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On the asymptotic of likelihood ratio statistic in high-dimensional
exploratory factor analysis

Ping Tang?, Junshan Xie**

#School of Mathematics and Statistics, Henan University, China

Abstract. In this paper, the asymptotical properties on the likelihood ratio test in high-dimensional
exploratory factor analysis are considered. When the dimension of the response variable p satisfies p =
p(N) = oo and p/N — c € (0,1) as the sample size N — oo, the Edgeworth expansion of the null distribution
of the likelihood ratio test statistic and its uniform error bound are established. Some numerical simulations

indicate that the proposed approximation is more accurate than the traditional chi-square approximate
method on dealing with the high-dimensional test.

1. Introduction

Exploratory factor analysis is a useful statistical dimension reduction method, which achieves dimen-
sionality reduction by exploring the low-dimensional latent structure underlying the observed data. In
exploratory factor analysis, the true number of common latent factors is usually unknown, how to deter-
mine the number of latent common factors is a critical issue on this topic. There are lots of criteria and
methods have been investigated for determining the number of the latent common factors. For instance,
the most widely used procedure is the eigenvalues-greater-than one rule, that is Kaiser criterion (Guttman,
1954 [17]) ; Kaiser, 1960 [13] ), the scree test (Cattell, 1966 [7]), the parallel analysis method (Horn, 1965 [11];
Keeling, 2000 [15]; Dobriban, 2020 [8]), the likelihood ratio test(Bartlett, 1950 [5]; 1951 [6]; Joreskog, 1967
[12]; Anderson, 2003 [4], Kentaro, 2007 [16] ), Akaike’s information criterion (Akaike, 1973 [1], 1987 [2]),
BIC (Schwarz, 1978 [20]) and so on.

Let Xi,X5,---, Xy be the random sample of size N from the p-dimensional random vector X. The
exploratory factor analysis considers the following common factor model

Xi=u+AF;+U;, i=12,---,N, (1.1)
where 1 is a p-dimensional mean value vector, A is a p X k loading matrix with rank(A) = k < p, F; is
a k-dimensional latent random vector containing the common factors, E(F;) = 0, Cou(F;) = Ir, where O
denotes a k-dimensional all-zero vector, Iy represents a k X k identity matrix, and k is the number of the
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common latent factors. U; is a p-dimensional error vector with E(U;) = 0,, and Cov(U;) = W, where W is a
p X p positive definite diagonal matrix with rank(W) = p. We assume that F; and U; are uncorrelated and
F; ~ Ni(Ok, Ix) and U; ~ N,(0,, W), then the population X ~ N,(up, L) with £ = AAT + W and AT is the
transpose of A.

The likelihood ratio test method can be used to estimate the true common factor number (see Kentaro,
2007 [16] and He et al. (2021) [10]). In particular, for each k = 0,1,--- ,p, we can consider the test

Hox : £ = AAT + W with (at most) k factors vs Hyy : £ is any positive definite matrix.

As a matter of convenience, we assume that the true factor number k > 1is given. Under the k-factor model,
we write A = Ay and ¥ = W}, where Ay and Wy are also given matrixes and rank(Ax) = k < p. Denote
Tk = AyAl + W Then we will consider the following test

H/O,k L= Zk \'4 ] H’A,k L # Zk. (12)

A typical forward stepwise sequentially test procedure can be stated as follows. Firstly, we consider
k = 0 and examine H'gg versus H' 4 using the likelihood ratio test. If H'q is rejected, we then consider
k =1 and examine the 1-factor model test H'y; versus H’ 4 1. If H' g is rejected, we then consider k = 2 and
examine the 2-factor model test H'g,. The test procedure continues until we fail to reject H’O,,; for some k.

Then k can be the estimation of the true number of factors. In this sense, the statistical asymptotic properties
of the likelihood ratio test also have good research significance in the exploratory factor analysis.
By Muirhead (1982) [19], the likelihood ratio test statistic under Hjj, can be written as

T' = —(N = 1) log(I£] x %) + (N = D[t - p], (1.3)

where £ is the unbiased sample covariance matrix of the observations X;,i =1,2,--- ,N.
When the dimension p is fixed and the sample size N is large, He et al. (2021) [10] obtain that

where - represents the convergence in distribution and f = p(p + 1)/2. The Bartlett correction provided a
re-scaling strategy that further improves the infinite-sample accuracy of the chi-squared approximation of
the likelihood ratio test statistic. When the dimension p is fixed and the sample size N is large, He et al.
(2021) [10] also obtain the following chi-square approximation for the Bartlett correction test statistic pT”:

, d
T = X}. (1.5)

where the Bartlett correction coefficient p = 1-[6(N — 1)(p + 1)]_1(2;72 +3p-1).

