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Abstract. Let G be a nontrivial graph. A set D ⊆ V(G) is a double dominating set of G if |NG[v] ∩ D| ≥ 2
for every vertex v ∈ V(G), where NG[v] represents the closed neighborhood of v. The double domination
number of G is the minimum cardinality among all double dominating sets of G. In this paper we study
this domination parameter in some well-known graph operators defined from a connected graph G.

1. Introduction

In this paper, we consider finite, simple and nontrivial connected graphs G with vertex set V(G) =
{v1, . . . , vn} and edge set E(G). For k ≥ 1 an integer, we use the standard notation [k] = {1, . . . , k}. Given a
vertex vi of G, NG(vi) and NG[vi] represent the open neighborhood and the closed neighborhood of vi, respectively.
A set D ⊆ V(G) is a 2-packing of G if NG[vi] ∩ NG[v j] = ∅ for every different vertices vi, v j ∈ D. For any
i ∈ [n − 1], let Vi(G) = {v j ∈ V(G) : |NG(v j)| = i}. By S(G) = {vi ∈ V(G) : NG(vi) ∩ V1(G) , ∅} and
Ss(G) = {vi ∈ S(G) : |NG(vi) ∩ V1(G)| ≥ 2} we denote the sets of support vertices and strong support vertices of
G, respectively. In addition, let us consider the set VE(G) = {vi, j : viv j ∈ E(G)} (observe that vi, j = v j,i), which
will play an important role in the definitions of graph operators.

Domination theory in graphs is one of the most active and popular research areas within graph theory.
The most studied domination variant in graphs is the total domination, which was introduced in 1980 by
Cockayne, Dawes and Hedetniemi [14]. Given a nontrivial connected graph G, a set D ⊆ V(G) is a total
dominating set of G if NG(vi) ∩ D , ∅ for every vertex vi ∈ V(G). Two well-known variants related to total
domination in graphs are the double domination and the total Italian domination, which were introduced
in [16] and [6], respectively. Given a nontrivial connected graph G,

• a set D ⊆ V(G) is a double dominating set of G if |NG[vi] ∩D| ≥ 2 for every vertex vi ∈ V(G). The double
domination number of G, denoted by γ×2(G), is the minimum cardinality among all double dominating
sets of G.
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• a function f : V(G)→ {0, 1, 2} is a total Italian dominating function (TIDF) on G if {vi ∈ V(G) : f (vi) ≥ 1} is a
total dominating set of G, and every vertex vi ∈ V(G) for which f (vi) = 0 satisfies that

∑
v j∈N(vi) f (v j) ≥ 2.

The total Italian domination number of G, denoted by γtI(G), is the minimum weightω( f ) =
∑

vi∈V(G) f (vi)
among all TIDF f on G. Observe that the function f generates three sets W0, W1 and W2, where
Wi = {v j ∈ V(G) : f (v j) = i} for i ∈ {0, 1, 2}. In such a sense, we write f (W0,W1,W2) so as to refer to the
TIDF f .

In addition, these two domination parameters are related. Observe that a set D ⊆ V(G) is a double
dominating set of G if and only if there exists a TIDF f (W0,W1,W2) such that W1 = D and W2 = ∅. By this
previous equivalence and by the definitions, it follows that γt(G) ≤ γtI(G) ≤ γ×2(G). Recent studies on the
double domination and total Italian domination in graphs are for instance [1, 7, 9–11, 17] and [2, 3, 8, 12, 29],
respectively.

In this paper we study the double domination number of the following well-known graph operators
defined from a nontrivial connected graph G: the central graph C(G), the graph operator R(G), the middle
graph M(G) and the Mycielskian graph µ(G). In Section 2 we obtain the exact values for the double
domination numbers of the graph operators R(G) and C(G). In Section 3 we first prove that the double
domination number and the total Italian domination number coincide for middle graphs. Subsequently we
obtain a closed formula and tight bounds for γ×2(M(G)) in terms of some invariants of G. Finally, Section 4
deals with the case of Mycielskian graph µ(G), where, as a main result, we obtain a closed formula for the
double domination number of µ(G) in terms of the total Italian domination number of graph G.

2. Double domination in R(G) and C(G)

We begin this section by defining the graph operators R(G) and C(G).

Definition 2.1. Given a nontrivial connected graph G,

• the operator R(G) is the graph obtained from G by subdividing each edge exactly once and adding the edges viv j

whenever viv j ∈ E(G). Formally, V(R(G)) = V(G)∪VE(G) and E(R(G)) = E(G)∪ {vivi, j, v jvi, j : vi, j
∈ VE(G)},

• the central graph C(G) is the graph obtained from G by subdividing each edge exactly once and adding the edges
viv j whenever viv j < E(G). Formally, V(C(G)) = V(G) ∪ VE(G) and E(C(G)) = E(G) ∪ {vivi, j, v jvi, j : vi, j

∈

VE(G)}, where G is the complement graph of G.

