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Abstract. Let G be a nontrivial graph. A set D C V(G) is a double dominating set of G if INg[v] N D| > 2
for every vertex v € V(G), where N¢[v] represents the closed neighborhood of v. The double domination
number of G is the minimum cardinality among all double dominating sets of G. In this paper we study
this domination parameter in some well-known graph operators defined from a connected graph G.

1. Introduction

In this paper, we consider finite, simple and nontrivial connected graphs G with vertex set V(G) =
{v1,...,v,) and edge set E(G). For k > 1 an integer, we use the standard notation [k] = {1,...,k}. Given a
vertex v; of G, Ng(v;) and Ng[v;] represent the open neighborhood and the closed neighborhood of v;, respectively.
Aset D C V(G) is a 2-packing of G if Ng[v;] N Ng[v;] = 0 for every different vertices v;,v; € D. For any
i € [n—-1], let Vi(G) = {v; € V(G) : INg(vj)| = i}. By S(G) = {v; € V(G) : Ng(v;) N V1(G) # 0} and
Ss(G) = {v; € S(G) : INc(vi)) N V1(G)| = 2} we denote the sets of support vertices and strong support vertices of
G, respectively. In addition, let us consider the set Vi(G) = {v"/ : vjv; € E(G)} (observe that v/ = v/¥), which
will play an important role in the definitions of graph operators.

Domination theory in graphs is one of the most active and popular research areas within graph theory.
The most studied domination variant in graphs is the total domination, which was introduced in 1980 by
Cockayne, Dawes and Hedetniemi [14]. Given a nontrivial connected graph G, a set D C V(G) is a total
dominating set of G if Ng(v;) N D # 0 for every vertex v; € V(G). Two well-known variants related to total
domination in graphs are the double domination and the total Italian domination, which were introduced
in [16] and [6], respectively. Given a nontrivial connected graph G,

e aset D C V(G) is a double dominating set of G if [Ng[v;] N D| > 2 for every vertex v; € V(G). The double

domination number of G, denoted by yy»(G), is the minimum cardinality among all double dominating
sets of G.
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e afunction f : V(G) — {0, 1, 2} isa total Italian dominating function (TIDF)on Gif {v; € V(G) : f(v;) > 1}isa
total dominating set of G, and every vertex v; € V(G) for which f(v;) = 0 satisfies that ):‘v/_eN(vi) fo) = 2.
The total Italian domination number of G, denoted by y41(G), is the minimum weight w(f) = X,ev(c) f(v1)
among all TIDF f on G. Observe that the function f generates three sets Wy, Wi and W,, where
Wi ={vj € V(G) : f(v)) =i} fori € {0,1,2}. In such a sense, we write f(Wy, W1, W) so as to refer to the
TIDF f.

In addition, these two domination parameters are related. Observe that a set D € V(G) is a double
dominating set of G if and only if there exists a TIDF f(Wy, W1, W») such that Wy = D and W, = 0. By this
previous equivalence and by the definitions, it follows that y+(G) < y1(G) < yx2(G). Recent studies on the
double domination and total Italian domination in graphs are for instance [1, 7, 9-11, 17] and [2, 3, 8, 12, 29],
respectively.

In this paper we study the double domination number of the following well-known graph operators
defined from a nontrivial connected graph G: the central graph C(G), the graph operator R(G), the middle
graph M(G) and the Mycielskian graph p(G). In Section 2 we obtain the exact values for the double
domination numbers of the graph operators R(G) and C(G). In Section 3 we first prove that the double
domination number and the total Italian domination number coincide for middle graphs. Subsequently we
obtain a closed formula and tight bounds for yx(M(G)) in terms of some invariants of G. Finally, Section 4
deals with the case of Mycielskian graph p(G), where, as a main result, we obtain a closed formula for the
double domination number of u(G) in terms of the total Italian domination number of graph G.

2. Double domination in R(G) and C(G)
We begin this section by defining the graph operators R(G) and C(G).

Definition 2.1. Given a nontrivial connected graph G,

e the operator R(G) is the graph obtained from G by subdividing each edge exactly once and adding the edges v;v;
whenever viv; € E(G). Formally, V(R(G)) = V(G) U VE(G) and ER(G)) = E(G) U {vv", vjv"/ : v/ € V(G)},

o the central graph C(G) is the graph obtained from G by subdividing each edge exactly once and adding the edges
vv; whenever vv; ¢ E(G). Formally, V(C(G)) = V(G) U V(G) and E(C(G)) = E(G) U {vjo", 00"l : o'l €
VE(G)), where G is the complement graph of G.

