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On the asymptotic of likelihood ratio statistic in high-dimensional
exploratory factor analysis
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Abstract. In this paper, the asymptotical properties on the likelihood ratio test in high-dimensional
exploratory factor analysis are considered. When the dimension of the response variable p satisfies p =
p(N)→∞ and p/N→ c ∈ (0, 1) as the sample size N→∞, the Edgeworth expansion of the null distribution
of the likelihood ratio test statistic and its uniform error bound are established. Some numerical simulations
indicate that the proposed approximation is more accurate than the traditional chi-square approximate
method on dealing with the high-dimensional test.

1. Introduction

Exploratory factor analysis is a useful statistical dimension reduction method, which achieves dimen-
sionality reduction by exploring the low-dimensional latent structure underlying the observed data. In
exploratory factor analysis, the true number of common latent factors is usually unknown, how to deter-
mine the number of latent common factors is a critical issue on this topic. There are lots of criteria and
methods have been investigated for determining the number of the latent common factors. For instance,
the most widely used procedure is the eigenvalues-greater-than one rule, that is Kaiser criterion (Guttman,
1954 [17]) ; Kaiser, 1960 [13] ), the scree test (Cattell, 1966 [7]), the parallel analysis method (Horn, 1965 [11];
Keeling, 2000 [15]; Dobriban, 2020 [8]), the likelihood ratio test(Bartlett, 1950 [5]; 1951 [6]; Jöreskog, 1967
[12]; Anderson, 2003 [4], Kentaro, 2007 [16] ), Akaike’s information criterion (Akaike, 1973 [1], 1987 [2]),
BIC (Schwarz, 1978 [20]) and so on.

Let X1,X2, · · · ,XN be the random sample of size N from the p-dimensional random vector X. The
exploratory factor analysis considers the following common factor model

Xi = µ + ΛFi +Ui, i = 1, 2, · · · ,N, (1.1)

where µ is a p-dimensional mean value vector, Λ is a p × k loading matrix with rank(Λ) = k < p, Fi is
a k-dimensional latent random vector containing the common factors, E(Fi) = 0k, Cov(Fi) = Ik, where 0k
denotes a k-dimensional all-zero vector, Ik represents a k × k identity matrix, and k is the number of the
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common latent factors. Ui is a p-dimensional error vector with E(Ui) = 0p, and Cov(Ui) = Ψ, where Ψ is a
p × p positive definite diagonal matrix with rank(Ψ) = p. We assume that Fi and Ui are uncorrelated and
Fi ∼ Nk(0k, Ik) and Ui ∼ Np(0p,Ψ), then the population X ∼ Np(µp,Σ) with Σ = ΛΛ⊤ + Ψ and Λ⊤ is the
transpose of Λ.

The likelihood ratio test method can be used to estimate the true common factor number (see Kentaro,
2007 [16] and He et al. (2021) [10]). In particular, for each k = 0, 1, · · · , p, we can consider the test

H0,k : Σ = ΛΛ⊤ +Ψwith (at most) k factors vs HA,k : Σ is any positive definite matrix.

As a matter of convenience, we assume that the true factor number k ≥ 1 is given. Under the k-factor model,
we write Λ = Λk and Ψ = Ψk, where Λk and Ψk are also given matrixes and rank(Λk) = k < p. Denote
Σk = ΛkΛ

T
k +Ψk. Then we will consider the following test

H′0,k : Σ = Σk vs H′A,k : Σ , Σk. (1.2)

A typical forward stepwise sequentially test procedure can be stated as follows. Firstly, we consider
k = 0 and examine H′0,0 versus H′A,0 using the likelihood ratio test. If H′0,0 is rejected, we then consider
k = 1 and examine the 1-factor model test H′0,1 versus H′A,1. If H′0,1 is rejected, we then consider k = 2 and
examine the 2-factor model test H′0,2. The test procedure continues until we fail to reject H′0,k̂ for some k̂.
Then k̂ can be the estimation of the true number of factors. In this sense, the statistical asymptotic properties
of the likelihood ratio test also have good research significance in the exploratory factor analysis.

By Muirhead (1982) [19], the likelihood ratio test statistic under H′0,k can be written as

T′ = −(N − 1) log(|Σ̂| × |Σk|
−1) + (N − 1)

[
tr(Σ̂Σ−1

k ) − p
]
, (1.3)

where Σ̂ is the unbiased sample covariance matrix of the observations Xi, i = 1, 2, · · · ,N.
When the dimension p is fixed and the sample size N is large, He et al. (2021) [10] obtain that

T′ d
−→ χ2

f , (1.4)

where d
−→ represents the convergence in distribution and f = p(p + 1)/2. The Bartlett correction provided a

re-scaling strategy that further improves the infinite-sample accuracy of the chi-squared approximation of
the likelihood ratio test statistic. When the dimension p is fixed and the sample size N is large, He et al.
(2021) [10] also obtain the following chi-square approximation for the Bartlett correction test statistic ρT′:

ρT′ d
−→ χ2

f . (1.5)

where the Bartlett correction coefficient ρ = 1−[6(N − 1)(p + 1)]−1(2p2 + 3p − 1).
However, in high-dimensional setting with the large dimension p and the large sample size n, researchers

have found that the chi-squared approximation for the likelihood ratio statistic often becomes inaccurate,
resulting in the failure of the corresponding likelihood ratio tests. To address this issue, some alternative
approximations of the high-dimensional likelihood ratio statistic have been discussed. A remarkable work
is due to He et al. (2021) [10] , who proved that the likelihood ratio statistic T′ was asymptotically Gaussian
distributed under the assumption of N ≥ p + 2, p → ∞, p/n → c ∈ [0, 1], as n = N − 1 → ∞, which means
the dimension p is allowed to diverge with the sample size N, their result can be listed as follows.

