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Pseudo-conformal structure preserving explicit numerical methods for
the stochastic linearly damped Hamiltonian systems

Xiaozhu Huang?, Zhenyu Wang®”, Xiaohua Ding?

®Department of Mathematics, Harbin Institute of Technology at Weihai, Weihai 264209, People’s Republic of China

Abstract. In this paper, the linearly damped stochastic differential equations with invariants are exam-
ined. These invariants follow a linear differential equation with coefficients that are either linear constants
or time-dependent. To preserve the essential characteristics of these linearly damped stochastic differential
equations, a stochastic exponential integrator is utilized. Moreover, the stochastic pseudo-conformal sym-
plectic methods are constructed and their pseudo-conformal symplectic orders for the stochastic damped
Hamiltonian systems with additive noises are analyzed. All of these methods are explicit so that the imple-
mentations become more easier than implicit methods. Particularly, these methods have desired properties

in accuracy and approximately preserved symplectic structure of the systems through some numerical
experiments, especially including Schrodinger equation.

1. Introduction

Stochastic differential equations (SDEs) play a vital role in modeling real-life systems influenced by noise.
Despite their practical significance, the number of exact solutions known is still limited, necessitating the
use of numerical integration methods to solve these equations. However, it is challenging to construct
numerical schemes that can efficiently approximate accurate solutions for the underlying dynamics and
how to preserve its structure is remain concern. Moreover, when applying numerical methods, the decision
to maintain certain geometric attributes of SDEs is crucial, especially during long-term integration. It is
just as significant as in deterministic scenarios [6, 7, 21]. Forturately, numerous notable studies have been
conducted in this domain [10, 11, 15-17].

In the deterministic realm, Aubry and Chartier [1] introduced pseudo-symplectic methods tailored for
Hamiltonian systems. Later on, in the stochastic setting, the relationship between preserving quadratic
invariants and the symplectic structure was explored in [8]. Under certain conditions, an SRK (stochastic
Runge-Kutta) method preserving quadratic invariants is established, which is symplectic in nature. In a
subsequent study [19], three distinct pseudo-symplectic methodologies were developed, and their orders of
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pseudo-symplectic were confirmed. Recently, [4] pinpointed similar conditions for SRK methods regarding
the near-preservation of quadratic invariants and pseudo-symplectic traits. Alongside, they proposed a
methodology to formulate explicit SRK pseudo-symplectic schemes, leveraging colored trees and B-series
to address order conditions.

A key consideration in modeling classical mechanics and quantum systems is incorporating dissipation.
However, traditional structure preserving methods are unable to maintain the dissipation of the system.
Consequently, accurately simulating the dissipation in these systems remains an urgent and unresolved
issue. Addressing this challenge would lead to significant advancements in simulating and understanding
complex systems subject to stochastic influences and dissipation.

Several structure-preserving algorithms for damped systems have been developed in the literature. For
instance, [12] introduced the concept of a conformal symplectic structure for Hamiltonian ordinary differen-
tial equations with linear damping, which is referred as the conformal Hamiltonian system. This idea was
expanded to multisymplectic PDEs by Moore in [18]. For stochastic systems, [14] offers a thorough examina-
tion of the stochastic Hamiltonian system and its corresponding algorithms. In another work, [2] presented
exponential Runge-Kutta (RK) and partitioned exponential RK methods to efficiently solve linearly damped
ordinary differential equations with either constant or time-dependent coefficients. Furthermore, in [22] it
not only discusses the development of structure-preserving stochastic exponential integrators tailored for
conservative stochastic differential equations (SDEs) with potential linear, time-dependent damping terms
but also demonstrates their application in solving damped stochastic differential equations using the con-
formal exponential integrator. Moreover, [5] constructs the exponential integrators that incorporate both
the linear drift and diffusion terms by employing the entire class of stochastic SRK schemes and a stochas-
tic extension of Lawson-type schemes for both Stratonovich and Itd integrals. It is well recognized that
these stochastic conformal symplectic methods are inherently implicit when applied to general stochastic
damped Hamiltonian systems, inevitably leading to increased computational complexity.

This article addresses a set of stochastic pseudo-conformal symplectic methods for stochastic damped
Hamiltonian systems, concentrating on the research of the following system:

dP = £(P,Q)dt — a () P () dt + X" o, (1) dW, (1),
dQ = g(P,Q)dt - B(HQE)dt + X, yr (AW, (£), (1)
fRQ=-2E2 5,0 = 2L,

where P,Q, f, g, 0,,y, are n—dimensional column-vectors, H is a Hamiltonian, and damped parts a(t) and
B(t) are depend on time, W, are independent standard Wiener process on a probability space (€, .#,P),
r=1,--- ,m. The Hamiltonians are assumed to belong to the set ‘ﬁbK for certain K € IN, where the function
space consists of functions that are K—times continuously differentiable with bounded derivatives up to
order K.