As you can see, both graph operators have the same set of vertices. However, the main difference is that

one keeps the edges of G while the other does not keep them and also adds the edges of G. In Figure 1 we
show a graph G and its corresponding graphs R(G) and C(G).

1

Figure 1: From left to right, a graph G and its corresponding graphs R(G) and C(G), respectively. In each case, the set of black vertices
describes a double dominating set of minimum cardinality.

Several studies have explored the behavior of domination parameters under these graph operators,
including, for example, [4, 5, 18, 26, 28]. Following this line of research, we now aim to determine the exact
value of the double domination number for these operators. The next theorem addresses the case of the
graph operator R(G).
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Theorem 2.2. For any nontrivial connected graph G of order n,
yx2(R(G)) = n.

Proof. Let D be a yx2(R(G))-set such that |[D N V(G)| is maximum among all y,,(R(G))-sets. Suppose that
there exists a vertex v/ € D. Since [Ny (v"/) N D| > 1, it follows that D N {v;,v;} # 0. Observe that
D’ = (D\ {v"/}) U {v;, v} is a yx2(R(G))-set such that D" N V(G)| > |D N V(G)|, which is a contradiction. Hence
D N Vg(G) = 0, which leads to D € V(G). Now, if there exists a vertex v; € V(G) \ D, then for any vertex
vj € Ng(v;) we have that 0"/ ¢ D and [Nx()(0"/) N D| < 1, a contradiction. Therefore D = V(G), which implies
that Y (R(G)) = ID| = [V(G)| =n. O

Next, we obtain the exact value of the double domination number of graph operator C(G). First, we
need to define two families of graphs and state two useful lemmas.

Definition 2.3. For any integer k > 4, let F and Gy be the families of connected graphs G of order k defined as
follows.

e G € F whenever Vi_1(G) = 0.
o G € Gy whenever |Vi_1(G)| = 1, V1(G) # 0 and Vi_»(G) = 0.
Lemma 2.4. Let G be a connected graph of order n > 4,

n ifGeﬂUgnl

<
V(CG) < { n+ [W’—;G)'-‘ otherwise.

Proof. If G € F,, then it is easy to check that V(G) is a double dominating set of C(G), which implies that
Yx2(C(G)) < |V(G)| = n, as desired. Now, assume that G € G, and let V,,_1(G) = {v1} and v, € V1(G). Observe
that (V(G) \ {v2}) U {v'?} is a double dominating set of C(G) because V,,_»(G) = 0. Hence, 742 (C(G)) < 1, as
desired. From now on, we assume that G ¢ ¥, U G,. Let W C Vi(G) be a set of minimum cardinality such
that N¢)(vi) N W # 0 for every v; € V,,_1(G). Since the subgraph induced by V,_1(G) is isomorphic to the
complete graph of order |V,-1(G)| and by the minimality of |W|, it follows that [W| < [|V,,-1(G)|/2]. Now, it
is straightforward that V(G) U W is a double dominating set of C(G). Therefore, y,(C(G)) < [V(G) U W| <
1+ [|V,-1(G)|/2], which completes the proof. [

Lemma 2.5. Let D be a yx2(C(G))-set such that |DNV(G)| is maximum among all y«o(C(G))-sets. Then the following
statements hold.

(i) Ne)(v:) N VE(G) € D and Ng(vi) € D for every vertex v; € V(G) \ D.
(if) V(G) € D or V(G)\ D is a 2-packing of G.