Lemma 1.1. Suppose N ≥ p + 2, p→∞, p
n → c ∈ [0, 1], as n = N − 1→∞, under H′0,k, we have

T′ + nµ̃n

nσ̃n

d
−→ N(0, 1),

where

µ̃n = −p + (p − n +
1
2

) log(1 −
p
n

), σ̃2
n = −2

[p
n
+ log(1 −

p
n

)
]
.
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The result only gives the asymptotic distribution of the likelihood ratio statistics in high-dimension data.
In fact, the more precise results including the asymptotic expansion and convergence rate of the likelihood
ratio statistics are also worth to study.

In this paper, we will not only obtain the asymptotic expansion of the likelihood ratio statistics T′, but
also obtain the convergence rate and the uniform error bound of the null distribution of the likelihood
ratio statistic by Edgeworth expansion method, which is a popular method of dealing with the limiting
distribution for the high-dimensional statistics, one can refer to Fujikoshi (2000) [9], Fujikoshi et al. (2010)
[14], Wakaki (2010) [23], Wakaki et al. (2010) [3], Yamada (2012) [24], Mitsui et al. (2015) [18] and Sun and
Xie (2021, 2022) [21][22].

The rest of the paper is organized as follows. Section 2 gives the edgeworth expansion on the null
distribution of the likelihood ratio test statistic and its uniform error bound. The empirical performance of
the proposed method by numerical simulations will be investigated in Section 3. At last, some technical
proofs are listed in Section 4.

2. Main results

Denote ψ(x) = d
dx logΓ(x) and

ψ(s)(a) = ( d
dx )sψ(x)|x=a =

∞∑
k=0

(−1)s+1s!
(a + k)s+1 , s = 1, 2, · · · . (2.6)

Let

Γ(z, a) =
∫
∞

a
tz−1e−tdt. (2.7)

In this section, we provide the main results of this paper under the assumption p = p(n) → ∞, p/n →
c ∈ (0, 1) as n = N − 1→ ∞. Now we will first calculate the high-dimensional Edgeworth expansion of the
likelihood radio test statistic in the Exploratory factor analysis.

Theorem 2.1. Assuming p = p(n) is a series of positive integers depending on n such that p > 1and p < n − 1,
p = p(n)→∞ and p

n → c ∈ (0, 1) as n→∞. For the test statistic T′ defined in (1.2), let

Zn,p =
T′ + nµn,p

nσn,p
, (2.8)

then we have

P(Zn,p ≤ x) = Φs(x) +O( 1
(n−p+1/2)s+1 ),

where

µn,p = p log
2
n
+

p∑
j=1

ψ( n− j+1
2 ), (2.9)

σ2
n,p = −

2p
n
+

p∑
j=1

ψ(1)( n− j+1
2 ), (2.10)

κ(r)
n,p = (−1)r

p∑
j=1

ψ(r−1)( n− j+1
2 ), (2.11)
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γk,r,n,p =
∑

r1+···+rk=r

k∏
l=1

κ(rl+3)
n,p

(rl + 3)!σrl+3
n,p

, (2.12)

and

Φs(x) = Φ(x) − ϕ(x)
[ s∑

k=1

1
k!

s−k∑
r=0

γk,r,n,ph3k+r−1(x)
]
, (2.13)

for all r ≥ 3. ϕ(x) andΦ(x) are the density function and the distribution function of the standard normal distribution,
respectively. hr(x) is the rth order Hermite polynomial defined by

( d
dx )r exp(− x2

2 ) = (−1)rhr(x) exp(− x2

2 ), r = 1, 2, · · · .

To facilitate the proof of the following Theorem 2.1, we give the following result to certifies that κ(r)
n,p has

a upper bound and σ2
n,p has a lower bound.

Proposition 2.1. Under the assumptions of Theorem 2.1, there exists θ ∈ (0, 1) such that

κ(r)
n,p ≤

2r−1(r − 2)!
(n − p + 1

2 )r−2

[
1 +

r − 1
n − p + 1

2

+
θ(r − 1)r

3(n − p + 1
2 )2

]
, (2.14)

for all r ≥ 3, and

σ2
n,p ≥ 2

[
−

p
n
+ log

1 + 1
n

1 + 1
n −

p
n

]
.

Moreover, σ2
n,p and limn→∞ σ2

n,p are both well-defined.

The uniform error bound on the asymptotical distribution function of Zn,p can be stated as follows.

Theorem 2.2. Under the assumptions of Theorem 2.1, for any 0 < w < σn,p/2, we have

sup
x∈R
|P(Zn,p ≤ x) −Φs(x)| <

1
2π

[T1(w) + T2(w) + T3(w)],

where Φs(x) is defined in (2.13), and

T1(w) =

s∑
k=1

23k/2

k!

[ 4p
nbσ3

n,p
Gn

( 2w
σn,p

)]k[
Γ
(3k

2

)
− Γ
(3k

2
,

b2w2

2

)]
−

s∑
k=1

s−k∑
r=0

2(3k+r)/2
|γk,r,n,p|

k!

[
Γ
(3k + r

2

)
− Γ
(3k + r

2
,

b2w2

2

)]
+
[
1 −

8pw
nσ3

n,p
Gn

( 2w
σn,p

)]−(s+1)[ 8pw
nσ3

n,p
Gn

( 2w
σn,p

)]s+1

×

{
Γ(s + 1) − Γ

[
s + 1,

b2w2

2

(
1 −

8pw
nσ3

n,p
Gn

( 2w
σn,p

))]}
,

T2(w) =
n2σ2

n,p

4b2w2
[ pn

4 +
p(p−1)

16 − 1
] (1 + 4b2w2

n2σ2
n,p

)− pn
4 −

p(p−1)
16 +1

,

T3(w) =
2

b2w2 e−
b2w2

2 +

s∑
k=1

1
k!

s−k∑
r=0

∣∣∣∣γk,r,n,p

∣∣∣∣2 3k+r
2 Γ
(3k + r

2
,

b2w2

2

)
.
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Here, Γ(z, a) is defined in (2.7) and

Gn(x) = −
1
2x
−

1
x2 −

1
x3 log(1 − x) +

1
b(1 − x)

+
θ

3b2(1 − x)
.

