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Abstract. The vertices of a k-token graph of a graph G correspond to k indistinguishable tokens placed on
k different vertices of G. Changing some conditions on both the nature of the tokens and the number of
tokens allowed in each vertex of G, we define a generalization of token graphs, which we call generalized
token graphs or simply supertoken graphs, which have different applications. Depending on the above
conditions, different families of graphs (such as the Cartesian k-th power of G by itself) are obtained, and
we present some of their properties, including order, size, and connectivity.

1. Definition and particular cases

Given some integers n, k, we denote by Cn
k (with k ≤ n) and CRn

k , respectively, the sets of combinations
and multisets with repetition of n elements taken k at a time. Recall that the cardinalities of both sets are
|Cn

k | =
(n

k
)

and |CRn
k | =

(n+k−1
k

)
.

Let G = (V,E) be a graph on n vertices. Let k and s be positive integers such that s ≤ k. Then, the
k-supertoken graph Fs

k(G) [or Fs
k×1(G)] is the graph in which each vertex corresponds to a distribution of k

equal [or different] tokens between the n vertices of G, and in such a way that no vertex can receive more
than s tokens. Thus, every vertex of the k-supertoken graph corresponds to a multiset of unordered [or
ordered] symbols representing the vertices of G. Moreover, two vertices of Fs

k(G) [or Fs
k×1(G)] are adjacent

if the symmetric difference of their corresponding multisets is a pair of adjacent vertices u, v ∈ V. In other
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words, each vertex of the k-supertoken graph is defined by the multiset of vertices of G having a token,
and we can go from a vertex to an adjacent one in Fs

k(G) [or Fs
k×1(G)] by simply moving, in G, one token to

a feasible adjacent vertex. In Figure 1(a)-(e) there are different 2-supertokens graphs of the cycle G = C4
(n = 4).

Figure 1: (a) The graph C4; (b) The supertoken graph F1
2(C4) = F2(C4) � K2,4 ⊂ F2

2(C4); (c) The supertoken graph F2
2(C4); (d) The

supertoken graph F1
2×1(C4) ⊂ F2

2×1(C4); (e) The supertoken graph F2
2×1(C4) � C4□C4. The tokens are white or gray, and the rhombuses

in (b)–(e) represent the vertices of the supertoken graphs.

The supertoken graphs have been widely applied in various fields involving computer science, physics,
chemistry, and so on. For example, moving tokens along the edges of a given graph to reach a final configu-
ration is a class of reconfiguration problems in computer science; see Bonnet, Miltzow, and Rzvażewski [3].
Moreover, the colored token problem is attributed to Yamanaka, Horiyama, Mark Keil, Kirkpatrick, Otachi,
Saitoh, Uehara, and Uno [11]. See also Yamanaka, Demaine, Ito, Kawahara, Kiyomi, Okamoto, Saitoh,
Suzuki, Uchizawa, and Uno [10]. In physical and chemical applications, a class of supertoken graph is
related to the exchange Hamiltonians in quantum mechanics (see Audenaert, Godsil, Royle, and Rudolph
[1]). Besides, the minimum cycle basis construction of a class of supertoken graphs may be used to confirm
that state-dependent coupling of automata in such a way that it does not violate the principle of microscopic
reversibility, see Hammack and Smith [7].

Let us begin by giving the different kinds of k-supertoken graphs of a graph G (with n vertices and m
edges), indicating the section in which they are dealt with (see a scheme in Table 1):
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s\ tokens all equal all different

1 F1
k(G) = Fk(G) F1

k×1(G)
Token graph or symmetric power

1 < s < k Fs
k(G) Fs

k×1(G)

k Fk
k(G) Fk

k×1(G) = G□ (k)
· · · □G

Reduced power Cartesian product

Table 1: Particular cases of the k-supertoken graph.

◦ The k tokens are indistinguishable, and the maximum number of tokens per vertex is one: F1
k(G) =

Fk(G) (Section 3).

◦ The k tokens are indistinguishable, and the maximum number of tokens per vertex is s, with 1 < s < k:
Fs

k(G) (Section 4).

◦ The k tokens are indistinguishable, and the maximum number of tokens per vertex is k: Fk
k(G)

(Section 5).

◦ The k tokens are all different, and the maximum number of tokens per vertex is one: F1
k×1(G) (Section 6).

◦ The k tokens are all different, and the maximum number of tokens per vertex is s, with 1 < s < k:
Fs

k×1(G) (Section 7).

◦ The k tokens are all different, and the maximum number of tokens per vertex is k: Fk
k×1(G) = G□ (k)

· · · □G,
which is the Cartesian k-th product of G (Section 8).

When the tokens are indistinguishable, we say that they have the same color. Otherwise, we consider
that each token has a different color from the others.

2. Generalized token graphs

In this section, we deal with results that can be applied to all generalized token graphs. For a graph
G = (V,E), define an unordered k-tuple (or an ordered k-tuple) (α1, α2, . . . , αk) to be a vertex of the supertoken
graph Fs

k(G) (or Fs
k×1(G), respectively) with αi ∈ V satisfying the number of times a vertex of G appears with

a token in {α1, α2, . . . , αk} is less than s + 1.
Observe that

F1
k(G) ⊆ F2

k(G) ⊆ · · · ⊆ Fk
k(G) (1)

and

F1
k×1(G) ⊆ F2

k×1(G) ⊆ · · · ⊆ Fk
k×1(G). (2)

Barik and Verma [2] showed that if G is a connected graph, then, for 2 ≤ k ≤ n
2 , Fk(G) cannot be a tree for

n ≥ 4 and contains at least two cycles for n ≥ 5. Then, we get the following proposition from (1) and (2).

Proposition 2.1. Let Fs
k(G) and Fs

k×1(G) be two k-supertoken graphs of a connected graph G with order n, where
1 ≤ s ≤ k. Then, the following statements hold.

(i) For 2 ≤ k ≤ n
2 , the k-supertoken graph Fs

k(G) cannot be a tree for n ≥ 4;

(ii) For 2 ≤ k ≤ n − 2, the k-supertoken graph Fs
k×1(G) cannot be a tree for n ≥ 4.
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Proof. It suffices to prove that Fs
k(G) and Fs

k×1(G) contain at least one cycle. Since F1
k(G) = Fk(G) cannot be

a tree for n ≥ 4, it follows from (1) that Fs
k(G) cannot be a tree for 1 ≤ s ≤ k and 2 ≤ k ≤ n

2 . Next, consider
F1

k×1(G) for 2 ≤ k ≤ n− 2. Suppose first that the maximum degree ∆ of G is at least 3. Let u0 be a vertex with
degree ∆(G), and u1,u2,u3 ∈ NG(u0), neighbors of u0 in G. Let α1, . . . , αk−2 ∈ V(G)\{u0,u1,u2,u3}. Note that

(u0,u1, α1, . . . , αk−2), (u2,u1, α1, . . . , αk−2), (u2,u0, α1, . . . , αk−2), (u2,u3, α1, . . . , αk−2),
(u0,u3, α1, . . . , αk−2), (u1,u3, α1, . . . , αk−2), (u1,u0, α1, . . . , αk−2), (u1,u2, α1, . . . , αk−2),
(u0,u2, α1, . . . , αk−2), (u3,u2, α1, . . . , αk−2), (u3,u0, α1, . . . , αk−2), (u3,u1, α1, . . . , αk−2),

(u0,u1, α1, . . . , αk−2)

is a cycle in F1
k×1(G). Assume next that ∆(G) ≤ 2. Then, G must be a path Pn or a cycle Cn. Moreover, F1

k×1(Pn)
and F1

k×1(Cn) contain at least one cycle for k ≤ n − 2 (the proofs are shown in Propositions 6.1 and 6.3). It
follows that F1

k×1(G) contains at least one cycle for 2 ≤ k ≤ n− 2. Together with (2), for any 1 ≤ s ≤ k, Fs
k×1(G)

contains at least one cycle.