Proof. First, we proceed to prove (i). Let v; € V(G) \ D. Every vertex v; € Ng(v;) satisfies that Neg) (@) =
{vi, v;}, which implies that v;, v"/ € D. Hence, N¢()(vi) N Ve(G) € D and Ng(v;) C D, as desired. Finally, we
proceed to prove (ii). If V(G) € D, then we are done. Now, let us consider that V(G)\ D # 0. If [V(G)\D| =1,
then V(G) \ D is a 2-packing of G, as desired. Now, we assume that [V(G) \ D| > 2. Let v; and v; be any
two different vertices in V(G) \ D. If v;v; € E(G), then [N [0"]] N D| < 1, a contradiction. If there exists
v € Ng(vi) N Ng(v;), then by statement (i) we have that vy, 0¥, 0/F € D, which leads to D’ = (D \ {v"*}) U {v;}
is a Yx2(C(G))-set such that [D’ N V(G)| > |D N V(G), a contradiction too. As a consequence, it follows that
Ng(v;) N Ng(v)) = 0. Therefore, V(G) \ D is a 2-packing of G, as desired. [

We conclude this section by providing the exact value for the double domination number of central
graph C(G).
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Theorem 2.6. Let G be a connected graph of order n > 4,

n lf Ge 7:71 U gnl
Q) =
Vxa(C(G)) n+ [W’—;G)'-‘ otherwise.

Proof. Let D be a yx2(C(G))-set such that [D N V(G)| is maximum among all yx(C(G))-sets. Next, let us
consider the following three complementary cases.

Case 1: G € . By Lemma 2.4 we only need to prove that y,»(C(G)) > n. Suppose that [V(G)\ D| = r > 0.
Without loss of generality, we assume that V(G) \ D = {v,...,v,} and vis, € Ng(v;) for every i € [r]. By
Lemma 2.5 (i) and (ii) we have that R = {v41,...,02} € V(G) N D and |R| = r, respectively. Moreover, by
Lemma 2.5 (i) we have that Q = Uie({v"'*"} € D. Let D’ = (D\Q)U(V(G)\D). As V,,.1(G) = 0and V(G) C D',
it is easy to check that D’ is a yx2(C(G))-set such that |[D’ N V(G)| = n > |[D N V(G)|, a contradiction. Thus
V(G) € D, which implies that yx2(C(G)) = |D| > |[V(G)| = n, as desired.

Case 2: G € G,. By Lemma 2.4 we only need to prove that yx(C(G)) = n. If V(G) € D, then it is
straightforward that yx2(C(G)) = |ID| = |V(G)| = n, as desired. From now on, assume that V(G) \ D # 0. Let
Viu-1(G) = {v;}. If v; € V(G) \ D, then by Lemma 2.5 (i) we have that N¢)(v;) N Ve(G) € D and Ng(v)) € D,
which implies that yx2(C(G)) = ID| = [N¢(c)(vj) N VE(G)| + [Ng(v))| = 2(n — 1) = n, as desired. Finally, if v; € D
then by Lemma 2.5 (ii) we have that |V(G) \ D| = 1, and as a consequence, |V(G) N D| = n — 1. In addition,
by Lemma 2.5 (i) we have that N¢)(v) N Ve(G) € D, where v € V(G) \ D. Therefore, yx(C(G) = |D| >
ID N V(G)| + IN¢)(©) N VE(G)| = 1, as desired.

Case 3: G ¢ F, UG,. By Lemma 2.4 we only need to prove that yx2(C(G)) > n + [|V,-1(G)|/2]. First,
we assume that V(G) € D. Since every vertex in D N Vg(G) has exactly two neighbors in V(G) and
D N Ney(v:) € D N VE(G) for every vertex v; € V,_1(G), we deduce that

2DN V@Gl = ). IDNNeo@)l = Vi (G)l
viEVn—l(G)

Hence, vx2(C(G)) = ID| = [ID N V(G)| + ID N VE(G)| = n + [|V,,-1(G)|/2], as desired. Finally, we assume that
V(G)\ D # 0. Observe that V,,_1(G) # 0 because G ¢ F,,. Now, let us consider the following two subcases.

Subcase 3.1: there exists a vertex v; € V;,_1(G) \ D. By Lemma 2.5 (i) we have that N¢)(v;) N VE(G) € D and
Ng(vj) € D, which implies that yx>(C(G)) = |D| 2 [N¢)(v7) N VE(G)| + ING(v))| = 2(n — 1) 2 n + [|V,-1(G)|/2],
as desired.

