

(
j2mH̃pqHpq − jknH̃qqHpp

)
h2,

η12 = − j
(
waHqq + kn(1 − a)H̃qq

)
h − j(1 − a)

(
jmH̃pqHqq − knH̃qqHpq

)
h2,

η21 =k
(
vaHpp + jm(1 − a)H̃pp

)
h − (1 − a)k

(
jmH̃ppHpq − knH̃pqHpp

)
h2,

η22 =nI + k
(
waHpq + nk(1 − a)H̃pq

)
h + k(1 − a)

(
nkH̃pqHpq −mjH̃ppHqq

)
h2,



X. Huang et al. / Filomat 40:2 (2026), 677–692 682

thus (
∂(P̂, Q̂)
∂(p, q)

)⊤
J
(
∂(P̂, Q̂)
∂(p, q)

)
=

(
η⊤11η21 − η⊤21η11 η⊤11η22 − η⊤21η12
η⊤12η21 − η⊤22η11 η⊤12η22 − η⊤22η12

)
.

In what follows we only estimate η⊤11η21 − η⊤21η11, while an analogous idea can be applied to estimate the
term η⊤11η22 − η⊤21η12, η⊤12η21 − η⊤22η11 and η⊤12η22 − η⊤22η12. Direct calculations yield that

∥∥∥η⊤11η21 − η
⊤

21η11

∥∥∥
L2(Ω)

=
∥∥∥∥kjv2a2

(
HppHpq −HpqHpp

)
+ kj3m2(1 − a)2

(
H̃ppH̃pq − H̃pqH̃pp

)
− kjm2(1 − a)

(
H̃ppHpq −HpqH̃pp

)
− k2mn(1 − a)

(
HppH̃pq − H̃pqHpp

)
+vkj2ma(1 − a)

(
HppH̃pq −HpqH̃pp

)
+ kj2vma(1 − a)

(
H̃ppHpq − H̃pqHpp

)∥∥∥∥
L2(Ω)

h2

+O
(
h3

)
.

(8)

Thus (5) holds for certain C1. In PCST and PCSM methods, the constant denoted by C1 differs, but for
the sake of convenience, we will uniformly refer to this constant as C1.

Now we assume that H ∈ C 4
b .

For p̃ = e−
∫ tn+1

tn
α(s)ds (p + f

(
p, q

)
h +

∑m
r=1 σr (tn) δnWr

)
, perform a Taylor expansion of e−

∫ tn+1
tn

α(s)ds to get

p̃ − e−
∫ tn+1

tn
α(s)dsp = e−

∫ tn+1
tn

α(s)ds

 f
(
p, q

)
h +

m∑
r=1

σr (tn) δnWr

 ,
p̃ − (1 − α(tn)h +O(h2))p = (1 − α(tn)h +O(h2))

 f
(
p, q

)
h +

m∑
r=1

σr (tn) δnWr

 ,
thus we have

p̃ − p =
m∑

r=1

σr (tn) δnWr +O(h),

which means terms p̃ − p and q̃ − q are both O(h
1
2 ) in the sense of L2(Ω) norm.

Expanding H̃pp and H̃pq at (p, q), we have

H̃pp =
∂2H(p̃, q̃)
∂p2

=
∂2H(p, q)
∂p2 +

∂3H(p, q)
∂p3 ⊗ (p̃ − p) +

∂3H(p, q)
∂p2∂q

⊗ (q̃ − q) + C3h

= Hpp +Hppp ⊗ (p̃ − p) +Hppq ⊗ (q̃ − q) + C3h,

H̃pq =
∂2H(p̃, q̃)
∂p∂q

=
∂2H(p, q)
∂p∂q

+
∂3H(p, q)
∂p2∂q

⊗ (p̃ − q) +
∂3H(p, q)
∂p∂q2 ⊗ (q̃ − q) + C3h

= Hpq +Hppq ⊗ (p̃ − p) +Hpqq ⊗ (q̃ − q) + C4h,

here ⊗means tensor product.
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Substituting the expansion of H̃pp and H̃pq to (7) and by the fact that p̃ − p and q̃ − q are both O(h
1
2 ), we

have the coefficient of h2 term in the estimation of Σ⊤11Σ21 −Σ
⊤

21Σ11 is |mna2 +m2(1− a)2
−m2(1− a)−mn(1−

a) +mna(1 − a) +m2a(1 − a)| := B̄. Furthermore using the Taylor expansion

m = e−
∫ tn+1

tn
α(s)ds = 1 − α(tn)h +O(h2),

n = e−
∫ tn+1

tn
β(s)ds = 1 − β(tn)h +O(h2),

we can easily check that the coefficient of h2 term is |a2 + (1− a)2
− (1− a)− (1− a)+ a(1− a)+ a(1− a)|which

vanishes if and only if a = 1
2 . Thus, there exists a positive constant C2 such that∥∥∥Σ⊤11Σ21 − Σ

