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Generalized m-Schroder paths and the Chung-Feller property

Hua Xin**, Huan Xiong®

Institute for Advanced Study in Mathematics, Harbin Institute of Techonology, Harbin, 150000, Heilongjiang, P.R. China

Abstract. In this paper, we introduce a generalization of m-Schréder paths. For a fixed positive integer
m, the generalized m-Schroder paths are lattice paths that start at (0, 0), use the steps U = (1,1), H = (1, 0),
Vi = (0,-1), and V, = (0,-2) which are weighted respectively by 1, I, a and b, remain weakly above
the line y = “=lx, and end on this line. We use generating functions and Riordan arrays to discuss the
enumeration of the partial generalized m-Schroder paths and the free generalized m-Schroder paths, and
obtain a Chung-Feller property. In particular, when i = a = b = 1, we find that the number of generalized
m-Schroder paths of order n equals the number of hybrid (m + 1)-ary trees with # internal nodes.

1. Introduction

The Schroder numbers R, for nn > 0, occur in many enumeration problems. We list four of them:

(i) R, is the number of lattice paths from (0, 0) to (1, n) with steps (1,0), (0,1), and (1, 1), that never go
below the line y = x, see [2, 5,130} 133];

(if) Ry is the number of lattice paths from (0, 0) to (21, 0) with steps (1,1), (2,0), and (1, —1), that never go
below the line y = 0, see [30H32];

(iii) R, is the number of lattice paths from (0, 0) to (1, 0) with steps (1,1), (1,0), and (0, —1), that never go
below the line y = 0, see [17,[18];
(iv) R, is the number of di-sk trees with # internal nodes, where a di-sk tree is a complete binary tree in

which each internal node is labeled with either 1 or 2, but with the restriction that no internal node
has the same label with its left child, see [8H10), 13} 36].

For a positive integer m > 1, the m-Schréder numbers RY, for n > 0, also appear in various enumeration
problems. We mention four of them:

(1) Rf{") is the number of lattice paths from (0, 0) to (mn, n) with steps (1,0), (0,1), and (1, 1), that never go
below the line y = %x, see [11),28];

(ii) Rf{") is the number of lattice paths from (0, 0) to ((m + 1)n, (m — 1)n) with steps (1, 1), (2,0), and (1, -1),

: _ m-1 .
that never go below the line y = 7= x, see [37];

2020 Mathematics Subject Classification. Primary 11B83; Secondary 05A15, 05A19, 15B36.

Keywords. generalized m-Schroder path; generalized m-Schroder numbers; generating function; Riordan array; Chung-Feller
property; hybrid m-ary tree.

Received: 15 April 2025; Accepted: 18 November 2025

Communicated by Paola Bonacini

* Corresponding author: Hua Xin

Email addresses: xinh1028@gmail.com (Hua Xin), huan. xiong.math@gmail.com (Huan Xiong)

ORCID iDs: https://orcid.org/0009-0009-3689-6455 (Hua Xin), https://orcid.org/0000-0001-5401-7834 (Huan Xiong)



H. Xin, H. Xiong / Filomat 40:2 (2026), 703719 704

(iii) Rff") is the number of lattice paths from (0, 0) to ((m + 1)n,0) with steps (1,1), (1, —m), and (2,1 — m),
that never go below the line y = 0, see [24];

(iv) Rf{") is the number of di-sk (m + 1)-ary trees with n internal nodes, where a di-sk (m + 1)-ary tree is
a complete (m + 1)-ary tree in which each internal node is labeled with either 1 or 2, but with the
restriction that no internal node has the same label with its leftmost child, see [16} 36].

If m =1, then Rf}) = Ry, i.e., the 1-Schroder numbers are the classical Schroder numbers. In this paper,
we propose a generalization of m-Schroder numbers as follows.

Definition 1.1. Let m > 1. A generalized m-Schréder path of order n (or length mn) is a lattice path from (0, 0)
to (mn, (m — 1)n) that never goes below the line y = mT‘lx, with steps U = (1,1), H = (1,0), V; = (0,-1), and
Vi = (0,-2), weighted respectively by 1, h, a and b.

Let a be a path. We define the weight w(a), or |a, to be the product of the weights of all its steps. The
weight of a set A of paths, denoted by w(A) or | A, is the sum of the total weights of all paths in A.

Definition 1.2. Denote by R (1, a,b) the set of all generalized m-Schrider paths of order n with respect to this
weight assignment. We define R (h,a,b) = |R" (h,a,b)| the (h, a, b)-generalized m-Schrider numbers, or simply
the generalized m-Schroder numbers.