As you can see, both graph operators have the same set of vertices. However, the main difference is that
one keeps the edges of G while the other does not keep them and also adds the edges of G. In Figure 1 we
show a graph G and its corresponding graphs R(G) and C(G).

Figure 1: From left to right, a graph G and its corresponding graphs R(G) and C(G), respectively. In each case, the set of black vertices
describes a double dominating set of minimum cardinality.

Several studies have explored the behavior of domination parameters under these graph operators,
including, for example, [4, 5, 18, 26, 28]. Following this line of research, we now aim to determine the exact
value of the double domination number for these operators. The next theorem addresses the case of the
graph operator R(G).
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Theorem 2.2. For any nontrivial connected graph G of order n,

γ×2(R(G)) = n.

Proof. Let D be a γ×2(R(G))-set such that |D ∩ V(G)| is maximum among all γ×2(R(G))-sets. Suppose that
there exists a vertex vi, j

∈ D. Since |NR(G)(vi, j) ∩ D| ≥ 1, it follows that D ∩ {vi, v j} , ∅. Observe that
D′ = (D \ {vi, j

})∪ {vi, v j} is a γ×2(R(G))-set such that |D′ ∩V(G)| > |D∩V(G)|, which is a contradiction. Hence
D ∩ VE(G) = ∅, which leads to D ⊆ V(G). Now, if there exists a vertex vi ∈ V(G) \ D, then for any vertex
v j ∈ NG(vi) we have that vi, j < D and |NR(G)(vi, j)∩D| ≤ 1, a contradiction. Therefore D = V(G), which implies
that γ×2(R(G)) = |D| = |V(G)| = n.

Next, we obtain the exact value of the double domination number of graph operator C(G). First, we
need to define two families of graphs and state two useful lemmas.

Definition 2.3. For any integer k ≥ 4, let Fk and Gk be the families of connected graphs G of order k defined as
follows.

• G ∈ Fk whenever Vk−1(G) = ∅.

• G ∈ Gk whenever |Vk−1(G)| = 1, V1(G) , ∅ and Vk−2(G) = ∅.

Lemma 2.4. Let G be a connected graph of order n ≥ 4,

γ×2(C(G)) ≤

 n if G ∈ Fn ∪ Gn,

n +
⌈
|Vn−1(G)|

2

⌉
otherwise.

Proof. If G ∈ Fn, then it is easy to check that V(G) is a double dominating set of C(G), which implies that
γ×2(C(G)) ≤ |V(G)| = n, as desired. Now, assume that G ∈ Gn and let Vn−1(G) = {v1} and v2 ∈ V1(G). Observe
that (V(G) \ {v2}) ∪ {v1,2

} is a double dominating set of C(G) because Vn−2(G) = ∅. Hence, γ×2(C(G)) ≤ n, as
desired. From now on, we assume that G < Fn ∪ Gn. Let W ⊆ VE(G) be a set of minimum cardinality such
that NC(G)(vi) ∩W , ∅ for every vi ∈ Vn−1(G). Since the subgraph induced by Vn−1(G) is isomorphic to the
complete graph of order |Vn−1(G)| and by the minimality of |W|, it follows that |W| ≤ ⌈|Vn−1(G)|/2⌉. Now, it
is straightforward that V(G) ∪W is a double dominating set of C(G). Therefore, γ×2(C(G)) ≤ |V(G) ∪W| ≤
n + ⌈|Vn−1(G)|/2⌉, which completes the proof.

Lemma 2.5. Let D be a γ×2(C(G))-set such that |D∩V(G)| is maximum among all γ×2(C(G))-sets. Then the following
statements hold.

(i) NC(G)(vi) ∩ VE(G) ⊆ D and NG(vi) ⊆ D for every vertex vi ∈ V(G) \D.

(ii) V(G) ⊆ D or V(G) \D is a 2-packing of G.

Proof. First, we proceed to prove (i). Let vi ∈ V(G) \ D. Every vertex v j ∈ NG(vi) satisfies that NC(G)(vi, j) =
{vi, v j}, which implies that v j, vi, j

∈ D. Hence, NC(G)(vi) ∩ VE(G) ⊆ D and NG(vi) ⊆ D, as desired. Finally, we
proceed to prove (ii). If V(G) ⊆ D, then we are done. Now, let us consider that V(G)\D , ∅. If |V(G)\D| = 1,
then V(G) \ D is a 2-packing of G, as desired. Now, we assume that |V(G) \ D| ≥ 2. Let vi and v j be any
two different vertices in V(G) \ D. If viv j ∈ E(G), then |NC(G)[vi, j] ∩ D| ≤ 1, a contradiction. If there exists
vk ∈ NG(vi) ∩NG(v j), then by statement (i) we have that vk, vi,k, v j,k

∈ D, which leads to D′ = (D \ {vi,k
}) ∪ {vi}

is a γ×2(C(G))-set such that |D′ ∩ V(G)| > |D ∩ V(G)|, a contradiction too. As a consequence, it follows that
NG(vi) ∩NG(v j) = ∅. Therefore, V(G) \D is a 2-packing of G, as desired.