The stochastic pseudo-conformal symplectic method and stochastic pseudo-conformal symplectic order
for numerical method is defined as follows. The time interval [ty, ty + T] is divided into N equal segments,
producing a partition ty < t; < .-+ < ty = to + T. Let h = T/N be the step size, denote t, = ty + nh
and t,,1 = bth - We denote the approximations of the solution to the equation at time t, by P, and
Qy, respectively, and represent y, = (P,,Q,). Then use the form y,.1 = ¢n(yn) to represent one-step
approximation.

Definition 1.1. If a numerical method based on the one-step approximation y,.1 = ¢y (y,) with mean-square order
M for the stochastic damped Hamiltonian systems (1) satisfy

\1/2
H (9¢h 3¢h) B ]e_ff:,MlA(S)ds H a(Ph ](8(]5/1) 3 ]e—j:l’”lA(s)ds O(hL+1),
&yn ayn 12 (Q) 8yn 9%1
with L > M, | = —(I) é , I denotes the identity matrix and A(t) = a(t) + B(t), then this method is called a

pseudo-conformal symplectic method of mean-square order (M, L), and L is called the pseudo-conformal symplectic
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order.

The reminder of this paper is structured as follows. In Sect. 2, a series of pseudo-conformal symplectic
methods for (1) are constructed and present their pseudo-conformal symplectic orders. In Sect. 3, numerical
experiments for three pseudo-conformal symplectic methods are conducted and compared with the Euler-
Maruyama method to demonstrate their favorable properties in long-time simulations . Furthermore,
the pseudo-conformal symplectic midpoint method is applied to damped-driven stochastic Schrodinger
equation [20], showing that it also preserves relevant properties, such as charge conservation, when applied
to partial differential equations. Finally, in Sect. 4, a summary of completed work is provided.

2. Stochastic pseudo-conformal symplectic method for stochastic damped Hamiltonian systems

2.1. Pseudo-conformal symplectic methods based on midpoint and trapezoidal methods

In this section, we will construct a class of pseudo-conformal symplectic methods based on commonly
used Euler, midpoint and trapezoidal techniques.
Denote 6,W, :== W,(t, + h) = W,(t,),r=1,--- ,m,n=0,--- ,N,p =Py, g = Q, and define

{ﬁ =B G £ S0 () 0W), 2
g=c PO (g1 g (pg) o+ DIy (8) 64W,).
For a € [0, 1], define

P=e O (s af(p, ) + (L —a) (B, h + bSO T Gy 5, W,

{Q = PO (g4 agp, ) + (L— ) g(p, e+ B PR Ty (1) 8, ¥
and

b= kit IO (R, L R,

S Bes [ s
ae "z g+ 1 —a)e ™2 G+ YL 0 (tn) 6,W, |,
N e (4)

A tpy
Q — e_Jt‘" 1ﬁ(5)dsq +e nty g(ﬂe n+% p + (1 _ a) n+% p’

jt-tn+ll B(s)ds _f[r,,+11 Bls)ds
ae "2 g+(1—-a)e ™z G+ Yol ve (ba) 52 W, |

We called (2) + (3) and (2) + (4) as pseudo-conformal symplectic trapezoidal (PCST) method and pseudo-
conformal symplectic midpoint (PCSM) method respectly.

Theorem 2.1. Assume that H € ‘sz. Then there exists a positive constant C1 = C1(H, a) such that the methods (2)
+ (3) and (2) + (4) for the system satisfy

H a(P Q) a(P, Q)) _ ]e—f[;””A(s)ds
8(;7, q) 5(;9, )

= G2 + 0 (1°). (5)
L2(Q)

Moreover, if H € 6, 4 then there exists a positive constant C, = Co(H) such that

H (P, Q) a(P, Q)) e acs
B(P, q) 8(P, 1)

= [2a - 1|Ch* + O (I7). (6)
L2(Q)
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Proof. We prove the result for the method (2) + (3). Rewrite (2) + (3) as

— [+ a(s)ds

F;:ﬁ—e th {p+f(p,q)h+ZGr(tn)6nW]:O,
r=1

G = — e b PO [p Fglph+ )y (t) 5nWr] =0,

r=1
and

- - _ el

1 o (s)ds ~ - t"“as s
Fi=P—e b0 — o b O%an £, ) - (1= af(p,g) — e b *O% Y 6, (80 6,W, =0,

= 1=

G = Q- POyl By, ) — (1~ ag(p, ) — IO Y (1) 8., = 0
r=1
According to the hypothesis of the H € 4%, we have
IF,G) IP,Q IFG) 9p,q  IFG) _
—— . =" + =0,
IP,Q Ip.q) 9P D Ip.g)  Ip.q)
then

aP,Q)  JF,G) ) P, q) B J(F,G) _,( In X )

Ap.q) @4 Ipq Ipq \In Ix
Denote

- PH®B,§) -~ FPH®B,§) - PH{,

1 - (P, q) _ 9°H(p,q) a - ®,9)

pp 8p2 A 3779@ 7209 aqz ’

PH(p,q) PH(p,q) PH(p,q)

Hyp = o’ Hpy = apog Hyq = op
Simple calculations yield

J(F,G) _( I 0 )

aP,Q \0 I

IE,G) _ ( (1 = a)Hpgh (1 - a)Hygh )