When i1 = a =1 and b = 0, the generalized 1-Schroder paths are the Schroder paths considered by [18].
When h = a = b = 1, there exists a natural bijection between RP(1,1,1) and the generalized Schroder paths
of order n considered in [35], which are paths from (0, 0) to (11, n) with steps (1,0), (1,1), (0, 1), and (0, 2), and
staying weakly below the line y = x. In [36], we established a bijection between the set of all hybrid binary
trees with n internal nodes and the set of generalized Schroder paths from (0, 0) to (1, ). Hence there is a
bijection from 72511)(1, 1,1) to the set of all hybrid trees with n internal nodes [23} [36]].

The main aims of this paper is to give a recurrence relation for the generating function of the gener-
alized m-Schréder numbers R;m) (h,a,b), as well as the explicit formula. Based on the generating function
Ry(t,h,a,b) =Y., Rilm)(h, a,b)t", we obtain the Riordan array expressions for the three combinatorial ma-
trices involving the generalized m-Schroder paths. Moreover, a Chung-Feller property for the generalized
m-Schroder paths is derived.

This paper is organized as follows. In the next section, we review the main properties of the Riordan
arrays which will be useful in this paper. In Section 3, we discuss the enumeration of generalized m-Schroder
paths. Then we count the set of all partial generalized m-Schroder paths from (0,0) to (mn, (m — 1)n + k)
and staying weakly above the line y = Z=1x. In Section 4, we study the set of all lattice paths from (0, 0) to
(mn, (m — 1)n + k) with no restriction. In Section 5, we prove the Chung-Feller property for the generalized
m-Schroder paths.

2. Riordan arrays

In the study of counting lattice paths, the use of Riordan arrays serves as an important tool. In the
following, we will recall the Riordan array and the (i, 7, s)-half of Riordan array. The concept of Riordan
array was introduced in [27, 29] as a generalization of the Pascal matrix. Recently, Riordan arrays have
been used widely in the enumeration of lattice paths [4, 14} 21, 25, 29]. Here we briefly recall the notion of
Riordan arrays. An infinite lower triangular matrix G = (gnk), rc 18 called a Riordan array if its column
k has generating function g(t) f(#)*, where g(t) and f(t) are formal power series with g(0) = 1, f(0) = 0 and
f'(0) # 0. The matrix corresponding to the pair g(f), f(t) is denoted by (g(t), f(t)). The set of all Riordan
arrays forms a group under ordinary row-by-column product with the multiplication identity (1, t), called
the Riordan group. If (s,)nen is any sequence having s(t) = Y., s,t" as its generating function, then for
every Riordan array (g(t), f(t)) = (gni)nieN

Y Gussi = [E"lgOs(F1). (1)
k=0
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This is called the fundamental theorem of Riordan arrays and it can be rewritten as

(g(), f(B) s(t) = g(B)s(f (1)) )

For an infinite lower triangular matrix G = (g, x)nren, the vertical half of G is defined as the infinite
lower triangular matrix (g2,—kn)uken- It is known that if G = (p(t), tq(t)) is a Riordan array, then its vertical
half is also a Riordan array [1}[15}21}22]135,36]. The following (m, r, s)-half of Riordan arrays are introduced
in [37,138].

Definition 2.1. Let G = (p(t), tq(t)) = (9nk),, s»0 be a Riordan array, and let m, r be positive integers and s a positive

fractional number such that ms is integral number. We define the (m,r,s)-half G of G as the lower triangular
infinite matrix whose (n, k) entry is Guns1yn+(ms—m—1)cr,mn+ms—myk+r, f0r 1 > k > 0, and it is zero if k > n.

Lemma 2.2. Let G = (p(t),tq(t)) = (gu ), 40 be a Riordan array and let f(t) be the generating function defined by
the functional equation f(t) = q (tf(t)"). Then the (m,r,s)-half Riodran array of G is given by

GO = (O PEFOFE ™ LFO™).
In particular,

G(m,O,l)

(EFE™Y pFO™FO™ O™, 3)
GUOSD = ((f "y pf OB 1B ). 4)

For example, suppose that we want to count the lattice paths using the steps U = (1,1) and H = (1,0). If
we assign each element p,,; to the number of such paths from (0,0) to (n, k), then we get the Pascal matrix

P = (pu)nken With p, . = (;). It can be expressed as the Riordan array P = (ﬁ, ﬁ)

On the other hand, if we assign each element g,,  to the number of such paths from (0, 0) to (k, 2n—k), then
we get the matrix G = (g )nren With g,k = (nfk). It can be expressed as the Riordan array G = (1, {(1 + ¢)).
It is not hard to check that P = (ﬁ, ﬁ) is the (1,0, 1)-half of G = (1, t(1 + 1)).

The Lagrange inversion formula will be used in the future. Several forms of the Lagrange inversion
formula exist (see [7,[12,130]). Here we need the following form.

