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Available at: http://www.pmf.ni.ac.rs/filomat
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Abstract. In this paper, we introduce a generalization of m-Schröder paths. For a fixed positive integer
m, the generalized m-Schröder paths are lattice paths that start at (0, 0), use the steps U = (1, 1), H = (1, 0),
V1 = (0,−1), and V2 = (0,−2) which are weighted respectively by 1, h, a and b, remain weakly above
the line y = m−1

m x, and end on this line. We use generating functions and Riordan arrays to discuss the
enumeration of the partial generalized m-Schröder paths and the free generalized m-Schröder paths, and
obtain a Chung-Feller property. In particular, when h = a = b = 1, we find that the number of generalized
m-Schröder paths of order n equals the number of hybrid (m + 1)-ary trees with n internal nodes.

1. Introduction

The Schröder numbers Rn, for n ≥ 0, occur in many enumeration problems. We list four of them:

(i) Rn is the number of lattice paths from (0, 0) to (n,n) with steps (1, 0), (0, 1), and (1, 1), that never go
below the line y = x, see [2, 5, 30, 33];

(ii) Rn is the number of lattice paths from (0, 0) to (2n, 0) with steps (1, 1), (2, 0), and (1,−1), that never go
below the line y = 0, see [30–32];

(iii) Rn is the number of lattice paths from (0, 0) to (n, 0) with steps (1, 1), (1, 0), and (0,−1), that never go
below the line y = 0, see [17, 18];

(iv) Rn is the number of di-sk trees with n internal nodes, where a di-sk tree is a complete binary tree in
which each internal node is labeled with either 1 or 2, but with the restriction that no internal node
has the same label with its left child, see [8–10, 13, 36].

For a positive integer m ≥ 1, the m-Schröder numbers R(m)
n , for n ≥ 0, also appear in various enumeration

problems. We mention four of them:

(i) R(m)
n is the number of lattice paths from (0, 0) to (mn,n) with steps (1, 0), (0, 1), and (1, 1), that never go

below the line y = 1
m x, see [11, 28];

(ii) R(m)
n is the number of lattice paths from (0, 0) to ((m + 1)n, (m − 1)n) with steps (1, 1), (2, 0), and (1,−1),

that never go below the line y = m−1
m+1 x, see [37];
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(iii) R(m)
n is the number of lattice paths from (0, 0) to ((m + 1)n, 0) with steps (1, 1), (1,−m), and (2, 1 − m),

that never go below the line y = 0, see [24];
(iv) R(m)

n is the number of di-sk (m + 1)-ary trees with n internal nodes, where a di-sk (m + 1)-ary tree is
a complete (m + 1)-ary tree in which each internal node is labeled with either 1 or 2, but with the
restriction that no internal node has the same label with its leftmost child, see [16, 36].

If m = 1, then R(1)
n = Rn, i.e., the 1-Schröder numbers are the classical Schröder numbers. In this paper,

we propose a generalization of m-Schröder numbers as follows.

Definition 1.1. Let m ≥ 1. A generalized m-Schröder path of order n (or length mn) is a lattice path from (0, 0)
to (mn, (m − 1)n) that never goes below the line y = m−1

m x, with steps U = (1, 1), H = (1, 0), V1 = (0,−1), and
V2 = (0,−2), weighted respectively by 1, h, a and b.

Let α be a path. We define the weight w(α), or |α|, to be the product of the weights of all its steps. The
weight of a setA of paths, denoted by w(A) or |A|, is the sum of the total weights of all paths inA.

Definition 1.2. Denote by R(m)
n (h, a, b) the set of all generalized m-Schröder paths of order n with respect to this

weight assignment. We define R(m)
n (h, a, b) = |R(m)

n (h, a, b)| the (h, a, b)-generalized m-Schröder numbers, or simply
the generalized m-Schröder numbers.

When h = a = 1 and b = 0, the generalized 1-Schröder paths are the Schröder paths considered by [18].
When h = a = b = 1, there exists a natural bijection between R(1)

n (1, 1, 1) and the generalized Schröder paths
of order n considered in [35], which are paths from (0, 0) to (n,n) with steps (1, 0), (1, 1), (0, 1), and (0, 2), and
staying weakly below the line y = x. In [36], we established a bijection between the set of all hybrid binary
trees with n internal nodes and the set of generalized Schröder paths from (0, 0) to (n,n). Hence there is a
bijection from R(1)

n (1, 1, 1) to the set of all hybrid trees with n internal nodes [23, 36].
The main aims of this paper is to give a recurrence relation for the generating function of the gener-

alized m-Schröder numbers R(m)
n (h, a, b), as well as the explicit formula. Based on the generating function

Rm(t, h, a, b) =
∑
∞

n=0 R(m)
n (h, a, b)tn, we obtain the Riordan array expressions for the three combinatorial ma-

trices involving the generalized m-Schröder paths. Moreover, a Chung-Feller property for the generalized
m-Schröder paths is derived.

This paper is organized as follows. In the next section, we review the main properties of the Riordan
arrays which will be useful in this paper. In Section 3, we discuss the enumeration of generalized m-Schröder
paths. Then we count the set of all partial generalized m-Schröder paths from (0, 0) to (mn, (m − 1)n + k)
and staying weakly above the line y = m−1

m x. In Section 4, we study the set of all lattice paths from (0, 0) to
(mn, (m − 1)n + k) with no restriction. In Section 5, we prove the Chung-Feller property for the generalized
m-Schröder paths.