Remark 2.3. If taking s = 0, for any 0 < w < σn,p/2, we have

sup
x∈R
|P(Zn,p ≤ x) −Φ(x)| < min

0<w<σn,p/2

1
2π

[T0
1(w) + T0

2(w) + T0
3(w)], (2.15)

where

T0
1(w) =

[
1 −

8pw
nσ3

n,p
Gn

( 2w
σn,p

)]−1[ 8pw
nσ3

n,p
Gn

( 2w
σn,p

)]{
1 − Γ

[
1,

b2w2

2

(
1 −

8pw
nσ3

n,p
Gn

( 2w
σn,p

))]}
,

T0
2(w) =

n2σ2
n,p

4b2w2[p(p − 1)/16 + pn
2 − 1]

(
1 +

4b2w2

n2σ2
n,p

)− p(p−1)
16 −

pn
2 +1
,

T0
3(w) =

2
b2w2 e−

b2w2
2 .

Remark 2.4. By Theorem 2.2, for any 0 < w < σn,p/2, we have

sup
x∈R
|P(Zn,p ≤ x) −Φs(x)| < min

0<w<σn,p/2

1
2π

[T1(w) + T2(w) + T3(w)].

3. Simulations

In this section, we first investigate the efficiency of our proposed Edgeworth expansional method with
the high-dimensional covariance structure test in Exploratory Factor Analysis by numerical simulations;
secondly, we compare our proposed more accurate high-dimensional Edgeworth expansion (AHEE) method
in this paper with those of the traditional Chi-square approximation (CA) method and the proposed high-
dimensional LR test method (HLRT) in Lemma 1.1; and finally we study the accuracy of the approximated
distribution function Zn,p according to the numerical results on the uniform error bound of the Zn,p.

Without loss of generality, We consider the likelihood ratio test under H0,k. We can select µ = 0p×1 ,set
k = k0 = 3,Ψ = (1 − ρ2)Ip, and

Λ =

 ρ × 1p1 0p1 0p1

0p1 ρ × 1p1 0p1

0p−2p1 0p−2p1 ρ × 1p−2p1

 ,
where p1 = [p/3], ρ = 0.6, and Ip1 denotes a p1 dimensional vector with all one entries, then Σ = ΛΛT +Ψ.

Now we begin to performed some simulations in order to exhibition the goodness of fit between the
Edgeworth expansion of Zn,p and the standard normal distribution. We take s = 0 in Theorem 2.1, let the
sample size n = 1000 and p = 30, 60, 90, 180, 360, 720, respectively. All the simulation results are based on
10, 000 independent replications, then we can plot the corresponding histograms in Figure 1, which shows
that the histogram of Zn,p fits well with the standard normal density as p increases with n and becomes
large relative to n.



P. Tang, J. Xie / Filomat 40:2 (2026), 397–413 402

Figure 1: Comparison between the histograms of Zn,p and the standard normal density curve.

Moreover, we take s = 1 in Theorem 2.1, and compare the empirical sizes of the proposed more
accurate high-dimensional Edgeworth expansion (AHEE) method with those of the traditional Chi-square
approximation (CA) method in ([10]) and the proposed high-dimensional LR test method (HLRT) in Lemma
1.1. We still choose the sample size n = 1000 and perform 10000 repeated independent calculations. By
means of the numerical simulations we can estimate the quantiles of the distribution ofΦ1(x). The following
table 1 gives the simulation results. Table 1 shows that the empirical sizes of the CA method, the HLRT
method and our proposed AHEE method are all very close to the given significance level α when the
dimension p is small. But as p gets larger, the empirical sizes of the CA method moves away from the given
significant level, it gets larger and larger and approaches to 1. Meanwhile, the sizes of the HLRT and our
AHEE method are both still very close to the significance level α. Thus, both the proposed AHEE method
and the HLRT method are efficient when dealing with the high-dimensional covariance structure test in
exploratory factor analysis.

Table 1: Empirical sizes of CA , HLRT and AHEE methods

p α = 0.05 α = 0.1 α = 0.5
CA AHEE HLRT CA AHEE HLRT CA AHEE HLRT

30 0.0490 0.0543 0.0535 0.0977 0.1042 0.1068 0.4993 0.5021 0.5009
60 0.0510 0.0503 0.0498 0.1011 0.1003 0.1064 0.5018 0.5019 0.5027
90 0.0504 0.0509 0.0505 0.0997 0.1019 0.1035 0.5058 0.5020 0.5021
120 0.0582 0.0559 0.0533 0.1116 0.1035 0.1055 0.5242 0.4983 0.4985
180 0.0707 0.0485 0.0542 0.1321 0.0980 0.1015 0.5730 0.5010 0.4883
270 0.1740 0.0474 0.0543 0.2830 0.0982 0.1045 0.7627 0.5011 0.5013
360 0.5668 0.0510 0.0490 0.7020 0.1005 0.1022 0.9632 0.4942 0.5052
450 0.9856 0.0474 0.0496 0.9946 0.0980 0.0991 0.9997 0.5039 0.4924
540 1 0.0468 0.0532 1 0.0934 0.0997 1 0.4993 0.4990
630 1 0.0489 0.0490 1 0.1025 0.0964 1 0.4992 0.4973
720 1 0.0482 0.0548 1 0.1014 0.1035 1 0.5066 0.4980

Finally, for the uniform error bound of the asymptotical distribution of the statistic Zn,p in (2.15):

∆n,p = min
0<w<σn,p/2

{ 1
2π

[T0
1(w) + T0

2(w) + T0
3(w)]

}
.

we set w = i
50 ×

σn,p

2 , i = 1, 2, · · ·, 49. If we choose the ratio of the dimension of p to n are 3
10 , 1

2 , 5
8 , then
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the corresponding values of (n, p) are (240, 800), (400, 800), (500, 800), (300, 1000), (500, 1000), (625, 1000),
(500, 1500), (750, 1500), (938, 1500), respectively. When w increases from 1

50 ×
σn,p

2 to 49
50 ×

σn,p

2 , we find that the
corresponding minimum value of the error bound ∆n,p decreases as n and p increase together for the same
ratio p/n. In addition, when the ratio p/n increases, we get that the corresponding minimum value of the
error bound ∆n,p also decreases as p increases when n is fixed. The numerical results of the uniform error
bound ∆n,p are shown in the following Table 2, which shows that the uniform error bounds are very small
when p and n are large in the high-dimensional case.