Lemma 2.3. Let w = w(t) be the solution of the functional equation w = t¢(w), where P(t) is a formal power series
such that ¢p(0) # 0, and let F(t) be any formal power series. Then we have

["]F(w(t) = %[t"_llF’(t)Cb(t)”- (5)

3. The generalized m-Schroder paths and generalized m-Schroder matrix

Recall that a generalized m-Schrider path of order n (or length mn) is a lattice path from (0, 0) to (mn, (m—1)n)
which never goes below the line y = m7_1x, consists of steps U = (1,1), H = (1,0), V; = (0,-1), and
V3 = (0,-2), and these steps are weighted by 1, 1, a and b, respectively.

Let RV (h,a, b) denote the set of all generalized m-Schroder paths of order n with respect to this weight
assignment, and let R™(h,a,b) = |R™(h, a,b).

Theorem 3.1. The generating function R,,(t) = Ry(t, h,a,b) = Y17, RY)(h,a, b)t" satisfies the following equation
Ru(t) = 1+htR,(H)" +at R, ()™ + bt* R, (£}, (6)

and R (h, a, b) is given by

1 L nei mn+1\(n—i—j
RO(0,b) = ( | )( ], f)hfan—f—zw. ”
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Proof. Any nonempty path a € R (h,a,b) = U2, R (1, a,b) has a unique first return decomposition [7] of
one of the following forms:

o a=Up1UB2 - Up-1Bm-1HPBm,
o a=UB1UB UnPmV1Pm+1,

o a=UB1Up - Uom—1P2m—1UomPom VaPom+1,

where each B; denotes arbitrary path in R (h,a,b), each U; denotes step U = (1,1), and H = (1,0),
V1 =(0,-1), V2 = (0, -1) are steps. See Figure 1 for an illustration of this decomposition for m = 2.

Y
Y
Y

Figure 1: Decompositions of the generalized 2-Schroder paths.

From this decomposition and symbolic method of Flajolet [7] we can see that the generating function
Ru(t) = X220 R™ (h, a, b)" satisfies the equation

Ry(t) = 1+ bt Ry ()™ + at Ry ()™ + bt? R, (1)1,
By this equation, we know that
Ry(t) — at Ry ()™ = b2 R,y (H)?" 1 = 1 + ht R, (1)

It follows that

1+ htR, ()"

Ry(t) = )
m(®) 1 — at Ry ()™ — bi2 R,y (1)
Then, we can get
1+ ht Ry (£)™ "
R, ("™ =t
© (1 — at Ryy(t)" — b2 Ry (£)?"

Let ¢(t) = 1—1;;’—12#' w(t) = tRyy()™. Then, w(t) = top(w(t))” and R, (t) = ¢p(w(t)).
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Using the Lemma[2.3] we get that

R (h,a,b) =

[t 1R (t)
[* ] (w())

1[t71—1]¢/(t)¢(t)mn
[ ] (mn + 1¢(t)mn+1)

mn+1
mn +1 100

[tn] 1 14+ ht mn+1
mn+1\1-—at— bt?

[tn](l + ht)mrH-l (

1 )mrH—l

mn +1 1—at — bt?

mn+1

L mn+ 1), 1 i+l
mn + 1 ]Z( )h (1—at—bt2)

1 & mn + 1
n 141
mn+1[t]Z‘( i )ht

(at + bt?)

i
Z( )W b2y

j=0

)
1=0
)
1=0

o I
1 n mn A+ 1\(1\ i il
mn+1[t], ZZ( i )])h“ b't

1 "V 1\ —i—
mn+1 £ i j

j)hian—i—Zjbj.

707

O

Example 3.2. Let h = a = b = 1. The generating function R,(t) = Y., Ri,m)(l, 1, )" satisfies Ry, (f) = 1 +
tRyu(t)™ + t Ry (5" + £2 R,y (H)2™*1. For m > 1, we find that R,,(t, 1,1, 1) is the generating function of the number of
hybrid (m + 1)-ary trees [[16] 23] with n internal nodes. The following table displays the beginnings of the sequences

(R, 1, 1))

,for13m59.

R™@,1,1) 01 3 4 5 6 7 Annnnnn
RPa,1,1) [1]2] 7] 31 | 154 820 4575 26398 A007863
RPa,1,1) [1|2]11] 81 | e84 6257 60325 603641 | A215654
RY91,1,1) |12 |15 ] 155 | 1854 | 24124 | 331575 | 4736345 | A239107
R9a,1,1) [1[2]19] 253 | 3920 | 66221 | 1183077 | 21981764 | A239108
RP1,1,1) [ 12|23 | 375 | 7138 | 148348 | 3262975 | 74673216 | A239109
R91,1,1) | 1|2 ]27] 521 | 11764 | 290305 | 7585749 | 206294771 | A245050
R?1,1,1) [ 12|31 691 | 18054 | 515892 | 15615159 | 492007235 | A245051
RP1,1,1) [ 1|2 ]35] 885 | 26264 | 852909 | 29347189 | 1051325430 | A245052
RP,1,1) [ 1] 2391103 | 36650 | 1333156 | 51392991 | 2062946770 | A245053

Tuble 1. RU(1,1,1) for m = 1,2,3,4,5,6,7,8,9
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Example 3.3. Leth =a=1,andb=0. Form > 1, Ri,m)(l, 1,0) is the m-Schroder numbers, and the generating
function Ry(t) = Yoo RUV(1,1,0)t" satisfies Ry() = 1 + t Ry ()™ + £ Ry ()™, The following table displays the
beginnings of the sequences (Rﬁ,m)(l, 1, 0)) O,for 1<m<eé.