⊤

21Σ11

∥∥∥
L2(Ω)

= |a2 + (1 − a)2
− (1 − a) − (1 − a) + a(1 − a) + a(1 − a)|C2h2 +O(h3)

= |2a − 1|C2h2 +O(h3).

Substituting the expansion of H̃pp and H̃pq to (8) and by the fact that p̃ − p and q̃ − q are both O(h
1
2 ), we

have the coefficient of h2 term in the estimation of η⊤11η21 − η⊤21η11 is |kjv2a2 + kj3m2(1 − a)2
− kjm2(1 − a) −

k2mn(1 − a) + vkj2ma(1 − a) + kj2vma(1 − a)| := B̂. Furthermore using the Taylor expansion

j = e
−

∫ tn+1
t
n+ 1

2

α(s)ds
= 1 −

1
2
α(tn)h +O(h2),

v = e

∫ tn+1
t
n+ 1

2

α(s)ds
= 1 +

1
2
α(tn)h +O(h2),

k = e
−

∫ tn+1
t
n+ 1

2

β(s)ds
= 1 −

1
2
β(tn)h +O(h2),

we can easily check that the coefficient of h2 term is |a2 + (1− a)2
− (1− a)− (1− a)+ a(1− a)+ a(1− a)|which

vanishes if and only if a = 1
2 . Thus, there exists a positive constant C2 such that∥∥∥η⊤11η21 − η

⊤

21η11

∥∥∥
L2(Ω)

= |a2 + (1 − a)2
− (1 − a) − (1 − a) + a(1 − a) + a(1 − a)|C2h2 +O(h3)

= |2a − 1|C2h2 +O(h3).

In PCST method and PCSM method, the constant denoted by C2 differs, but for the sake of convenience,
we will uniformly refer to this constant as C2.

According to Theorem2.1, the result expressed in relation (6) demonstrates that the PCST method of
(2) + (3) and PCSM method of (2) + (4) possesses a pseudo-conformal symplectic order of (1, 2) if and only
if a = 1

2 .

2.2. Stochastic pseudo-conformal symplectic Runge-Kutta methods

Among the numerical methods for stochastic damped Hamiltonian systems, Runge-Kutta method
belongs to an important class of methods. However, they may bring more complexity to the calculations
because they can be implicit. According to Lawson schemes [5] and to fit the content of the article, we
construct a class of s-stage pseudo-conformal symplectic Runge-Kutta (PCSRK) methods in this subsection.
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We propose the following scheme

P̂1 = P̂n + e−
∫ tn+1

tn
α(s)dsφ1,

Q̂1 = Q̂n + e−
∫ tn+1

tn
β(s)dsψ1,

P̂i = P̂n + h
i−1∑
j=1

e−
∫ tn+cjh

tn
α(s)dsai j f

(
e
∫ tn+cjh

tn
α(s)dsP̂ j, e

∫ tn+cjh

tn
β(s)dsQ̂ j

)
+ e−

∫ tn+ci−1h
tn

α(s)dsφi,

Q̂i = Q̂n + h
i−1∑
j=1

e−
∫ tn+cjh

tn
β(s)dsai j1

(
e
∫ tn+cjh

tn
α(s)dsP̂ j, e

∫ tn+cjh

tn
β(s)dsQ̂ j

)
+ e−

∫ tn+ci−1h
tn

β(s)dsψi,

P̂n+1 = P̂n + h
s∑

i=1

e−
∫ tn+cih

tn
α(s)dsbi f

(
e
∫ tn+cih

tn
α(s)dsP̂i, e

∫ tn+cih
tn

β(s)dsQ̂i

)
+ e−

∫ tn+cih
tn

α(s)dsη,

Q̂n+1 = Q̂n + h
s∑

i=1

e−
∫ tn+cih

tn
β(s)dsbi1

(
e
∫ tn+cih

tn
α(s)dsP̂i, e

∫ tn+cih
tn

β(s)dsQ̂i

)
+ e−

∫ tn+cih
tn

β(s)dsζ,

Pn+1 = e
∫ tn+1

tn
α(s)dsP̂n+1,

Qn+1 = e
∫ tn+1

tn
β(s)dsQ̂n+1,

(9)

random terms φi, ψi, η, ζ, i = 1, · · · s need to be fixed, ensuring their independence not only from p and q
but also from the parameters ai j, bi.