2. Riordan arrays

In the study of counting lattice paths, the use of Riordan arrays serves as an important tool. In the
following, we will recall the Riordan array and the (m, r, s)-half of Riordan array. The concept of Riordan
array was introduced in [27, 29] as a generalization of the Pascal matrix. Recently, Riordan arrays have
been used widely in the enumeration of lattice paths [4, 14, 21, 25, 29]. Here we briefly recall the notion of
Riordan arrays. An infinite lower triangular matrix G =

(
1n,k

)
n,k∈N is called a Riordan array if its column

k has generating function 1(t) f (t)k, where 1(t) and f (t) are formal power series with 1(0) = 1, f (0) = 0 and
f ′(0) , 0. The matrix corresponding to the pair 1(t), f (t) is denoted by (1(t), f (t)). The set of all Riordan
arrays forms a group under ordinary row-by-column product with the multiplication identity (1, t), called
the Riordan group. If (sn)n∈N is any sequence having s(t) =

∑
∞

n=0 sntn as its generating function, then for
every Riordan array (1(t), f (t)) = (1n,k)n,k∈N

n∑
k=0

1n,ksk = [tn]1(t)s( f (t)). (1)
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This is called the fundamental theorem of Riordan arrays and it can be rewritten as(
1(t), f (t)

)
s(t) = 1(t)s( f (t)). (2)

For an infinite lower triangular matrix G = (1n,k)n,k∈N, the vertical half of G is defined as the infinite
lower triangular matrix (12n−k,n)n,k∈N. It is known that if G =

(
p(t), tq(t)

)
is a Riordan array, then its vertical

half is also a Riordan array [1, 15, 21, 22, 35, 36]. The following (m, r, s)-half of Riordan arrays are introduced
in [37, 38].

Definition 2.1. Let G =
(
p(t), tq(t)

)
=

(
1n,k

)
n,k≥0 be a Riordan array, and let m, r be positive integers and s a positive

fractional number such that ms is integral number. We define the (m, r, s)-half G(m,r,s) of G as the lower triangular
infinite matrix whose (n, k) entry is 1(m+1)n+(ms−m−1)k+r,mn+(ms−m)k+r, for n ≥ k ≥ 0, and it is zero if k > n.

Lemma 2.2. Let G =
(
p(t), tq(t)

)
=

(
1n,k

)
n,k≥0 be a Riordan array and let f (t) be the generating function defined by

the functional equation f (t) = q
(
t f (t)m)

. Then the (m, r, s)-half Riodran array of G is given by

G(m,r,s) =
(
(t f (t)m)′p(t f (t)m) f (t)r−m, t f (t)ms) .

In particular,

G(m,0,1) =
(
(t f (t)m)′p(t f (t)m) f (t)−m, t f (t)m)

, (3)

G(m,0, m+1
m ) =

(
(t f (t)m)′p(t f (t)m) f (t)−m, t f (t)m+1

)
. (4)

For example, suppose that we want to count the lattice paths using the steps U = (1, 1) and H = (1, 0). If
we assign each element pn,k to the number of such paths from (0, 0) to (n, k), then we get the Pascal matrix
P = (pn,k)n,k∈N with pn,k =

(n
k
)
. It can be expressed as the Riordan array P =

(
1

1−t ,
t

1−t

)
.

On the other hand, if we assign each element 1n,k to the number of such paths from (0, 0) to (k, 2n−k), then
we get the matrix G = (1n,k)n,k∈N with 1n,k =

( k
n−k

)
. It can be expressed as the Riordan array G = (1, t(1 + t)).

It is not hard to check that P =
(

1
1−t ,

t
1−t

)
is the (1, 0, 1)-half of G = (1, t(1 + t)).

The Lagrange inversion formula will be used in the future. Several forms of the Lagrange inversion
formula exist (see [7, 12, 30]). Here we need the following form.

Lemma 2.3. Let w = w(t) be the solution of the functional equation w = tϕ(w), where ϕ(t) is a formal power series
such that ϕ(0) , 0, and let F(t) be any formal power series. Then we have

[tn]F(w(t)) =
1
n

[tn−1]F′(t)ϕ(t)n. (5)

3. The generalized m-Schröder paths and generalized m-Schröder matrix

Recall that a generalized m-Schröder path of order n (or length mn) is a lattice path from (0, 0) to (mn, (m−1)n)
which never goes below the line y = m−1

m x, consists of steps U = (1, 1), H = (1, 0), V1 = (0,−1), and
V2 = (0,−2), and these steps are weighted by 1, h, a and b, respectively.

Let R(m)
n (h, a, b) denote the set of all generalized m-Schröder paths of order n with respect to this weight

assignment, and let R(m)
n (h, a, b) = |R(m)

n (h, a, b)|.

Theorem 3.1. The generating function Rm(t) = Rm(t, h, a, b) =
∑
∞

n=0 R(m)
n (h, a, b)tn satisfies the following equation

Rm(t) = 1 + ht Rm(t)m + at Rm(t)m+1 + bt2 Rm(t)2m+1, (6)

and R(m)
n (h, a, b) is given by

R(m)
n (h, a, b) =

1
mn + 1

mn+1∑
i=0

n−i− j∑
j=0

(
mn + 1

i

)(
n − i − j

j

)
hian−i−2 jb j. (7)
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Proof. Any nonempty path α ∈ R(m)(h, a, b) =
⋃
∞

n=0 R
(m)
n (h, a, b) has a unique first return decomposition [7] of

one of the following forms:

• α = U1β1U2β2 · · ·Um−1βm−1Hβm,

• α = U1β1U2β2 · · ·UmβmV1βm+1,

• α = U1β1U2β2 · · ·U2m−1β2m−1U2mβ2mV2β2m+1,

where each βi denotes arbitrary path in R(m)(h, a, b), each U j denotes step U = (1, 1), and H = (1, 0),
V1 = (0,−1), V2 = (0,−1) are steps. See Figure 1 for an illustration of this decomposition for m = 2.
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Figure 1: Decompositions of the generalized 2-Schröder paths.