R™@,1,00]ol1] 2] 3 4 5 6 7 Annnnnn
RPa,1,00 |12 6] 22 ] 90 394 1806 8558 A006318
RP1,1,00 [1[2]10] 66 | 498 | 4066 | 34970 312066 | A027307
R91,1,00 | 12|14 | 134 | 1482 | 17818 | 226214 | 2984206 | A144097
RP1,1,00 |12 ] 18] 226 | 3298 | 52450 | 881970 | 15422018 | A260332
RP1,1,0) [ 1] 2|22 342 | 6202 | 122762 | 2571326 | 56031470 | A363006
R91,1,00 | 1|2 ] 26 | 482 | 10450 | 247554 | 6208970 | 162064322 | A371700

Table 2. RY(1,1,0) for m = 1,2,3,4,5,6

Example3.4. Leth=b=1,anda =0. Form > 1, R&m)(l,O, 1) is the m-Fuss-Catalan numbers [4], 15 [Zll, and the
generating function R, (t) = ¥.°0 R (1,0, 1)" satisfies Ry (f) = 1 + t Ry ()™ + 12 Ry ())?™*L. The following table
displays the beginnings of the sequences (Rff’)(l, 0, 1))n>0, forl<m<7.

R™@,0n]ol1]2]3] 4 5 6 7 Annnnnn
RPa,001) [1]1]2]5 | 14 | 4 132 429 | A000108
RP1,01) |11 |3]12] 55 | 237 | 1428 7752 | A001764
RP1,01) [1[1]4|22] 140 | 969 | 7084 | 53820 | A002293
RP1,01) [1|1]5]35] 285 | 2530 | 23751 | 231880 | A002294
RP1,0,1) [1 16|51 ] 506 | 5481 | 62832 | 749398 | A002295
RO1,01) [1|1]7]70] 819 | 10472 | 141778 | 1997688 | A002296
RP1,0,1) | 1|1 ]8]92] 1240 | 18278 | 285384 | 4638348 | A007556

Tuble 3. R¥(1,0,1) for m = 1,2,3,4,5,6,7

Example 3.5. When m = 1, we obtain some other interesting sequences, which are listed in the following table.

RPmab)y o1 2] 3 ] 4 5 6 7 8 Annnnnn
RPoO,1,1) [1]1] 3] 10|38 | 154 | 654 | 2871 | 12925 | A001002
RP1,1,2) [1]2] 8 | 40 | 224 | 1344 | 8448 | 54912 | 366080 | A151374
RP@2,1,2) [ 1 ]3] 14| 83 | 554 | 3966 | 29756 | 230915 | 1838162 | A215661
RP1,2,2) [ 1 ]3] 17] 121 | 965 | 8247 | 73841 | 683713 | 6493145 | A216314
RP©,1,00 [ 13 ]12] 57 [ 300 | 1686 | 9912 | 60213 | 374988 | A047891
RP1,2,00 [ 1]3]15] 93 | 654 | 4791 | 37275 | 299865 | 2474025 | A103210
RPo0,1,2) [1]1] 4] 15| 68 [ 322 | 1608 | 8283 | 43780 | A250886
RP1,02 [1]1]3] 9 |3 ] 125 | 503 | 2081 8849 | A049171
RP©O,2,1) [1]2] 9 [ 50 | 311 | 2072 | 14460 | 104346 | 772255 | A192945

Table 4. Rﬁ,l)(h, a, b) for some specific h, a, b.

The partial generalized m-Schroder paths are the prefixes of the generalized m-Schroder paths. In this part,
we enumerate partial generalized m-Schroder paths ending at (mn, (m — 1)n + k) with respect to the length.

Let qu";)(h, a, b) be the set of all lattice paths from (0, 0) to (mn, (m — 1)n + k) and staying weakly above the
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line y = 2=1x, let R (1, a,b) = [R"")(1,a,b)|. We call the matrix R"(,a,b) = (R")(h,a, b))n,keN the generalized
m-Schroder matrix. We also write R = (qu";())n o for short.