We first construct a 2-stage pseudo-conformal symplectic Runge-Kutta method,

P1 =e−
∫ tn+1

tn
α(s)dsp + e−

∫ tn+1
tn

α(s)dsφ1,

Q1 =e−
∫ tn+1

tn
β(s)dsq + e−

∫ tn+1
tn

β(s)dsψ1,

P2 =e−
∫ tn+1

tn
α(s)dsp + ha21e−

∫ tn+c1h
tn

α(s)ds f
(
e
∫ tn+c1h

tn
α(s)dsP1, e

∫ tn+c1h
tn

β(s)dsQ1

)
+ e−

∫ tn+c1h
tn

α(s)dsφ2,

Q2 =e−
∫ tn+1

tn
β(s)dsq + ha21e−

∫ tn+c1h
tn

β(s)ds1

(
e
∫ tn+c1h

tn
α(s)dsP1, e

∫ tn+c1h
tn

β(s)dsQ1

)
+ e−

∫ tn+c1h
tn

β(s)dsψ2,

P =e−
∫ tn+1

tn
α(s)dsp + hb1e−

∫ tn+c1h
tn

α(s)ds f
(
e
∫ tn+c1h

tn
α(s)dsP1, e

∫ tn+c1h
tn

β(s)dsQ1

)
+ hb2e−

∫ tn+c2h
tn

α(s)ds f
(
e
∫ tn+c2h

tn
α(s)dsP2, e

∫ tn+c2h
tn

β(s)dsQ2

)
+ e−

∫ tn+c2h
tn

α(s)dsη,

Q =e−
∫ tn+1

tn
β(s)dsq + hb1e−

∫ tn+c1h
tn

β(s)ds1

(
e
∫ tn+c1h

tn
β(s)dsP1, e

∫ tn+c1h
tn

β(s)dsQ1

)
+ hb2e−

∫ tn+c2h
tn

β(s)ds1

(
e
∫ tn+c2h

tn
α(s)dsP2, e

∫ tn+c2h
tn

β(s)dsQ2

)
+ e−

∫ tn+c2h
tn

β(s)dsζ.

(10)

Let

φ1 =

m∑
r=1

σr(tn)
(
λ1 Jr0 + µ1δnWr

)
, ψ1 =

m∑
r=1

γr(tn)
(
λ1 Jr0 + µ1δnWr

)
,

φ2 =

m∑
r=1

σr(tn)
(
λ2 Jr0 + µ2δnWr

)
, ψ2 =

m∑
r=1

γr(tn)
(
λ2 Jr0 + µ2δnWr

)
,

η =
m∑

r=1

σrδnWr +

m∑
r=1

σ
′

rI0r, ζ =
m∑

r=1

γrδnWr +

m∑
r=1

γ
′

rI0r,

(11)
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where

δnWr := h1/2ξrn, Jr0 := h1/2

(
ξrn

2
+
ηrn
√

12

)
, I0r := h3/2

(
ξrn

2
−
ηrn
√

12

)
,

(12)

with ξrn and ηrn, n = 0, · · · ,N − 1, being a sequence of independent N(0, 1)−distributed random variables
and where the parameters satisfy

b1 + b2 = 1, a21b2 = 1/2,
2∑

i=1

biλi = 1,
2∑

i=1

biµi = 0,

2∑
i=1

bi
(
λi Jr0 + µiδnWr

) (
λi Jl0 + µiδnWl

)
=

h
2
δrl.

(13)

It has been determined that the method (10) − (12), satisfying (13), converges in the mean-square sense
with an order of 3

2 [14]. In this work, we refrain from considering any higher-order schemes due to the
requirement of simulating multiple Wiener integrals [23] for schemes with mean-square order higher than
3
2 . The following theorem establishes that (10) is pseudo-conformal symplectic with pseudo-conformal
symplectic order 2, provided appropriate assumptions on the Hamiltonian H are met.