However, in high-dimensional setting with the large dimension p and the large sample size 1, researchers
have found that the chi-squared approximation for the likelihood ratio statistic often becomes inaccurate,
resulting in the failure of the corresponding likelihood ratio tests. To address this issue, some alternative
approximations of the high-dimensional likelihood ratio statistic have been discussed. A remarkable work
is due to He et al. (2021) [10],, who proved that the likelihood ratio statistic T was asymptotically Gaussian
distributed under the assumption of N > p+2,p — oo, p/n — c € [0,1],asn = N — 1 — oo, which means
the dimension p is allowed to diverge with the sample size N, their result can be listed as follows.

Lemma 1.1. Suppose N >p+2,p — oo, % —c€[0,1],asn =N —1 — oo, under Hf),k, we have
T + nji
— A 4 N,
On
where

Z), 52 =-2[2 +log(1 - Z)].

S a1 _ P
fin=-p+(p n+2)10g(1 "
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The result only gives the asymptotic distribution of the likelihood ratio statistics in high-dimension data.
In fact, the more precise results including the asymptotic expansion and convergence rate of the likelihood
ratio statistics are also worth to study.

In this paper, we will not only obtain the asymptotic expansion of the likelihood ratio statistics T’, but
also obtain the convergence rate and the uniform error bound of the null distribution of the likelihood
ratio statistic by Edgeworth expansion method, which is a popular method of dealing with the limiting
distribution for the high-dimensional statistics, one can refer to Fujikoshi (2000) [9], Fujikoshi et al. (2010)
[14], Wakaki (2010) [23], Wakaki et al. (2010) [3], Yamada (2012) [24], Mitsui et al. (2015) [18] and Sun and
Xie (2021, 2022) [21][22].

The rest of the paper is organized as follows. Section 2 gives the edgeworth expansion on the null
distribution of the likelihood ratio test statistic and its uniform error bound. The empirical performance of
the proposed method by numerical simulations will be investigated in Section 3. At last, some technical
proofs are listed in Section 4.

2. Main results
Denote 1(x) = d% log I'(x) and

s s ( 1)s+1 B
V(@) = (£ P@)lema = Z(Hk)m, s=1,2,--. 2.6)

Let
I(z,a) = f Fle7tdt. (2.7)

In this section, we provide the main results of this paper under the assumption p = p(n) — oo, p/n —
ce(0,1)asn =N -1 — co. Now we will first calculate the high-dimensional Edgeworth expansion of the
likelihood radio test statistic in the Exploratory factor analysis.

Theorem 2.1. Assuming p = p(n) is a series of positive integers depending on n such that p > land p < n -1,
p =p(n) — oo and 5 — c€(0,1) as n — oo. For the test statistic T’ defined in (1.2), let

T +nu,
Zyy = — 218 2.8)
NOyp
then we have
P(an = ) q)s(x) + O(W)/
where
ynp—plog +th njtl , (2.9)
P
Z PO, (2.10)

j=1

Ki({;ﬂ 1)rZ¢(r 1)(" ]+1 ’ (2.11)
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k K§1np+3)
Viowy = — (2.12)
o 71+Z+7’k=7’ ]I;Tl (rl + 3)!0}’!,,;3
and
s 1 s—k
() = @)~ 6@| Y 77 ), Vg @], (213)
k=1 r=0

forallr > 3. ¢(x) and ©(x) are the density function and the distribution function of the standard normal distribution,
respectively. h,(x) is the rth order Hermite polynomial defined by

(#) exp(-%) = DB exp(-%), r=1,2,.
To facilitate the proof of the following Theorem 2.1, we give the following result to certifies that K(r) has
a upper bound and 02 has a lower bound.
Proposition 2.1. Under the assumptions of Theorem 2.1, there exists O € (0, 1) such that
; 2r-1(r - 2)! r—1 0@ —1r
e L A i
n-p+3) n—-p+s5 3n-p+3)

forallr > 3, and

(2.14)

np_Z[——+10g T p]

n

Moreover, o3, , and lim, o o7, » are both well-defined.
The umform error bound on the asymptotical distribution function of Z,,, can be stated as follows.