Let fi(t) be the generating function for the partial generalized m-Schroder paths ending at (mn, (m —
In + k), ie., fillt) = Yook quyf’]g(h,a, b)t". According to the above result, for k = 0, we obviously have
fo(t) = Ry(t), here Ry (t) is the generating function of the generalized m-Schroder numbers. For k > 0, a
partial generalized m-Schroder path ending at (mn, (im — 1)n + k) is in the form of a(UB)", where a,f €
RM(h,a,b) = Uy R,(f")(h, a,b) and each U = (1, 1) is an up step, see the paths in Figure 2 for examples. Then,
we obtain fi(t) = Ry, (t) (tRm(t)m)k . As a consequence, we deduce the following result.

A

Figure 2: The decompositions of a path @ € R% and f € Rg

Theorem 3.6. Let R:? (h, a, b) be the set of all lattice paths from (0, 0) to (mn, (m — 1)n + k) and staying weakly above
the line y = “=Lx, and let R (1, a,b) = |R")(h, a,b). Then

R(m) = (Ri(/l?;())n,keN = (Rm(t), tRm(t)m)/ (8)

where Ry (t) = Ry(t, h,a,b) =Y., R™(h,a, b)t", as defined in (6).

4. The free generalized m-Schréder paths

Let m > 1. A free generalized m-Schroder path is a lattice path starting from (0,0), using the steps
{U=(1,1),H=(@1,0),V: = (0,-1), V, = (0,-2)} which are weighted respectively by 1, k, a and b. A grand
generalized m-Schrioder path of order n (or length mn) is a free generalized m-Schroder path from (0,0) to
(mn, (m — 1)n).

Let G(n, k) be the set of all free paths ending at the point (k, 2k — 1), and let g, x = |G(n, k)|. Then we get
the array G = G(h,4,b) = (gux)nken. In Figure 3, we give a schematic illustration of dependence of g1 k+1
on the other elements in the array. Thus we deduce the recurrence:

Tn+1,0 = agno +bgu_10, )
In+1k+1 = YGnk T hgn—l,k +agnk+1 + bgn—l,k+1r (10)

with the initial condition ggo = 1.
For k > 0, let gk(t) = X.p i gnit". Then, from (9) and (10), we obtain that

go(t)
Fra1(t)

1+ atgo(t) + bt*go(t),
tgi(t) + h? gi(t) + atgee (1) + b grga (B).
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A
Ja4
g33 g5 4
74%) G4 Jn—~1 k+1
g1 g3 Js.3 Jnk+1

70,0 oA 94 - Fn—~1k Tiikel
g1,0 Uk J52 Tk
92,0 4
93,0 g5
g4,0

Figure 3: The matrix (g,,x),, o and recurrence of the entries

nke

Hence, we have

+ ht? 1
Gen(t) = 7= a0d), goB) = 37— —7.

Consequently,

") = 1 t+n2 \f
I =T e \1=at—pi2|

Therefore, we proved the following theorem.

Theorem 4.1. The matrix G(h,a,b) = (gn), yen an be represented by a Riordan array as

2
G(h,a,b)z( 1 t+ ht )

1—at—b2" 1 —at— b2

Theorem 4.2. The general term of the array G(h, a, b) is

n k . . . .
gusab) = Y )° (’f)(“ o ])(” -k o f)hfan—k—i—szf.

=0 i=0
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Proof. From the definition of the Riordan array, we have

! t+h2 \*
k= T—at—b2\1—at — b2

= M+ ko (;btz)kﬂ

- tnk]z(k) (—at—th)
= [t "]ii(’f)( )hlt(at+bt2)’

i=0 1|

0
o
K\(k+ NI\, i iy i
— [t"_k] ()( )(,)hlﬂl_]b]tlﬂ_”
;; =i \1 I \j

r ]

(k)(” —i= f)(” —k - i= j)hian—k—i—zjbj.
=0 =0\ k J

k+1

O
For example, in the case h = a = b = 1, the first few terms of the array G(1,1, 1) are
1 0 0 0O O 0 O
1 1 0O 0 0 0 O
2 3 1 0 0 0 O
3 7 5 1 0 0 O
! , b 5 15 16 7 1 0 0 (11)
1—-t-12"1-t-12
8 30 43 29 9 1 0
13 58 104 95 46 11 1

The first column is the Fibonacci numbers (A000045 [26]).
Let (Ll(m) (h,a,b) be the set of all free generalized m-Schroder paths ending at (mn, (m — 1)n + k) with no

other restriction, and let U(m) = I(L[S';c)(h, a,b)|. Then the array U™ (h,a,b) = (US’?)n is the (m,0,1)-half

of the matrix G(h,a,b) = (Gux), rens 1€ uil";() = Guusiyukmn- We call U™(h,a,b) = (U(m)) .

generalized m-Schroder matrix. In particular, the element qu"g is the total weight of grand generalized
m-Schréder paths of order n.

the grand

Theorem 4.3. The matrix U™ (h,a,b) = (U:’;{))n LN is a Riordan array given by

(R (D)) Ry (541
1+ htR,,(t)"

U™m,a,b) = ( ,tRm(t)’”). (12)

where R, (t) is determined by the equation

Ry(t) = 1+ IR, ()™ + atR,,, ()™ + b2R,,(£)*" .
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Proof. By the definition of U™ (h,a,b), we know that U™ (h,a,b) is the (m, 0, 1)-half of

1 t + ht?
—at — b2’ 1 —at — b2

cmmm=@ ):wammy

From Lemma 2.2
U (h,a,b) = ((LFO™) p O™ FE" L"),

where f(t) be the generating function defined by the functional equation

1+ htf(tym
L—atf(t)" = b(tf(tym)?