Theorem 2.2. Assume that H ∈ C 4
b . Then the 2−stage pseudo-conformal symplectic Runge-Kutta method (10)-(12)

is pseudo-conformal symplectic of order ( 3
2 , 2) if the conditions (13) and

e−vb2
1 + e−db2

2 −
(
e−d + e−v

)
a21b2 +

(
e−d + e−v

)
b1b2 = 0,

e−db2
2 + e−vb1b2 − e−va21b2 = 0,

(14)

hold, where v =
∫ tn+c1h

tn
β(s)ds−

∫ tn+c1h

tn
α(s)ds, d =

∫ tn+c2h

tn
β(s)ds−

∫ tn+c2h

tn
α(s)ds.

Proof. Review (10), we can get

F1 :=P1 − e−
∫ tn+1

tn
α(s)dsp − e−

∫ tn+1
tn

α(s)dsφ1 = 0,

G1 := Q1 − e−
∫ tn+1

tn
β(s)dsq − e−

∫ tn+1
tn

β(s)dsψ1 = 0,

F2 :=P2 − e−
∫ tn+1

tn
α(s)dsp − ha21e−

∫ tn+c1h
tn

α(s)ds f
(
e
∫ tn+c1h

tn
α(s)dsP1, e

∫ tn+c1h
tn

β(s)dsQ1

)
− e−

∫ tn+c1h
tn

α(s)dsφ2 = 0,

G2 := Q2 − e−
∫ tn+1

tn
β(s)dsq − ha21e−

∫ tn+c1h
tn

β(s)ds1

(
e
∫ tn+c1h

tn
α(s)dsP1, e

∫ tn+c1h
tn

β(s)dsQ1

)
− e−

∫ tn+c1h
tn

β(s)dsψ2 = 0,

F := P − e−
∫ tn+1

tn
α(s)dsp − hb1e−

∫ tn+c1h
tn

α(s)ds f
(
e
∫ tn+c1h

tn
α(s)dsP1, e

∫ tn+c1h
tn

β(s)dsQ1

)
− hb2e−

∫ tn+c2h
tn

α(s)ds f
(
e
∫ tn+c2h

tn
α(s)dsP2, e

∫ tn+c2h
tn

β(s)dsQ2

)
− e−

∫ tn+c2h
tn

α(s)dsη = 0,

G := Q − e−
∫ tn+1

tn
β(s)dsq − hb1e−

∫ tn+c1h
tn

β(s)ds1

(
e
∫ tn+c1h

tn
α(s)dsP1, e

∫ tn+c1h
tn

β(s)dsQ1

)
− hb2e−

∫ tn+c2h
tn

β(s)ds1

(
e
∫ tn+c2h

tn
α(s)dsP2, e

∫ tn+c2h
tn

β(s)dsQ2

)
− e−

∫ tn+c2h
tn

β(s)dsζ = 0.

The formulations above readily lead to

∂(F,G)
∂(P,Q)

·
∂(P,Q)
∂(p, q)

+
∂(F,G)

∂(P2,Q2)
·
∂(P2,Q2)
∂(p, q)

+
∂(F,G)

∂(P1,Q1)
·
∂(P1,Q1)
∂(p, q)

+
∂(F,G)
∂(p, q)

= 0,
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then

∂(P,Q)
∂(p, q)

= −
∂(F,G)

∂(P2,Q2)
·
∂(P2,Q2)
∂(p, q)

−
∂(F,G)

∂(P1,Q1)
·
∂(P1,Q1)
∂(p, q)

−
∂(F,G)
∂(p, q)

=:
(
θ11 θ12
θ21 θ22

)
.

Denote

H(1)
pp =

∂2H(P1,Q1)
∂p2 , H(1)

pq =
∂2H(P1,Q1)

∂p∂q
, H(1)

qq =
∂2H(P1,Q1)

∂q2 ,

H(2)
pp =

∂2H(P2,Q2)
∂p2 , H(2)

pq =
∂2H(P2,Q2)

∂p∂q
, H(2)

qq =
∂2H(P2,Q2)

∂q2 .