From this decomposition and symbolic method of Flajolet [7] we can see that the generating function
Rm(t) =

∑
∞

n=0 R(m)
n (h, a, b)tn satisfies the equation

Rm(t) = 1 + ht Rm(t)m + at Rm(t)m+1 + bt2 Rm(t)2m+1.

By this equation, we know that

Rm(t) − at Rm(t)m+1
− bt2 Rm(t)2m+1 = 1 + ht Rm(t)m.

It follows that

Rm(t) =
1 + ht Rm(t)m

1 − at Rm(t)m − bt2 Rm(t)2m .

Then, we can get

tRm(t)m = t
(

1 + ht Rm(t)m

1 − at Rm(t)m − bt2 Rm(t)2m

)m

.

Let ϕ(t) = 1+ht
1−at−bt2 , w(t) = t Rm(t)m. Then, w(t) = tϕ(w(t))m and Rm(t) = ϕ(w(t)).
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Using the Lemma 2.3, we get that

R(m)
n (h, a, b) = [tn]Rm(t)

= [tn]ϕ(w(t))

=
1
n

[tn−1]ϕ′(t)ϕ(t)mn

=
1
n

[tn−1]
( 1

mn + 1
ϕ(t)mn+1

)′
= [tn]

1
mn + 1

ϕ(t)mn+1

= [tn]
1

mn + 1

(
1 + ht

1 − at − bt2

)mn+1

=
1

mn + 1
[tn](1 + ht)mn+1

( 1
1 − at − bt2

)mn+1

=
1

mn + 1
[tn]

mn+1∑
i=0

(
mn + 1

i

)
hiti

( 1
1 − at − bt2

)mn+1

=
1

mn + 1
[tn]

mn+1∑
i=0

(
mn + 1

i

)
hiti

∞∑
l=0

(at + bt2)l

=
1

mn + 1
[tn]

mn+1∑
i=0

(
mn + 1

i

)
hiti

∞∑
l=0

l∑
j=0

(
l
j

)
(at)l− j(bt2) j

=
1

mn + 1
[tn]

mn+1∑
i=0

∞∑
l=0

l∑
j=0

(
mn + 1

i

)(
l
j

)
hial− jb jti+ j+l

=
1

mn + 1

mn+1∑
i=0

n−i− j∑
j=0

(
mn + 1

i

)(
n − i − j

j

)
hian−i−2 jb j.

Example 3.2. Let h = a = b = 1. The generating function Rm(t) =
∑
∞

n=0 R(m)
n (1, 1, 1)tn satisfies Rm(t) = 1 +

t Rm(t)m + t Rm(t)m+1 + t2 Rm(t)2m+1. For m ≥ 1, we find that Rm(t, 1, 1, 1) is the generating function of the number of
hybrid (m + 1)-ary trees [16, 23] with n internal nodes. The following table displays the beginnings of the sequences(
R(m)

n (1, 1, 1)
)

n≥0
, for 1 ≤ m ≤ 9.

R(m)
n (1, 1, 1) 0 1 2 3 4 5 6 7 Annnnnn

R(1)
n (1, 1, 1) 1 2 7 31 154 820 4575 26398 A007863

R(2)
n (1, 1, 1) 1 2 11 81 684 6257 60325 603641 A215654

R(3)
n (1, 1, 1) 1 2 15 155 1854 24124 331575 4736345 A239107

R(4)
n (1, 1, 1) 1 2 19 253 3920 66221 1183077 21981764 A239108

R(5)
n (1, 1, 1) 1 2 23 375 7138 148348 3262975 74673216 A239109

R(6)
n (1, 1, 1) 1 2 27 521 11764 290305 7585749 206294771 A245050

R(7)
n (1, 1, 1) 1 2 31 691 18054 515892 15615159 492007235 A245051

R(8)
n (1, 1, 1) 1 2 35 885 26264 852909 29347189 1051325430 A245052

R(9)
n (1, 1, 1) 1 2 39 1103 36650 1333156 51392991 2062946770 A245053

Table 1. R(m)
n (1, 1, 1) for m = 1, 2, 3, 4, 5, 6, 7, 8, 9
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Example 3.3. Let h = a = 1, and b = 0. For m ≥ 1, R(m)
n (1, 1, 0) is the m-Schröder numbers, and the generating

function Rm(t) =
∑
∞

n=0 R(m)
n (1, 1, 0)tn satisfies Rm(t) = 1 + t Rm(t)m + t Rm(t)m+1. The following table displays the

beginnings of the sequences
(
R(m)

n (1, 1, 0)
)

n≥0
, for 1 ≤ m ≤ 6.