Theorem 2.2. Under the assumptions of Theorem 2.1, for any 0 < w < 0,,,/2, we have

sup [P(Zyp < x) — Ds(x)] < _[Tl(w) + To(w) + Ts(w)],
xeR

where Oy(x) is defined in (2.13), and
23k/2

> 4
Ty(w) = ZT[# (

N[y -2, )

L I 3k+7 bPuw?
Y Y () - (5 )]

Onp

k=1 r=0

8 2 —(s+1)r 8 2 s+1
e N

X{F(s +1)-Tfs+1, vw’ (1- 8p—wcn(z—w))]},

3
2 no np Onp

n
Onp

2 2 2.2 ;m p(p D11
Ty (w) T 1+ 47w "
aprun| + M0 - 1]

252 ’
n*oy,

w3k b*w?
3k2 r( ;—7’] Tw>

2 22 v
T3(w) 22t +Z ’ykrnp

k=1 r=0
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Here, I'(z, a) is defined in (2.7) and

1 0
b(1—-2) 321 -n)

1
Gu(x) = il Flog(l -x)+
Remark 2.3. If taking s = 0, for any 0 < w < 0,,;,/2, we have

sup [P(Z,p < x) — O(x)| <  min 1

P oin o [T(w) + TY(w) + Ta(w)], (2.15)
X€E n,|

where

@ = [1- &n_an(z_w)],l[Sp_an(Z_w)]{l -1, bzz—wz(l - %Gn(%))]}

noy,  \Onp noy,  \Onp noy,
2.2 o
Tow) = n=oyp (1+4b2w2)—%—%+1
29T e -1/16+ 2 -1]" | n2o? ’
wp(p—1)/16 + 5 ] np
2 p2w?
Tdw) = ——e 2.
3() b2

Remark 2.4. By Theorem 2.2, for any 0 < w < 0,,,/2, we have

) 1
il:ﬂg |P(Zyp < x) = Ds(x)| < O<ur)r<1g3p /2 E[Tl(w) + Tz (w) + T3(w)].

3. Simulations

In this section, we first investigate the efficiency of our proposed Edgeworth expansional method with
the high-dimensional covariance structure test in Exploratory Factor Analysis by numerical simulations;
secondly, we compare our proposed more accurate high-dimensional Edgeworth expansion (AHEE) method
in this paper with those of the traditional Chi-square approximation (CA) method and the proposed high-
dimensional LR test method (HLRT) in Lemma 1.1; and finally we study the accuracy of the approximated
distribution function Z,, according to the numerical results on the uniform error bound of the Z, .

Without loss of generality, We consider the likelihood ratio test under Hy;. We can select i = 0,x1 ,set
k=ky=3¥Y=(1- pz)Ip, and

p X1y 0p, Op,
A= 0p, p X1y Op, ,
Oﬂ—zpl OP—Zpl p X 1p—2p1

where p1 = [p/3], p = 0.6, and I, denotes a p; dimensional vector with all one entries, then X = AAT + W,

Now we begin to performed some simulations in order to exhibition the goodness of fit between the
Edgeworth expansion of Zup and the standard normal distribution. We take s = 0 in Theorem 2.1, let the
sample size n = 1000 and p = 30,60, 90,180, 360, 720, respectively. All the simulation results are based on
10, 000 independent replications, then we can plot the corresponding histograms in Figure 1, which shows
that the histogram of Z,, fits well with the standard normal density as p increases with n and becomes
large relative to n.
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Figure 1: Comparison between the histograms of Z; , and the standard normal density curve.
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Moreover, we take s = 1 in Theorem 2.1, and compare the empirical sizes of the proposed more
accurate high-dimensional Edgeworth expansion (AHEE) method with those of the traditional Chi-square
approximation (CA) method in ([10]) and the proposed high-dimensional LR test method (HLRT) in Lemma
1.1. We still choose the sample size n = 1000 and perform 10000 repeated independent calculations. By
means of the numerical simulations we can estimate the quantiles of the distribution of @;(x). The following
table 1 gives the simulation results. Table 1 shows that the empirical sizes of the CA method, the HLRT
method and our proposed AHEE method are all very close to the given significance level &« when the
dimension p is small. But as p gets larger, the empirical sizes of the CA method moves away from the given
significant level, it gets larger and larger and approaches to 1. Meanwhile, the sizes of the HLRT and our
AHEE method are both still very close to the significance level a. Thus, both the proposed AHEE method
and the HLRT method are efficient when dealing with the high-dimensional covariance structure test in
exploratory factor analysis.