Denote by dG(u, v) the distance between u and v in G. For a connected graph G, the following theorem
gives a sufficient condition for all cases of supertoken graphs to be connected.

Theorem 2.2. Let G = (V,E) be a connected graph with maximum degree ∆(G). For 1 ≤ s ≤ k, if k < ∆(G), then
the supertoken graphs Fs

k(G) and Fs
k×1(G) are connected. Moreover, for ∆(G) ≤ k ≤ n, the supertoken graph Fs

k(G) is
connected, except for F1

n(G).

Proof. We first show that Fs
k(G) is connected for 1 ≤ s ≤ k ≤ n, except for F1

n(G). The cases k = 1 and
(k, s) = (n, 1) are trivial. We prove it by induction on s with 1 ≤ s ≤ k. For s = 1, F1

k(G) is connected,
since G is connected (see, for instance, Dalfó, Duque, Fabila-Monroy, Fiol, Huemer, Trujillo-Negrete, and
Zaragoza Martínez [4], and Barik and Verma [2]). Suppose that Fs

k(G) is connected for 1 ≤ s ≤ k − 1. We
next show that Fs+1

k (G) is also connected. Since the k tokens are indistinguishable in Fs
k(G), the vertices in

V(Fs+1
k (G))\V(Fs

k(G)) can be partitioned into V1,V2, . . . ,V⌊ k
s+1 ⌋

such that

Vi :=

Ai ∈ V(Fs+1
k (G))\V(Fs

k(G)) : Ai = (u1, . . . ,u1︸     ︷︷     ︸
s+1

, . . . ,ui, . . . ,ui︸    ︷︷    ︸
s+1

,ui+1, . . . ,ur)

 ,
where the number of times a vertex of G appears with a token in ui+1, . . . ,ur is less than s + 1. Let
V0 = V(Fs

k(G)). It suffices to prove that for any vertex Ai ∈ Vi with i = 1, . . . , ⌊ k
s+1 ⌋, there exists a path

from Ai to one vertex Ai−1 in Vi−1. Since s + 1 ≥ 2 and k ≤ n, there exists a vertex w ∈ V(G)\{u1, . . . ,ur}.
Moreover, there exists a path from one of u1, . . . ,ui to w in G, as G is connected. Without loss of generality,
assume that ui is the vertex among {u1, . . . ,ui} satisfying dG(ui,w) = min1≤ j≤i{dG(u j,w)}. Denote the path
from ui to w by P = uiw1w2 · · ·wpw. It follows that w1, . . . ,wp < {u1, . . . ,ui−1}. Let Ai−1 ∈ Vi−1 such that
Ai△Ai−1 = {ui,w} and B1,B2, . . . ,Bp ∈ Vi ∪Vi−1 such that Ai△B j = {ui,w j} for j = 1, 2, . . . , p. Then, there exists
a path AiB1B2 · · ·BpAi−1 in Fs+1

k (G), as desired.
Next, consider Fs

k×1(G) for 1 ≤ s ≤ k < ∆(G). We use induction on s. For s = 1, we will prove that F1
k×1(G)

is connected in the following claim. For 1 ≤ s ≤ k − 1, using a similar approach as above, we find that
Fs+1

k×1(G) is connected if Fs
k×1(G) is connected. Let us go back to the case where s = 1. Let v0 ∈ V be the vertex

with maximum degree ∆ = ∆(G), and v1, . . . , v∆ be the neighbors of v0. Let VS = {v0, v1, . . . , v∆}. Let F1
k×1(VS)

be the subgraph of F1
k×1(G) induced by the vertices in VS.

Claim: F1
k×1(VS) is connected for k < ∆(G).

Let S∆ (with ∆ + 1 vertices) be a star with vertex set VS and v0 be its central vertex, and F1
k×1(S∆) be the

supertoken graph of S∆. Note that F1
k×1(S∆) is a subgraph of F1

k×1(VS). It suffices to prove that F1
k×1(S∆) is

connected. Let A′1,A
′

2, . . . ,A
′
p be the vertices of F1

k(S∆) with p =
(∆+1

k
)
, and Ai be the set of vertices, where

each vertex inAi corresponds to a distinct permutation of the tokens in the vertex A′i for i = 1, . . . , p, which
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implies that |Ai| = k! for every i = 1, . . . , p. Note that V(F1
k×1(S∆)) = A1 ∪A2 ∪ · · · ∪Ap. Let (α1, α2, . . . , αk) be

one vertex of F1
k×1(S∆). We show that there is a path between every pair of vertices inAi, where i = 1, . . . , p,

that is, there is a path from (α1, . . . , αk) to (σ(α1), . . . , σ(αk)), where σ is a permutation of {α1, . . . , αk}.
Case 1. v0 ∈ {α1, . . . , αk}.
Without loss of generality, suppose that α1 = v0. Since k ≤ ∆ − 1, there are at least two vertices

u, v ∈ VS\{v0, α2, . . . , αk}. Let σ(v0) = α j1 with 1 ≤ j1 ≤ k. Note that there exists j2 with 2 ≤ j2 ≤ k and j2 , j1
such that σ(α2) = α j2 , which implies σ(α2) , v0. We have

(v0, α2, . . . , α j2 , . . . , αk) ∼ (u, α2, . . . , α j2 , . . . , αk)
∼ (u, α2, . . . , v0, . . . , αk)
∼ (u, α2, . . . , v, . . . , αk)
∼ (u, v0, . . . , v, . . . , αk)
∼ (u, α j2 , . . . , v, . . . , αk)
∼ (v0, α j2 , . . . , v, . . . , αk) = (v0, σ(α2), . . . , v, . . . , αk). (3)

There are still at least two vertices u, α2 ∈ VS\{v0, σ(α2), . . . , v, . . . , αk}. Then, by a similar analysis as above,
we get that there is a path from (v0, σ(α2), . . . , v, . . . , αk) to (v0, σ(α2), . . . , σ(α j1−1), v∗, σ(α j1+1), . . . , σ(αk)), where
v∗ , α j1 . Moreover, we obtain(

v0, σ(α2), . . . , σ(α j1−1), v∗, σ(α j1+1), . . . , σ(αk)
)

∼

(
α j1 , σ(α2), . . . , σ(α j1−1), v∗, σ(α j1+1), . . . , σ(αk)

)
∼

(
α j1 , σ(α2), . . . , σ(α j1−1), v0, σ(α j1+1), . . . , σ(αk)

)
∼

(
α j1 , σ(α2), . . . , σ(α j1−1), σ(α j1 ), σ(α j1+1), . . . , σ(αk)

)
=

(
σ(v0), σ(α2), . . . , σ(α j1−1), σ(α j1 ), σ(α j1+1), . . . , σ(αk)

)
. (4)

Case 2. v0 < {α1, . . . , αk}.
Let σ be a permutation of {α1, . . . , αk} with σ(α1) = α j1 and σ(α j2 ) = α1, and τ be a permutation of

{v0, α2, . . . , αk} such that τ(v0) = α j1 , τ(α j2 ) = v0, and τ(αi) = σ(αi) for 2 ≤ i ≤ k and i , j2. It follows from
Case 1 that there is a path from (v0, α2, . . . , αk) to (τ(v0), τ(α2), . . . , τ(αk)) = (α j1 , σ(α2), . . . , v0, . . . , σ(αk)). Note
that

(v0, α2, . . . , αk) ∼ (α1, α2, . . . , αk) (5)

and

(α j1 , σ(α2), . . . , v0, . . . , σ(αk)) ∼ (α j1 , σ(α2), . . . , α1, . . . , σ(αk))
= (σ(α1), σ(α2), . . . , σ(α j2 ), . . . , σ(αk)). (6)

Thus, there is a path between every pair of vertices inAi for i = 1, . . . , p.
As shown before, we get that F1

k(S∆) is connected for 1 ≤ s ≤ k. This implies that there is a path from A′i
to A′j in F1

k(S∆) for every i, j = 1, . . . , p and i , j. Thus, for any vertex B′i ∈ Ai and B′j ∈ A j with i, j = 1, . . . , p
and i , j, we have that there exists a path from B′i to B′j in F1

k×1(S∆), that is, it is connected. This completes
the proof of the claim.