R(m)
n (1, 1, 0) 0 1 2 3 4 5 6 7 Annnnnn

R(1)
n (1, 1, 0) 1 2 6 22 90 394 1806 8558 A006318

R(2)
n (1, 1, 0) 1 2 10 66 498 4066 34970 312066 A027307

R(3)
n (1, 1, 0) 1 2 14 134 1482 17818 226214 2984206 A144097

R(4)
n (1, 1, 0) 1 2 18 226 3298 52450 881970 15422018 A260332

R(5)
n (1, 1, 0) 1 2 22 342 6202 122762 2571326 56031470 A363006

R(6)
n (1, 1, 0) 1 2 26 482 10450 247554 6208970 162064322 A371700

Table 2. R(m)
n (1, 1, 0) for m = 1, 2, 3, 4, 5, 6

Example 3.4. Let h = b = 1, and a = 0. For m ≥ 1, R(m)
n (1, 0, 1) is the m-Fuss-Catalan numbers [4, 5, 7], and the

generating function Rm(t) =
∑
∞

n=0 R(m)
n (1, 0, 1)tn satisfies Rm(t) = 1 + t Rm(t)m + t2 Rm(t)2m+1. The following table

displays the beginnings of the sequences
(
R(m)

n (1, 0, 1)
)

n≥0
, for 1 ≤ m ≤ 7.

R(m)
n (1, 0, 1) 0 1 2 3 4 5 6 7 Annnnnn

R(1)
n (1, 0, 1) 1 1 2 5 14 42 132 429 A000108

R(2)
n (1, 0, 1) 1 1 3 12 55 237 1428 7752 A001764

R(3)
n (1, 0, 1) 1 1 4 22 140 969 7084 53820 A002293

R(4)
n (1, 0, 1) 1 1 5 35 285 2530 23751 231880 A002294

R(5)
n (1, 0, 1) 1 1 6 51 506 5481 62832 749398 A002295

R(6)
n (1, 0, 1) 1 1 7 70 819 10472 141778 1997688 A002296

R(7)
n (1, 0, 1) 1 1 8 92 1240 18278 285384 4638348 A007556

Table 3. R(m)
n (1, 0, 1) for m = 1, 2, 3, 4, 5, 6, 7

Example 3.5. When m = 1, we obtain some other interesting sequences, which are listed in the following table.

R(1)
n (h, a, b) 0 1 2 3 4 5 6 7 8 Annnnnn

R(1)
n (0, 1, 1) 1 1 3 10 38 154 654 2871 12925 A001002

R(1)
n (1, 1, 2) 1 2 8 40 224 1344 8448 54912 366080 A151374

R(1)
n (2, 1, 2) 1 3 14 83 554 3966 29756 230915 1838162 A215661

R(1)
n (1, 2, 2) 1 3 17 121 965 8247 73841 683713 6493145 A216314

R(1)
n (2, 1, 0) 1 3 12 57 300 1686 9912 60213 374988 A047891

R(1)
n (1, 2, 0) 1 3 15 93 654 4791 37275 299865 2474025 A103210

R(1)
n (0, 1, 2) 1 1 4 15 68 322 1608 8283 43780 A250886

R(1)
n (1, 0, 2) 1 1 3 9 33 125 503 2081 8849 A049171

R(1)
n (0, 2, 1) 1 2 9 50 311 2072 14460 104346 772255 A192945

Table 4. R(1)
n (h, a, b) for some specific h, a, b.

The partial generalized m-Schröder paths are the prefixes of the generalized m-Schröder paths. In this part,
we enumerate partial generalized m-Schröder paths ending at (mn, (m − 1)n + k) with respect to the length.
Let R(m)

n,k (h, a, b) be the set of all lattice paths from (0, 0) to (mn, (m − 1)n + k) and staying weakly above the
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line y = m−1
m x, let R(m)

n,k (h, a, b) = |R(m)
n,k (h, a, b)|. We call the matrix R(m)(h, a, b) =

(
R(m)

n,k (h, a, b)
)

n,k∈N
the generalized

m-Schröder matrix. We also write R(m) =
(
R(m)

n,k

)
n,k∈N

for short.
Let fk(t) be the generating function for the partial generalized m-Schröder paths ending at (mn, (m −

1)n + k), i.e., fk(t) =
∑
∞

n=k R(m)
n,k (h, a, b)tn. According to the above result, for k = 0, we obviously have

f0(t) = Rm(t), here Rm(t) is the generating function of the generalized m-Schröder numbers. For k > 0, a
partial generalized m-Schröder path ending at (mn, (m − 1)n + k) is in the form of α(Uβ)mk, where α, β ∈
R

(m)(h, a, b) =
⋃
∞

n=0 R
(m)
n (h, a, b) and each U = (1, 1) is an up step, see the paths in Figure 2 for examples. Then,

we obtain fk(t) = Rm(t) (tRm(t)m)k. As a consequence, we deduce the following result.
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Figure 2: The decompositions of a path α ∈ R(2)
7,2 and β ∈ R(3)

5,1.

Theorem 3.6. LetR(m)
n,k (h, a, b) be the set of all lattice paths from (0, 0) to (mn, (m−1)n+ k) and staying weakly above

the line y = m−1
m x, and let R(m)

n,k (h, a, b) = |R(m)
n,k (h, a, b)|. Then

R(m) =
(
R(m)

n,k

)
n,k∈N

= (Rm(t), tRm(t)m) , (8)

where Rm(t) = Rm(t, h, a, b) =
∑
∞

n=0 R(m)
n (h, a, b)tn, as defined in (6).

4. The free generalized m-Schröder paths

Let m ≥ 1. A free generalized m-Schröder path is a lattice path starting from (0, 0), using the steps
{U = (1, 1),H = (1, 0),V1 = (0,−1),V2 = (0,−2)} which are weighted respectively by 1, h, a and b. A grand
generalized m-Schröder path of order n (or length mn) is a free generalized m-Schröder path from (0, 0) to
(mn, (m − 1)n).