Subcase 3.2: V,,_1(G) € D. By Lemma 2.5 (ii) we have that |[V(G)\ D| = 1, which implies that |V(G)ND| = n—1.
Without loss of generality, we assume that V(G) \ D = {v1} and v, € V,,_1(G). If there exists a vertex
v € V(G) \ {v1, 02} such that v1v, € E(G), then D” = (D \ {v'2,0'%}) U {01, v?*} is a yx2(C(G))-set such that
ID”" N V(G)| > ID N V(G)|, a contradiction. Hence, V,-1(G) = {v,} and v; € V1(G). These previous conditions
and the fact that G ¢ G, lead to V,2(G) # 0. Let v; € V,,_»(G). Since N¢)(vi) N V(G) = {v1} and v ¢ D, it
follows that |(N¢(c)(v1) U Ne)(vi)) N D N VE(G)| = 2. Hence, yx(C(G)) = ID| = ID N V(G)| + |D N Ve(G)| >
n-1)+2=n+[|V,-1(G)|/2], as desired. O

3. Double domination in M(G)

The concept of middle graph M(G) of a nontrivial connected graph G was introduced by Hamada
and Yoshimura in [15]. Several studies have explored the behavior of domination parameters under this
operator, including, for example, [19-22]. We begin this section by defining this graph operator.

Definition 3.1. Given a nontrivial connected graph G, the middle graph M(G) is obtained from G by subdividing
each edge exactly once, and joining pairs of these new vertices if and only if their corresponding edges are adjacent in
G. Formally, V(M(G)) = V(G) U V&(G) and EM(G)) = {v;v",vjv" : v € VE(G)} U E(L(G)), where L(G) is the line
graph of G.
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Figure 2: A graph G, and its corresponding graph M(G). The set of black vertices describes a Y2 (M(G))-set.

In Figure 2 we show a graph G and its corresponding graph ¥(G). Our first result shows that the double
domination number and the total Italian domination number coincide for middle graphs.

Theorem 3.2. For any nontrivial connected graph G,
Vx2(M(G)) = yu(M(G)).

Proof. Let f(Wy, W1, W) be a y4(M(G))-function such that [W;| is minimum among all y(M(G))-functions.
Suppose that W, # () and we analyze the next two possible cases.

Case 1: There exists a subscript i € [n] su;h that v; € W,. Since Ny)(vi) € VE(G), there exists j € [n] \ {i} such
that v/ € Wy UW,. As Ny(g)[vi] € Ny(g)[v"], it follows that the function f'(Wj, Wi, W)), defined by W = Wy,
W, = W1 U {o;} and W) = W, \ {01}, is a TIDF on M(G) such that w(f’) < w(f) = yy(M(G)), a contradiction.

Case 2: There exist two different subscripts i, j € [n] such that v/ € W,. Observe that Ny)(0"/) N(W; UW,) #
0. Without loss of generality, we assume that i € [n] satisfies that (Nuc)[vi] \ W) N (W UW,) # 0. As
NM(G)[vi'f ] = Nuo)[vi] U Nyg)[v)], it is easy to check that the function f”(Wg, W}’, W), defined by W = Wy,
W/ = Wy U {vj,0"} and Wy = Wa \ {v"/}, is a TIDF on M(G) such that w(f”’) < w(f) and |[W}| < [Wa], a
contradiction.

From the two previous cases, it follows that W, = 0. As a consequence, W; is a double dominating
set of M(G), which implies that y,,(M(G)) < |Wi| = w(f) = yu(M(G)). Moreover, by definition it follows that
Ya(M(G)) £ ¥x2(M(G)). Therefore, x> (M(G)) = yu(M(G)), which completes the proof. [J

Now, we present a lemma that will be very useful throughout the section.
Lemma 3.3. If G is a nontrivial connected graph, then there exists a yx,(M(G))-set D such that D € Vg(G) U V1(G).

Proof. Let D be a yx(M(G))-set such that |[D N Vg(G)| is maximum among all yx(M(G))-sets. Suppose
there exists a subscript i € [n] such that v; € D\ Vi(G). Hence, there exist jk € [n] \ {i} such that
vj, v € Ng(vi) and D N {o'/,0"*} # 0. If 0"/, 0% € D, then D \ {v;} is a double dominating set of M(G), a
contradiction. So, |D N {v"/,v"*}| = 1, which implies that D’ = (D \ {v;}) U {v"/, v"*} is a yxo(M(G))-set such that
ID” N VE(G)| > ID N VE(G)|, a contradiction too. Therefore, D is a v, (M(G))-set such that D € VE(G) U V1(G),
which completes the proof. [

The next theorem provides a closed formula for the double domination number of middle graph of
every graph G satisfying that V1(G) = 0. For this purpose, let us consider the following parameter, which
was recently introduced and studied in [27]. A total edge cover of a graph G with minimum degree at least
two is a set F C E(G) such that every vertex of G is incident to at least two edge in F. The total edge covering
number of G, denoted by f;(G), is the minimum cardinality among all total edge covers of G.