Since F1
k×1(VS) is a subgraph of F1

k×1(G), it suffices to show that for any vertex A∗ ∈ V(F1
k×1(G))\V(F1

k×1(VS)),
there is a path from A∗ to one of the vertices in F1

k×1(VS). Consider the vertex (α∗1, α
∗

2, . . . , α
∗

k) in V(F1
k×1(G)).

Let

V∗0 :=
{
(α∗1, α

∗

2, . . . , α
∗

k) ∈ V(F1
k×1(G)) : α∗1, . . . , α

∗

k ∈ VS

}
,

and

V∗i :=
{
(α∗1, α

∗

2, . . . , α
∗

k) ∈ V(F1
k×1(G)) : α∗j1 , . . . , α

∗

ji ∈ V\VS and α∗ji+1
, . . . , α∗jk ∈ VS

}
,
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for every i = 1, 2, . . . , k. Note that V∗0 = V(F1
k×1(VS)) and V(F1

k×1(G))\V(F1
k×1(VS)) = V∗1 ∪ V∗2 ∪ · · · ∪ V∗k. Thus,

it suffices to prove that, for any vertex A∗i ∈ V∗i with i = 1, . . . , k, there exists a path from A∗i to a vertex
A∗0 in V∗0. We use induction on i, where 1 ≤ i ≤ k. For i = 1, without loss of generality, suppose that
A∗1 = (α∗1, α

∗

2, . . . , α
∗

k) ∈ V∗1 such that α∗1 ∈ V\VS and α∗2, . . . , α
∗

k ∈ VS. Then, there exists a path from α∗1 to a
vertex of {α∗2, . . . , α

∗

k} (since G is connected). Without loss of generality, assume that α∗t is the vertex among
{α∗2, . . . , α

∗

k} satisfying dG(α∗1, α
∗

t) = min2≤ j≤k dG(α∗1, α
∗

j). Denote the path from α∗1 to α∗t by P∗ = α∗1w∗1w∗2 · · ·w
∗
pα
∗

t .
If there exists a vertex w∗j such that w∗j ∈ VS, then we have

A∗1 = (α∗1, α
∗

2, . . . , α
∗

k)
∼ (w∗1, α

∗

2, . . . , α
∗

k) (token 1 moved from α∗1 to w∗1)
· · ·

∼ (w∗j, α
∗

2, . . . , α
∗

k) = A∗0.

Consider next that w∗1, . . . ,w
∗
p < VS. It implies that α∗t , v0. For v0 < {α∗2, . . . , α

∗

k}, we obtain

A∗1 = (α∗1, . . . , α
∗

t , . . . , α
∗

k)
∼ (α∗1, . . . , v0, . . . , α

∗

k) (token t moved from α∗t to v0)
∼ (w∗1, . . . , v0, . . . , α

∗

k)
· · ·

∼ (w∗p, . . . , v0, . . . , α
∗

k)
∼ (α∗t , . . . , v0, . . . , α

∗

k) = A∗0.

For v0 ∈ {α∗2, . . . , α
∗

k}, suppose that α∗r = v0 with r , t. Thus,

A∗1 = (α∗1, . . . , α
∗

t , . . . , α
∗

r, . . . , α
∗

k)
∼ (α∗1, . . . , α

∗

t , . . . ,u, . . . , α
∗

k) (token r moved from α∗r = v0 to u ∈ VS\{α
∗

2, . . . , α
∗

k})
∼ (α∗1, . . . , v0, . . . ,u, . . . , α∗k) (token t moved from αt to v0)
∼ (w∗1, . . . , v0, . . . ,u, . . . , αk)
· · ·

∼ (w∗p, . . . , v0, . . . ,u, . . . , αk)
∼ (α∗t , . . . , v0, . . . ,u, . . . , α∗k) = A∗0.

Suppose next that for any vertex A∗i ∈ V∗i , there exists a path from A∗i to a vertex A∗0 in V∗0, where 1 ≤ i ≤ k−1.
Without loss of generality, assume that A∗i+1 = (α∗1, . . . , α

∗

i+1, α
∗

i+2, . . . , α
∗

k) ∈ V∗i+1 such that α∗1, . . . , α
∗

i+1 ∈ V\VS
and α∗i+2, . . . , α

∗

k ∈ VS. Using a similar approach as above, we find that there exists a path from a vertex
A∗i+1 to a vertex A∗i ∈ V∗i . Together with the hypothesis, there is a path from A∗i+1 to a vertex A∗0 in V∗0, as
desired.

Example 2.3. Consider the graph G shown in Figure 2 and its supertoken graphs Fs
k(G) and Fs

k×1(G) with k = 4 <
5 = ∆(G) and s = 2.

Note that F1
4(G) is connected. Let V0 = V(F1

4(G)). We get that the vertices in V(F2
4(G))\V(F1

4(G)) can be
partitioned into V1,V2 such that

V1 :=
{
(u1,u2,u3,u4) : u j1 = u j2 , and u j1 ,u j3 ,u j4 are distinct

}
and

V2 :=
{
(u1,u2,u3,u4) : u j1 = u j2 , u j3 = u j4

}
.

We show that there is a path from any vertex Ai ∈ Vi to one vertex Ai−1 ∈ Vi−1 in F2
4(G). First, for i = 1, consider

a vertex A1 = (6, 6, 2, 0) ∈ V1. We see that 1 < {6, 2, 0} and the path from 6 to 1 is P = 6201. Let B1 = (6, 2, 2, 0),
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B2 = (6, 0, 2, 0) and A0 = (6, 1, 2, 0) ∈ V0, so that A1△B1 = {6, 2}, B1△B2 = {2, 0}, and B2△A0 = {0, 1}. Then, the
path is A1B1B2A0. Next, for i = 2, consider a vertex A2 = (6, 6, 2, 2) ∈ V2. Recall that 0 ∼ 2. Then, the path is A2A1.
Hence, we obtain a path from a vertex Ai ∈ Vi (for i = 1, 2) to a vertex Ai−1 ∈ V0.