Let G(n, k) be the set of all free paths ending at the point (k, 2k − n), and let 1n,k = |G(n, k)|. Then we get
the array G = G(h, a, b) = (1n,k)n,k∈N. In Figure 3, we give a schematic illustration of dependence of 1n+1,k+1
on the other elements in the array. Thus we deduce the recurrence:

1n+1,0 = a1n,0 + b1n−1,0, (9)
1n+1,k+1 = 1n,k + h1n−1,k + a1n,k+1 + b1n−1,k+1, (10)

with the initial condition 10,0 = 1.
For k ≥ 0, let 1k(t) =

∑
∞

n=k 1n,ktn. Then, from (9) and (10), we obtain that

10(t) = 1 + at10(t) + bt210(t),
1k+1(t) = t1k(t) + ht21k(t) + at1k+1(t) + bt21k+1(t).
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Figure 3: The matrix
(
1n,k

)
n,k∈N and recurrence of the entries

Hence, we have

1k+1(t) =
t + ht2

1 − at − bt2 1k(t), 10(t) =
1

1 − at − bt2 .

Consequently,

1k(t) =
1

1 − at − bt2

(
t + ht2

1 − at − bt2

)k

.

Therefore, we proved the following theorem.

Theorem 4.1. The matrix G(h, a, b) =
(
1n,k

)
n,k∈N can be represented by a Riordan array as

G(h, a, b) =
(

1
1 − at − bt2 ,

t + ht2

1 − at − bt2

)
.

Theorem 4.2. The general term of the array G(h, a, b) is

1n,k(h, a, b) =

n∑
j=0

k∑
i=0

(
k
i

)(
n − i − j

k

)(
n − k − i − j

j

)
hian−k−i−2 jb j.
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Proof. From the definition of the Riordan array, we have

1n,k = [tn]
1

1 − at − bt2

(
t + ht2

1 − at − bt2

)k

= [tn−k](1 + ht)k
( 1

1 − at − bt2

)k+1

= [tn−k]
k∑

i=0

(
k
i

)
hiti

( 1
1 − at − bt2

)k+1

= [tn−k]
k∑

i=0

∞∑
l=0

(
k
i

)(
k + l

l

)
hiti(at + bt2)l

= [tn−k]
k∑

i=0

∞∑
l=0

l∑
j=0

(
k
i

)(
k + l

l

)(
l
j

)
hial− jb jti+ j+l

=

n∑
j=0

k∑
i=0

(
k
i

)(
n − i − j

k

)(
n − k − i − j

j

)
hian−k−i−2 jb j.

For example, in the case h = a = b = 1, the first few terms of the array G(1, 1, 1) are

(
1

1 − t − t2 ,
t(1 + t)

1 − t − t2

)
=



1 0 0 0 0 0 0 · · ·

1 1 0 0 0 0 0 · · ·

2 3 1 0 0 0 0 · · ·

3 7 5 1 0 0 0 · · ·

5 15 16 7 1 0 0 · · ·

8 30 43 29 9 1 0 · · ·

13 58 104 95 46 11 1 · · ·

...
...

...
...

...
...
...
. . .


. (11)

The first column is the Fibonacci numbers (A000045 [26]).
Let U(m)

n,k (h, a, b) be the set of all free generalized m-Schröder paths ending at (mn, (m − 1)n + k) with no

other restriction, and let U(m)
n,k = |U

(m)
n,k (h, a, b)|. Then the array U(m)(h, a, b) =

(
U(m)

n,k

)
n,k∈N

is the (m, 0, 1)-half

of the matrix G(h, a, b) =
(
Gn,k

)
n,k∈N, i.e, U(m)

n,k = G(m+1)n−k,mn. We call U(m)(h, a, b) =
(
U(m)

n,k

)
n,k∈N

the grand

generalized m-Schröder matrix. In particular, the element U(m)
n,0 is the total weight of grand generalized

m-Schröder paths of order n.

Theorem 4.3. The matrix U(m)(h, a, b) =
(
U(m)

n,k

)
n,k∈N

is a Riordan array given by

U(m)(h, a, b) =

(
(tRm(t)m)′Rm(t)−m+1

1 + htRm(t)m , tRm(t)m
)
. (12)

where Rm(t) is determined by the equation

Rm(t) = 1 + htRm(t)m + atRm(t)m+1 + bt2Rm(t)2m+1.
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Proof. By the definition of U(m)(h, a, b), we know that U(m)(h, a, b) is the (m, 0, 1)-half of

G(h, a, b) =
(

1
1 − at − bt2 ,

t + ht2

1 − at − bt2

)
=

(
p(t), tq(t)

)
.

From Lemma 2.2,
U(m)(h, a, b) =

((
t f (t)m)′ p (

t f (t)m)
f (t)−m, t f (t)m

)
,

where f (t) be the generating function defined by the functional equation

f (t) = q(t f (t)m) =
1 + ht f (t)m

1 − at f (t)m − b(t f (t)m)2 .

Thus, we have

f (t) = 1 + ht f (t)m + at f (t)m+1 + bt2 f (t)2m+1.

It follows from (6) that f (t) = Rm(t), the generating function for the generalized m-Schröder paths. Hence,

(t f (t)m)′p(t f (t)m) f (t)−m = (t f (t)m)′
1

1 − at f (t)m − b(t f (t)m)2 f (t)−m

=
(t f (t)m)′ f (t)−m+1

f (t)(1 − at f (t)m − b(t f (t)m)2)

=
(t f (t)m)′ f (t)−m+1

1 + ht f (t)m

=
(tRm(t)m)′Rm(t)−m+1

1 + htRm(t)m .