We conclude this section by providing the exact value for the double domination number of central
graph C(G).
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Theorem 2.6. Let G be a connected graph of order n ≥ 4,

γ×2(C(G)) =

 n if G ∈ Fn ∪ Gn,

n +
⌈
|Vn−1(G)|

2

⌉
otherwise.

Proof. Let D be a γ×2(C(G))-set such that |D ∩ V(G)| is maximum among all γ×2(C(G))-sets. Next, let us
consider the following three complementary cases.

Case 1: G ∈ Fn. By Lemma 2.4 we only need to prove that γ×2(C(G)) ≥ n. Suppose that |V(G) \ D| = r > 0.
Without loss of generality, we assume that V(G) \ D = {v1, . . . , vr} and vi+r ∈ NG(vi) for every i ∈ [r]. By
Lemma 2.5 (i) and (ii) we have that R = {vr+1, . . . , v2r} ⊆ V(G) ∩ D and |R| = r, respectively. Moreover, by
Lemma 2.5 (i) we have that Q = ∪i∈[r]{vi,i+r

} ⊆ D. Let D′ = (D\Q)∪(V(G)\D). As Vn−1(G) = ∅ and V(G) ⊆ D′,
it is easy to check that D′ is a γ×2(C(G))-set such that |D′ ∩ V(G)| = n > |D ∩ V(G)|, a contradiction. Thus
V(G) ⊆ D, which implies that γ×2(C(G)) = |D| ≥ |V(G)| = n, as desired.

Case 2: G ∈ Gn. By Lemma 2.4 we only need to prove that γ×2(C(G)) ≥ n. If V(G) ⊆ D, then it is
straightforward that γ×2(C(G)) = |D| ≥ |V(G)| = n, as desired. From now on, assume that V(G) \D , ∅. Let
Vn−1(G) = {v j}. If v j ∈ V(G) \D, then by Lemma 2.5 (i) we have that NC(G)(v j) ∩ VE(G) ⊆ D and NG(v j) ⊆ D,
which implies that γ×2(C(G)) = |D| ≥ |NC(G)(v j)∩VE(G)|+ |NG(v j)| = 2(n− 1) ≥ n, as desired. Finally, if v j ∈ D
then by Lemma 2.5 (ii) we have that |V(G) \ D| = 1, and as a consequence, |V(G) ∩ D| = n − 1. In addition,
by Lemma 2.5 (i) we have that NC(G)(v) ∩ VE(G) ⊆ D, where v ∈ V(G) \ D. Therefore, γ×2(C(G) = |D| ≥
|D ∩ V(G)| + |NC(G)(v) ∩ VE(G)| ≥ n, as desired.

Case 3: G < Fn ∪ Gn. By Lemma 2.4 we only need to prove that γ×2(C(G)) ≥ n + ⌈|Vn−1(G)|/2⌉. First,
we assume that V(G) ⊆ D. Since every vertex in D ∩ VE(G) has exactly two neighbors in V(G) and
D ∩NC(G)(vi) ⊆ D ∩ VE(G) for every vertex vi ∈ Vn−1(G), we deduce that

2|D ∩ VE(G)| =
∑

vi∈Vn−1(G)

|D ∩NC(G)(vi)| ≥ |Vn−1(G)|.

Hence, γ×2(C(G)) = |D| = |D ∩ V(G)| + |D ∩ VE(G)| ≥ n + ⌈|Vn−1(G)|/2⌉, as desired. Finally, we assume that
V(G) \D , ∅. Observe that Vn−1(G) , ∅ because G < Fn. Now, let us consider the following two subcases.

Subcase 3.1: there exists a vertex v j ∈ Vn−1(G) \D. By Lemma 2.5 (i) we have that NC(G)(v j)∩VE(G) ⊆ D and
NG(v j) ⊆ D, which implies that γ×2(C(G)) = |D| ≥ |NC(G)(v j) ∩ VE(G)| + |NG(v j)| = 2(n − 1) ≥ n + ⌈|Vn−1(G)|/2⌉,
as desired.