2(,q) —(1 = a)Hph —(1 —a)Hyh)’

9P, ) _ [ef " (I~ Hygh) —e b Ot ]
L G e b PO 1 Hy )
a(ﬁ/ G) _ _e_ftinﬂtg(s)dS(I _ aHpqh) e_tj:z”ﬂ a(S)dSquqh .
Ap,q) —e b PO —e7h PB4 aH, )

For convenience, denote that
m = e_ff:«m“(s)ds, 7= e "B
By introducing these notations, we can express L as
Y =ml—m (aHpq +(1- a)Hpq) h+(1-a) (mequq - nHWpr) W2,
Tip=— (maH,W +n(l - a)I:LM) h+(1-a) (mHWH,M - nI:LMHpq) W2,
Yo = (naHp,, +m(l - a)Hp,,) h—(1-a) (mI:I,,pHpq - anqup) W2,
Yoo =nl+n (aH,,q +(1- a)I:Ipq)h -(1-a) (mequq - nFIqupq)hz,

680
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thus

AP,Q)\" (I(P,Q) _ IADVIEDND VTP MDY IED WD NP
ap,q) ap,q) LYo — 222211 Z KX — 222212 )

In what follow we only estimate Z 1221 — Z 1211, while an analogous idea can be applied to estimate
the term ZT Yoy — Z 1212, Z ,lo1 — Z 211 and Z Zzz Z ,Z12. Direct calculations yield that

”211221 - Zmzll“p(g)

= ||mna2 (prHpq - HquW) +m?(1—a)? (HPPHW B HWHPP)
-1 -aym? (prHpq - HWHPP) — (1= aymn (HppHpy - HWHPP) @
+mna(l — a) (HWI:IW - Hqupp) +m*a(l - (

+O(h3).

Thus (5) holds for certain C;.
We prove the result for the method (2) + (4). For convenience, denote that

o fmas i as)ds ~ [ Ble)ds i pesyds
]=e n+y ,v=en+2 ,k=e n+y lw=en+7 .

Rewrite (4) as

ﬁ:zp—mp—j(f(avp+(1 —a)jﬁ,awq+(1—a)kq)h+Zar(tn)6”Wr] =0,

r=1

G:= Q—nq—k[g(zwp+(l —u)j]ﬁ,awq+(1—a)kq)h+Zyy(tn)6nW] =0.

r=1

Simple calculations yield

J(E,G) _( I 0 )

ap,0) \0 I

aE,G) _ ( (1 = a)Hygh jk(1 — a)Hygh )

2,9  \-kj(1 —a)Hyh —k*(1 — a)Hygh |’

9(p, §) :( (1— Hygh) ~mHyh )

p,q) nHpyh n(I + Hygh))’

I, G) _( (ml — juaH,gh) jwaHggh )

oAp,q) —kvaH,,h —(nl + kwaH,;h))
Then

P, Q) - _ I(E,G) ) 9P, 9) _ IE,G) :.( M T2 )
op.q) o@D Ipg)  Ipq) T\ N2 )
By introducing these notations, we can express 1 as
m1 =ml — (jwszq + Pm(1 - a)Hpq)h +(1-a) (jzmequq - janqupp) W,
M2 = = j (waHgy + kn(1 = a)Fyg) h = j(1 = a) (jmHygHyy — knFlygHy, ) 1,
N =k (vaHy, + jm(1 = a)Hy, ) h = (1 = )k jmHy,Hy, — knF,Hy, ) 1,
No2 =nl + k (waHy, + nk(1 = a)Fyg) b + k(1 — a) (nkFlgHy, — mjH,,H, ) 12,
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thus

— ( 7?117721 - 772:17?11 77117122 - 772:11712 )
Mp'21 = Mt MypM122 — 15712

(a<P, Q))T (a(ﬁ, Q))
ap,q) Ap,q)

In what follows we only estimate 1/, 721 — 11,, 111, while an analogous idea can be applied to estimate the
term 1{, 12 — 17,2, 1,121 — Ny,M1 and 17,022 — 1,,M12. Direct calculations yield that

||771Tl7721 - U2T17711||L2(Q)
= |’ij2”2 (HPPHW - Hqupp) +kjPm?(1 —a)? (HPPHM - Hmﬂpp)
= kjm?(1 = a) (s Hyg ~ HyqFlyy) = Komn(1 = a) (Hy Flypg ~ HgHy) ®)

h2

+ok*ma(1 = a) (Hy,Hyg — HygHyy) + kfoma(1  a) (ypHyg — HpqHy) o)

+O(h3).

Thus (5) holds for certain C;. In PCST and PCSM methods, the constant denoted by C; differs, but for
the sake of convenience, we will uniformly refer to this constant as C;.
Now we assume that H € ‘5}]4.