Next, consider F2
4×1(G). Using a similar analysis as above, we just show that F1

4×1(G) is connected. Let S5 be a
star with vertex set {0, 1, 2, 3, 4, 5} and 0 be its central vertex (we define Sn as a graph with n + 1 vertices). Recall
that F1

4×1(S5) is a subgraph of F1
4×1(G). We first show that F1

4×1(S5) is connected. In this case, let A′1,A
′

2, . . . ,A
′

15
be the vertices of F1

4(S5) (with indistinguishable tokens), and Ai be the set of vertices such that each vertex in Ai

corresponds to a distinct permutation of the tokens in the vertex A′i for i = 1, . . . , 15. So, the vertices of F1
4×1(S5) are⋃15

i=1Ai. Now, let B′1 = (1, 2, 3, 4) ∈ A1 be a vertex in F1
4×1(S5). We want to show there is a path from vertex B′1 to

vertex C′1 inA1. Suppose that σ is a permutation of {1, 2, 3, 4} such that σ(1) = 3, σ(2) = 1, σ(3) = 4, σ(4) = 2, that
is, C′1 = (σ(1), σ(2), σ(3), σ(4)) = (3, 1, 4, 2). Let τ be a permutation of {0, 2, 3, 4} such that τ(0) = 3, τ(2) = 0, τ(3) =
σ(3) = 4, τ(4) = σ(4) = 2. As shown in (3), we have

(0, 2, 3, 4) ∼ (5, 2, 3, 4) ∼ (5, 2, 3, 0) ∼ (5, 2, 3, 1) ∼ (5, 2, 0, 1) ∼ (5, 2, 4, 1) ∼ (0, 2, 4, 1).

Similarly, we get

(0, 2, 4, 1) ∼ (3, 2, 4, 1) ∼ (3, 0, 4, 1) ∼ (3, 5, 4, 1) ∼ (3, 5, 4, 0) ∼ (3, 5, 4, 2) ∼ (0, 5, 4, 2).

As shown in (4), we obtain

(0, 5, 4, 2) ∼ (3, 5, 4, 2) ∼ (3, 0, 4, 2).

Then, there exists a path from (0, 2, 3, 4) to (τ(0), τ(2), τ(3), τ(4)) = (3, 0, 4, 2). Moreover, from (5) and (6), we have
(0, 2, 3, 4) ∼ (1, 2, 3, 4) and (3, 0, 4, 2) ∼ (3, 1, 4, 2). Thus, there exists a path from B′1 = (1, 2, 3, 4) to C′1 = (3, 1, 4, 2).

Then, we show that, for any vertex A∗ ∈ V(F1
4×1(G))\V(F1

4×1(S5)), there is a path from A∗ to one of the vertices in
V(F1

4×1(S5)). In this case, let

V∗0 :=
{
(α1, α2, α3, α4) ∈ V(F1

4×1(G)) : α1, α2, α3, α4 ∈ {0, 1, 2, 3, 4, 5}
}
,

and

V∗i :=
{
(α1, α2, α3, α4) ∈ V(F1

4×1(G)) : α j1 , . . . , α ji ∈ {6, 7, 8, 9} and

α ji+1 , . . . , α j4 ∈ {0, 1, 2, 3, 4, 5}
}
,

for every i = 1, 2, 3, 4. We want to show that there is a path from vertex A∗i ∈ V∗i to a vertex in V∗0. First, let
A∗1 = (7, 1, 0, 4) ∈ V∗1 with dG(7, 0) < dG(7, 1) = dG(7, 4) and P∗1 = 7620. Observe that 2 ∈ V(S5). It follows that

A∗1 = (7, 1, 0, 4) ∼ (6, 1, 0, 4) ∼ (2, 1, 0, 4) ∈ V∗0.

Suppose that A∗2 = (7, 6, 0, 4) ∈ V∗2. Note that dG(6, 0) < dG(7, 0). It follows that

A∗2 = (7, 6, 0, 4) ∼ (7, 2, 0, 4) ∼ (7, 2, 3, 4) ∼ (7, 0, 3, 4) ∼ (6, 0, 3, 4) ∼ (2, 0, 3, 4) ∈ V∗0. (7)

Next, let A∗3 = (7, 6, 8, 4) ∈ V3. Recall that 6 ∼ 2 and 8 ∼ 3. Together with (7), we have

A∗3 = (7, 6, 8, 4) ∼ (7, 6, 3, 4) ∼ (7, 2, 3, 4) ∼ (7, 0, 3, 4) ∼ (6, 0, 3, 4) ∼ (2, 0, 3, 4) ∈ V∗0.

Now, assume that A∗4 = (7, 6, 8, 9). It follows that

A∗4 = (7, 6, 8, 9) ∼ (7, 6, 3, 9) ∼ (7, 6, 0, 9) ∼ (7, 6, 0, 8) ∼ (7, 6, 0, 3) ∼ (7, 6, 1, 3)
∼ (7, 2, 1, 3) ∼ (7, 0, 1, 3) ∼ (6, 0, 1, 3) ∼ (2, 0, 1, 3) ∈ V∗0.

So, we obtain a path from a vertex A∗i ∈ V∗i (for i = 1, 2, 3, 4) to a vertex A∗0 ∈ V0 = V(F1
4×1(S5)).



X. Song et al. / Filomat 40:2 (2026), 721–738 728

0

2

5

6 7

3 8 9

1

4

Figure 2: A connected graph G with maximum degree ∆(G) = 5.

Proposition 2.4. For 1 ≤ s ≤ k ≤ n, the supertoken graph Fs
k(Sn) and Fs

k×1(Sn) of a star Sn (with n + 1 vertices) are
bipartite.

Proof. Let V(Sn) = {0, 1, . . . ,n}. Note that the vertices in V(Fs
k(Sn)) (or V(Fs

k×1(Sn))) can be partitioned into
V0,V1, . . . ,V⌊ k

s ⌋
such that

Vi := {A =(α1, α2, . . . , αk) : α j1 = · · · = α ji = 0 for j1, . . . , ji ∈ [k]}.

Let X and Y be the unions of all Vi with odd and even indices i, respectively. Then no edges join pairs of
vertices belonging to X, and the same is true in Y.

3. The token graphs F1
k
(G) = Fk(G)

In this case, the k tokens are indistinguishable, and the maximum number of tokens per vertex is one.
The token graph F1

k(G) = F1
k(G) has order

(n
k
)

and size
(n−2

k−1
)
m. Fk(G) is the known k-th symmetric power of

G (see Audenaert, Godsil, Royle, and Rudolph [1]), later renamed k-token graph of G by Fabila-Monroy,
Flores-Peñaloza, Huemer, Hurtado, Urrutia, and Wood [5]. See an example in Figure 1(b) for the case
G = C4 (n = 4) and k = 2, where F1

2(C4) � K2,4.
In particular, when G is the complete graph Kn, the token graph F1

k(Kn) is the distance-regular graph
known as the Johnson graph J(n, k), which is closely related to some issues of coding theory. See, for instance,
Godsil [6].

3.1. Isomorphism between the token and supertoken graphs of paths
When G = Pn, the path graph on n vertices, we have the following result.

Lemma 3.1. For every k < n, the following isomorphism holds

F1
k(Pn) � Fn−k

n−k(Pk+1).

Proof. Let us show a one-to-one mapping between the corresponding vertex sets that is a graph isomor-
phism. Every vector (α1, . . . , αk+1) representing a vertex of Fn−k

n−k(Pk+1) is mapped to a vertex of F1
k(Pn) in the

following way:

◦ If i , k + 1, then αi is replaced by αi 0’s and one 1.

◦ If i = k + 1, then αk+1 is replaced by αi 0’s.