Subcase 3.2: Vn−1(G) ⊆ D. By Lemma 2.5 (ii) we have that |V(G)\D| = 1, which implies that |V(G)∩D| = n−1.
Without loss of generality, we assume that V(G) \ D = {v1} and v2 ∈ Vn−1(G). If there exists a vertex
vk ∈ V(G) \ {v1, v2} such that v1vk ∈ E(G), then D′′ = (D \ {v1,2, v1,k

}) ∪ {v1, v2,k
} is a γ×2(C(G))-set such that

|D′′ ∩V(G)| > |D ∩V(G)|, a contradiction. Hence, Vn−1(G) = {v2} and v1 ∈ V1(G). These previous conditions
and the fact that G < Gn lead to Vn−2(G) , ∅. Let vi ∈ Vn−2(G). Since NC(G)(vi) ∩ V(G) = {v1} and v1 < D, it
follows that |(NC(G)(v1) ∪ NC(G)(vi)) ∩ D ∩ VE(G)| ≥ 2. Hence, γ×2(C(G)) = |D| = |D ∩ V(G)| + |D ∩ VE(G)| ≥
(n − 1) + 2 = n + ⌈|Vn−1(G)|/2⌉, as desired.

3. Double domination in M(G)

The concept of middle graph M(G) of a nontrivial connected graph G was introduced by Hamada
and Yoshimura in [15]. Several studies have explored the behavior of domination parameters under this
operator, including, for example, [19–22]. We begin this section by defining this graph operator.

Definition 3.1. Given a nontrivial connected graph G, the middle graph M(G) is obtained from G by subdividing
each edge exactly once, and joining pairs of these new vertices if and only if their corresponding edges are adjacent in
G. Formally, V(M(G)) = V(G) ∪ VE(G) and E(M(G)) = {vivi, j, v jvi, j : vi, j

∈ VE(G)} ∪ E(L(G)), where L(G) is the line
graph of G.
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Figure 2: A graph G, and its corresponding graph M(G). The set of black vertices describes a γ×2(M(G))-set.

In Figure 2 we show a graph G and its corresponding graph M(G). Our first result shows that the double
domination number and the total Italian domination number coincide for middle graphs.

Theorem 3.2. For any nontrivial connected graph G,

γ×2(M(G)) = γtI(M(G)).

Proof. Let f (W0,W1,W2) be a γtI(M(G))-function such that |W2| is minimum among all γtI(M(G))-functions.
Suppose that W2 , ∅ and we analyze the next two possible cases.

Case 1: There exists a subscript i ∈ [n] such that vi ∈W2. Since NM(G)(vi) ⊆ VE(G), there exists j ∈ [n]\ {i} such
that vi, j

∈W1∪W2. As NM(G)[vi] ⊆ NM(G)[vi, j], it follows that the function f ′(W′

0,W
′

1,W
′

2), defined by W′

0 =W0,
W′

1 =W1 ∪ {vi} and W′

2 =W2 \ {v1}, is a TIDF on M(G) such that ω( f ′) < ω( f ) = γtI(M(G)), a contradiction.

Case 2: There exist two different subscripts i, j ∈ [n] such that vi, j
∈W2. Observe that NM(G)(vi, j)∩ (W1∪W2) ,

∅. Without loss of generality, we assume that i ∈ [n] satisfies that (NM(G)[vi] \ {vi, j
}) ∩ (W1 ∪W2) , ∅. As

NM(G)[vi, j] = NM(G)[vi] ∪NM(G)[v j], it is easy to check that the function f ′′(W′′

0 ,W
′′

1 ,W
′′

2 ), defined by W′′

0 = W0,
W′′

1 = W1 ∪ {v j, vi, j
} and W′′

2 = W2 \ {vi, j
}, is a TIDF on M(G) such that ω( f ′′) ≤ ω( f ) and |W′′

2 | < |W2|, a
contradiction.

From the two previous cases, it follows that W2 = ∅. As a consequence, W1 is a double dominating
set of M(G), which implies that γ×2(M(G)) ≤ |W1| = ω( f ) = γtI(M(G)). Moreover, by definition it follows that
γtI(M(G)) ≤ γ×2(M(G)). Therefore, γ×2(M(G)) = γtI(M(G)), which completes the proof.

Now, we present a lemma that will be very useful throughout the section.

Lemma 3.3. If G is a nontrivial connected graph, then there exists a γ×2(M(G))-set D such that D ⊆ VE(G)∪V1(G).

Proof. Let D be a γ×2(M(G))-set such that |D ∩ VE(G)| is maximum among all γ×2(M(G))-sets. Suppose
there exists a subscript i ∈ [n] such that vi ∈ D \ V1(G). Hence, there exist j, k ∈ [n] \ {i} such that
v j, vk ∈ NG(vi) and D ∩ {vi, j, vi,k

} , ∅. If vi, j, vi,k
∈ D, then D \ {vi} is a double dominating set of M(G), a

contradiction. So, |D∩ {vi, j, vi,k
}| = 1, which implies that D′ = (D \ {vi})∪ {vi, j, vi,k

} is a γ×2(M(G))-set such that
|D′ ∩VE(G)| > |D ∩VE(G)|, a contradiction too. Therefore, D is a γ×2(M(G))-set such that D ⊆ VE(G) ∪V1(G),
which completes the proof.