Table 2: Error bounds of the asymptotical distribution of Zn,p.
p/n (p,n) ∆n,p (p,n) ∆n,p (p,n) ∆n,p
3/10 (240,800) 0.0249 (300,1000) 0.0149 (450,1500) 0.0060
1/2 (400,800) 0.0078 (500,1000) 0.0060 (750,1500) 0.0058
5/8 (500,800) 0.0057 (625,1000) 0.0041 (938,1500) 0.0038

4. Proofs

Proof of Theorem 2.1. By Corollary 8.4.8 in Muirhead (1982) [19], we know that under H0, for any t ∈ R,
the characteristic function of T′ defined in (1.3) can be written as

φT′ (t) = E[exp(itT′)]

=
(2e

n

)−itpn(
1 − 2it

)− np
2 (1−2it)

×

Γp

(
n
2 − int

)
Γp

(
n
2

) . (4.16)

As the multivariate gamma function

Γp(α) = π
p(p−1)

4

p∏
i=1

Γ
[
α −

1
2

(i − 1)
]

for Re(α) > 1
2 (p − 1), we can see that

φT′ (t) =
(2e

n

)−itpn(
1 − 2it

)− np
2 (1−2it)

×

p∏
j=1

Γ
( n− j+1

2 − int
)

Γ
( n− j+1

2

) . (4.17)

Taking the logarithm on both sides of the above equation, we get the cumulant generating function of
T′ by

logφT′ (t)

= −itnp log
2e
n
−

np
2

(1 − 2it) log(1 − 2it) +
p∑

j=1

[
logΓ

(n − j + 1
2

− int
)
− logΓ

(n − j + 1
2

)]
.

For any fixed real number a and b, using the Taylor expansion formula, we get that

logΓ(a + b) = logΓ(a) +
∞∑

k=1

bk

k!
ψ(k−1)(a). (4.18)

When t ∈ (0, 1
pn2 ), some elementary calculations can lead to that

logφ′T(t) = −itpn[log 2 + 1 − log n] −
np
2

(1 − 2it) log(1 − 2it) +
p∑

j=1

∞∑
r=1

(−int)r

r!
ψ(r−1)

(n − j + 1
2

)
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= −itpn[log 2 + 1 − log n] −
np
2

[
− 2it + 2(it)2 +O(t3)

]
+

p∑
j=1

∞∑
r=1

(−int)r

r!
ψ(r−1)

(n − j + 1
2

)
= it(−n)

[
p log

2
n
+

p∑
j=1

ψ(
n − j + 1

2
)
]
+

(it)2

2
n2
[
−

2p
n
+

p∑
j=1

ψ(1)
(n − j + 1

2

)]
+

p∑
j=1

∞∑
r=3

(−int)r

r!
ψ(r−1)

(n − j + 1
2

)
+ o(1)

= it(−n)µn,p +
(it)2

2
n2σ2

n,p +

∞∑
r=3

(it)r

r!
nrκ(r)

n,p + o(1), (4.19)

where µn,p, σ2
n,p and κ(r)

n,p are defined in (2.9), (2.10) and (2.11), respectively.
Then, we can get the characteristic function of Zn,p by

φZn,p (t) = E[exp(itZn,p)]

= exp
( itµn,p

σn,p

)
φT′
( t
nσn,p

)
= exp

[
logφT′

( t
nσn,p

)
+

itµn,p

σn,p

]
.

Inserting (4.3) into φZn,p (t), we have

φZn,p (t) = exp
[ itµn,p

σn,p
+

(it)2

2
+

∞∑
r=3

(it)rκ(r)
n,p

r!σr
n,p
−

itµn,p

σn,p
+ o(1)

]
= e−

t2
2

{
1 +

∞∑
k=1

1
k!

[ ∞∑
r=3

(it)rκ(r)
n,p

r!σr
n,p

]k}
= e−

t2
2

{
1 +

∞∑
k=1

(it)3k

k!

[ ∞∑
r=0

(it)rκ(r+3)
n,p

(r + 3)!σr+3
n,p

]k}
= e−

t2
2

[
1 +

∞∑
k=1

(it)3k

k!

∞∑
r=0

∑
r1+···+rk=r

k∏
l=1

(it)rlκ(rl+3)
n,p

(rl + 3)!σrl+3
n,p

]
= e−

t2
2

[
1 +

∞∑
k=1

1
k!

∞∑
r=0

(it)3k+rγk,r,n,p

]
, (4.20)

where γk,r,n,v is defined in (2.12).
By the inverse formula of characteristic function, we know

P(Zn,p ≤ x) = Φ(x) +
∞∑

k=1

Rk(x), (4.21)

where Rk(x) satisfies∫
∞

−∞

eitxdRk(x) =
1
k!

∞∑
r=0

(it)3k+re−
t2
2 γk,r,n,p. (4.22)

In order to compute Rk(x), we use integration by parts to get that

e−
t2
2 =

∫
∞

−∞

eitxdΦ(x) =
∫
∞

−∞

Φ(1)(x)d
( eitx

it

)
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= (−it)−1
∫
∞

−∞

eitxdΦ(1)(x)

= (−it)−2
∫
∞

−∞

eitxdΦ(2)(x)

...

= (−it)−(3k+r)
∫
∞

−∞

eitxdΦ(3k+r)(x),

where Φ(k)(x) = ( d
dx )kΦ(x). And we have

(it)(3k+r)e−
t2
2 = (−1)−(3k+r)

∫
∞

−∞

eitxdΦ(3k+r)(x) =
∫
∞

−∞

eitxd
[(
−

d
dx

)3k+r
Φ(x)
]
.

Thus

P(Zn,p ≤ x) = =
1
k!