This completes the proof.

Theorem 4.4. For n ≥ k ≥ 0, we have

U(m)
n,k =

(m+1)n−k∑
j=0

mn∑
i=0

(
mn

i

)(
(m + 1)n − k − i − j

mn

)(
n − k − i − j

j

)
hian−k−i−2 jb j.

Proof. From Theorem 4.2, we get the formula for U(m)
n,k .

5. The Chung-Feller property

Denoting by D(k)
n the sets of lattice paths from (0, 0) to (2n, 0) using up steps U = (1, 1) and down steps

D = (1,−1) with exactly k up steps below the line y = 0. The well-known Chung-Feller theorem asserts that
the setsD(0)

n ,D(1)
n , · · · ,D(n)

n all have the same cardinality 1
n+1

(2n
n
)
, the nth Catalan number, see [3, 6, 19, 20, 34].

The Chung-Feller property for other type paths was investigated in [6, 19, 20, 34, 37]. In [35], the authors
proved a Chung-Feller property for the generalized Schröder paths.

In this section, we will present a Chung-Feller property for the generalized m-Schröder paths.
Recall that U(m)

n,k = |U
(m)
n,k (h, a, b)|, whereU(m)

n,k (h, a, b) is the set of all free generalized m-Schröder paths from

(0, 0) to (mn, (m − 1)n + k), and R(m)
n,k = |R

(m)
n,k (h, a, b)|, where R(m)

n,k (h, a, b) is the set of all generalized m-Schröder
paths from (0, 0) to (mn, (m − 1)n + k) staying on or above the line y = m−1

m x. In the following theorem, we
give a connection between the first two columns of U(m)(h, a, b) =

(
U(m)

n,k (h, a, b)
)

n,k∈N
and the first column of

R(m)(h, a, b) =
(
R(m)

n,k (h, a, b)
)

n,k∈N
.
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Theorem 5.1. For n ≥ 0, we have

(mn + 1)R(m)
n,0 = U(m)

n,0 + hU(m)
n,1 . (13)

Proof. From Theorem 4.3,

U(m)(h, a, b) = G(m,0,1) =

(
(tRm(t)m)′ Rm(t)−m+1

1 + htRm(t)m , tRm(t)m
)
.

Applying the fundamental theorem of Riordan arrays (2), we get that

G(m,0,1)
· (1 + ht) =

(
(tRm(t)m)′ Rm(t)−m+1

1 + htRm(t)m , tRm(t)m
)
· (1 + ht)

=
(tRm(t)m)′ Rm(t)−m+1

1 + htRm(t)m · (1 + htRm(t)m)

= (tRm(t)m)′ Rm(t)−m+1.

By extracting the coefficient [tn] from the generating functions on both sides of the above equation, we
arrive at

U(m)
n,0 + hU(m)

n,1 = [tn]G(m,0,1)
· (1 + ht)

= [tn] (tRm(t)m)′ Rm(t)−m+1

= [tn]
(
Rm(t)m +mtRm(t)m−1Rm(t)′

)
R(t)1−m

= [tn]Rm(t) + [tn]mtRm(t)′

= [tn]Rm(t) +m[tn−1]Rm(t)′

= [tn]Rm(t) +mn[tn]Rm(t)
= (mn + 1)[tn]Rm(t)

= (mn + 1)R(m)
n,0 ,

hence the result follows.

When m = 1, we can obtain the Theorem 4.1 in [35].

Corollary 5.2. For n ≥ 0, we have

(n + 1)V(1)
n,0 = U(1)

n,0 + hU(1)
n,1.

In the following, we will give a bijective proof of the Theorem 5.1. We can easily obtain the following
two lemmas.

Lemma 5.3. For a free generalized m-Schröder path α from (0, 0) to (mn + 1,mn − n + 1), the number of up or
horizontal steps in α is mn + 1.

Lemma 5.4. Let U
(m)

(mn + 1,mn − n + 1) be the set of all free generalized m-Schröder paths from (0, 0) to (mn +
1,mn − n + 1) ending with an up or horizontal step. Then

|U
(m)

(mn + 1,mn − n + 1)| = U(m)
n,0 + hU(m)

n,1 .

To give a bijection proof of Theorem 5.1, we should introduce a special point for a lattice path. We view

a free generalized m-Schröder path α ∈ U
(m)

(mn + 1,mn − n + 1) as a sequence of points

α = (x0, y0)(x1, y1)(x2, y2) · · · (xn−1, yn−1)(xl, yl),
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where (x0, y0) = (0, 0) and (xl, yl) = (mn + 1,mn − n + 1), such that (x j − x j−1, y j − y j−1) = s j ∈ S =
{(1, 1), (1, 0), (0,−1), (0,−2)} for each 1 ≤ j ≤ l. A lowest point (xi, yi) is a point in the path α such that
yi −

m−1
m xi ≤ y j −

m−1
m x j for all j = 0, 1, 2, · · · , l. A rightmost lowest point (xi, yi) is a lowest point such that i > j

if (x j, y j) is also a lowest point and j , i. For example, the rightmost lowest point of the lattice path in the
left of Figure 3 is (6, 3), and the rightmost lowest point of the lattice path in the right of Figure 3 is (5, 2). In
Figure 4, the rightmost lowest point of the lattice paths are marked with small circles.