The next theorem provides a closed formula for the double domination number of middle graph of
every graph G satisfying that V1(G) = ∅. For this purpose, let us consider the following parameter, which
was recently introduced and studied in [27]. A total edge cover of a graph G with minimum degree at least
two is a set F ⊆ E(G) such that every vertex of G is incident to at least two edge in F. The total edge covering
number of G, denoted by β′t(G), is the minimum cardinality among all total edge covers of G.

Theorem 3.4. For any connected graph G with minimum degree at least two,

γ×2(M(G)) = β′t(G).
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Proof. Let D be a γ×2(M(G))-set that satisfies the condition given in Lemma 3.3, that is, D ⊆ VE(G). Let
E = {viv j ∈ E(G) : vi, j

∈ D}. Observe that every vertex vi ∈ V(G) satisfies that |NM(G)(vi) ∩ D| ≥ 2, which
implies that vi is incident to at least two edge in E. Therefore E is a total edge cover of G, and as a consequence,
γ×2(M(G)) = |D| = |E| ≥ β′t(G). On the other hand, let F′ be a total edge cover of G such that |F′| = β′t(G) and
let F = {vi, j

∈ VE(G) : viv j ∈ F′}. Observe that |NM(G)(vi) ∩ F| ≥ 2 for every vertex vi ∈ V(G). In addition,
|NM(G)(vi, j) ∩ F| ≥ 2 for every vertex vi, j

∈ VE(G) \ F and |NM(G)(vi, j) ∩ F| ≥ 1 for every vertex vi, j
∈ VE(G) ∩ F.

Hence, F is a double dominating set of M(G), which implies that γ×2(M(G)) ≤ |F| = |F′| = β′t(G). Therefore,
γ×2(M(G)) = β′t(G), as desired.

The following result provides tight lower and upper bounds for the double domination number of
middle graph M(G).

Theorem 3.5. For any connected graph G of order n ≥ 3 and size m,

max
{

2|V1(G)|,n +
⌈
|V1(G)|

2

⌉}
≤ γ×2(M(G)) ≤ m + |V1(G)|.

Furthermore,

(i) γ×2(M(G)) = 2|V1(G)| if and only if V(G) = Ss(G) ∪ V1(G).

(ii) γ×2(M(G)) = m + |V1(G)| if and only if min{|NG(vi)|, |NG(v j)|} ≤ 2 for every i, j ∈ [n] such that viv j ∈ E(G).

Proof. Let D be a γ×2(M(G))-set that satisfies Lemma 3.3. Since D ⊆ VE(G)∪V1(G), it follows that γ×2(M(G)) =
|D| ≤ |VE(G) ∪ V1(G)| = m + |V1(G)|. Now, we proceed to prove the lower bound. Observe that V1(M(G)) =
V1(G) and |V1(M(G))| = |S(M(G))|. As V1(M(G)) ∪ S(M(G)) ⊆ D we have that γ×2(M(G)) = |D| ≥ |V1(M(G)) ∪
S(M(G))| = 2|V1(M(G))| = 2|V1(G)|. Moreover, as D ⊆ VE(G)∪V1(G) it follows that |NM(G)(vi)∩D| ≥ 2 for every
vi ∈ V(G)\V1(G) and |NM(G)(vi)∩D| = 1 for every vi ∈ V1(G). In addition, we have that vi, j

∈ NM(G)(vi)∩NM(G)(v j)
for every i, j ∈ [n] such that viv j ∈ E(G). Hence,

2|D| ≥ 2|V1(G)| +
∑

vi∈V(G)\V1(G)

|NM(G)(vi) ∩D| +
∑

vi∈V1(G)

|NM(G)(vi) ∩D|

≥ 2|V1(G)| + 2(n − |V1(G)|) + |V1(G)|

= 2n + |V1(G)|.

Therefore γ×2(M(G)) = |D| ≥ n + ⌈|V1(G)|/2⌉, as desired.
Next, we proceed to prove (i). Without loss of generality, we assume that S(G) = {v1, . . . , vk} whenever

V1(G) , ∅. For every i ∈ [k], let Ei = { j ∈ {k + 1, . . . ,n} : v j ∈ NG(vi) ∩ V1(G)}. Now, let us consider the
set R = ∪i∈[k](∪ j∈Ei {vi, j

}). Observe that |R| = |V1(G)| and R ∪ V1(G) ⊆ D. If V(G) = Ss(G) ∪ V1(G), then it
is straightforward that R ∪ V1(G) is a double dominating set of M(G), which implies that D = R ∪ V1(G).
Therefore, γ×2(M(G)) = |D| = |R ∪ V1(G)| = 2|V1(G)|, as desired. On the other hand, assume that V(G) ,
Ss(G) ∪V1(G). So, there exists j ∈ [n] such that |NM(G)(v j) ∩ R| < 2 and |NM(G)(v j) ∩D| ≥ 2, which implies that
R ∪ V1(G) ⊊ D. Hence, 2|V1(G)| = |R ∪ V1(G)| < |D| = γ×2(M(G)), which completes the proof of (i).