∞∑
r=0

∫
∞

−∞

eitxd
[(
−

d
dx

)3k+r
Φ(x)
]
γk,r,n,p

=

∫
∞

−∞

eitxd
[ 1
k!

∞∑
r=0

γk,r,n,p

(
−

d
dx

)3k+r
Φ(x)
]

=

∫
∞

−∞

eitxd
[
−

1
k!

∞∑
r=0

γk,r,n,ph3k+r−1(x)ϕ(x)
]

= Φ(x) − ϕ(x)
[ ∞∑

k=1

1
k!

∞∑
r=0

γk,r,n,ph3k+r−1(x)
]
. (4.23)

Define

φ(s)
Zn,p

(t) = exp
(
−

t2

2

)[
1 +

s∑
k=1

1
k!

s−k∑
r=0

(it)3k+rγk,r,n,p

]
, (4.24)

and

Φs(x) =
1

2π

∫
∞

−∞

e−itxφ(s)
Zn,p

(t)dt.

Similar to the calculations of (4.21), we can get that

Φs(x) = Φ(x) − ϕ(x)
[ s∑

k=1

1
k!

s−k∑
r=0

γk,r,n,ph3k+r−1(x)
]
. (4.25)

Inserting (4.25) into (4.23), we have

P(Zn,p ≤ x)

= Φs(x) − ϕ(x)
[ ∞∑

k=1

1
k!

∞∑
r=0

γk,r,n,ph3k+r−1(x) −
s∑

k=1

1
k!

s−k∑
r=0

γk,r,n,ph3k+r−1(x)
]

= Φs(x) − ϕ(x)
[ s∑

k=1

1
k!

∞∑
r=0

γk,r,n,ph3k+r−1(x) +
∞∑

k=s+1

1
k!

∞∑
r=0

γk,r,n,ph3k+r−1(x) −
s∑

k=1

1
k!

s−k∑
r=0

γk,r,n,ph3k+r−1(x)
]

= Φs(x) − ϕ(x)
[ s∑

k=1

1
k!

∞∑
r=s−k+1

γk,r,n,ph3k+r−1(x) +
∞∑

k=s+1

1
k!

∞∑
r=0

γk,r,n,ph3k+r−1(x)
]
.
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Note that h3k+r−1(x) is bounded for any fixed x. Then for any fixed x, there is a positive function M3k+r−1(x),
such that |h3k+r−1(x)| ≤M3k+r−1(x). Thus, we have

|P(Zn,p ≤ x) −Φs(x)|

≤ ϕ(x)M3k+r−1(x)
∣∣∣∣ s∑

k=1

1
k!

∞∑
r=s−k+1

γk,r,n,p +

∞∑
k=s+1

1
k!

∞∑
r=0

γk,r,n,p

∣∣∣∣. (4.26)

By Proposition 2.1, we know

|γk,r,n,p|

≤
1

σr+3k
n,p

∑
r1+···+rk=r

{ k∏
l=1

2rl+2p(rl + 1)!

n(n − p + 1
2 )rl+1(rl + 3)!

[
1 +

rl + 2
n − p + 1

2

+
θ(rl + 2)(rl + 3)

3(n − p + 1
2 )2

]}
≤

2r4k

σr+3k
n,p (n − p + 1

2 )r+k

∑
r1+···+rk=r

k∏
l=1

[ 1
(rl + 2)(rl + 3)

+
1

(n − p + 1
2 )(rl + 3)

+
θ

3(n − p + 1
2 )2

]
, (4.27)

where r1, r2, · · · , rk are all nonnegative integers which are not exceeding k.
Because of p → ∞ and p/n → c ∈ (0, 1) as n → ∞, we have that n − p + 1/2 → ∞, and there exists

0 < a < n − p + 1/2 such that for any fixed r,∑
r1+···+rk=r

k∏
l=1

[ 1
(rl + 2)(rl + 3)

+
1

(n − p + 1
2 )(rl + 3)

+
θ

3(n − p + 1
2 )2

]
≤

∑
r1+···+rk=r

k∏
l=1

[ 1
(rl + 2)(rl + 3)

+
1

a(rl + 3)
+
θ

3a2

]
,

where
∑

r1+···+rk=r
∏k

l=1

[
1

(rl+2)(rl+3) +
1

a(rl+3) +
θ

3a2

]
is bounded.

Proposition 2.1 reveals that σn,p is also bounded, therefore

γk,r,n,p = O
(

1
(n−p+ 1

2 )r+k

)
.

Note that ϕ(x) is also bounded for any fixed x, then we get that

|P(Zn,p ≤ x) −Φs(x)|

≤ ϕ(x)M3k+r−1(x)
∣∣∣∣ s∑

k=1

1
k!

∞∑
r=s−k+1

γk,r,n,p +

∞∑
k=s+1

1
k!

∞∑
r=0

γk,r,n,p

∣∣∣∣
= O

( 1
(n − p + 1

2 )s+1

)
.

That is, for any x ∈ R, we have

P(Zn,p ≤ x) = Φs(x) +O
(

1
(n−p+ 1

2 )s+1

)
.

Proof of Theorem 2.2. By the inverse Fourier transformation, for any x ∈ R,

P(Zn,p ≤ x) −Φs(x) =
1

2π

∫
∞

−∞

e−itx
φZn,p (t) − φ(s)

Zn,p
(t)

−it
dt,

we have

sup
x
|P(Zn,p ≤ x) −Φs(x)| ≤

1
2π

∫
∞

−∞

1
|t|
|φZn,p (t) − φ(s)

Zn,p
(t)|dt
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≤
1

2π
(I1 + I2 + I3), (4.28)

where

I1 =

∫
|t|≤bw

1
|t| |φZn,p (t) − φ(s)

Zn,p
(t)|dt,

I2 =

∫
|t|>bw

1
|t| |φZn,p (t)|dt,

I3 =

∫
|t|>bw

1
|t| |φ

(s)
Zn,p

(t)|dt

with 0 < 2w/σn,p < 1 and b = n − p + 1
2 .