Theorem 3.4. For any connected graph G with minimum degree at least two,

72(M(G)) = Bi(G).
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Proof. Let D be a yx2(M(G))-set that satisfies the condition given in Lemma 3.3, that is, D € Vg(G). Let
E = {vwj € E(G) : v/ € D}. Observe that every vertex v; € V(G) satisfies that [Ny)(v;) N D| > 2, which
implies that v; is incident to at least two edge in E. Therefore E is a total edge cover of G, and as a consequence,
Yx2(M(G)) = ID| = |[E] = B{(G). On the other hand, let F’ be a total edge cover of G such that |[F'| = §;(G) and
let F = {v" € VE(G) : vjv; € F'}. Observe that [Nyc)(v;) N F| > 2 for every vertex v; € V(G). In addition,
INwG)(©"/) N F| > 2 for every vertex v/ € VE(G) \ F and |Nu)(v"/) N F| > 1 for every vertex v/ € VE(G) N F.
Hence, F is a double dominating set of M(G), which implies that yx;(M(G)) < |F| = |F'| = B;(G). Therefore,
Yx2(M(G)) = B;(G), as desired. [J

The following result provides tight lower and upper bounds for the double domination number of
middle graph M(G).

Theorem 3.5. For any connected graph G of order n > 3 and size m,

max {ZIVl(G)l,n + {@w} < Y2M(G)) < m+ |[Vi(G)|.

Furthermore,
(1) yxM(G)) = 2|V1(G)| if and only if V(G) = S4(G) U V1(G).
(i) yx2M(G)) = m +|V1(G)| if and only if min{|[Ng(v;)|, INc(v))|} < 2 for every i, j € [n] such that v;v; € E(G).

Proof. Let D be a yx2(M(G))-set that satisfies Lemma 3.3. Since D C Vi(G) U V1(G), it follows that yx(M(G)) =
ID| < [VE(G) U V1(G)| = m + |V1(G)|. Now, we proceed to prove the lower bound. Observe that V;(M(G)) =
V1(G) and [Vi(M(G))| = ISM(G))|. As Vi(M(G)) U SM(G)) € D we have that y,M(G)) = |D] = [V1(M(G)) U
SM(G))| = 2IV1(M(G))| = 2|V1(G)|. Moreover, as D C Vi(G) U V1(G) it follows that |[Ny)(v;) N D| > 2 for every
v; € V(G)\V1(G) and [Ny()(v;)ND| = 1forevery v; € V1(G). Inaddition, we have that v/ € Ny(g)(v;) \Ny(c)(v))
for every i, j € [n] such that v;v; € E(G). Hence,

2DI22ViG)l+ ), INwg@)NDl+ Y INug@)NDl
vieV(G\V1(G) v;€V1(G)

> 2|Vi(G)| + 2(n — [V1(G))) + [V1(G)]
=21+ |Vi(G)|.

Therefore yx2(M(G)) = |D| = n + [|V1(G)|/2], as desired.

Next, we proceed to prove (i). Without loss of generality, we assume that S(G) = {vy, ..., v} whenever
Vi(G) # 0. For every i € [k], let E; = {j € {k+1,...,n} : v; € Ng(v;) N V1(G)}. Now, let us consider the
set R = Uig[k](Ujegi{Ui’j}). Observe that |R| = [V1(G)] and R U V1(G) € D. If V(G) = Ss(G) U V1(G), then it
is straightforward that R U V;(G) is a double dominating set of M(G), which implies that D = R U V;(G).
Therefore, y,o(M(G)) = |D| = IR U V1(G)| = 2|V1(G)|, as desired. On the other hand, assume that V(G) #
Ss(G) U V1(G). So, there exists j € [n] such that |Ny)(v;) N R| < 2 and |[Ny,)(vj) N D| > 2, which implies that
RUV1(G) € D. Hence, 2|V1(G)| = [IRU V1(G)| < ID| = yx(M(G)), which completes the proof of (i).