For j = 1, 2, . . . ,mn,mn+ 1, let U
(m, j)

(mn+ 1,mn− n+ 1) be the subset of U
(m)

(mn+ 1,mn− n+ 1) in which

each lattice path has j up or horizontal steps after its rightmost lowest point. Then {U
(m, j)

(mn + 1,mn −

n + 1) : 1 ≤ j ≤ mn + 1} is a partition of U
(m)

(mn + 1,mn − n + 1) with mn + 1 parts. We will show that

{U
(m, j)

(mn + 1,mn − n + 1) : 1 ≤ j ≤ mn + 1} uniformly partitions the set U
(m)

(mn + 1,mn − n + 1) and each

|U
(m, j)

(mn + 1,mn − n + 1)| = |R(m)
n,0 (h, a, b)| = R(m)

n,0 . Consequently

|U
(m)

(mn + 1,mn − n + 1)| = (mn + 1)R(m)
n,0 .

For instance, when m = 2 and n = 1, |U
(2)

(3, 2)| = U(2)
1,0 + U(2)

1,1 = 3R(2)
1,0. Figure 4 shows the set U

(2)
(3, 2) is

partitioned into 3 blocks U
(2, j)

(3, 2), j = 1, 2, 3, and |U
(2,1)

(3, 2)| = |U
(2,2)

(3, 2)| = |U
(2,3)

(3, 2)| = R(2)
1,0 = 2.

Theorem 5.5. There is a bijection between the set R(m)
n,0 (h, a, b) and the set U

(m, j)
(mn + 1,mn − n + 1) for j =

1, 2, · · · ,mn + 1.

Proof. When j = 1, U
(m,1)

(mn + 1,mn − n + 1) is the subset of U
(m)

(mn + 1,mn − n + 1) in which each lattice

path has 1 up or horizontal step after its rightmost lowest point. For each α ∈ U
(m,1)

(mn + 1,mn − n + 1),
its last step must be an up step and the rightmost lowest point is the starting point of the last step. Hence
α = βU, where U = (1, 1) is an up step and β is a path from (0, 0) to (mn,mn− n) staying on or above the line
y = m−1

m x, i.e., β ∈ R(m)
n,0 (h, a, b). It follows that

U
(m,1)

(mn + 1,mn − n + 1) = {βU; β ∈ V(m)(n, 0) and U = (1, 1)},

and |U
(m,1)

(mn + 1,mn − n + 1)| = R(m)
n,0 . For any β ∈ R(m)

n,0 (h, a, b), define ϕ0(β) = βU, where U = (1, 1) is an up

step. Obviously, ϕ0 is a bijection between R(m)
n,0 (h, a, b) and U

(m,1)
(mn + 1,mn − n + 1).

We now proceed to give a bijective map ϕ j : U
(m, j)

(mn + 1,mn − n + 1)→ U
(m, j+1)

(mn + 1,mn − n + 1) for
any 1 ≤ j ≤ mn.

Let α ∈ U
(m, j)

(mn + 1,mn − n + 1), i.e., α is a path from (0, 0) to (mn + 1,mn − n + 1) such that there are
j up or horizontal steps after the rightmost lowest point of α and the last step of α is an up or horizontal
step. Then the path α can be decomposed as

α = β0Sβ1Uβ2,

where S is the first appearance of up or horizontal step, U is the up step after the rightmost lowest point,
β0 is an initial section (possibly empty) consisting of vertical steps V1 = (0,−1) or V2 = (0,−2), β1 is the
remaining section (possibly empty) between the step S and the step U, β2 is the terminal section which
contains j − 1 up or horizontal steps. Now we define

ϕ j(α) = β1Uβ2β0S.

According to the construction of the map ϕ j, ϕ j(α) ∈ U
(m, j+1)

(mn + 1,mn − n + 1). An example of a path

α ∈ U
(2,1)

(7, 4) and the corresponding ϕ1(α) ∈ U
(2,2)

(7, 4) are illustrated in Figure 3. The maps ϕi from

U
(2,i)

(3, 2) to U
(2,i+1)

(3, 2) for i = 1, 2, are illustrated in Figure 4.
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From the above discussion, we obtain the following theorem.

Theorem 5.6. Let U
(m)

(mn + 1,mn − n + 1) be the set of all free generalized m-Schröder paths from (0, 0) to

(mn + 1,mn − n + 1) ending with an up or horizontal step, and let U
(m, j)

(mn + 1,mn − n + 1) denote the subset of
such paths with j up or horizontal steps after its rightmost lowest point. Then for n ≥ 1, we have

|U
(m, j)

(mn + 1,mn − n + 1)| = R(m)
n,0 , j = 1, 2, · · · ,mn + 1.
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Figure 3: A path α ∈ U
(2,1)

(7, 4) and ϕ1(α) ∈ U
(2,2)

(7, 4)

The classical Chung-Feller theorem can be restated as the special case of a = 1 and h = b = 0 in Theorem
5.6.

Corollary 5.7. Let U
(m)

(mn + 1,mn − n + 1) be the set of all free paths from (0, 0) to (mn + 1,mn − n + 1) using up

steps U = (1, 1) and vertical steps V1 = (0,−1) and ending with an up step, and let U
(m, j)

(mn+ 1,mn−n+ 1) denote
the subset of such paths with j up steps after its rightmost lowest point. Then for n ≥ 1, we have

|U
(m, j)

(mn + 1,mn − n + 1)| =
1

mn + 1

(
(m + 1)n

n

)
, j = 1, 2, · · · ,mn + 1.
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Figure 4: The set U
(2)

(3, 2) of free generalized m-Schröder paths from (0, 0) to (3, 2) ending with an up or horizontal step is uniformly

partitioned into three blocks U
(2,i)

(3, 2) with |U
(2,i)

(3, 2)| = 2 = R(2)
1,0, i = 1, 2, 3.
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Example 5.8. Let h = a = b = 1. The begins of G(1, 1, 1) =
(

1
1−t−t2 ,

t(1+t)
1−t−t2

)
are given in (11), and

R(1)(1, 1, 1) = (R1(t), tR1(t)) =



1 0 0 0 0 0 · · ·

2 1 0 0 0 0 · · ·

7 4 1 0 0 0 · · ·

31 18 6 1 0 0 · · ·

154 90 33 8 1 0 · · ·

820 481 185 52 10 1 · · ·

...
...