Finally, we proceed to prove (ii). If there exist subscripts i, j ∈ [n] such that viv j ∈ E(G) satisfying
that min{|NG(vi)|, |NG(v j)|} ≥ 3, then it is easy to check that (VE(G) ∪ V1(G)) \ {vi, j

} is a double dominating
set of M(G). Hence, γ×2(M(G)) ≤ |(VE(G) ∪ V1(G)) \ {vi, j

}| < m + |V1(G)|, as desired. Finally, assume that
γ×2(M(G)) < m + |V1(G)|. This implies that there exist subscripts i, j ∈ [n] such that vi, j < D. Hence vi, v j < D,
which implies that min{|NM(G)(vi) ∩ D|, |NM(G)(v j) ∩ D|} ≥ 2. As an immediate consequence, it follows that
min{|NG(vi)|, |NG(v j)|} ≥ 3. Therefore, the proof is complete.

We conclude this section with a result that provides a lower bound for the double domination number
of the middle graph of a tree.
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Theorem 3.6. The following statements hold for any tree T of order n ≥ 3.

(i) γ×2(M(T)) ≥ n + |V1(T)| − |S(T)|.

(ii) γ×2(M(T)) = n + |V1(T)| − |S(T)| if and only if V(T) = Ss(T) ∪ V1(T).

Proof. Let D be a γ×2(M(T))-set that satisfies Lemma 3.3, that is, D ⊆ VE(T)∪V1(T). Without loss of generality,
assume that S(T) = {v1, . . . , vk}. For every i ∈ [k], let Ei = { j ∈ {k + 1, . . . ,n} : v j ∈ NT(vi) ∩ V1(T)}. Now,
let us consider the set R = ∪i∈[k](∪ j∈Ei {vi, j

}). Observe that |R| = |V1(T)| and R ∪ V1(T) ⊆ D. Now, let
A = V(T) \ (Ss(T)∪V1(T)), A′ = S(T) \ Ss(T) and A′′ = V(T) \ (S(T)∪V1(T)). Observe that A = A′ ∪A′′. We
next analyze the following three complementary cases.

Case 1: A = ∅. This implies that V(T) = Ss(T)∪V1(T). By Theorem 3.5 (i) and the fact that n = |V1(T)|+ |S(T)|
we obtain that γ×2(M(T)) = 2|V1(T)| = n + |V1(T)| − |S(T)|.

Case 2: A′ , ∅ and A′′ = ∅. In this case, V(T) = S(T)∪V1(T). Let D′ = D\(R∪V1(T)). For any vi ∈ A′ ⊆ V(T)\D
we have that |NM(T)(vi)∩D| ≥ 2 and |NM(T)(vi)∩R| = 1, which implies that |NM(T)(vi)∩D′| ≥ 1. As a consequence,
D′ , ∅ and by the fact that n = |V1(T)|+ |S(T)| it follows that γ×2(M(T)) = |D| = |R|+ |V1(T)|+ |D′| > 2|V1(T)| =
n + |V1(T)| − |S(T)|.

Case 3: A′′ , ∅. Let D′ = D \ (R ∪ V1(T)). We claim that |D′| > |A′′|. For any vi ∈ A′′ ⊆ V(T) \ D we have
that |NM(T)(vi) ∩ D′| ≥ 2. In particular, and due to the fact that T is a tree, there exists a vertex v j ∈ A′′ such
that |NT(v j) ∩ A′′| ≤ 1. As |NM(T)(v j) ∩ D′| ≥ 2, there exists vi ∈ NT(v j) ∩ S(T) such that vi, j

∈ D′. Hence,∑
vi∈S(T) |NM(T)(vi)∩D′| > 0. Since vi, j

∈ NM(T)(vi)∩NM(T)(v j) for every i, j ∈ [n] such that viv j ∈ E(T), we deduce
that

2|D′| ≥
∑

vi∈A′′
|NM(T)(vi) ∩D′| +

∑
vi∈S(T)

|NM(T)(vi) ∩D′| > 2|A′′|.

Therefore, |D′| > |A′′|, as desired. Since n = |A′′| + |V1(T)| + |S(T)|, it follows that γ×2(M(T)) = |D| =
|R| + |V1(T)| + |D′| > 2|V1(T)| + |A′′| = n + |V1(T)| − |S(T)|.

By the three previous cases we obtain that γ×2(M(T)) ≥ n+ |V1(T)|− |S(T)| and that γ×2(M(T)) = n+ |V1(T)|−
|S(T)| if and only if V(T) = Ss(T) ∪ V1(T). Therefore, the proof is complete.

4. Double domination in µ(G)

The Mycielskian graph µ(G) of a graph G was introduced by J. Mycielski in [25] as a construction that
increases the chromatic number while avoiding the creation of triangles. Beyond coloring, several works
have examined how domination parameters behave under this operator (see, for instance, [13, 23, 24, 30]).
We begin this section by defining this graph operator.