Finally, we proceed to prove (ii). If there exist subscripts i,j € [n] such that v;v; € E(G) satisfying
that min{|Ng(v;)|, ING(vj)l} > 3, then it is easy to check that (Ve(G) U V1(G)) \ {v"/} is a double dominating
set of M(G). Hence, yso(M(G)) < |(VE(G) U V1(G)) \ {v"/}| < m + |V1(G), as desired. Finally, assume that
Yx2(M(G)) < m + |V1(G)|. This implies that there exist subscripts i, j € [n] such that vl ¢ D. Hence v;,0; ¢ D,
which implies that min{|Ny)(v;) N D|, [Nuc)(vj) N DI} > 2. As an immediate consequence, it follows that
min{|N¢(v;)|, ING(v))l} = 3. Therefore, the proof is complete. []

We conclude this section with a result that provides a lower bound for the double domination number
of the middle graph of a tree.
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Theorem 3.6. The following statements hold for any tree T of order n > 3.
(i) ¥x2(M(T)) 2 n +|Vi(T)] = IS(T)!.
(ii) Yx2(M(T)) = n + |V1(D)| = IS(T)| if and only if V(T) = Ss(T) U V1(T).

Proof. Let Dbe a yx(M(T))-set that satisfies Lemma 3.3, thatis, D € Vg(T)U V1(T). Without loss of generality,
assume that S(T) = {vy,...,vx}. Foreveryi € [k], let E; = {j € {k+1,...,n} : v; € Nr(v;) N V1(T)}. Now,
let us consider the set R = Uie[k](UjEEI{vi'f}). Observe that |R| = |V1(T)| and R U V1(T) € D. Now, let
A =V(T)\(Ss(T)U V(T)), A’ = S(T)\ Ss(T) and A” = V(T) \ (S(T) U V1(T)). Observe that A = A’ UA"”. We
next analyze the following three complementary cases.

Case 1: A = 0. This implies that V(T) = S;(T)U V1(T). By Theorem 3.5 (i) and the fact that n = [V1(T)|+|S(T)|
we obtain that yxo(M(T)) = 2|V1(T)| = n + [V1(T)| — |S(T)|.

Case2: A’ # Pand A” = 0. Inthiscase, V(T) = S(T)UV1(T). Let D’ = D\(RUV(T)). Foranyv; € A’ € V(T)\D
we have that [Ny (v;)ND| > 2 and [Ny (v;)NR| = 1, which implies that [Ny (v;)ND’| > 1. As a consequence,
D’ # 0 and by the fact that n = [V1(T)| +|S(T)| it follows that yxo(M(T)) = |D| = [R| +|V1(T)| +|D’| > 2|V1(T)| =
n+|Vi(T) = IS(T)l.

Case 3: A” # 0. Let D’ = D\ (RU Vy(T)). We claim that |D’| > |A”|. For any v; € A” C V(T) \ D we have
that |[Nyr)(v;) N D’| > 2. In particular, and due to the fact that T is a tree, there exists a vertex v; € A” such
that [N7(v)) N A”| < 1. As [Nyr)(v;) N D’| > 2, there exists v; € N1(v;) N S(T) such that v/ € D’. Hence,
Yooesr INwny (0i) N D’| > 0. Since v/ € Nyry(v;) N Ny (v;) for every i, j € [n] such that v;v; € E(T), we deduce
that

2012 ) INuny@) N D[+ Y INuen(@) N D'| > 2/A”)
v;EA” Zl,‘ES(T)

Therefore, |[D’| > |A”|, as desired. Since n = |A”| + |V1(T)| + |S(T)|, it follows that y,o(M(T)) = |D| =
R + [V1(T)| + |D’| > 2|V1(T)| + |A”| = n + |V1(T)| = |S(T)|.