Table 1: Empirical sizes of CA , HLRT and AHEE methods

a =0.05 a=0.1 a=05

P CA AHEE HLRT CA AHEE HLRT CA AHEE HLRT
30 0.0490 0.0543 0.0535 0.0977 0.1042 0.1068 0.4993 0.5021 0.5009
60 0.0510 0.0503 0.0498 0.1011 0.1003 0.1064 0.5018 0.5019 0.5027
90 0.0504 0.0509 0.0505 0.0997 0.1019 0.1035 0.5058 0.5020 0.5021
120 0.0582 0.0559 0.0533 0.1116  0.1035 0.1055 0.5242 0.4983 0.4985
180 0.0707 0.0485 0.0542 0.1321 0.0980 0.1015 0.5730 0.5010 0.4883
270 0.1740 0.0474 0.0543 0.2830 0.0982 0.1045 0.7627 0.5011 0.5013
360 0.5668 0.0510 0.0490 0.7020 0.1005 0.1022 0.9632 0.4942 0.5052
450 0.9856 0.0474 0.0496 0.9946 0.0980 0.0991 0.9997 0.5039 0.4924
540 1 0.0468 0.0532 1 0.0934 0.0997 1 0.4993  0.4990
630 1 0.0489 0.0490 1 0.1025 0.0964 1 0.4992 0.4973
720 1 0.0482 0.0548 1 0.1014 0.1035 1 0.5066 0.4980

Finally, for the uniform error bound of the asymptotical distribution of the statistic Z, , in (2.15):

A

we set w = & X 5,1 =1,2,---,49. If we choose the ratio of the dimension of p to n are %,

np =

O<w<ayp/2

50

Onp

{%[T(f(w) + Ty(w) + TS(w)]}.

15
2/8/

then
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the corresponding values of (n,p) are (240,800), (400, 800), (500, 800), (300,1000), (500,1000), (625,1000),
(500, 1500), (750,1500), (938, 1500), respectively. When w increases from % X 6'—2'” to % X U;" , we find that the
corresponding minimum value of the error bound A,,, decreases as 1 and p increase together for the same
ratio p/n. In addition, when the ratio p/n increases, we get that the corresponding minimum value of the
error bound A, also decreases as p increases when 7 is fixed. The numerical results of the uniform error
bound A, , are shown in the following Table 2, which shows that the uniform error bounds are very small
when p and 7 are large in the high-dimensional case.

Table 2: Error bounds of the asymptotical distribution of Z,, ,.
p/n (p,m) Anp (p, 1) Anp (p, 1) Anp
3/10 (240,800)  0.0249 (300,1000)  0.0149  (450,1500) 0.0060
1/2 (400,800)  0.0078 (500,1000)  0.0060 (750,1500) 0.0058
5/8 (500,800)  0.0057 (625,1000) 0.0041 (938,1500) 0.0038

4. Proofs

Proof of Theorem 2.1. By Corollary 8.4.8 in Muirhead (1982) [19], we know that under Hy, for any t € R,
the characteristic function of T’ defined in (1.3) can be written as

er(t) = Elexp(itT")]
Qe —it ,%(1,2',}) Fp L —int
= (&))" X—(2 ) (4.16)
ry(3)
As the multivariate gamma function
bt 1o 1.
T(a)=7"3 L[r[a 5~ 1)
for Re(ar) > %(p — 1), we can see that
d F = ]+1 mt)
e\ —itpn 22 (1-2it)
or(f) = (n) (1-2 X H ) . (4.17)
i=

Taking the logarithm on both sides of the above equation, we get the cumulant generating function of
T’ by

log o1 (f)