O =qf®)") =

Thus, we have

f() = 1+htf()" +atf(£)"" + b2 f(HP".
It follows from (6) that f(t) = R,(t), the generating function for the generalized m-Schréder paths. Hence,

mys 1 -
O™ 3 T _b(tf(t)m)Zf(t)

(L™ (!
F(HA = atf(E)™ — b(tf(E)™)?)

1+ htf(t)ym
(ER(H)™Y R, (1)1
1+ htR,,(t)"

") pEfFO™) O™

This completes the proof. [J

Theorem 4.4. Forn >k > 0, we have

(m+Dn—k mn . .
u(ﬂ;() _ ’"21 Z (mn)((m +1)n—-k-i- ])(ﬂ -k — 1— ])hia"‘k_i‘szf,

i mn
j=0 i=0 J

Proof. From Theorem 4.2} we get the formula for Uf:’;(). O

5. The Chung-Feller property

Denoting by Z)ff) the sets of lattice paths from (0, 0) to (2n,0) using up steps U = (1, 1) and down steps
D = (1,-1) with exactly k up steps below the line y = 0. The well-known Chung-Feller theorem asserts that
the sets @5[0), Z)ﬁll), e, Z)ﬁ,”) all have the same cardinality ﬁ(znn), the nth Catalan number, see [3}16,19]20, 34].
The Chung-Feller property for other type paths was investigated in [6} [19} 20} [34}, 37]. In [35], the authors
proved a Chung-Feller property for the generalized Schroder paths.

In this section, we will present a Chung-Feller property for the generalized m-Schroder paths.

Recall that Ui"? = FL(E"Q (h,a,b)|, where (LISZ) (h,a,b) is the set of all free generalized m-Schréder paths from

(0,0) to (mn, (m — 1)n + k), and Ril"]'() = IRZ’? (h,a,b)|, where R%(h, a,b) is the set of all generalized m-Schroéder
paths from (0, 0) to (mn, (m — 1)n + k) staying on or above the line y = mT_lx. In the following theorem, we

give a connection between the first two columns of U™, a,b) = (LI:C’() (h,a, b))}7 LN and the first column of
" _ (pm '
RO (h,a,b) = (R (h, a, b))n,ke]N'
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Theorem 5.1. For n > 0, we have
(mn+DRYY = U +hUl. (13)

Proof. From Theorem

(R ()™) Ry (£)*1
1+ htR,,(H)"

U(m)(h, a,b) = Gmo1  — ( ,tRm(t)’”) .

Applying the fundamental theorem of Riordan arrays (2), we get that
(tRu(t)")" Ru(t)™"*!
1+ htR,,(t)"
(tRm(t)m)’ Rm(f)_m+1
1+ htR,,(t)"
(FRuw(1)") Riu(t)™ .

GmOD . (1+ht) =

, tRm(t)m) (1 +ht)

(1 + htRu(B)™)

By extracting the coefficient [#"] from the generating functions on both sides of the above equation, we
arrive at

(m) (m)
Un,O + hun,1

[£"1G"™OD . (1 + ht)

=[] (R (D)") Ru(H)™™

= [ (Ru(®)" + mtRu(t)" Ry () ) R(t)' ™
= [f"IRu(b) + [F'1mtRu(t)’

= ["IRu(t) + m[t" R, (t)

= [FIRu(t) + mn[t"]R(t)

= (mn+ D[t"IR.(t)

= (mn+ l)RfZg,

hence the result follows. [
When m = 1, we can obtain the Theorem 4.1 in [35].
Corollary 5.2. For n > 0, we have
n+1VY = U +hUl).

In the following, we will give a bijective proof of the Theorem 5.1. We can easily obtain the following
two lemmas.

Lemma 5.3. For a free generalized m-Schroder path o from (0,0) to (mn + 1,mn — n + 1), the number of up or
horizontal steps in a is mn + 1.

Lemma 5.4. Let U(m)(mn + 1,mn — n + 1) be the set of all free generalized m-Schroder paths from (0,0) to (mn +
1, mn —n + 1) ending with an up or horizontal step. Then

Ia(m)(mn +1,mn—-n+1)|= US’B) + hll:"l).