Subsequently, we can obtain

∂(P1,Q1)
∂(p, q)

=

 e−
∫ tn+1

tn
α(s)dsI 0

0 e−
∫ tn+1

tn
β(s)dsI

 , ∂(F,G)
∂(p, q)

=

 −e−
∫ tn+1

tn
α(s)dsI 0

0 −e−
∫ tn+1

tn
β(s)dsI

 ,
∂(P2,Q2)
∂
(
p, q

) =

 e−
∫ tn+1

tn
α(s)ds(I − a21H(1)

pq h) −e−
∫ tn+1

tn
β(s)dse

∫ tn+c1h
tn

(β(s)−α(s))dsa21H(1)
qq h

e−
∫ tn+1

tn
α(s)dse

∫ tn+c1h
tn

(α(s)−β(s))dsa21H(1)
pp h e−

∫ tn+1
tn

β(s)ds(I + a21H(1)
pq h)

 ,
∂(F,G)

∂(P2,Q2)
=

 b2H(2)
pq h e

∫ tn+c2h
tn

(β(s)−α(s))dsb2H(2)
qq h

−e
∫ tn+c2h

tn
(α(s)−β(s))dsb2H(2)

pp h −b2H(2)
pq h

 ,
∂(F,G)

∂(P1,Q1)
=

 b1H(1)
pq h e

∫ tn+c1h
tn

(β(s)−α(s))dsb1H(1)
qq h

−e
∫ tn+c1h

tn
(α(s)−β(s))dsb1H(1)

pp h −b1H(1)
pq h

 ,
with

θ11 =kI − k
(
b1H(1)

pq + b2H(2)
pq

)
h + a21b2k

(
H(2)

pq H(1)
pq − ed−vH(2)

qq H(1)
qq

)
h2,

θ12 = − u
(
evb1H(1)

qq + edb2H(2)
qq

)
h + a21b2u

(
evH(2)

pq H(1)
qq − edH(2)

qq H(1)
pq

)
h2,

θ21 =k
(
e−vb1H(1)

pp + e−db2H(2)
pp

)
h − a21b2k

(
e−dH(2)

pp H(1)
pq − e−vH(2)

pq H(1)
pp

)
h2,

θ22 =uI + u
(
b1H(1)

pq + b2H(2)
pq

)
h − ua21b2

(
H(2)

pp H(1)
qq −H(2)

pq H(1)
pq

)
h2.

In a more concise notation, denote that

k = e−
∫ tn+1

tn
α(s)ds, u = e−

∫ tn+1
tn

β(s)ds.

Simultaneously, we have(
∂(P,Q)
∂(p, q)

)⊤
J
(
∂(P,Q)
∂(p, q)

)
=

(
θ⊤11θ21 − θ⊤21θ11 θ⊤11θ22 − θ⊤21θ12
θ⊤12θ21 − θ⊤22θ11 θ⊤12θ22 − θ⊤22θ12

)
. (15)

Moving forward, our attention turns to the estimation of θ⊤11θ21 − θ⊤21θ11. A comparable methodology
can be utilized to estimate the other elements of the aforementioned matrix.

Straightforward calculations show that∥∥∥θ⊤11θ21 − θ
⊤

21θ11

∥∥∥
L2(Ω)

=
∥∥∥∥−b2

1

(
H(1)

pq H(1)
pp −H(1)

pp H(1)
pq

)
k2e−v

− b2
2

(
H(2)

pq H(2)
pp −H(2)

pp H(2)
pq

)
k2e−d

+ a21b2

(
H(2)

pq H(1)
pp −H(1)

pp H(2)
pq

)
k2e−v + a21b2

(
H(1)

pq H(2)
pp −H(2)

pp H(1)
pq

)
k2e−d

−b1b2

(
H(2)

pq H(1)
pp −H(1)

pp H(2)
pq

)
k2e−v

− b1b2

(
H(1)

pq H(2)
pp −H(2)

pp H(1)
pq

)
k2e−d

∥∥∥∥
L2(Ω)

h2 +O
(
h5/2

)
.
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Expanding H(2)
pp and H(2)

pq at (P1,Q1), we have

H(2)
pp =

∂2H(P2,Q2)
∂p2

=
∂2H(P1,Q1)

∂p2 +
∂3H(P1,Q1)

∂p3 ⊗ (P2 −P1) +
∂3H(P1,Q1)

∂p2∂q
⊗ (Q2 −Q1) + C3h

:= H(1)
pp +H(1)

ppp ⊗ (P2 −P1) +H(1)
ppq ⊗ (Q2 −Q1) +O(h),

H(2)
pq =

∂2H(P2,Q2)
∂p∂q

=
∂2H(P1,Q1)