We will next complete the upper bound of I1, I2 and I3, respectively.
For the term I1, we can get by (4.20) − (4.24) that

|φZn,p (t) − φ(s)
Zn,p

(t)|

= exp(− t2

2 )
∣∣∣∣∣ s∑

k=1

1
k!

∞∑
r=s−k+1

(it)3k+rγk,r,n,p +

∞∑
k=s+1

1
k!

∞∑
r=0

(it)3k+rγk,r,n,p

∣∣∣∣∣
≤ exp(− t2

2 )
{ s∑

k=1

|t|3k

k!

[ ∞∑
r=0

|t|r|γk,r,n,p| −

s−k∑
r=0

|t|r|γk,r,n,p|
]
+

∞∑
k=s+1

|t|3k

k!

∞∑
r=0

|t|r|γk,r,n,p|

}
.

(4.29)

Under the assumption of 0 < 2w/σn,v < 1, for |t| ≤ bw, we can get from (4.27) that
∞∑

r=0

|t|r|γk,r,n,p|

≤

( 4p
nbσ3

n,p

)k ∞∑
r=0

( 2|t|
bσn,p

)r ∑
r1+···+rk=r

k∏
l=1

[ 1
(rl + 2)(rl + 3)

+
1

b(rl + 3)
+
θ

3b2

]
≤

( 4p
nbσ3

n,p

)k ∞∑
r=0

( 2ω
σn,p

)r ∑
r1+···+rk=r

k∏
l=1

[ 1
(rl + 2)(rl + 3)

+
1

b(rl + 3)
+
θ

3b2

]
=
( 4p
nbσ3

n,p

)k ∞∑
r=0

∑
r1+···+rk=r

k∏
l=1

( 2w
σn,p

)rl[ 1
(rl + 2)(rl + 3)

+
1

b(rl + 3)
+
θ

3b2

]
≤

( 4p
nbσ3

n,p

)k ∞∑
r=0

∑
r1+···+rk=r

k∏
l=1

( 2w
σn,p

)rl( 1
rl + 3

+
1
b
+
θ

3b2

)
≤

[ 4p
nbσ3

n,p

∞∑
r=0

( 2w
σn,p

)r( 1
r + 3

+
1
b
+
θ

3b2

)]k
=
( 4p
nbσ3

n,p

)k[ ∞∑
r=0

1
r + 3

( 2w
σn,p

)r
+
(1

b
+
θ

3b2

) ∞∑
r=0

( 2w
σn,p

)r]k
. (4.30)

Note that for 0 < x < 1,
∞∑

r=0

1
r + 3

xr =
1
x3

∞∑
r=0

∫ x

0
tr+2dt =

1
x3

∫ x

0

∞∑
r=0

tr+2dt

= −
1

2x
−

1
x2 −

1
x3 log(1 − x).
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Define

Gn(x) = −
1
2x
−

1
x2 −

1
x3 log(1 − x) +

1
b(1 − x)

+
θ

3b2(1 − x)
,

where θ ∈ (0, 1).
Thus we can rewrite (4.30) as
∞∑

r=0

|t|r|γk,r,n,p| ≤
[ 4p
nbσ3

n,p
Gn

( 2w
σn,p

)]k
, (4.31)

which means
s∑

k=1

|t|3k

k!

∞∑
r=s−k+1

|t|r|γk,r,n,p|

≤

s∑
k=1

|t|3k

k!

{( 4p
nbσ3

n,p

)k[
Gn

( 2w
σn,p

)]k
−

s−k∑
r=0

|t|r|γk,r,n,p|

}
=

s∑
k=1

|t|3k

k!

( 4p
nbσ3

n,p

)k[
Gn

( 2w
σn,p

)]k
−

s∑
k=1

|t|3k

k!

s−k∑
r=0

|t|r|γk,r,n,p| (4.32)

and
∞∑

k=s+1

|t|3k

k!

∞∑
r=0

|t|r|γk,r,n,p| ≤

∞∑
k=s+1

|t|3k

k!

[ 4p
nbσ3

n,p
Gn

( 2w
σn,p

)]k
≤

[ 4p|t|3

nbσ3
n,p

Gn

( 2w
σn,p

)]s+1
∞∑

k=0

1
k!

[ 4p|t|3

nbσ3
n,p

Gn

( 2w
σn,p

)]k
≤

[4pwt2

nσ3
n,p

Gn

( 2w
σn,p

)]s+1
∞∑

k=0

1
k!

[4pwt2

nσ3
n,p

Gn

( 2w
σn,p

)]k
=
[4pwt2

nσ3
n,p

Gn

( 2w
σn,p

)]s+1
exp
[4pwt2

nσ3
n,p

Gn

( 2w
σn,p

)]
. (4.33)

Combining (4.32) and (4.33), we have

|φZn,p (t) − φ(s)
Zn,p

(t)|

≤

s∑
k=1

|t|3k

k!

( 4p
nbσ3

n,p

)k[
Gn

( 2w
σn,p

)]k
exp
(
−

t2

2

)
−

s∑
k=1

|t|3k

k!

s−k∑
r=0

|t|r|γk,r,n,p| exp
(
−

t2

2

)
+
[4pwt2

nσ3
n,p

Gn

( 2w
σn,p

)]s+1
exp
[4pwt2

nσ3
n,p

Gn

( 2w
σn,p

)
−

t2

2

]
. (4.34)

Define

Hn,p,w =
4pw
nσ3

n,p
Gn

( 2w
σn,p

)
.

Then we can rewrite (4.34) as

|φZn,p,w (t) − φ(s)
Zn,p,w

(t)|

≤

s∑
k=1

|t|3k

k!