1 a(s)ds

Forp = ¢ Jr ags)ds

(p+f(p,g) h+ Y L 0r(tn) 6,W;), perform a Taylor expansion of e~ to get

poerh O = el [f (P h+ Y 0r(ta) o, wf},
r=1

=1 —at)h+OE))p = (1 - a(t,)h + O(h?))

fp.ph+) o (m)anwr],

r=1
thus we have
F=p =0, (t:) 5, W, + O(h),
r=1

which means terms f — p and § — g are both O(h?) in the sense of L2(Q2) norm.
Expanding H,, and H,, at (p, q), we have

N PH(P, q)
Ay, = 7
9’H(p,q)  H(p,q) PH(p,q)
= o + o ®(P—P)+W®(ﬂl—4)+c3h
= Hpp + Hypp ® (f = p) + Hppg ® (G — 9) + C3h,
- P*H(p, )
= oy
PH(p,q) *H(p, PH(p,
_Hp,9)  FHlp,q) (pq)®(q—q)+C3h

~ dpdyg Ip2dq P-a)+ Ipdg?
= Hpg + Hyppg ® (p = p) + Hpgg ® (7 — q) + Cuh,

here ® means tensor product.
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Substituting the expansion of Hy, and H,, to (7) and by the fact that 5 — p and § — g are both O(h1), we
have the coefficient of h? term in the estimation of L], o1 — L, Ty is [mna® + m*(1 — a)* — m*(1 — a) — mn(1 -
a) + mna(l — a) + m*a(1 — a)| := B. Furthermore using the Taylor expansion

m = e~ h O Z g e+ O0R),
n= e—ﬁﬂ””ﬁ(g)ds =1- ﬁ(tn)h + O(hz)/

we can easily check that the coefficient of h? term is [a? + (1 —a)*> — (1 —a) — (1 — a) + a(1 — a) + a(1 — a)| which

vanishes if and only if 2 = % Thus, there exists a positive constant C, such that

|7, Z21 - z;zn”Lz(Q) =2 +(1-aP-(1-a)— (1 —a)+a(l —a)+a(l —a)|Coh? + O(®)
= |2a — 1|Coh? + O(H®).

Substituting the expansion of Hy, and H,, to (8) and by the fact that 5 — p and § — g are both O(hz), we
have the coefficient of /? term in the estimation of 1,121 — 17,111 is |kjv?a? + kj*m*(1 — a)* — kjm?(1 — a) —
KP*mn(1 — a) + vkj?ma(1 — a) + kj*vma(1 — a)| := B. Furthermore using the Taylor expansion

—j;t”” a(s)ds 1

j=e i =1- Ea(tn)h +O(H?),
S ates 1

v=¢ "1 =1+ Ea(t,,)h +O(H?),
— 1 ﬁ(s)ds 1

k=e ™t  =1- 5Bt +O(),

we can easily check that the coefficient of h? term is [a> + (1 —a)*> — (1 —a) — (1 —a) + a(1 — a) + a(1 — a)| which
vanishes if and only if a = 1. Thus, there exists a positive constant C, such that

[Infim21 = gl z ) = 1° + (1 =@)* = (1 = @) = (1 =) + a1 — a) +a(l - D)|C:H* + O(’)
= |2a — 1|Coh% + O(h®).

In PCST method and PCSM method, the constant denoted by C, differs, but for the sake of convenience,
we will uniformly refer to this constant as C,. [J

According to Theorem?2.1, the result expressed in relation (6) demonstrates that the PCST method of
(2) + (3) and PCSM method of (2) + (4) possesses a pseudo-conformal symplectic order of (1,2) if and only

o1
ifa = 3.

2.2. Stochastic pseudo-conformal symplectic Runge-Kutta methods

Among the numerical methods for stochastic damped Hamiltonian systems, Runge-Kutta method
belongs to an important class of methods. However, they may bring more complexity to the calculations
because they can be implicit. According to Lawson schemes [5] and to fit the content of the article, we
construct a class of s-stage pseudo-conformal symplectic Runge-Kutta (PCSRK) methods in this subsection.
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We propose the following scheme

A

N _ the1
I I
On+e t,,"”ms)dsw L

S
I

\S

17

izl tnteh n+ bie, 1l
Ai pn +hZ€7ﬁ" ] a(s)dsuijf(e a(s)dSE@ ef ejh ﬁ(s)dse@ ) +e ﬁ i 1’a(s)d5(P
=1

iz1 fnteih tnteh five, 1h
9 = Qn +h Z ¢ ﬁn ot ﬁ(s)ds aiig (eﬁ” 7 a(s)ds @j/ eﬁn i ﬁ(S)dsgj) + e_ﬁn 1 ﬁ(s)dsl{}i,
= ©)
A N 5 fn+r h n+r ih n+c, n+r h
Py =Dy +h) eh Oy, f( a0 Py eh " OB 9, ) b a0k,
i=1

QVI+1 Q?’l + h Z f ﬁ s)dsb g( fn+/.,h a(s)dsgg ef n+c Iz S)dsg ) +e fnnw.zhﬁ(s dSC

n+l

d A
Py = ef’" ale) Pun1

el
d A
Qn+1 = ef'” pe) sQn-+-1r

random terms @;, Y, 1, C, i = 1,--- s need to be fixed, ensuring their independence not only from p and g
but also from the parameters a;;, b;.