By the three previous cases we obtain that . (M(T)) > n+|V1(T)|—|S(T)| and that y,,(M(T)) = n+|V1(T)|-
|S(T)| if and only if V(T) = Ss(T) U V1(T). Therefore, the proof is complete. [

4. Double domination in u(G)

The Mycielskian graph u(G) of a graph G was introduced by ]J. Mycielski in [25] as a construction that
increases the chromatic number while avoiding the creation of triangles. Beyond coloring, several works
have examined how domination parameters behave under this operator (see, for instance, [13, 23, 24, 30]).
We begin this section by defining this graph operator.

Definition 4.1. Let G be a nontrivial connected graph with vertex set V(G) = {v1,...,v,}. The Mycielskian graph
u(G) is obtained from G by adding n new vertices u, . . ., u,, and an additional vertex w and then adding the edges wu;
for every i € [n]. In addition, for each edge v;v; € E(G), we add the edges u;v; and viu; to complete the construction

of w(G).

In Figure 3 we show an example of a Mycielskian graph. The next lemma provides an upper bound for
the double domination number of 1(G) in terms of y4(G).

Lemma 4.2. The following statements hold for any nontrivial connected graph G.
() Yx2(u(@) < yu(G) +2.
(i) If yx2(u(G)) = yu(G) +2, then yx2(G) = yu(G).
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Figure 3: The Mycielskian graph (G), where G is the graph given in Figure 1. The set of black vertices describes a 2 (1(G))-set.

Proof. Let f(Wo, Wi, W) be a y4(G)-function. Without loss of generality, suppose W, = {vy, ..., v} whenever
|[Ws| = k > 0. We define a set D € V(u(G)) as follows.

Wi U {uy, w} if [W>[ =0,
a Wi U W U (Ujepglui}) U {w}  otherwise.

We claim that D is a double dominating set of 11(G). For this, let us consider the following two complementary
cases.

Case 1: |[W;| = 0. By definition, we have that [N, c)[w] N D| = 2. Moreover, the fact that W; is a double
dominating set of G and w € D lead to |[Nyg)[v;] N D| > 2 and |[Nyc)(1;) N D| > 2 for any i € [n]. Hence, D is
a double dominating set of u(G), as desired.

Case 2: |W>| > 0. By definition, we have that [N,)[w] N D| > 2. Moreover, the fact that W; U W, is a total
dominating set of G and w € D lead to |Nc)(u;) N D| > 2 for every i € [n]. In addition, it is straightforward
that [Ny, [0i] N D| > 2 for every i € [n]. Hence, D is a double dominating set of 1(G), as desired.

From the previous cases we have that yx(u(G)) < ID| < |Wq| + 2|Wa| + 2 = y4(G) + 2, which completes
the proof of (i). Now, if Y (u(G)) = yu(G) + 2, then we have equalities in the previous inequality chain. In
particular, we have that [D| = [W;| + 2|W;| + 2, which leads to W, = 0. Hence, W; is a double dominating
set of G, and as a consequence, y1(G) < yx2(G) < [Wi| = w(f) = yu(G). Therefore, yx2(G) = yu(G), which
completes the proof. 0O

The following theorem provides a closed formula for the double domination number of Mycielskian
graph 1(G) in terms of the total Italian domination number of G.

Theorem 4.3. For any nontrivial connected graph G,
7x2((G)) € {yu(G) +1,yu(G) + 2}.

Proof. By Lemma 4.2 (i) we have that v (1(G)) < yu(G)+2. We only need to prove that y,,(u(G)) = yu(G)+1.
Let D be a yx2(1(G))-set. Let us consider the following two complementary cases.

Case 1: w € D. Let f(Wy, W1, W>) be a function defined on G as follows. For each i € [n],

0 if {v,w;}nD[=0,
f)=3 1 if {vu}nDl=1,
2 if [{v;,u;} N D] = 2.

Observe that [Ny)[vi] N (D \ {w})| > 2 for every vertex v; € V(G). As a consequence, f(Ng(vi)) > 2
whenever v; € Wy and f(Ng(v;)) > 1 whenever v; € Wi U W,. Hence, f is a TIDF on G, which implies that
Vs2((G)) = ID\ {w}| + 1 = [Wi| + 2]Ws| + 1 = w(f) + 1 = y4(G) + 1, as desired.
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Case2: w¢ D.LetA={u; €D: v;¢ Dyand A’ = {v; € V(G) : u; € A}. Observe that A’ N D = 0. Now, it is
easy to check that [N, g)[v;] N (D N V(G))| > 2 for every v; € V(G) \ A’. If A = 0 then A’ = (), which implies
that D N V(G) is a double dominating set of G. Hence,