Definition 4.1. Let G be a nontrivial connected graph with vertex set V(G) = {v1, . . . , vn}. The Mycielskian graph
µ(G) is obtained from G by adding n new vertices u1, . . . ,un, and an additional vertex w and then adding the edges wui
for every i ∈ [n]. In addition, for each edge viv j ∈ E(G), we add the edges uiv j and viu j to complete the construction
of µ(G).

In Figure 3 we show an example of a Mycielskian graph. The next lemma provides an upper bound for
the double domination number of µ(G) in terms of γtI(G).

Lemma 4.2. The following statements hold for any nontrivial connected graph G.

(i) γ×2(µ(G)) ≤ γtI(G) + 2.

(ii) If γ×2(µ(G)) = γtI(G) + 2, then γ×2(G) = γtI(G).
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Figure 3: The Mycielskian graph µ(G), where G is the graph given in Figure 1. The set of black vertices describes a γ×2(µ(G))-set.

Proof. Let f (W0,W1,W2) be a γtI(G)-function. Without loss of generality, suppose W2 = {v1, . . . , vk}whenever
|W2| = k > 0. We define a set D ⊆ V(µ(G)) as follows.

D =

 W1 ∪ {u1,w} if |W2| = 0,

W1 ∪W2 ∪ (∪i∈[k]{ui}) ∪ {w} otherwise.

We claim that D is a double dominating set ofµ(G). For this, let us consider the following two complementary
cases.

Case 1: |W2| = 0. By definition, we have that |Nµ(G)[w] ∩ D| = 2. Moreover, the fact that W1 is a double
dominating set of G and w ∈ D lead to |Nµ(G)[vi] ∩D| ≥ 2 and |Nµ(G)(ui) ∩D| ≥ 2 for any i ∈ [n]. Hence, D is
a double dominating set of µ(G), as desired.

Case 2: |W2| > 0. By definition, we have that |Nµ(G)[w] ∩ D| ≥ 2. Moreover, the fact that W1 ∪W2 is a total
dominating set of G and w ∈ D lead to |Nµ(G)(ui) ∩D| ≥ 2 for every i ∈ [n]. In addition, it is straightforward
that |Nµ(G)[vi] ∩D| ≥ 2 for every i ∈ [n]. Hence, D is a double dominating set of µ(G), as desired.

From the previous cases we have that γ×2(µ(G)) ≤ |D| ≤ |W1| + 2|W2| + 2 = γtI(G) + 2, which completes
the proof of (i). Now, if γ×2(µ(G)) = γtI(G) + 2, then we have equalities in the previous inequality chain. In
particular, we have that |D| = |W1| + 2|W2| + 2, which leads to W2 = ∅. Hence, W1 is a double dominating
set of G, and as a consequence, γtI(G) ≤ γ×2(G) ≤ |W1| = ω( f ) = γtI(G). Therefore, γ×2(G) = γtI(G), which
completes the proof.

The following theorem provides a closed formula for the double domination number of Mycielskian
graph µ(G) in terms of the total Italian domination number of G.

Theorem 4.3. For any nontrivial connected graph G,

γ×2(µ(G)) ∈ {γtI(G) + 1, γtI(G) + 2}.

Proof. By Lemma 4.2 (i) we have thatγ×2(µ(G)) ≤ γtI(G)+2. We only need to prove thatγ×2(µ(G)) ≥ γtI(G)+1.
Let D be a γ×2(µ(G))-set. Let us consider the following two complementary cases.

Case 1: w ∈ D. Let f (W0,W1,W2) be a function defined on G as follows. For each i ∈ [n],

f (vi) =


0 if |{vi,ui} ∩D| = 0,

1 if |{vi,ui} ∩D| = 1,

2 if |{vi,ui} ∩D| = 2.

Observe that |Nµ(G)[vi] ∩ (D \ {w})| ≥ 2 for every vertex vi ∈ V(G). As a consequence, f (NG(vi)) ≥ 2
whenever vi ∈ W0 and f (NG(vi)) ≥ 1 whenever vi ∈ W1 ∪W2. Hence, f is a TIDF on G, which implies that
γ×2(µ(G)) = |D \ {w}| + 1 = |W1| + 2|W2| + 1 = ω( f ) + 1 ≥ γtI(G) + 1, as desired.
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Case 2: w < D. Let A = {ui ∈ D : vi < D} and A′ = {vi ∈ V(G) : ui ∈ A}. Observe that A′ ∩D = ∅. Now, it is
easy to check that |Nµ(G)[vi] ∩ (D ∩ V(G))| ≥ 2 for every vi ∈ V(G) \ A′. If A = ∅ then A′ = ∅, which implies
that D ∩ V(G) is a double dominating set of G. Hence,