For instance, when k + 1 = n − k = 6 (n = 11), we get the following maps (the maps are defined from the
vertices of F6

6(P6) to the vertices of F1
5(P11)):

(3, 0, 0, 1, 0, 2) 7→ (0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0) = (4, 5, 6, 8, 9);
(1, 1, 1, 1, 1, 1) 7→ (0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0) = (2, 4, 6, 8, 10).
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This gives a vector (β1, . . . , βn) with n − k 0’s and k 1’s, which corresponds to a vertex of αi 0’s. (As shown
in the example, the positions of the 1’s indicate the vertices of Pn having a token). Then, in terms of the α′i s,
a vertex of F1

k(Pn) is a vector of k components (β′1, . . . , β
′

k) (representing the vertices of Pn having a token)
computed as

β′1 = α1 + 1,
β′2 = α1 + α2 + 2,

...

β′k =
∑k

i=1 αi + k.

Conversely, in terms of the (β′i )
′s, the vector of k + 1 components representing a vertex of Fn−k

n−k(Pk+1) is

α1 = β′1 − 1,
α2 = β′2 − β

′

1 − 1,
...

αk = β′k − β
′

k−1 − 1,
αk+1 = n − β′k.

Moreover, in both graphs, the adjacencies correspond to moving one unit one step backward or forward,
so that the mappings are an isomorphism, as claimed.

For instance, Figure 3 shows the isomorphic graphs F1
2(P7) and F5

5(P3). For example, notice the vertex
equivalences

(1, 3, 1) 7→ (0, 1, 0, 0, 0, 1, 0) = (2, 6),
(0, 5, 0) 7→ (1, 0, 0, 0, 0, 0, 1) = (1, 7).

Figure 3: The graphs F1
2(P7) (left) and F5

5(P3) (right).

More results on token graphs can be found in papers by Leaños and Ndjatchi [8], Leaños and Trujillo-
Negrete [9], Dalfó, Duque, Fabila-Monroy, Fiol, Huemer, Trujillo-Negrete, and Zaragoza Martínez [4], and
Barik and Verma [2].

4. The supertoken graphs Fs
k
(G)

In this case, the k tokens are indistinguishable, and the maximum number of tokens per vertex is s, with
1 < s < k. The supertoken graph Fs

k(G) has order given by the number of integer solutions (x1, . . . , xn), with
0 ≤ xi ≤ s for i = 1, . . . ,n, of the equation x1 + · · · + xn = k. This corresponds to the difference between the
number of solutions with xi ≥ 0 and the ones with xi ≥ s + 1 for at least one i from {1, . . . ,n}.
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Proposition 4.1. Let G = (V,E) be a graph on n vertices. The order and size of the supertoken graph Fs
k(G) are,

respectively,

|V(Fs
k(G))| =

⌊k/(s+1)⌋∑
i=0

(−1)i
(
n
i

)(
n + k − 1 − i(s + 1)

n − 1

)
:= f (n, k, s), (8)

and

|E(Fs
k(G))| = |E|

 s∑
i=1

i f (n − 2, k − i, s) +
ω−s+1∑

j=1

(s − j) f (n − 2, k − s − j, s)

 , (9)

with ω = min{2s − 2, k − 1}. In (9), we define f (n, 0, s) = 1 when j = k − s.

Proof. Let S be the set of non-negative integer solutions (x1, . . . , xn) of the equation x1 + · · · + xn = k. Then,
|S| = |CRn

k | =
(n+k−1

k
)
. Among x1, . . . , xn, at most l = ⌊k/(s + 1)⌋ numbers have values greater than s. For

i = 1, . . . , l, let Pi be the set of non-negative integer solutions (x1, . . . , xn) with xi ≥ s + 1. Then,

|Pi| =

(
n + k − (s + 1) − 1

k − (s + 1)

)
=

(
n + k − (s + 1) − 1

n − 1

)
.

Moreover, we have

|Pi1 ∩ · · · ∩ Pi j | =

(
n + k − j(s + 1) − 1

k − j(s + 1)

)
=

(
n + k − j(s + 1) − 1

n − 1

)
for j = 1, . . . , l. Note that the order of the supertoken graph Fs

k(G) is exactly the difference between the
number of solutions with xi ≥ 0 and the ones with xi ≥ s + 1 for at least one i, with i = 1, . . . ,n. By the
inclusion-exclusion principle, we find that

|V(Fs
k(G))| = |S| − |Pi1 ∪ Pi2 ∪ · · · ∪ Pil |

= |S| −
∑
|Pi| +

∑
|Pi1 ∩ Pi2 | + · · · + (−1)l

∑
|Pi1 ∩ Pi2 ∩ · · · ∩ Pil |

=

⌊k/(s+1)⌋∑
i=0

(−1)i
(
n
i

)(
n + k − 1 − i(s + 1)

n − 1

)
.

Consider one edge uv ∈ E. Then, the edges corresponding to uv in Fs
k(G) are

{AuAv : Au = (u, α2, . . . , αk),Av = (v, α2, . . . , αk) with αi ∈ V for i = 2, . . . , k} .

Suppose that t is the number of elements equal to u or v in {α2, . . . , αk}. Let ω = min{2s − 2, k − 1}. It follows
that 0 ≤ t ≤ ω and the remaining elements of α2, . . . , αk except for {u, v} are chosen from V\{u, v}, and there
are f (n−2, k− t−1, s) possible combinations with repetition. Let tu and tv be the numbers of elements equal
to u and v, respectively, with tu + tv = t. First, consider 0 ≤ t ≤ s − 1. The solutions on tu + tv = t are

tu = 0, tv = t; tu = 1, tv = t − 1; · · · ; tu = t, tv = 0.

Then, there are t + 1 possible combinations with repetition. Hence, the number of possible combinations
with repetition of {α2, . . . , αk}with 0 ≤ t ≤ s − 1 is

s−1∑
t=0

(t + 1) f (n − 2, k − t − 1, s) =
s∑

i=1

i f (n − 2, k − i, s).

Next, consider s ≤ t ≤ ω. The solutions on tu + tv = t are

tu = s − 1, tv = t − (s − 1); tu = s − 2, tv = t − (s − 1) + 1; · · · ; tu = t − (s − 1), tv = s − 1.



X. Song et al. / Filomat 40:2 (2026), 721–738 731

Then, there are 2s − 1 − t possible combinations with repetition. It follows that the number of possible
combinations with repetition of {α2, . . . , αk}with s ≤ t ≤ ω is

ω∑
t=s

(2s − 1 − t) f (n − 2, k − t − 1, s) =
ω−s+1∑

j=1

(s − j) f (n − 2, k − s − j, s). (10)

Note that j ≤ ω − s + 1 and ω ≤ k − 1. The variable j in equation (10) satisfies j ≤ k − s. Finally, we get the
number of possible combinations with repetition of α2, . . . , αk is

s∑
i=1

i f (n − 2, k − i, s) +
ω−s+1∑

j=1

(s − j) f (n − 2, k − s − j, s),

where ω = min{2s − 2, k − 1}. Therefore, the equation (9) holds since G has size |E|.

Note that since we cannot have more than k tokens in a vertex, any situation where s > k is treated the
same as s = k.

As an example (see Figure 4), the order of F2
3(C4) is f (4, 3, 2) = 16 and the size of F2

3(C4) according to (9) is

E(F2
3(C4)) = 4

 2∑
i=1

i f (2, 2, 2) + f (2, 0, 2)

 = 32.

As another example, F3
4(C4) has 31 vertices and 72 edges, coinciding with formulas (8) and (9). From (8),

the order of F3
4(C4) is

f (4, 4, 3) =
(
4 + 4 − 1

4 − 1

)
−

(
4
1

)(
4 + 4 − 1 − (3 + 1)

4 − 1

)
=

(
7
3

)
− 4

(
3
3

)
= 35 − 4 = 31.