We first construct a 2-stage pseudo-conformal symplectic Runge-Kutta method,

_ (tan1 _ fn+1
Py =e I a(s)dsp te I, s)ds(P L

1 tnt
9y = b 4 ol 1p(s)ds 1,

_ (t+ _ tVH—Clh tn+clh tVH—Clh _ tn+clh
e N RO f(e [ s g of, " po)s Ql) Lok e,

+ N+ L n+cih t"+[ tn+l: 4
2, _e—f”” 1ﬁ(s)dsq + haye” f” " B(s)ds (ef " o(s)ds yl,eﬁn 1 ﬁ(s)dsgl) + e—ﬁ" B ﬁ<s>ds¢2r
P :efft;””a(S)dsp " hble—ﬁw a(s) de (ef el o (s)ds 2, efr”“lh s)dsa@l) (10)

+ hbye™ f’wzha(s)dsf (ef e a(S)dsy ef ek ﬁ(s)dsg ) + e—fnnﬂzha(s)dsn,

fn+c1 h

+ tnscih el h
o P M CLOM A A CU (eﬁn B g of M plos Ql)

+ hbze_ﬁ:twczhlg(s)dsg (Eﬁ:,”+C2h as)ds (@2’ eﬁ’“’mczh B(s)ds e@2) + e_ﬁ:lru-czh ,B(S)dSC‘

Let
P11 = Z or(tn) (Aljro + [.11(5,,Wy), Y1 = Z Vr(tn) (Aljro + [Jlénwr)r
r=1 r=1
P2 = Z ar(tn) (/\2]r0 + [»126nwr) ’ '7[}2 = Z Vr(tn) (A2]r0 + [u25nwr) ’ (11)
r=1 r=1

n= iarénwr + Z o lo, C= Z VrOn W, + Z v, lor,

r=1 r=1
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where

5aW, = H2E,, [ = hl/2(@+ I ),Irzz h3/2(@_ T )
’ 2 V)" 2 V2

(12)

with &, and 1, n = 0,--- ,N — 1, being a sequence of independent N(0, 1)—distributed random variables
and where the parameters satisfy

2 2
by +by =1, a0, =1/2, Z bidi =1, Z biu; =0,

i=1 i=1

i ) (13)
Z bi (Ai]ro + pionWy) (Aifio + pidnWi) = Eérl-
i=1

It has been determined that the method (10) — (12), satisfying (13), converges in the mean-square sense

with an order of 2 [14]. In this work, we refrain from considering any higher-order schemes due to the

requirement of simulating multiple Wiener integrals [23] for schemes with mean-square order higher than
3

5. The following theorem establishes that (10) is pseudo-conformal symplectic with pseudo-conformal
symplectic order 2, provided appropriate assumptions on the Hamiltonian H are met.

Theorem 2.2. Assume that H € 6,'. Then the 2—stage pseudo-conformal symplectic Runge-Kutta method (10)-(12)
is pseudo-conformal symplectic of order (3,2) if the conditions (13) and
e_”bf + e_dbg - (e_d + e‘”) a»b, + (e_d + e‘”) bib, =0,

(14)
Eidbg + €7vb1b2 - 670021172 =0,

hold, where v = ftt"w‘ﬁ(s)ds— fttmlha(s)ds, d= ftt"ﬂzl’ﬁ(s)ds— ftt"ﬂzha(s)ds.

Proof. Review (10), we can get
tny _ [t
Fp = P —¢ b ]a(s)dsp e L‘ 1sz(s)ds(P1 =0,
tht tn
Gl - Ql e 1ﬁ(s)dsq _ e_ffn 15(5)0]517[}1 - 0/

rn+clh 'n+c1 h

1VI+C 1
Ey = o [ ads p = hapeh a0 ¢ ( e a@s g o,V e Ql)

tn+clh
o Tals)ds 02 =0,

tnﬂ‘] h

+ tpteqh e
Coim @y — e [ psyas g haneh 1 g(s)ds g (e L aods g of, plokds 91)

ey
_ e_jn 1 ﬁ(s)dsq)Z — O,

’n+clh

tn+1
F=P—¢h “(S)dsp — hbye

tn+51h

als)ds ¢ (eﬁi,"“lha(s)ds Py, eh " Bo)s 321)

_ frz+52h tVH—CZ}I tn+czh _ tn+52h
_ hibye 2 a(s)ds f ( b ate)ds Py e 12" ps)ds 322) e -’y

frterh fnterh

G:=Q- e—f[;’lﬂﬁ(s)dsq _ hble—ﬁ;””lhﬁ(s)dsg (e [ als)ds 2, eh ,B(s)dsgl)
e g 0 3, P ) o