γ×2(µ(G)) = |D| ≥ |D| − |D ∩Nµ(G)(w)| + 2 = |V(G) ∩D| + 2 ≥ γ×2(G) + 2 ≥ γtI(G) + 2. (1)

From now on, assume that A , ∅. Let A′′ = {vi ∈ A′ : |Nµ(G)(vi)∩ (D∩V(G))| ≥ 2}. If A′ = A′′, then D∩V(G)
is a double dominating set of G and as a consequence, Inequality chain (1) follows, as desired. Finally,
assume that A′ \ A′′ , ∅. Let us fix a vertex vi ∈ A′ \ A′′. As D is a γ×2(µ(G))-set, there exists j ∈ [n] \ {i}
such that u j ∈ D and viv j ∈ E(G). Recall that v j ∈ A′ if and only if v j < D. Now, let us consider the following
subset DG ⊆ V(G).

DG =

 (D ∩ V(G)) ∪ (A′ \ {v j}) if v j ∈ A′,

(D ∩ V(G)) ∪ A′ otherwise.

Observe that DG is a double dominating set of G of cardinality |DG| = |D ∩ V(G)| + |A′| − 1. Hence,
γ×2(µ(G)) = |D| = |D ∩ V(G)| + |D ∩ {u1, . . . ,un}| ≥ |D ∩ V(G)| + |A′| = |DG| + 1 ≥ γ×2(G) + 1 ≥ γtI(G) + 1, as
desired.

The following result provides a sufficient condition for γ×2(µ(G)) = γtI(G)+1, which follows immediately
from Lemma 4.2 (ii) and Theorem 4.3, as well as another sufficient condition that guarantees that γ×2(µ(G)) =
γtI(G) + 2.

Theorem 4.4. The following statements hold for any nontrivial connected graph G.

(i) If γ×2(G) > γtI(G), then γ×2(µ(G)) = γtI(G) + 1.

(ii) If γ×2(G) = γt(G), then γ×2(µ(G)) = γtI(G) + 2.

Proof. First, we proceed to prove (i). From Lemma 4.2 (ii), we deduce that ifγ×2(G) > γtI(G), thenγ×2(µ(G)) ,
γtI(G) + 2. Therefore, Theorem 4.3 leads to γ×2(µ(G)) = γtI(G) + 1, as desired. Finally, we proceed to prove
(ii). Assume that γ×2(G) = γt(G). By Lemma 4.2 (i) we only need to prove that γ×2(µ(G)) ≥ γtI(G) + 2. Let D
be a γ×2(µ(G))-set. We consider the following two complementary cases.

Case 1: w < D. For every i ∈ [n] we have that |Nµ(G)(ui)∩D∩V(G)| ≥ 1, which implies that |NG(vi)∩D∩V(G)| ≥
1. As a consequence, D ∩ V(G) is a total dominating set of G and therefore |D ∩ V(G)| ≥ γt(G). Moreover,
the fact that w < D leads to |D \ V(G)| ≥ 2. Hence, γ×2(µ(G)) = |D| ≥ |D ∩ V(G)| + |D \ V(G)| ≥ γt(G) + 2 =
γ×2(G) + 2 ≥ γtI(G) + 2, as desired.

Case 2: w ∈ D. Let I = {i ∈ [n] : ui ∈ D} and let J = {i ∈ I : vi ∈ D}. Observe that J ⊆ I and I , ∅
because |Nµ(G)[w] ∩ D| ≥ 2. If there exists j ∈ J, then it is easy to check that D′ = (D ∩ V(G)) ∪ (∪i∈I\{ j}{vi})
is a total dominating set of G satisfying that |D′| ≤ |D| − 2. Therefore, γ×2(µ(G)) = |D| ≥ |D′| + 2 ≥
γt(G) + 2 = γ×2(G) + 2 ≥ γtI(G) + 2, as desired. From now on, assume that J = ∅ and we fix a subscript
k ∈ I. We claim that D′′ = (D ∩ V(G)) ∪ (∪i∈I\{k}{vi}) is a total dominating set of G. If vi ∈ V(G) \NG(vk), then
|NG(vi)∩D′′| = |Nµ(G)(vi)∩D| ≥ 1, as desired. Now, suppose that vi ∈ NG(vk). If vi < D, then |Nµ(G)(vi)∩D| ≥ 2,
which implies that |NG(vi) ∩ D′′| ≥ 1, as desired. Moreover, if vi ∈ D then ui < D. As vk < D, then
|Nµ(G)(ui) ∩D ∩V(G)| ≥ 1, which implies that |NG(vi) ∩D′′| ≥ 1, as desired. Hence, D′′ is a total dominating
set of G satisfying that |D′′| ≤ |D|−2. Therefore, γ×2(µ(G)) = |D| ≥ |D′′|+2 ≥ γt(G)+2 = γ×2(G)+2 ≥ γtI(G)+2,
as desired.
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