4 . .
— -itmplog 2~ "L 1 - 2iptog(1 - 200+ )" [10g H(* =L - ) - togr(“L )]
j=1

For any fixed real number a and b, using the Taylor expansion formula, we get that
LA
logT(a+b) =logT(a) + ) | 9@ (4.18)
k=1
When t € (0, r#), some elementary calculations can lead to that

L& (- mt)r n—j+1
logp7(t) = —itpn[log2+1 - logn]——(l 2it)log(1 - 21t)+ZZ (r 1 T)

]: r=1
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14 [eN]
= —itpn[log2+1—logn] — —[ 2it + 2(it)? + O(t3 + Z Z - mt) P 1)

j=1 r=1

= it-m[plog +2¢< _”1)] L O L e ]”]

n
j=1
S e

j=1 r=3
. . (o) lt
= zt(—n)yn,p+—n Z ) n (r) » +0o(1),
=3

where ,,,, 07, , and K,(f)p are defined in (2.9), (2.10) and (2.11), respectively.
Then, we can get the characteristic function of Znp by

Elexp(itZ,,)]

ity t
(E2)or ()

exp [log (PT,(notn ) + Wl]

Pz, ()

Il
[¢]
P

o

Onp
Inserting (4.3) into ¢z, (t), we have

) = eple WL FOTE M
_ e—f{lil%[g“j,’; i }
-ty Gy
S B

e [1 + i % i(it)%”?/km”fi“]’
k=1 7 =0

where Yk, is defined in (2.12).
By the inverse formula of characteristic function, we know

P(Zyy <) = ©() + ) Ri(x),
k=1

where R(x) satisfies

f dek(x) 1 Z(lt)3k+r€ 5 Virn -

r=0

In order to compute R(x), we use integration by parts to get that

00 00 itx
-2 _ itx _ @ e
e I K Ad(x) I o (x)d( P )

2

n—j+1
)

(4.19)

(4.20)

(4.21)

(4.22)
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(—it)™! f ¢ doM (x)

(—it)2 f e dd@ (x)

— (_it)—(3k+r)f eitxdq)(3k+r)(x)l

where ®®)(x) = (£ )kd(x). And we have

Gk -2 _ ook [ i@k = [ it
(it) =T = (1)~ Bk Ime”‘dCD +r(x)—Imelxd[< dx) D).

Thus
Pzpsn= = 53 [ (- 5 0w,
Tr=0 VX
_ [ : it d[% ZVk,r,n,p (- % )sk+r®(x)]
= foo eitxd - % Z yk,r,n,ph3k+r—l(x)¢(x)]
—oo =0
= o) - 6@ Y 5 Y ki) (4.23)
=1 =0
Define
s—k
o (0 =exp(- 5 Z ED NN (424)
=1 r=0
and

1 00
) = o [ Y ()t
21 J o Zup

Similar to the calculations of (4.21), we can get that

s s—k
@) = o) - 600 Y X phmahier ) (425)

k=1 r=0

Inserting (4.25) into (4.23), we have

P(Zyp < x)
) 1 ) s 1 s—k
= (Ds(x) - (,‘[)(X)[ Z ]F Z yk,r,n,ph3k+r—1(x) E Z‘ Yk,r,n,ph3k+r—1 (.’X')]
k=1 " r=0 =1 r=0
o0 00 00 s—k
= O (X) (,'[)(X)[ Z kl_' Z Virn, ph3k+r 1(x + Z % Z ykrnph3k+r 1X Z % Vk,r,n,ph3k+r—1(x)]
k=s+1 r=0 k=1 r=0

(o8]

= Di(x) - ¢(x)[z i Z Virnphaeer-1(x) + Z i annphskw 1(0)]-

r=s—k+1 k=s+1 r=0
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Note that h13¢4,-1(x) is bounded for any fixed x. Then for any fixed x, there is a positive function M1 (),
such that |h3xy—1(X)| £ M3gs—1(x). Thus, we have

|P(an < x) — Dy(x)]