The formulations above readily lead to
AEG) APQ ~IEGC) APy 2)  _AEG) AP 2) IEC)
AP,Q) dp,g) NP2 22  Opg)  APL,2)  dpg)  dpg
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then
APQ) _ IEG) APu2)  IEC) AP,2) IEG) ( o1 On )
&(P/ q) 8(92/ QZ) 9(}7, 1/7) a(e@l, e@l) 8(p, q) &(p, q) "\ 61 Ox |’
Denote
HO = *H(21, ) HO = PH(21, 21) HO _ *H(P,, 21)
rp op? 7 Hpg dpdg M o ’
H® - O’ H(Z, 22) HO = *H(2, 2) HO _ PPH(Py, 2y)
rp p? 7 Hpq dpdg M o :
Subsequently, we can obtain
NP, 21) | e ey AEG) | —e [ asdsp
8(p, q) 0 - tf’nﬂﬁ(s)dsl ’ a(p’ q) 0 —e_ft»:”ﬂﬁ(s)dsl
a( :@2, o@z) B e_][‘]‘;mla(s)ds (I _ ﬂZlH;}])h) _e_f;nﬂ ,B(S)dse ,‘.,:’+C1h (ﬁ(s)—a(s))d5a21H;:’;)h
a(p, Q) e—f,ﬂ"” a(s)dseﬁn””lh(a(s)—/ﬂ(s))dsaﬂHl(]}])h e—f,”"”ﬁ(s)ds I+ aler(J}i)h)
“n+£2h _
Q) | bH N eht ™ FE-a sy, 2y
NP, 2 [ 72" (a(s)—B(s))ds 1, 17(2) @
(P2, 22) —eJn B bZprh bZHpqh
) 1 (g(5)-a(s))dsy, 170D
~ ?;F,i;o; | DaHgh e ¢ byHy,'h
; [ @e)-pe)dsy, D) )
(21, 21) —eln  (@B)=p balp h balq h

with
O =K — k(b1 HY) + boH ) b+ anbok (Hip HY) — eV H HY) ) 12,
Op=-—1u (evblH;},) + edszéé)) h + a)bou (evH,(qu)Hfllq) - edHéé)Hr(,;)) W2,
01 =k (e"b1HY,) + e by H) ) h — anbok (e Hi HY) — e Hi HY)) 2,
O =ul +u(b1HY) + byHG ) 1t = uay by (HG HY,) — Hy HY) ).
In a more concise notation, denote that

K=o t":n+1 a(s)ds U= ft:’m—l B(s)ds
, .

Simultaneously, we have

AP,Q\ (289 ] ]
a(p,q) Ip,q) )\ 0,001 = 05,01 0,00 -0L,01 )

Moving forward, our attention turns to the estimation of 61T1 Oy — 6;1911. A comparable methodology
can be utilized to estimate the other elements of the aforementioned matrix.
Straightforward calculations show that

||61Tl Oz — 9;1611“L2(Q)

_ 2 (D) (1) 1) 7)Y 1.2 — 2 (2) 17(2) 2) 172\ 12,-d
_”—bl(Hqupp—H HY) Ko - b3 (HOHS) - HOHEY) ke

(15)

PP pr=Tpq

(2) 14(1) D172\ 1.2 -0 1) 42 2) 17D 1.2 ,-d
+ay by (HW HS) - HHY )k e + ay b, (HW HY - HYH, )k e

(2) (1) 1) 72 7.2 - 1) (2 2) 7MY 1.2 -d 2 5/2
~bib (HW Hyp = prHpq)k e’ =bib (Hpq Hyy — Hpy Hyg )k € ”Lz(Q) h + O(h )
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Expanding H;%) and Hl(,zq) at (¢, 21), we have

HO = *H(P,, 25)
pr = sz
PH(P, 21)  PH(P, 21) PH(P, 21)
= 8;72 + 8p3 ®(<@2 - P+ W@(Qz - 21) + Csh
=H) +H) ® (2, - 21) + H) ® (2, — 21) + O(h),
HO — *H(P2, 2,)
pq — 8;9311
_ PH(2, 2:) PH(P, 21) PH(P,, 21)
= apaq + apzaq ®(<@2—<@1)+ W@(@z—gl)+C3h

= HY + HY 0 (- 70) + HY (2 - 21)+ 000,

Q) _ PHPL2) ;) _ PHPL,21) (1) _ PH(PL,21)
where ® means tensor product, H,,;, = pry s Hppg = 92 +Hpgy = P

In what follows we only estimate Z 1621 — 9 1011, while an analogous idea can be applied to estimate
the terms 9 102 — 6 1012, 6 ,021 — 9 911 and 6 622 922612 Direct calculations yield that

||91Tl 021 — QleellnLZ(Q)
=k*|le™b? + e~b3 — (e_d + e_v) anby + (3 )b1b2| HH(l (1) H;;)HS?)“LZ(Q)
+ K203 — anba + biba| - [M = M7 o 12