∂p∂q
+
∂3H(P1,Q1)

∂p2∂q
⊗ (P2 −P1) +

∂3H(P1,Q1)
∂p∂q2 ⊗ (Q2 −Q1) + C3h

:= H(1)
pp +H(1)

ppq ⊗ (P2 −P1) +H(1)
pqq ⊗ (Q2 −Q1) +O(h),

where ⊗means tensor product, H(1)
ppp =

∂3H(P1,Q1)
∂p3 ,H(1)

ppq =
∂3H(P1,Q1)

∂p2∂q ,H(1)
pqq =

∂3H(P1,Q1)
∂p∂q2 .

In what follows we only estimate Σ⊤11θ21 − θ⊤21θ11, while an analogous idea can be applied to estimate
the terms θ⊤11θ22 − θ⊤21θ12, θ⊤12θ21 − θ⊤22θ11 and θ⊤12θ22 − θ⊤22θ12. Direct calculations yield that∥∥∥θ⊤11θ21 − θ

⊤

21θ11

∥∥∥
L2(Ω)

=k2
|e−vb2

1 + e−db2
2 −

(
e−d + e−v

)
a21b2 +

(
e−d + e−v

)
b1b2| ·

∥∥∥H(1)
pq H(1)

pp −H(1)
pp H(1)

pq

∥∥∥
L2(Ω)

h2

+ k2e−d
|b2

2 − a21b2 + b1b2| ·
∥∥∥M −M⊤∥∥∥L2(Ω)

h5/2

+ k2
|e−db2

2 + e−vb1b2 − e−va21b2| ·
∥∥∥M′ −M′⊤∥∥∥L2(Ω)

h5/2 +O(h3),

with matrices

M = H(1)
pp H(1)

ppp ⊗ (P2 −P1) +H(1)
pq H(1)

ppq ⊗ (Q2 −Q1),

M′ = H(1)
ppq ⊗ (P2 −P1)H(1)

pp +H(1)
pqq ⊗ (Q2 −Q1)H(1)

pp ,

which are typically not symmetric. Then the use of Taylor expansion gets

e−v = e
∫ tn+c1h

tn
α(s)ds−

∫ tn+c1h
tn

β(s)ds

= 1 − c1
(
α(tn) − β(tn)

)
h +O(h2),

e−d = e
∫ tn+c2h

tn
α(s)ds−

∫ tn+c2h
tn

β(s)ds

= 1 − c2
(
α(tn) − β(tn)

)
h +O(h2).

Considering that our analysis can only attain a precision up to h
5
2 order, we will retain solely the first

term in the Taylor expansion. Previous analysis has shown that the two-stage pseudo-conformal symplectic
Runge-Kutta method (10) achieves a pseudo-conformal symplectic order of ( 3

2 , 2) if condition (14) is met.
Moreover, the fulfillment of (14) is achieved when b2 =

1
2 , b1 =

1
2 , and a21 = 1.

For general s-stage pseudo-conformal symplectic Runge-Kutta method (9) with

φi =

m∑
r=1

σr
(
λi Jr0 + µiδnWr

)
,

ψi =

m∑
r=1

γr
(
λi Jr0 + µiδnWr

)
, i = 2, · · · , s,

(16)
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it is convergent of mean-square order 3
2 when the parameters satisfy [14]

s∑
i=1

bi = 1,
s∑

i=1

i−1∑
j=1

biai j =
1
2
,

s∑
i=1

biλi = 1,
s∑

i=1

biµi = 0,

s∑
i=1

bi
(
λi Jr0 + µiδnWr

) (
λi Jr0 + µiδnWl

)
=

h
2
δrl.

(17)

It can be proven analogously that if an s-stage method complies with conditions (17) and (18) along with
certain A j,B j,C j coefficients related to damping terms,

k−1∑
j=1

eA j bkakj +

s∑
j≥1

eB j bka jk − bk

 s∑
i=1

eC j bi

 = 0, k = 2, ..., s, (18)

then such a method exhibits pseudo-conformal symplectic order ( 3
2 , 2).

Importantly, for s = 2, the method achieves order ( 3
2 , 2) pseudo-conformal symplectic only when the

stipulations within Theorem2.2 are satisfied; i.e. the condition b2 =
1
2 , b1 =

1
2 , and a21 = 1 is fulfilled.