To give a bijection proof of Theorem we should introduce a special point for a lattice path. We view

a free generalized m-Schroder path o € U m)(mn +1,mn —n + 1) as a sequence of points

a = (xo, Yo)(x1, y1)(x2, Y2) - - - (Xn=1, Yn-1)(X1, Y1),
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where (xo,10) = (0,0) and (x;,y;)) = (mn + 1,mn — n + 1), such that (x;j — xj-1,y; — yj-1) = s; € S =
{(1,1),(1,0),(0,-1),(0,-2)} for each 1 < j < I. A lowest point (x;,y;) is a point in the path a such that
yi— lx; <yj—2lx;forall j=0,1,2,--- 1. A rightmost lowest point (x;,y;) is a lowest point such that i > j
if (x;, ;) is also a lowest point and j # i. For example, the rightmost lowest point of the lattice path in the
left of Figure 3 is (6, 3), and the rightmost lowest point of the lattice path in the right of Figure 3 is (5,2). In
Figure 4, the rightmost lowest point of the lattice paths are marked with small circles.

Forj=1,2,...,mn,mn+1,let l_I(m’])

(mn+1, mn —n+ 1) be the subset of l_l(m)(mn +1,mn—n+1) in which

each lattice path has j up or horizontal steps after its rightmost lowest point. Then {U(m'])(

mn+1,mn —
n+1):1<j<mn+1}is a partition of a(m)(mn +1,mn —n + 1) with mn + 1 parts. We will show that
{l_l(m'j)(mn +1,mn-n+1):1<j<mn+ 1} uniformly partitions the set l_l(m)(mn + 1,mn —n + 1) and each
|ﬁ(m'j)(mn +1,mn—-n+1)| = |R%) (h,a,b)| = R%). Consequently

——(m) _ (m)
U (mn+1,mn—-n+1)=mn+ 1)Rn'%.

For instance, when m = 2 and n = 1, IU(Z)(B, 2)| = u® + Uﬁ = 3R§2()). Figure 4 shows the set U(z)(B, 2) is

1,0
partitioned into 3 blocks U(Z’D(S, 2),j=1,2,3,and IU(Z'1 (3,2) = |ﬁ(2'2)(3, 2)| = |U(2'3)(3, 2)| = R(lz()) =2.

=

Theorem 5.5. There is a bijection between the set R%)(h, a,b) and the set U(m'j)(mn +1,mn-n+1)forj=
1,2,--- ,mn+1.

Proof. When j =1, a(m'l)(mn + 1, mn — n + 1) is the subset of U(m)(mn +1,mn —n + 1) in which each lattice
path has 1 up or horizontal step after its rightmost lowest point. For each « € U(m'l)(mn +1,mn—n+1),
its last step must be an up step and the rightmost lowest point is the starting point of the last step. Hence
a = U, where U = (1,1) is an up step and f is a path from (0, 0) to (mn, mn — n) staying on or above the line
y="ly e, pe 7(2%)(11, a,b). It follows that

T (mn +1,mn —n +1) = (BU; § € V™ (,0) and U = (1,1)},

and IU(m'l)(mn +1,mn—n+1)= R;"g. Forany € R;"g(h, a,b), define ¢o(B) = BU, where U = (1,1) is an up
step. Obviously, ¢y is a bijection between RL"g(h, a,b) and U(m'l)(mn +1,mn—n+1).

—(m, i —(m, i+1
We now proceed to give a bijective map ¢; : a” ])(mn +1mn-n+1)— "y

any 1 < j < mn.

Leta € U(m'])(mn +1,mn—n+1),ie., aisa path from (0,0) to (mn + 1, mn — n + 1) such that there are

j up or horizontal steps after the rightmost lowest point of @ and the last step of « is an up or horizontal
step. Then the path a can be decomposed as

(mn+1,mn—-n+1) for

a = BoSp1UBs,

where S is the first appearance of up or horizontal step, U is the up step after the rightmost lowest point,
Bo is an initial section (possibly empty) consisting of vertical steps V1 = (0,-1) or V, = (0,-2), f1 is the
remaining section (possibly empty) between the step S and the step U, f8; is the terminal section which
contains j — 1 up or horizontal steps. Now we define

¢j(a) = B1UPBPoS.

—(m,j+1
According to the construction of the map ¢;, ¢;(a) € a™ty

(mn +1,mn —n+1). An example of a path
a € U(z'l)(7, 4) and the corresponding ¢1(a) € U(Z'z)(7, 4) are illustrated in Figure 3. The maps ¢; from

U(2’i)(3, 2) to l_I(Z'i+l)(3, 2) fori = 1,2, are illustrated in Figure 4. O
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From the above discussion, we obtain the following theorem.