...
...

...
...
. . .


,

U(1)(1, 1, 1) =
(

(tR1(t))′

1 + tR1(t)
, tR1(t)

)
=



1 0 0 0 0 0 · · ·

3 1 0 0 0 0 · · ·

16 5 1 0 0 0 · · ·

95 29 7 1 0 0 · · ·

591 179 46 9 1 0 · · ·

3780 1140 303 67 11 1 · · ·

...
...

...
...
...
...
. . .


,

where R1(t) = 1 + tR1(t) + tR1(t)2 + t2R1(t)3.
It is easy to see that

(n + 1)R(1)
n,0 = U(1)

n,0 +U(1)
n,1. (14)

R(2)(1, 1, 1) =
(
R2(t), tR2(t)2

)
=



1 0 0 0 0 0 · · ·

2 1 0 0 0 0 · · ·

11 6 1 0 0 0 · · ·

81 45 10 1 0 0 · · ·

684 383 95 14 1 0 · · ·

6257 3519 925 161 18 1 · · ·

...
...

...
...

...
...
. . .


,

U(2)(1, 1, 1) =


(
tR2(t)2

)′
R2(t)(1 + tR2(t)2)

, tR2(t)2

 =



1 0 0 0 0 0 · · ·

5 1 0 0 0 0 · · ·

46 9 1 0 0 0 · · ·

475 92 13 1 0 0 · · ·

5161 995 154 17 1 0 · · ·

57727 11100 1083 232 21 1 · · ·

...
...

...
...

...
...
. . .


,

where R2(t) = 1 + tR2(t)2 + tR2(t)3 + t2R2(t)5. The following identity holds

(2n + 1)R(2)
n,0 = U(2)

n,0 +U(2)
n,1. (15)

Example 5.9. Let h = b = 1 and a = 0. Then
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G(1, 0, 1) =

(
1

1 − t2 ,
t(1 + t)
1 − t2

)
=



1 0 0 0 0 0 0 0 · · ·

0 1 0 0 0 0 0 0 · · ·

1 1 1 0 0 0 0 0 · · ·

0 2 2 1 0 0 0 0 · · ·

1 2 4 3 1 0 0 0 · · ·

0 3 6 7 4 1 0 0 · · ·

1 3 9 13 11 5 1 0 · · ·

0 4 12 22 24 16 6 1 · · ·

...
...
...
...
...

...
...
. . .


,

U(1)(1, 0, 1) =

(
B(t)

1 + tC(t)
, tC(t)

)
=



1 0 0 0 0 0 · · ·

1 1 0 0 0 0 · · ·

4 2 1 0 0 0 · · ·

13 7 3 1 0 0 · · ·

46 24 11 4 1 0 · · ·

166 86 40 16 5 1 · · ·

...
...
...
...
...
...
. . .


,

R(1)(1, 0, 1) = (C(t), tC(t)) =



1 0 0 0 0 0 0 · · ·

1 1 0 0 0 0 0 · · ·

2 2 1 0 0 0 0 · · ·

5 5 3 1 0 0 0 · · ·

14 14 9 4 1 0 0 · · ·

42 42 28 14 5 1 0 · · ·

132 132 90 48 20 6 1 · · ·

...
...

...
...
...
...
...
. . .


,

where C(t) =
∑
∞

n=0 Cntn = 1−
√

1−4t
2t is the generating function of the Catalan numbers, and B(t) =

∑
∞

n=0
(2n

n
)
tn = 1

√
1−4t

is the generating function of the central binomial coefficients. For these matrices, we have

(n + 1)R(1)
n,0 = U(1)

n,0 +U(1)
n,1. (16)

U(2)(1, 0, 1) =

(
B3(t)

(1 − 2tB3(t)3)(1 + tB3(t)2)
, tB3(t)2

)

=



1 0 0 0 0 0 0 · · ·

2 1 0 0 0 0 0 · · ·

11 4 1 0 0 0 0 · · ·

62 22 6 1 0 0 0 · · ·

367 128 37 8 1 0 0 · · ·

2232 771 230 56 10 1 0 · · ·

13820 4744 1444 376 79 12 1 · · ·

...
...

...
...

...
...
...
. . .


,
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R(2)(1, 0, 1) =
(
B3(t), tB3(t)2

)

=



1 0 0 0 0 0 0 · · ·

1 1 0 0 0 0 0 · · ·

3 3 1 0 0 0 0 · · ·

12 12 5 1 0 0 0 · · ·

55 55 25 7 1 0 0 · · ·

273 273 130 42 9 1 0 · · ·

1428 1428 700 245 63 11 1 · · ·

...
...

...
...

...
...
...
. . .


,

where B3(t) is the generating function of the 3-Fuss-Catalan numbers. For these matrices, we have the following
relation

(2n + 1)R(2)
n,0 = U(2)

n,0 +U(2)
n,1. (17)
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