For s > 2, there are many admissible parameters that enable this method to achieve order ( 3
2 , 2).

By making appropriate choices of parameters, one can construct higher-order explicit pseudo-conformal
symplectic methods based on the explicit exponential Runge-Kutta method (9).

3. Numerical experiments

In this section, we present numerical experiments to simulate the stochastic damped Hamiltonian system
(1). We demonstrate the effectiveness of our approach by considering both linear oscillator equation and a
stochastic nonlinear Schrödinger equation.

3.1. Damped oscillator with additive noise

Consider the 2−dimensional damped oscillator with additive noise as follow

d
(

p(t)
q(t)

)
=

(
0 −1
1 0

) (
p(t)
q(t)

)
dt −

(
2γp
0

)
dt +

(
−σ
σ

)
dW(t), (19)

with initial condition p(0) = p0, q(0) = q0.
As we know, a differentiable and non-constant scalar functionI(p, q) : Rd

×Rd
→ R is called a (stochastic)

comformal invariant of (19) if

I(p(t), q(t))e
∫ t

0 (α(s)+β(s))ds = I(p0, q0), a.s.,

where α(t), β(t) : R→ R [22].
For the quadratic function

I(p, q) =
1
2

(p2 + q2) + γpq,
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we can check that when γ = 1,

d(Ie2t) =d((
1
2

p2 +
1
2

q2 + pq)e2t)

=(de2t)(
1
2

p2 +
1
2

q2 + pq) + d(
1
2

p2 +
1
2

q2 + pq)e2t

=2e2t(
1
2

p2 +
1
2

q2 + pq)dt + (pdp + qdq + pdq + qdp)e2t

=e2t(
1
2

p2 +
1
2

q2 + pq)dt + (−pqdt − 2p2dt − pσdW(t))e2t

+ (pqdt + qσdW(t))e2t + (p2dt + pσdW(t))e2t

+ (−q2dt − 2pqdt − qσdW(t))e2t

=0,

i.e.

I(p, q) = e−2t
I(p0, q0),

which means that I(p, q) = 1
2 (p2 + q2) + pq is a comformal quadratic invariant of (19).

To validate that Methods (3), (4) and (10) can effectively preserve the conformal symplectic structure, we
choose a step size with h = 2−5, set σ = 0.5, and γ = 0.3, with initial conditions p0 = 0.5, q0 = 0. We observe
the variable Sne2γtn/S which results in Fig.1, observes the value Sne2γtn/S for three integrator methods in this
article and the Euler–Maruyama method, where Sn represents the area of the triangle at time tn. Conformal
symplecticity dictates that this value should remain at 1 along the exact flow. Simulations are conducted
over the time interval [0, 15], revealing that these integrator methods in this artical successfully preserves
conformal symplecticity, while the Euler–Maruyama method does not. Fig.2 illustrates the trend in triangle
area under damping.

Subsequently, to examine whether these methods maintain the conformal quadratic invariant, we set
γ = 1 while keeping the remaining parameters unchanged. In Fig.3, we present the errors ηn = |Ine2tn −I0|

in the conformal quadratic invariant I, which are generated by both the integrator we constructed within
this article and the Euler–Maruyama method [13] over the interval [0, 15].
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Figure 1: The value Sne2γtn/S of the stochastic exponential integrator and the Euler-Maruyama method for solving (19) with γ = 0.3

3.2. Damped stochastic nonlinear Schrödinger equation
In this part, we consider the following damped stochastic nonlinear Schrödinger equation with an

additive noise

du + (γu − iuxx − 2i|u|2u)dt = ϵQdW, x ∈ [−30, 30], t ≥ 0, (20)



X. Huang et al. / Filomat 40:2 (2026), 677–692 690

(a) PCST (b) PCSM (c) PCSRK

Figure 2: The numbercial triangles produced by the stochastic exponential integrator for solving (19) with γ = 0.3
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Figure 3: Error of the conformal quadratic invariant I of (19) with γ = 1

with initial condition u(x, 0) = u0(x) and appropriate boundary conditions, where u(x, t) = p(x, t) + iq(x, t)
is a complex-valued function and W is a complex-valued Wiener process defined on a filtered probability
(Ω,F , {Ft}t≥0,P). We consider the equivalent form of equation (20), as derived according to [3]. Let
{ek : k ∈ N+} be an orthonormal basis of L2([−30, 30];R). Then there exist a sequence of independent
Ft-Brownian motions {βk : k ∈ N+} such that