( 4p
nbσ3

n,p

)k[
Gn

( 2w
σn,p

)]k
exp
(
−

t2

2

)
] −

s∑
k=1

|t|3k

k!

s−k∑
r=0

|t|r|γk,r,n,p| exp
(
−

t2

2

)
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+
[(

Hn,p,w

)
t2
]s+1

exp
[(

Hn,p,w −
1
2

)
t2
]
. (4.35)

Recall the definition of Γ(α) in (2.7). We can reach to

I1 = 2
∫ bw

0

1
t |φZn,p (t) − φ(s)

Zn,p
(t)|dt

= 2
[ ∫ ∞

0

1
t
|φZn,p (t) − φ(s)

Zn,p
(t)|dt −

∫
∞

bw

1
t
|φZn,p (t) − φ(s)

Zn,p
(t)|dt

]
< 2

s∑
k=1

1
k!

[ 4p
nbσ3

n,p
Gn

( 2w
σn,p

)]k[ ∫ ∞

0

t3k

t
exp
(
−

t2

2

)
dt −
∫
∞

bw

t3k

t
exp
(
−

t2

2

)
dt
]

−2
s∑

k=1

s−k∑
r=0

|γk,r,n,p|

k!

[ ∫ ∞

0

t3k+r

t
exp
(
−

t2

2

)
dt −
∫
∞

bw

t3k+r

t
exp
(
−

t2

2

)
dt
]

+2
[ ∫ ∞

0

(
Hn,p,wt2

)s+1

t
exp
(
Hn,p,wt2

−
t2

2

)
dt −
∫
∞

bw

(
Hn,p,wt2

)s+1

t
exp
(
Hn,p,wt2

−
t2

2

)
dt
]

<
s∑

k=1

23k/2

k!

[ 4p
nbσ3

n,p
Gn

( 2w
σn,p

)]k[
Γ
(3k

2

)
− Γ
(3k

2
,

b2w2

2

)]
−

s∑
k=1

s−k∑
r=0

2(3k+r)/2
|γk,r,n,p|

k!

[
Γ
(3k + r

2

)
− Γ
(3k + r

2
,

b2w2

2

)]
+
[
1 −

8pw
nσ3

n,p
Gn

( 2w
σn,p

)]−(s+1)[ 8pw
nσ3

n,p
Gn

( 2w
σn,p

)]s+1

×

{
Γ(s + 1) − Γ

[
s + 1,

b2w2

2

(
1 −

8pw
nσ3

n,p
Gn

( 2w
σn,p

))]}
:= T1(w). (4.36)

For the term I2. By the well known fact φZn,p (−t) = φZn,p (t), then we have |φZn,p (−t)| = |φZn,p (t)| , and

I2 =

∫
|t|>bw

1
|t|
|φZn,p (t)|dt = 2

∫
t>bw

1
t
|φZn,p (t)|dt. (4.37)

Let t̃ = t/nσn,p, By (4.16) and (4.19) , we have

I2 = 2
∫

t>bw

1
t

∣∣∣∣E[ exp
(
it

T′ + nµn,p

nσn,p

)]∣∣∣∣dt = 2
∫

t>bw

1
t

∣∣∣∣E[exp(it̃T′)]
∣∣∣∣dt

= 2
∫

t>bw

1
t

∣∣∣∣(2e
n

)−ipnt̃∣∣∣∣∣∣∣∣(1 − 2it̃)−
np
2 (1−2it̃)

∣∣∣∣∣∣∣∣Γp( n
2 − int̃)
Γp( n

2 )

∣∣∣∣dt

= 2
∫

t>bw

1
t

∣∣∣∣ exp
[
−

pn
4

log(1 + 4t̃2) − pnt̃ arg (1 − 2it̃)
]∣∣∣∣∣∣∣∣Γp( n

2 − int̃)
Γp( n

2 )

∣∣∣∣dt. (4.38)

By the formula in Fujikoshi et al. (2010) [14] that∣∣∣∣∣Γ(x + iy)
Γ(x)

∣∣∣∣∣2 = ∞∏
k=0

[
1 +
( y
x + k

)2]−1
,

we can get

I2 = 2
∫

t>bw

1
t

∣∣∣∣ exp
[
−

pn
4

log(1 + 4t̃2) − pnt̃ arg (1 − 2it̃)
]∣∣∣∣ p∏

j=1

∞∏
k=0

[
1 +
( nt̃

n− j+1
2 + k

)2]− 1
2 dt
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= 2
∫

t>bw

1
t

∣∣∣∣ exp[−pnt̃ arg (1 − 2it̃)]
∣∣∣∣(1 + 4t̃2)−

np
4

p∏
j=1

∞∏
k=0

[
1 +
( nt̃

n− j+1
2 + k

)2]− 1
2 dt. (4.39)

Here

p∏
j=1

∞∏
k=0

[
1 +
( −nt̃

n− j+1
2 + k

)2]− 1
2
≤

p∏
j=1

[ j/4]−2∏
k=0

[
1 +
(
2t̃)2
]− 1

2
≤ (1 + 4t̃2)−

p(p−1)
16 , (4.40)

where [ j/4] denotes the integer part of j/4.
Note that arg (1 − 2it̃) ∈ (0, 2π] and σn,p is bounded by Proposition 2.1. When p/n → ∞ as n → ∞, we

know pnt̃ arg (1 − 2it̃) = p arg (1 − 2it̃)t/σn,p → +∞ and exp[−pnt̃ arg (1 − 2it̃)]→ 0.
Combining (4.37)-(4.40), we have

I2 ≤ 2
∫

t>bw

1
t

(
1 + 4t̃2)−

pn
4 −

p(p−1)
16 dt

=

∫
∞

b2w2

1
u

(
1 +

4u
n2σ2

n,p

)− pn
4 −

p(p−1)
16 du

≤
1

b2w2

∫
∞

b2w2

(
1 +

4u
n2σ2

n,p

)− pn
4 −

p(p−1)
16 du

=
n2σ2

n,p

4b2w2[ pn
4 +

p(p−1)
16 − 1]

(
1 +

4b2w2

n2σ2
n,p

)− pn
4 −

p(p−1)
16 +1

:= T2(w). (4.41)

For the term I3 in (4.24), we can similarly get that

I3 ≤ 2
∫
∞

bw

1
t

exp
(
−

t2

2

)(
1 +

s∑
k=1

t3k

k!