Theorem 5.6. Let U (mn +1,mn —n + 1) be the set of all free genemlzzed m-Schroder paths from (0,0) to

(mn +1,mn — n + 1) ending with an up or horizontal step, and let " (mn +1,mn — n + 1) denote the subset of
such paths with j up or horizontal steps after its rightmost lowest point. Then for n > 1, we have

'j)(mn+1,mn—n+l)| =R1(1"3, j=12,--- ,mn+1.

I

Figure 3: Apatha e U (7 4) and ¢1(a) € U (7 4)

The classical Chung-Feller theorem can be restated as the special case of a = 1 and & = b = 0 in Theorem
5.6.

Corollary 5.7. Let " (mn +1,mn —n + 1) be the set of all free paths from (0,0) to (mn +1,mn —n+ 1) using up

steps U = (1, 1) and vertical steps V1 = (0, —1) and ending with an up step, and let U (mn +1,mn—n+1) denote
the subset of such paths with j up steps after its rightmost lowest point. Then for n > 1, we have

—(m, ] 1 +1 )
IU(m ])(mn +1,mn—n+1) = _((m )n)’ j=12,--- ,mn+1.
mn+1 n
(2 1) (3.2) (2 2) (3.2) (2 3) (3.2)
o1 ¢2
— —
& 1<,

b1 ¢z
— —

Figure 4: The set u® (3 2) of free generalized m Schroder paths from (0, 0) to (3,2) ending with an up or horizontal step is uniformly

partitioned into three blocks U (3 2) with |U (3 2)=2= Rgz[)), i=1,23.
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Example 5.8. Let h =a = b = 1. The begins of G(1,1,1) = ( 1 A+ ) are given in ([L1)), and

1-t—t27 1-t—12

1 0 0 0 00
2 1 0 0 0 0
7 4 1 0 0 0
RO1,1,1) = (Ry(t), tRyt)) =| 31 186 100 ,
154 90 33 8 1 0
820 481 185 52 10 1
1 0 0 0 0 0
3 1 0 0 0 0
) 16 5 1 0 0 0
u<1><1,1,1)=(—(tR1(”) ,tRl(t>)= % 29 7 1 0 0 -
1+ tRq(t) 591 179 46 9 1 0
3780 1140 303 67 11 1
where Ry(t) = 1 + tR(t) + tR1(t)? + 2Ry (t)°.
It is easy to see that
n+ DRV = uh) +ul.
1 0 0 0 00
2 1 0 0 0 0
11 6 1 0 0 0
RA(1,1,1) = (Ra(t), tRy(p?) =| 81 45 10100 ,
684 383 95 14 1 0
6257 3519 925 161 18 1
1 0 0 0 0 0
5 1 0 0 0 0
, 46 9 1 0 0 0
2
U(z)(l,l,l): (tRz(t)) ,tRz(t)z — 475 92 13 1 0 0 ,
Rao(t)(1 + tRa(t)?) 5161 995 154 17 1 0
57727 11100 1083 232 21 1

where Ry(t) = 1 + tRa(t)? + tRy(t)® + t2Ro(t)°. The following identity holds
@  _ () (2)
2n + 1)Rn,0 = un,O + un,l.

Example 5.9. Leth=b=1anda = 0. Then

716

(14)

(15)
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N W= O oo

GL01) = ( 1 t(1+t)):

1-12" 1-12

OCROROROR
B W WRN R RO
O R NRR OO
I el NeNo N
ORr o000 O0O
— o 0000 oo

B~ = =
NN~ O
W= OO

166 86 40 16

—_
—_
Ql —m O © © O

_ O O O o O

N~ =
G N~ O
[ W)

B — o oo

— oo oo

RY(1,0,1) = (COCH)=| 14 14 9
42 42 28 14 5
132 132 90 48 20

AR O OO OO
_ O O O O o o

where C(t) = Yoo Cut" = =172 is the generating function of the Catalan numbers, and B(t) = Yoy (/)" =
is the generating function of the central binomial coefficients. For these matrices, we have

(n+ DR = Uy + U,
2 _ Bs(t) 2
U0 = T agmna r men 20
1 0 0 0 0O 0 0
2 1 0 0 0O 0 0
11 4 1 0 0O 0 0
62 22 6 1 0O 0 0
= 367 128 37 8 1 0 0 ’
2232 771 230 5 10 1 O
13820 4744 1444 376 79 12 1

717

1

V1-4t

(16)
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ROL,0,1) = (Bs(t),tBs(t))

1 0 0 0 0 0 O
1 1 0 0 0 0 O
3 3 1 0 0 0 O
12 12 5 1 0 0 O
= 55 5 25 7 1 0 O ’
273 273 130 42 9 1 O
1428 1428 700 245 63 11 1

where B3(t) is the generating function of the 3-Fuss-Catalan numbers. For these matrices, we have the following
relation

@  _ 2 @
@n+ DRy = U+ U (17)
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