W(t, x, ω) =
∞∑

k=1

ϕek(x)βk(t, ω), ω ∈ Ω, (21)

where ϕ ∈ L2(L2,H2) is called the Hilbert-Schmidt operator. Let {ηk : k ∈ N+} denote the eigenvalues of the
operator Q on the orthonormal basis . Then

∑
k∈N+ ηk < ∞ and the equivalent form of (21) is

W(t, x, ω) =
∞∑

k=1

√
ηkek(x)βk(t, ω). (22)

Notice that h is the uniform spatial step and u j := u j(t) denotes u(x j, t) with x j = jh, j = 0, 1, · · · , J + 1.
Inserting (22) into (20), one can obtain the equivalent form of (20),

du + (γu − iuxx − 2i|u|2u)dt = ϵ
∞∑

k=1

√
ηkek(x)dβk(t, ω). (23)

We truncate the noise with the first P terms [9], and utilize central finite difference scheme to perform
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space semi-discretization on (23), i.e.uxx =
u j+1−2u j+u j−1

h2 can get

du j + (γu j − i
u j+1 − 2u j + u j−1

h2 − 2i|u j|
2u j)dt = ϵ

P∑
k=1

√
ηkek(x j)dβk(t). (24)

We rewrite some parts of (24) get

dU + (γU − i
A
h2 U − 2i|U|2U)dt = ϵσΛdβ, (25)

where U = (u1, · · · ,uJ)⊤ ∈ CJ, |U|2 = dia1{|u1|
2, · · · , |uJ |

2
}, β = (β1, · · · , βP)⊤ ∈ CP, Λ = dia1{

√
η1, · · · ,

√
ηP},

A =


−2 1
1 −2 1

. . .
. . .

. . .
1 −2

 and σ =


e1(x1) · · · eP(x1)
...

...
e1(xJ) · · · eP(xJ)

 .
The PCSM method is used in the time domain to derive a fully discrete scheme.

Equation (20) exhibits a global charge conservation property and symmetry. In the forthcoming nu-
merical experiments, we will demonstrate that the fully discretized system also possesses discrete global
charge conservation and retains its symmetry.

In the sequel, takingγ = 0.1, ϵ = 0.1, ek(x) = sin(kπx), h = 0.5, τ = 0.001 and to verify the correctness of the
numerical method, in practical applications truncating the infinite series of Wiener process till P = 100[9].
Fig.4(a) shows the relationship of x and |u(x, t)|when t = 10, i.e.the waveforms of method and the symmetry
of the solution with respect to space.
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Figure 4: (a) shows the relationship of x and |u|, (b) shows the relationship of t and Q, (c) shows error of the global charge of (20).

Meanwhile, Q means global charge of (20), where Q(p, q) =
∫ 30

−30(p2 + q2)dx [20]. And (20) exhibits charge
conservation law, and the demonstration is provided below

Q(p(t), q(t)) = e−2θ(t)Q(p0, q0), θ(t) =
∫ t

0
γ(s)ds.

Fig.4(b) shows the relationship of t and Q, which illustrates the charge evolution for our numerical
methods. Means that the Q is decaying.

In Fig.4(c), the relationship between lo1|ErrQ| and time t is depicted, with ErrQ being defined as
ErrQ = |e2θ(t)Q(p(t), q(t)) − Q(p0, q0)|, and t ∈ [0, 10], indicating that the method maintains the discrete
charge conservation of (20) over long time intervals.
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4. Conclusion

This paper presents a class of stochastic pseudo-conformal symplectic methods suitable for stochastic
damped Hamiltonian systems with additive multi-dimensional Wiener processes and linear damping.
Compared to existing methods, these proposed stochastic pseudo-conformal symplectic methods offer a
significant advantage of reduced computational cost while maintaining the symplectic structure of the
system with a certain level of accuracy over relatively long time periods. The pseudo-conformal symplectic
orders of the methods are analyzed. The theoretical findings are validated through applications to linear
oscillators and spatially discretized stochastic nonlinear Schrödinger equations. For future research, a more
general class of stochastic pseudo-conformal symplectic schemes with higher orders, applicable to partial
differential equations, will be constructed.
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