s−k∑
r=0

tr
|γk,r,n,p|

)
dt

=

∫
∞

bw

2
t

e−
t2
2 dt +

s∑
k=1

2
k!

s−k∑
r=0

|γk,r,n,p|

∫
∞

bw
t3k+r−1e−

t2
2 dt

=

∫
∞

b2w2
2

1
u

e−udu +
s∑

k=1

1
k!

s−k∑
r=0

|γk,r,n,v|2
3k+r

2

∫
∞

b2w2
2

u
3k+r

2 −1e−udu

≤
2

b2w2 e−
b2w2

2 +

s∑
k=1

1
k!

s−k∑
r=0

|γk,r,n,v|2
3k+r

2 Γ
(3k + r

2
,

b2w2

2

)
:= T3(w). (4.42)

Collecting (4.28), (4.36), (4.41) and (4.42), we can complete the proof of Theorem 2.2. ■

Proof of Proposition 2.1. We first prove the upper bound of κ(r)
n,p in (2.11). By the Stirling’s formula,

there exists θ0 ∈ (0, 1) such that

ψ(z) = log z −
1
2z
+

θ0

12z2 ,

then, for any r ≥ 1, the r-th derivative of ψ( n− j+1
2 ) can be written as

ψ(r)(
n − j + 1

2
) = (−1)r+1

[ 2r(r − 1)!
(n − j + 1)r +

2rr!
(n − j + 1)r+1 −

2rθ0(r + 1)!
3(n − j + 1)r+2

]
.
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Then we have

κ(r+3)
n,p = (−1)r+3

p∑
j=1

ψ(r+2)
(n − j + 1

2

)
=

p∑
j=1

[ 2r+2(r + 1)!
(n − j + 1)r+2 +

2r+2(r + 2)!
(n − j + 1)r+3 −

2r+2θ0(r + 3)!
3(n − j + 1)r+4

]
(4.43)

for any r ≥ 0.
According to the trigonometric inequality, we get that

|κ(r+3)
n,p | ≤

p∑
j=1

∣∣∣∣∣[ 2r+2(r + 1)!
(n − j + 1)r+2 +

2r+2(r + 2)!
(n − j + 1)r+3 −

2r+2θ0(r + 3)!
3(n − j + 1)r+4

]∣∣∣∣∣
≤

p∑
j=1

(A1 + A2 + A3), (4.44)

where

A1 =
2r+2(r + 1)!

(n − j + 1)r+2 , A2 =
2r+2(r + 2)!

(n − j + 1)r+3 , A3 =
2r+2θ0(r + 3)!
3(n − j + 1)r+4 .

By the assumption n − p > 0 and results in Mitsui et al. (2015) [18], we can obtain that
p∑

j=1

A1 =

p∑
j=1

2r+2(r + 1)!
(n − j + 1)r+2 = 2r+2(r + 1)!

p∑
j=1

1
(n − j + 1)r+2

≤ 2r+2r!
[ 1
(n − p + 1

2 )r+1
−

1
(n + 1

2 )r+1

]
≤

2r+2p(r + 1)!

(n − p + 1
2 )r+1(n + 1

2 )

≤
2r+2(r + 1)!p

(n − p + 1
2 )r+1n

. (4.45)

And we can similarly get that
p∑

j=1

A2 ≤
2r+2(r + 2)!p

(n − p + 1
2 )r+1n

(4.46)

and
p∑

j=1

A3 ≤
2r+2θ0p(r + 3)!

3(n − p + 1
2 )r+3n

. (4.47)

Combining (4.45)-(4.47), we know

|κ(r+3)
n,p | ≤

2r+2p(r + 1)!

n(n − p + 1
2 )r+1

[
1 +

r + 2
n − p + 1

2

+
(r + 2)(r + 3)θ0

3(n − p + 1
2 )2

]
.

Let b = n− p+ 1/2, because p→∞ and p/n→ c ∈ (0, 1) as n→∞, we can get that b→∞ and |κ(r+3)
n,p | has

a upper bound, that is,

|κ(r+3)
n,p | ≤

2r+2(r + 1)!p
br+1n

[
1 +

r + 2
b
+

(r + 2)(r + 3)θ0

3b2

]
→ 0.
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Then we prove the lower bound of σ2
n,p in (2.10). Simultaneously, we also demonstrate that σ2

n,p > 0 and
limn→∞ σ2

n,p > 0. By (2.10), we have

σ2
n,p = −

2p
n
+

p∑
j=1

ψ(1)( n− j+1
2 ) = −

2p
n
+

∞∑
k=0

p∑
j=1

1

( n− j+1
2 + k)2

.

Let f (x, y) = 1/( n+1−x
2 + y)2. Then f (x, y) > 0 is a monotonically increasing function in regard to x for

0 < x < n and a decreasing function in regard to y for y ≥ 0. Meanwhile, we have that

∞∑
k=0

p∑
j=1

1

( n− j+1
2 + k)2

≥

∫
∞

0

∫ p

0

1
( n+1−x

2 + y)2
dxdy = 2 log

1 + 1
n

1 + 1
n −

p
n

.

Let 1(x) = −x + log 1+ 1
n

1+ 1
n−x

. We can see that 1(0) = 0 and

1′(x) =
x − 1

n

1 + 1
n − x

> 0,

which means that 1(x) is monotonically increasing for 0 < x < 1 and 1(x) > 0, that is

σ2
n,p > 2

[
−

p
n
+ log

1 + 1
n

1 + 1
n −

p
n

]
> 0.

Let h(y) = log 1
1−y − y, y ∈ (0, 1), a > 1 , we can see that h(0) = 0 and h′(y) = y

1−y > 0, which means that
h(y) is a monotonically increasing function for 0 < y < 1, then we have h(y) > 0, which means

lim
n→∞

σ2
n,p = 2 lim

n→∞

[
−

p
n
+ log

1 + 1
n

1 + 1
n −

p
n

]
= −2y + 2 log

1
1 − y

> 0.

And the proof of Proposition 2.1 is complete.■
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