(o] 1 (o)
< ¢(x)M3k+r 1(x)‘ Z I Yikrnp t Z E Z Ykrnpl- (4.26)
r=s— k+1 k=s+1 r=0
By Proposition 2.1, we know
b/k rn p|
k
2% 2p(r; 4+ 1)! r+2 O(r; + 2)(r; + 3)
O.r+3k Z H nn—p+ l)r1+1(,, +3)|[1 T T 3(n — 1y ]}
mp  rtetne=r o =1 p ! : n P+2 (I’l p+2)
24k 1 0
+ , 4.27
”3"(71 p+ 3k r1+Z:k - H (r + 2)(7’1 + 3) (m-p+3)(n+3) 3n-p+ %)2] 4.27)

where 11,1, -- -, 7, are all nonnegative integers which are not exceeding k.
Because of p — oo and p/n — ¢ € (0,1) as n — oo, we have that n —p + 1/2 — oo, and there exists
0 <a <n—p+1/2such that for any fixed 7,

1 0
)y H[ rz+2) n+3) (n—p+3)(r+3) +3(n—p+%)2]

rit+etre=r =1

1 0
= Z l_[[(rl+2)(rl+3) a(r;+3) 3a2]

ri+-+re=r =1

k
where Y, .o [T [m + m 2 | is bounded.
Proposition 2.1 reveals that 0, is also bounded, therefore
— 1
Virnp = O(W}
Note that ¢(x) is also bounded for any fixed x, then we get that
IP(Znp < x) — Ds(x)|

oM Y5 Y it Y2 Y i

k=1 r=s—k+1 k=s+1 r=0

IA

1
O( _ 1y\s+1 )
(n-p+3)
That is, for any x € R, we have

P(Zup < %) = ®4(x) + O gty )

Proof of Theorem 2.2. By the inverse Fourier transformation, for any x € R,
1 Pm® - ;p<t>
P(Zn,p Sx)_q)s(x) = %j:ooe x——it ’

we have

1 “1 )
suplP(Zoy <0 - 001 < oo [ ez 0= 0l
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1
< —L+Lh+1
27_[(1 2 3)/

where

L= fH L1z, (0 - @) (Ol
H<bw

f ez, (Bdt,
|t|>bw

I3 Zf H |(P(S) (t)|dt
|H>bew

with 0 < 2w/o,, <landb=n-p+ 1.

I

We will next complete the upper bound of I, I and I, respectively.

For the term I, we can get by (4.20) — (4.24) that

oz, (£) - <p‘s) ()

k' Z > Vinp + Z ;' Z i)y p

r=s—k+1 k=s+1 r=0
|t

IN

ot { z

Under the assumption of 0 < 2w/0,, < 1, for || < bw, we can get from (4.27) that

[ee]
Y 11kl
r=0

IN

T riteHre=r
o0 k
k 1
nba Z Onp r1+z H (r + 2)(rl + 3) b(rl + 3)
4p Vz 1 1
(nba; 2, H onp) 1+ 2 +3) b +3) 37

r=0 ri+-+re=r [=1

4 2 r 1 0
(nb:?’ Zo‘ Z H w Irl+3+5+@)

np =1 Onp
dp o 2wy, 11 O\

[nbgip ZO. (o_,,,) (m T @)]
3 4p K =1 2w N
= G [N G L)

Note thatfor0 < x < 1

i 1 xrzli Xtszt— 1 fxitHZdi’

r=0 r+3 X r=0 Y0 X 0 =0
= —zl—x—%——slog(l—x).

[Zm il — Z|t|’|yk,,np| Y sl

r=0 k=s+1 r=0

dp kS 2|t| k 1
(nbgz’ ) E l’Jan Z H (rn+2) (7‘1 +3) b(rl +3) 3b2

407

(4.28)

(4.29)