Note that ω = min{2s − 2, k − 1} = 3. From (9), the size of F3
4(C4) is

4

 3∑
i=1

i f (2, 4 − i, 3) +
1∑

j=1

(3 − j) f (2, 4 − 3 − j, 3)


= 4

(
1 f (2, 3, 3) + 2 f (2, 2, 3) + 3 f (2, 1, 3) + 2 f (2, 0, 3)

)
= 4

(
1
(
4
1

)
+ 2

(
3
1

)
+ 3

(
2
1

)
+ 2

)
= 4 · 18 = 72.

The vertices of F3
4(C4) and the edges in F3

4(C4) corresponding to the edge 12 in C4 are listed in Tables 2 and 3.

(1234) (1123) (1124) (1134) (2213) (2214) (2234) (3312) (3314)
(3324) (4412) (4413) (4423) (1122) (1133) (1144) (2233) (2244)
(3344) (1112) (1113) (1114) (2221) (2223) (2224) (3331) (3332)
(3334) (4441) (4442) (4443)

Table 2: Vertices in F3
4(C4).
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(1334) (1344) (1333) (1244) (1112) (1122)
(2334) (2344) (2333) (2444) (2112) (2122)
(1134) (1133) (1144) (1234) (1233) (1244)
(2134) (2133) (2144) (2234) (2233) (2244)
(1113) (1123) (1223) (1114) (1134) (1224)
(2113) (2123) (2223) (2114) (2134) (2224)

Table 3: Edges in F3
4(C4) corresponding to the edge 12 in C4.

223
224

234

134124

123

233
133

334

344

244
144114

113

112

122

Figure 4: The graph F2
3(C4).

Alternatively, we note that, for s ≥ 0, f (n, k, s) in (8) is the (s + 1)-nomial coefficient satisfying the
recurrence

f (n, k, s) =
s∑

i=0

f (n − 1, k − i, s).

For example, for s = 2 and n = 0, 1, 2, . . ., the trinomial coefficients turn out to be

1
1, 1

1, 2, 3, 2, 1
1, 3, 6, 7, 6, 3, 1

1, 4, 10, 16, 19, 16, 10, 4, 1
. . .

Let G have vertices indexed by the integers 1, 2, . . . ,n. Then, each vertex of the supertoken graph Fs
k(G)

can be represented by a vector (α1, . . . , αn), where αi ∈ [0, s] is the number of tokens of the only color placed
at the vertex i ∈ [1,n]. In particular, the (classic) k-token graph Fk(G) = F1

k(G), with 0 < k < n, has vertices
labeled by the binary n-vectors with k 1’s and n − k 0’s. Then, the known isomorphism Fk(G) � Fn−k(G) (see
Fabila-Monroy, Flores-Peñaloza, Huemer, Hurtado, Urrutia, and Wood [5]) is a consequence of the map
(α1, . . . , αn) 7→ (α1, . . . , αn), where 0 = 1 and 1 = 0.
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5. The supertoken graphs Fk
k
(G)

Let G be a graph of order n and size m. In this case, the k tokens are indistinguishable, and the maximum
number of tokens per vertex is k. The supertoken graph Fk

k(G) has order |V(Fk
k(G))| = CRn

k =
(n+k−1

k
)
. Note

that we can also get this value from (8) since this formula is also valid for s = k.

Proposition 5.1. The supertoken graph Fk
k(G) has size

|E(Fk
k(G))| = m

(
n + k − 2

k − 1

)
.

Proof. Consider one edge uv ∈ E(G). Then, the edges corresponding to uv in Fk
k(G) are

{AuAv : Au = (u, α2, . . . , αk),Av = (v, α2, . . . , αk) with αi ∈ V(G) for i = 2, . . . , k} .

Since the maximum number of tokens per vertex is k in Fk
k(G), each vertex in {α2, . . . , αk} has at most k − 1

tokens. Hence, the number of possible combinations with repetition of {α2, . . . , αk} is
(n+k−2

k−1
)
. The result

holds as G has size m.

See an example in Figure 1(c) for the case G = C4 (n = 4) and k = 2. This kind of supertoken graph was
introduced by Hammack and Smith [7], who named them reduced power graphs.

If G = Kn, then the vertices of the supertoken graph Fk
k(Kn) represent the different possible states of a

multiprocessor with n memory modules and k (indistinguishable) processors.

6. The supertoken graphs F1
k×1

(G)

In this case, the k tokens are different, and the maximum number of tokens per vertex is one. The
supertoken graph F1

k×1(G) has order n!
(n−k)! and size mk (n−2)!

(n−k−1)! . See an example in Figure 1(d) for the case
G = C4 (n = 4) and 2 tokens of different colors.

6.1. The supertoken graphs of paths and cycles

Let G be a graph with V(G) = {1, 2, . . . ,n}. For a vertex (α1, α2, . . . , αk) in F1
k×1(G), where αi ∈ [n] for

i = 1, 2, . . . , k, we define

(α′1, α
′

2, . . . , α
′

k) ⪯ (α1, α2, . . . , αk) (11)

if there exists an integer j such that α′j < α j, and α′l = αl for l ∈ [k]\{ j}, and

(α′′1 , α
′′

2 , . . . , α
′′

k ) ⪰ (α1, α2, . . . , αk) (12)

if there exists an integer j such that α′′j > α j, and α′′l = αl for l ∈ [k]\{ j}. For a vertex (α1, α2, . . . , αk), we refer to
the vertex (α′1, α

′

2, . . . , α
′

k) satisfying (11) as being on the left of (α1, α2, . . . , αk), and the vertex (α′′1 , α
′′

2 , . . . , α
′′

k )
satisfying (12) as being on the right of (α1, α2, . . . , αk).

Proposition 6.1. Let G = Pn be a path with order n. Then, F1
k×1(G) contains at least one cycle for k ≤ n − 2, and

does not contain any cycle for k = n − 1,n. Moreover, for k = n, F1
k×1(G) is the graph with n! isolated vertices, and

F1
k×1(G) = Pn ∪ · · · ∪ Pn︸         ︷︷         ︸

(n−1)!

for k = n − 1.
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Proof. Define V(Pn) = {1, 2, . . . ,n}. Let (α1, α2, . . . , αk) be one vertex of F1
k×1(Pn), where αi ∈ [n] and α1, . . . , αk

are distinct. The case k = n is trivial. If k ≤ n − 2, then we can choose α3, . . . , αk ∈ {5, . . . ,n}, that is, there
are tokens at vertices 1 and 3 (α1 = 1 and α2 = 3). Thus, (1, 3, α3, . . . , αk), (1, 4, α3, . . . , αk), (2, 4, α3, . . . , αk),
(2, 3, α3, . . . , αk), and (1, 3, α3, . . . , αk) is a cycle, as desired. Suppose next that k = n − 1. Consider the vertex
(α1, α2, . . . , αk), where 1,n ∈ {α1, . . . , αk}. Then, there exists exactly one vertex (α′1, α

′

2, . . . , α
′

k) satisfying
(α′1, α

′

2, . . . , α
′

k) ⪯ (α1, α2, . . . , αk) on its left and exactly one vertex (α′′1 , α
′′

2 , . . . , α
′′

k ) satisfying (α′′1 , α
′′

2 , . . . , α
′′

k )
⪰ (α1, α2, . . . , αk) on its right. Thus, starting from the vertex (α1, α2, . . . , αk), the leftmost vertex must be
(τ(1), τ(2), . . . , τ(n − 1)) and the rightmost vertex must be (σ(2), σ(3), . . . , σ(n)), where τ is a permutation on
{1, . . . ,n − 1} and σ is a permutation on {2, . . . ,n}. Moreover, we see that there are no more vertices adjacent
to any of the vertices in the path starting from (α1, α2, . . . , αk) with end vertices (τ(1), τ(2), . . . , τ(n − 1))
and (σ(2), σ(3), . . . , σ(n)). A vertex (α∗1, α

∗

2, . . . , α
∗

k) with 1 < {α∗1, α
∗

2, . . . , α
∗

k} or n < {α∗1, α
∗

2, . . . , α
∗

k} must be
included in the path starting from one vertex (α1, α2, . . . , αk) with 1,n ∈ {α1, . . . , αk}. The set {α1, α2, . . . , αk}

has k! = (n − 1)! possible permutations, so F1
(n−1)×1(Pn) = Pn ∪ · · · ∪ Pn︸         ︷︷         ︸

(n−1)!