+ k2|€_db§ + e‘”blbz - e_va21b2| . HM’ - M/T

2

W%+ O1),

)LZ(Q)

with matrices

M = HQ)H) ® (2, — 21) + HS)H): © (2, — 2y),

pp = pprP prq
M’ = H) ® (2, - P)HY) + Hyr ® (2, - 20)H)),

which are typically not symmetric. Then the use of Taylor expansion gets

th+cph

e_v = Eﬁu a(s)ds_fbtlnﬂlh’g(s)ds
=1-c1 (alty) — B(ta)) h + O(H?),
e—d _ ej;:ly,ﬂzha s)ds ftnﬂzhﬁ(s)ds
=1-c (alty) — B(ts)) h + O(?).
Considering that our analysis can only attain a precision up to h? order, we will retain solely the first
term in the Taylor expansion. Previous analysis has shown that the two-stage pseudo-conformal symplectic

Runge-Kutta method (10) achieves a pseudo-conformal symplectic order of (%,2) if condition (14) is met.
Moreover, the fulfillment of (14) is achieved when b, = %, b = %, andayy =1. O

For general s-stage pseudo-conformal symplectic Runge-Kutta method (9) with

Ms i1=

Qi or (Aifo + widuW;),
(16)

vy (Aifso + pidaW,), i=2,--+ 5,

‘
1l
—_
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it is convergent of mean-square order 3 when the parameters satisfy [14]

S

i—1
ibi:l' le“b,va,j:%,
i=1 i=1 j=1

S

Zs: b,‘/\i = 1, Z bi[vli = 0, (17)
i=1 i=1

s
h
Z bi (/\i]rO + [Jiénwr) (Ai]rO + ‘Uiénwl) = Eérl‘

i=1

It can be proven analogously that if an s-stage method complies with conditions (17) and (18) along with
certain Aj, Bj, C; coefficients related to damping terms,

k-1 s s
Z eAfbkak]- + Z ijbkajk - bk [Z ecfbi] =0, k= 2,...,5, (18)
j:l jZl i=1

then such a method exhibits pseudo-conformal symplectic order (3, 2).
Importantly, for s = 2, the method achieves order (3,2) pseudo-conformal symplectic only when the
stipulations within Theorem?.2 are satisfied; i.e. the condition b, = %, b = %, and a1 = 1 is fulfilled.

For s > 2, there are many admissible parameters that enable this method to achieve order (3,2).
By making appropriate choices of parameters, one can construct higher-order explicit pseudo-conformal
symplectic methods based on the explicit exponential Runge-Kutta method (9).

3. Numerical experiments

In this section, we present numerical experiments to simulate the stochastic damped Hamiltonian system
(1). We demonstrate the effectiveness of our approach by considering both linear oscillator equation and a
stochastic nonlinear Schrédinger equation.

3.1. Damped oscillator with additive noise

Consider the 2—dimensional damped oscillator with additive noise as follow

p® (0 1 p() 2yp —0
d( a() )—( 1 0 )( o) )dt—(o )dt+((j )dW(t), (19)
with initial condition p(0) = po, 4(0) = qo.

As we know, a differentiable and non-constant scalar function 7 (p, q) : R“xR? — Ris called a (stochastic)
comformal invariant of (19) if

T(p(t), q(H)eh @O = 750 00, as.,

where a(t), f(t) : R = R [22].
For the quadratic function

1
Imm=;ﬁ+ﬁ+wm
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we can check that wheny =1,
2ty _ 1 2 1 2 2t
A(Ze”) =d((5p" + 50° + pDe”)
1, 1 1, 1
(A2 (22 L 22 12, 12 2t
=(deT)Gp"+ 57 +pa) + AP+ 507+ p)e
=262t(%p2 + %42 + pa)dt + (pdp + qdq + pdq + gdp)e*

:eZt(%p2 + %q2 + pq)dt + (—pqdt — 2p*dt — padW(t))e*
+ (pqdt + qodW(t))e* + (p*dt + podW(t))e*
+ (—q?dt — 2pgdt — qodW(t))e*

=0,

ie.
I(p,q) = e I(po, q0),

which means that 7(p,q) = 1(p? + ¢%) + pq is a comformal quadratic invariant of (19).

To validate that Methods (3), (4) and (10) can effectively preserve the conformal symplectic structure, we
choose a step size with i = 275 seto = 0.5, and y = 0.3, with initial conditions py = 0.5, g0 = 0. We observe
the variable S,,¢2" /S which results in Fig.1, observes the value S,e2't [ S for three integrator methods in this
article and the Euler-Maruyama method, where S, represents the area of the triangle at time t,,. Conformal
symplecticity dictates that this value should remain at 1 along the exact flow. Simulations are conducted
over the time interval [0, 15], revealing that these integrator methods in this artical successfully preserves
conformal symplecticity, while the Euler-Maruyama method does not. Fig.2 illustrates the trend in triangle
area under damping.

Subsequently, to examine whether these methods maintain the conformal quadratic invariant, we set
y = 1 while keeping the remaining parameters unchanged. In Fig.3, we present the errors 1,, = |7,¢*" — I
in the conformal quadratic invariant 7, which are generated by both the integrator we constructed within
this article and the Euler-Maruyama method [13] over the interval [0, 15].