(4.30)
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Define

1 1 1 1 0
G =l 0 Ty Y s —

where 6 € (0, 1).
Thus we can rewrite (4.30) as

Z |t|"|yk,r,n,p| < [%Gn(j_w)]k, (4'31)
r=0 np np
which means
Y 't,l—?k Y
k=1 " r=s—k+1
s s—k
< Y G 1) - Xy
k=1 np np =0
s |t|3k 4 k 2 k S |f|3k s—k
- ey F(nbfz/p) [G"(%)] - £ _| L It |7/krnp| (4.32)
and
It P 4p 2w \qk
k§1 K ; Yl < kg;l k! [nb03 (o::)]
Aplt 2wt 1y 4plt 2w g
< [nbO?l,pGn(a)] kzzo‘ﬁ[nbcfz,pcn(an,p)]
dpwt? 2w\ o 1 pdpwt? 2wk
< [W%Gn(gp)] kZ; H[?;;mcn(@)]
_ 4pwt2 2w \15+1 4pwt2 2w
= [W%G(@)l exp[ﬁcn(@)]' (4.33)
Combining (4.32) and (4.33), we have
92, () = @5 (®)
S |t|3k 4 k 2 2 5 |t|3k sk . 2
_ W<nb£3,,p) [GH(GZ )] exp(-7)- ka WL 1 ksnplexp (=)
dpwt® 2w\t 4 tZ ) 2
+[%Gn(o::)] ) P[ - (%) -5/ (4.34)
Define
_ 4pw 2w
Hypw = EG(G—p)
Then we can rewrite (4.34) as
192, = 95 ®)
|t|3k 4 k 2 k 12 s |t|3k s—k 2
< ; F<nb:§’,p) [Gn(%)] exP(‘ 5)] - ; T L, I |j/kmp|exp( 2)
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+[(H,,,,,,,,,)t2]s+1 exp [ (Hinpo - %)tz]. (4.35)

Recall the definition of I'(@) in (2.7). We can reach to
bw
h=2 [ Hpr, -9 Ol
1 s
= o [tz o 0utt= [Tz, 0- 9 0]

b
0 13k 12 0 43k 2
< Zkl[nbo H 0 TeXp(_E)dt_ o Tow(-7)]
i ZZ |Vkrnv|[ f E dt f i tS]:r exp (- g)dt]
= bw
s+1 . 2t
+2[f nPw exp npwtz _ ;)dt— jb;,, M exp (Hn,p,wt2 - ;)df]
032 4 ) 3k k b w?
) T%a(ﬁ)] ()15 5
s s—k 2(3k+r)/2|7/ o, | 3k 3k b
e g
Spw ~(s+1) 8pw 2w \ps+l
e ) GG
x{l"(s +1) - F[s +1, 1722—W2(1 - %Gn(jz ))]}
- Ty, (4.36)

For the term I. By the well known fact ¢z, (—t) = ¢z,,(t), then we have |pz, ()| = lpz,,(t)| , and

1
L= f Loz, (bldt = f Lz, (1t (437)
b tsbw b
Let f = t/no,,, By (4.16) and (4.19) , we have

_ 1 T+ n””l’ 1 T
L = Zwa?E[exp(zt - |d —2f ?IE[exp(th )l|dt
11, 2e\~ipnt o (% —inf)
=2 (= 1-2ip-Fa-20|| 2227
LA a2
1
t

—inf
= 2f exp [ - P— log(1 + 477y — pnfarg (1 - 2zt)]|| )|dt. (4.38)
t>bw p( )
By the formula in Fujikoshi et al. (2010) [14] that
F(x + zy)
H [ x + k
we can get
1 pn - P = 1
L = 2f ~lexp| — = log(1 + 4F*) — pnf arg (1 — 2iF 2di‘
2 e = los( pnf arg( )][H_! ”J“+k
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1 ) - S
=2 j; bw;|e><p[—rﬂnfarg(1—21t)]|(1 +4P)F gg[n m)] at. (4.39)
Here
T f 2172 U2 = 3 V(P 1)
[T+ G =) T <IT I [+ (o] " <awapy (4.40)
j=1 k=0 = +k =1 k=0

where [j/4] denotes the integer part of j/4.

Note that arg (1 — 2if) € (0,27] and 0, is bounded by Proposition 2.1. When p/n — oo as n — o0, we
know pnfarg (1 - 2if) = parg (1 - 2if)t/d,,, — +c0 and exp[—pniarg (1 - 2if)] — 0.

Combining (4.37)-(4.40), we have

rm _plp-1)

1
L < 2f ~(1+4P) 5T at
t>bwt

" (p-1)
j“°1(1+ L
P2 U nzcgt,p

1 (1+ 4u )—%—”—‘ﬁg“d
b2w? )., n2g2 u
b2w np

1’120'2

4b2w2 V” p(ﬂ 1)+1

_ np (1+
Al 4 D _qt Py,
= Th(w). (4.41)
For the term I3 in (4.24), we can similarly get that