.

Example 6.2. The supertoken graph F1
3×1(P4) is shown in Figure 5.

(1, 2, 3) (1, 2, 4) (1, 3, 4) (2, 3, 4) (2, 3, 1) (2, 4, 1) (3, 4, 1) (3, 4, 2) (3, 1, 2) (4, 1, 2) (4, 1, 3) (4, 2, 3)

(1, 3, 2) (1, 4, 2) (1, 4, 3) (2, 4, 3) (2, 1, 3) (2, 1, 4) (3, 1, 4) (3, 2, 4) (3, 2, 1) (4, 2, 1) (4, 3, 1) (4, 3, 2)

Figure 5: The supertoken graph F1
3×1(P4).

Proposition 6.3. Let G = Cn be a cycle with order n. Then, F1
k×1(G) contains at least one cycle for k ≤ n − 1, and

does not contain any cycle for k = n. Moreover, for k = n, the supertoken graph F1
k×1(G) is the graph with n! isolated

vertices and F1
k×1(G) = Cn(n−1) ∪ · · · ∪ Cn(n−1)︸                    ︷︷                    ︸

(n−2)!

for k = n − 1.

Proof. The case k = n is trivial, and the case k ≤ n − 2 is similar to Proposition 6.1. Consider k = n − 1.
Denote V(Cn) = {1, 2, . . . ,n}. Let σ be a permutation on {1, . . . ,n} such that σ(i) = i + 1 (mod n). For a vertex
(α1, α2, . . . , αk) in F1

k×1(Cn) satisfying that {α1, α2, . . . , αk} is a permutation on {2, 3, . . . ,n} with α j = n, there is
no vertex being on its right from the definition shown in (12). Then, we define the relation (α′1, . . . , α

′

k) ⪰
(α1, . . . , αk) if α′j = 1 and α′l = αl for l ∈ [k]\{ j}, which implies that (α1, . . . , σ(α j), . . . , αk) ⪰ (α1, . . . , α j, . . . , αk).

Then, for any vertex (α1, α2, . . . , αk) in F1
k×1(Cn), there exists a vertex (α′1, α

′

2, . . . , α
′

k) on its right satisfying
(α′1, α

′

2, . . . , α
′

k) ⪰ (α1, α2, . . . , αk). Moreover, the path from (α1, α2 , . . . , αk) to (σ(α1), σ(α2), . . . , σ(αk)) is of
length k = n − 1. Note that (σn(α1), σn(α2), . . . , σn(αk)) = (α1, α2, . . . , αk). Thus, there is a cycle of length
n(n− 1) including (α1, α2, . . . , αk). Observe that the set {α1, α2, . . . , αk} has k! = (n− 1)! possible permutations
and k of them are in the same cycle of length n(n − 1). Thus, F1

(n−1)×1(Cn) = Cn(n−1) ∪ · · · ∪ Cn(n−1)︸                    ︷︷                    ︸
(n−2)!

.

Example 6.4. The supertoken graph F1
3×1(C4) is shown in Figure 6.
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(1, 2, 3)

(1, 2, 4)

(1, 3, 4)

(2, 3, 4)

(2, 3, 1)

(2, 4, 1)

(3, 4, 1)

(3, 4, 2)

(3, 1, 2)

(4, 1, 2)

(4, 1, 3)

(4, 2, 3)

(1, 3, 2)

(1, 4, 2)

(1, 4, 3)

(2, 4, 3)

(2, 1, 3)

(2, 1, 4)

(3, 1, 4)

(3, 2, 4)

(3, 2, 1)

(4, 2, 1)

(4, 3, 1)

(4, 3, 2)

Figure 6: The supertoken graph F1
3×1(C4).

7. The supertoken graphs Fs
k×1

(G)

In this case, the k tokens are different, and the maximum number of tokens per vertex is s, with 1 < s < k.
For integers t1, . . . , ti satisfying t1 + · · · + ti ≤ k, we define

( k
t1,...,ti

)
= k!

t1!···ti!(k−t1−···−ti)!
.

Proposition 7.1. Let G = (V,E) be a graph on n vertices. The order and size of the supertoken graph Fs
k×1(G) are,

respectively,

|V(Fs
k×1(G))| =

⌊
k

s+1 ⌋∑
j=0

(−1) j
(
n
j

) ∑
ti1 ,ti2 ,...,ti j≥s+1
ti1+ti2+···+ti j≤k

(
k

ti1 , . . . , ti j

)
(n − j)k−ti1−···−ti j := h(n, k, s), (13)

and

|E(Fs
k(G))| = |E|

∑
0≤ru,rv≤s−1
ru+rv≤k−1

(ru + 1)
(

k
ru + 1, rv

)
h(n − 2, k − ru − rv − 1, s). (14)

Specifically, for j = 0, we define the second sum
∑

ti1 ,ti2 ,...,ti j≥s+1
ti1+ti2+···+ti j≤k

( k
ti1 ,...,ti j

)
to be equal to 1 in (13), and for ru + rv = k− 1,

we define h(n, 0, s) to be 1 in (14).

Proof. Let (α1, α2, . . . , αk) be a vertex of Fk
k×1(G). We get |V(Fk

k×1(G))| = nk. Suppose that j is the number of
distinct vertices appearing at least s+ 1 times in α1, α2, . . . , αk. Then, j ≤ ⌊ k

s+1 ⌋. Let Pi ⊂ V(Fk
k×1(G)) be the set

where at least s + 1 of α1, α2, . . . , αk are equal to vertex i ∈ V. Then,

|Pi| =

k∑
ti=s+1

(
k
ti

)
(n − 1)k−ti .

Moreover, we have

|Pi1 ∩ · · · ∩ Pi j | =
∑

ti1 ,ti2 ,...,ti j≥s+1
ti1+ti2+···+ti j≤k

(
k

ti1 , . . . , ti j

)
(n − j)k−ti1−···−ti j

for j = 1, . . . , ⌊ k
s+1 ⌋.
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By the inclusion-exclusion principle, we find that

|V(Fs
k×1(G))| = |V(Fk

k×1(G))| −
∣∣∣∣∣Pi1 ∪ · · · ∪ Pi

⌊
k

s+1 ⌋

∣∣∣∣∣
= |V(Fk

k×1(G))| −
∑
|Pi| +

∑
|Pi1 ∩ Pi2 | + · · · + (−1)⌊

k
s+1 ⌋

∑∣∣∣∣∣Pi1 ∩ Pi2 ∩ · · · ∩ Pi
⌊

k
s+1 ⌋

∣∣∣∣∣
=

⌊
k

s+1 ⌋∑
j=0

(−1) j
(
n
j

) ∑
ti1 ,ti2 ,...,ti j≥s+1
ti1+ti2+···+ti j≤k

(
k

ti1 , . . . , ti j

)
(n − j)k−ti1−···−ti j .