(a) PCST (b) PCSM (c) PCSRK

Figure 1: The value S,e?"" /S of the stochastic exponential integrator and the Euler-Maruyama method for solving (19) with y = 0.3

3.2. Damped stochastic nonlinear Schrodinger equation

In this part, we consider the following damped stochastic nonlinear Schrodinger equation with an
additive noise

du + (Yu — ity — 2ilul*u)dt = eQdW, x € [-30,30], t > 0, (20)
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(a) PCST (b) PCSM (c) PCSRK

Figure 2: The numbercial triangles produced by the stochastic exponential integrator for solving (19) with y = 0.3
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Figure 3: Error of the conformal quadratic invariant 7 of (19) with y =1

with initial condition u(x,0) = up(x) and appropriate boundary conditions, where u(x, ) = p(x, t) + ig(x, t)
is a complex-valued function and W is a complex-valued Wiener process defined on a filtered probability
(QQ,F,{Ft}=0,IP). We consider the equivalent form of equation (20), as derived according to [3]. Let
lex : k € N,} be an orthonormal basis of L*([—30,30];R). Then there exist a sequence of independent
F-Brownian motions {B : k € N.} such that

Wit x, @) = Y der(@)pilt, ), € Q, (21)

k=1

where ¢ € £,(IL?, H?) is called the Hilbert-Schmidt operator. Let {1 : k € N.} denote the eigenvalues of the
operator Q on the orthonormal basis . Then };cy, N« < o0 and the equivalent form of (21) is

Wit x,0) = Y| Vilre@)pit, o). (22)
k=1

Notice that & is the uniform spatial step and u; := u;(t) denotes u(x;, t) with x; = jh, j = 0,1,---, ] + 1.
Inserting (22) into (20), one can obtain the equivalent form of (20),

du + (Y1t — ity — 2ifuPu)dt = € Z Vike()dBi(t, w). (23)
k=1

We truncate the noise with the first P terms [9], and utilize central finite difference scheme to perform



X. Huang et al. / Filomat 40:2 (2026), 677-692 691

space semi-discretization on (23), i.e.uyy, = ”J”_Zh# can get
Ui —2uj+up -
duj+ (yuj— 1h—2 = 2iluj|*u;)dt = eZ Ve (x)dBi(t). (24)
k=1
We rewrite some parts of (24) get
VA R _
au+ (yu - iU - 2i|UPU)dt = e Adp, (25)

where U = (uy,--- ,u))" € T, UP = diag{lusl?, -+, luj?}, B = (Br, -+~ , Bp)" € C°, A = diag{ 71, -+ , \7p},

1 - 1 er(x1) -+ ep(x1)
A= ) ) ) and o = : :
1 er(xy) - ep(x))

The PCSM method is used in the time domain to derive a fully discrete scheme.

Equation (20) exhibits a global charge conservation property and symmetry. In the forthcoming nu-
merical experiments, we will demonstrate that the fully discretized system also possesses discrete global
charge conservation and retains its symmetry.

In the sequel, taking y = 0.1, € = 0.1, ex(x) = sin(kmx), h = 0.5, 7 = 0.001 and to verify the correctness of the
numerical method, in practical applications truncating the infinite series of Wiener process till P = 100[9].
Fig.4(a) shows the relationship of x and |u(x, t)| when t = 10, i.e.the waveforms of method and the symmetry
of the solution with respect to space.

osf A
| A
Y . A W

N PN W

007 N E o Y‘;W‘n‘rw"?\ﬁ{ ¥ "\‘{,f
|

((((( I A

(a) (b) ©

Figure 4: (a) shows the relationship of x and |ul, (b) shows the relationship of t and Q, (c) shows error of the global charge of (20).

Meanwhile, Q) means global charge of (20), where Q(p, 9) = f_ 3300(;92 +¢?)dx [20]. And (20) exhibits charge
conservation law, and the demonstration is provided below

QW) 4(1) = e 9Q(po, 40), 0(f) = fo Y(s)ds.

Fig.4(b) shows the relationship of f and Q, which illustrates the charge evolution for our numerical
methods. Means that the Q is decaying.

In Fig.4(c), the relationship between log|ErrQ| and time t is depicted, with ErrQ being defined as
ErrQ = 12°DQ(p(t), 9(t)) — Q(po,qo)l, and t € [0,10], indicating that the method maintains the discrete
charge conservation of (20) over long time intervals.
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4. Conclusion

This paper presents a class of stochastic pseudo-conformal symplectic methods suitable for stochastic
damped Hamiltonian systems with additive multi-dimensional Wiener processes and linear damping.
Compared to existing methods, these proposed stochastic pseudo-conformal symplectic methods offer a
significant advantage of reduced computational cost while maintaining the symplectic structure of the
system with a certain level of accuracy over relatively long time periods. The pseudo-conformal symplectic
orders of the methods are analyzed. The theoretical findings are validated through applications to linear
oscillators and spatially discretized stochastic nonlinear Schrodinger equations. For future research, a more
general class of stochastic pseudo-conformal symplectic schemes with higher orders, applicable to partial
differential equations, will be constructed.
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