Vx2((G)) = |D| = ID| = |D N Ny)(w)| +2 = [V(G) N D| + 2 2 yx2(G) + 2 > yu(G) + 2. (1)

From now on, assume that A # (. Let A” = {v; € A" : [Ny (v:)) N(DNV(G))| = 2}. If A’ = A”, then DN V(G)
is a double dominating set of G and as a consequence, Inequality chain (1) follows, as desired. Finally,
assume that A"\ A” # (. Let us fix a vertex v; € A’ \ A”. As D is a yx2(u(G))-set, there exists j € [n] \ {i}
such that u; € D and v;0; € E(G). Recall that v; € A’ if and only if v; ¢ D. Now, let us consider the following
subset D¢ € V(G).
{ (DNV(G)UA \{vj}) if vjeA,
G =

(DNV(G)UA otherwise.

Observe that D¢ is a double dominating set of G of cardinality [D¢| = |D N V(G)| + |A’| — 1. Hence,
Y52(u(G)) = DI = IDN VG| + DN A{uy, ..., u,}l 2 IDNV(G)| + 1A' = D¢l + 1 2 yx(G) + 1 = yu(G) + 1, as
desired. O

The following result provides a sufficient condition for yx2(1(G)) = y4(G)+1, which follows immediately
from Lemma 4.2 (ii) and Theorem 4.3, as well as another sufficient condition that guarantees that y, (u(G)) =
y1(G) + 2.

Theorem 4.4. The following statements hold for any nontrivial connected graph G.
@) Ifyx2(G) > yu(G), then yxo(u(G)) = yu(G) + 1.
(i) If yx2(G) = yi(G), then yxo(u(G)) = yu(G) +2.

Proof. First, we proceed to prove (i). From Lemma 4.2 (ii), we deduce that if yx2(G) > v4(G), then yx2(u(G)) #
y1(G) + 2. Therefore, Theorem 4.3 leads to yx2(u(G)) = yu(G) + 1, as desired. Finally, we proceed to prove
(ii). Assume that yx2(G) = y+(G). By Lemma 4.2 (i) we only need to prove that yx(1(G)) = yu(G) + 2. Let D
be a v, (1(G))-set. We consider the following two complementary cases.

Casel: w ¢ D. Foreveryi € [n]wehave that |Nq)(1;)NDNV(G)| > 1, which implies that |[Ng(v;)NDNV(G)| >
1. As a consequence, D N V(G) is a total dominating set of G and therefore [D N V(G)| = y:(G). Moreover,
the fact that w ¢ D leads to |[D \ V(G)| = 2. Hence, yx2(u(G)) = ID| 2 IDNV(G)| + D\ V(G)| = y:(G) +2 =
Yx2(G) +2 = yu(G) + 2, as desired.

Case2: weD. Lletl ={ien]:u;eDlandlet] ={i €l :v; € D). Observethat] CIandI # 0
because |Ny)[w] N D| > 2. If there exists j € ], then it is easy to check that D’ = (D N V(G)) U (Vjen(jy{vi})
is a total dominating set of G satisfying that |[D’| < |D| — 2. Therefore, yx(u(G)) = ID| > [ID'|+2 2
YH(G) +2 = ¥x2(G) + 2 = yu(G) + 2, as desired. From now on, assume that | = § and we fix a subscript
k € 1. We claim that D" = (D N V(G)) U (Uieniy{vi}) is a total dominating set of G. If v; € V(G) \ Ng(vk), then
INc(0:)ND”| = [Ny (vi)ND| = 1, as desired. Now, suppose that v; € Ng(vx). If v; ¢ D, then [Ny, (v;)ND| > 2,
which implies that [Ng(v;) N D”| > 1, as desired. Moreover, if v; € D then u; ¢ D. As v ¢ D, then
INuc)(ui) N DN V(G)| 2 1, which implies that [Ng(v;) N D”| > 1, as desired. Hence, D" is a total dominating
set of G satisfying that [D”| < |D|-2. Therefore, yx2(u(G)) = [D| 2 ID”[+2 2 y(G)+2 = yx2(G)+2 = yu(G) +2,
as desired. [J
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