1 ksk
I; < 2];10 ?exp( Z i Ztlykmﬂ

k=1 r=0
k (oo}
= f —e_?dt 3 Z |7/k7’71p| t3k+r—1e—§dt
bw t k=1 k! r=0 bw
00 1 B s 1 s—k " o .
- ]l;zwz ;6 fdu + E [Vksm, v|23 ft;wl M32 Lo~ dy
2 k=1 " r=0 ==
2 pp N1 e 3k+r buw?
< bzwze * ot EZb/krnvp- ( 5 ,T)
k=1 r=0
= ) (4.42)
Collecting (4.28), (4.36), (4.41) and (4.42), we can complete the proof of Theorem 2.2. -

Proof of Proposition 2.1. We first prove the upper bound of K,(I,)p in (2.11). By the Stirling’s formula,
there exists 6y € (0, 1) such that
6o

1
¥ =logz— 5 + 1,

then, for any r > 1, the r-th derivative of Y(—L +1) can be written as

]+1

PO TIHL gy 2(r - 1)! 2 270(r + 1)!

-+l (- j+lt 3m—j+ e
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Then we have

K,(:,;S) — (_1)r+3 Zp: l]l)(r+2)(n _; + 1)

j=1

Z [ 22(r + 1) 2”2(1’ +2)! 27260, (r + 3)! ] (4.43)
(n—j+ l)r‘r2 (n—j+1y+  3nm—j+1)y+ '
for any r > 0.
According to the trigonometric inequality, we get that
(r+3)| 2”2(1’ +1)! N 2742y + 2)! 3 2720(r + 3)! ]
]' + 1)r+2 (1’1 — ] + 1)r+3 3(71 — ] + 1)r+4
4
< (A1 + Az + A3), (4.44)
j=1
where
22(r+ 1) O 22(r +2)! _2%20y(r + 3)!
L O T N O I N T I v
By the assumption n — p > 0 and results in Mitsui et al. (2015) [18], we can obtain that
P p r+2 1 P
LA = (2_f:ﬁi2=zﬂar+1ﬂ§:( —'11V”
j=1 =R =R
< 2V+2 |[ _ 1 ]
(n-p+ 1)r+1 (n+ %)r+1
2% 2p(r + 1)!
(n=p+3)n+3)
22(r + 1)
(r+ Dip (4.45)

(n—p+yin

And we can similarly get that

! 2%2(r + 2)Ip
ZAZ <—F— (4.46)
j=1 (n—p+ E)Hln

and

2200p(r + 3)!

A3 L ———mMm————.
’ 3n—p+3)+n

(4.47)

'M‘W

j=1
Combining (4.45)-(4.47), we know

e (r+3)| 27 2p(r + 1)! [1+ r+2 +(r+2)(r+3)60]
nn—p+ 3t m-p+i 3n-p+g?t

Letb=n—-p+1/2,because p — coand p/n — c € (0,1) as n — oo, we can get that b — oo and |K(r+3)| has
a upper bound, that is,

0] < “U+D'[ r+2 u+m@+a%]
- br+1n 3b2
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Then we prove the lower bound of oﬁ in (2.10). Simultaneously, we also demonstrate that 02 > 0 and
limy—e0 Gi,p > 0. By (2.10), we have

_2_p+i (1>(w)__2_p+ii
n 4 v =y (g 1+1 +R?2
j=1 k=0 j=1

Let f(x,y) =1/ (% + y)%. Then f(x,y) > 0 is a monotonically increasing function in regard to x for
0 < x < n and a decreasing function in regard to y for y > 0. Meanwhile, we have that

> w 1 1+4
ZZ (n j+1 +k)2 f f (n+1 X dXdy 210g 1+ 1_pr°
2 n n

k=0 ]:1

Letg(x) = —x + log . We can see that g(0) = 0 and

1+ 1

|
S

7@ = >0,

1
1+;—x

which means that g(x) is monotonically increasing for 0 < x < 1 and g(x) > 0, that is

1+1
2 p n
Gn,p>2[—ﬁ+10gm]>0.

Let h(y) = log 11 -y,y€(0,1),a > 1, we can see that #(0) = 0 and /'(y) = y > 0, which means that

h(y)is a monotonically increasing function for 0 < y < 1, then we have h(y) > 0, thh means

1

n

1+
17 _Z]:—2y+210g1

p
lim o> p_th[_E'HOg

n—oo 1, n—o0

1

> 0.
-y
And the proof of Proposition 2.1 is complete.m
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