Consider one edge uv ∈ E. Then, the edges corresponding to uv in Fs
k×1(G) are

{AuAv : Au = (α1, . . . , αi = u, . . . , αk),Av = (α1, . . . , αi = v, . . . , αk)
with α j ∈ V for j ∈ [k]\{i}}.

Let ru and rv be the numbers of elements equal to u and v in {α1, . . . , αk}\{αi}. It follows that 0 ≤ ru, rv ≤ s− 1
and ru + rv ≤ k − 1. We get the number of edges corresponding to uv in Fs

k×1(G) is

∑
0≤ru,rv≤s−1
ru+rv≤k−1

(ru + 1)
(

k
ru + 1, rv

)
h(n − 2, k − ru − rv − 1, s). (15)

Therefore, the equation (14) holds.

Example 7.2. Consider a star S4 (with 5 vertices) with vertex set V(S4) = {0, 1, 2, 3, 4}, where 0 is the central vertex.
The order of the supertoken graph F2

3×1(S4) is h(5, 3, 2) = 53 + (−1)1(5
1
)(3

3
)
(5 − 1)3−3 = 120. We show the edges in

F2
3×1(S4) corresponding to the edge 01 in G. Let A = (α1, α2, α3) ∈ V(F2

3×1(S4)) and B = (β1, β2, β3) ∈ V(F2
3×1(S4))

such that αi = 0 and βi = 1 for some i ∈ [3] and α j = β j for j ∈ [3]\{i}. We consider all possible cases of A and B. Let
r0 and r1 be the numbers of elements equal to 0 and 1 in {α1, α2, α3}\{αi}. Since s = 2, it follows that 0 ≤ r0, r1 ≤ 1.
Then, there are four possible combinations of values for r0 and r1.

Case 1. r0 = 0 and r1 = 0. Here, the value i can be 1, 2, or 3, that is, there are 3 possible values for i. For the
remaining elements in {α1, α2, α3}\{αi}, the possible combinations are

{2, 3}, {3, 2}, {2, 4}, {4, 2}, {3, 4}, {4, 3}, {2, 2}, {3, 3}, {4, 4}.

In this case, there are 3 × 9 = 27 edges corresponding to 01, see Table 4.

(0, 2, 3) (0, 3, 2) (0, 2, 4) (0, 4, 2) (0, 3, 4) (0, 4, 3) (0, 2, 2) (0, 3, 3) (0, 4, 4)
(1, 2, 3) (1, 3, 2) (1, 2, 4) (1, 4, 2) (1, 3, 4) (1, 4, 3) (1, 2, 2) (1, 3, 3) (1, 4, 4)
(2, 0, 3) (3, 0, 2) (2, 0, 4) (4, 0, 2) (3, 0, 4) (4, 0, 3) (2, 0, 2) (3, 0, 3) (4, 0, 4)
(2, 1, 3) (3, 1, 2) (2, 1, 4) (4, 1, 2) (3, 1, 4) (4, 1, 3) (2, 1, 2) (3, 1, 3) (4, 1, 4)
(2, 3, 0) (3, 2, 0) (2, 4, 0) (4, 2, 0) (3, 4, 0) (4, 3, 0) (2, 2, 0) (3, 3, 0) (4, 4, 0)
(2, 3, 1) (3, 2, 1) (2, 4, 1) (4, 2, 1) (3, 4, 1) (4, 3, 1) (2, 2, 1) (3, 3, 1) (4, 4, 1)

Table 4: Edges in F2
3×1(S4) corresponding to 01 for r0 = 0 and r1 = 0.

Case 2. r0 = 0 and r1 = 1. Here, the value i can be 1, 2, or 3, and there exist j ∈ [3]\{i} such that α j = 1. So,
there are 6 possible ordered pairs for (i, j), which are (1, 2), (1, 3), (2, 3), (2, 1), (3, 1), and (3, 2). For the remaining
elements in {α1, α2, α3}\{αi, α j}, the possible combinations are {2}, {3}, {4}. In this case, there are 6 × 3 = 18 edges
corresponding to 01, see Table 5.
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(0, 1, 2) (0, 1, 3) (0, 1, 4) (0, 2, 1) (0, 3, 1) (0, 4, 1) (2, 0, 1) (3, 0, 1) (4, 0, 1)
(1, 1, 2) (1, 1, 3) (1, 1, 4) (1, 2, 1) (1, 3, 1) (1, 4, 1) (2, 1, 1) (3, 1, 1) (4, 1, 1)
(1, 0, 2) (1, 0, 3) (1, 0, 4) (1, 2, 0) (1, 3, 0) (1, 4, 0) (2, 1, 0) (3, 1, 0) (4, 1, 0)
(1, 1, 2) (1, 1, 3) (1, 1, 4) (1, 2, 1) (1, 3, 1) (1, 4, 1) (2, 1, 1) (3, 1, 1) (4, 1, 1)

Table 5: Edges in F2
3×1(S4) corresponding to 01 for r0 = 0 and r1 = 1.

Case 3. r0 = 1 and r1 = 0. There exist i1, i2 ∈ [3] such that αi1 = αi2 = 0. Then, there are 3 possible ordered pairs
for (i1, i2), which are (1, 2), (1, 3), and (2, 3) (here, (i2, i1) = (2, 1) is the same as (i2, i1) = (1, 2)). For the remaining
elements in {α1, α2, α3}\{αi1 , αi2 }, the possible combinations are {2}, {3}, {4}. Moreover, for αi1 = αi2 = 0, we find that
there exists j ∈ {i1, i2} satisfying β j = 1 and βl = αl for l ∈ {i1, i2}\{ j}. Thus, j can be i1 or i2, which implies that there
are 2 values for j. In this case, there are 2 × 3 × 3 = 18 edges corresponding to 01, see Table 6.

(0, 0, 2) (0, 0, 3) (0, 0, 4) (0, 2, 0) (0, 3, 0) (0, 4, 0) (2, 0, 0) (3, 0, 0) (4, 0, 0)
(1, 0, 2) (1, 0, 3) (1, 0, 4) (1, 2, 0) (1, 3, 0) (1, 4, 0) (2, 1, 0) (3, 1, 0) (4, 1, 0)
(0, 0, 2) (0, 0, 3) (0, 0, 4) (0, 2, 0) (0, 3, 0) (0, 4, 0) (2, 0, 0) (3, 0, 0) (4, 0, 0)
(0, 1, 2) (0, 1, 3) (0, 1, 4) (0, 2, 1) (0, 3, 1) (0, 4, 1) (2, 0, 1) (3, 0, 1) (4, 0, 1)

Table 6: Edges in F2
3×1(S4) corresponding to 01 for r0 = 1 and r1 = 0.

Case 4. r0 = 1 and r1 = 1. Here, αi1 = αi2 = 0 and αi3 = 1. Then, there are 3 possible ordered pairs of (i1, i2, i3),
which are (1, 2, 3), (1, 3, 2), and (2, 3, 1). Moreover, for αi1 = αi2 = 0, we see that there exists j ∈ {i1, i2} satisfying
β j = 1 and βl = αl for l ∈ {i1, i2}\{ j}. Thus, j can be i1 or i2, which implies that there are 2 values for j. In this case,
there are 2 × 3 = 6 edges corresponding to 01, see Table 7. Therefore, the number of edges in F2

3×1(S4) corresponding
to 01 is 27 + 18 + 18 + 6 = 69.

(0, 0, 1) (0, 1, 0) (1, 0, 0) (0, 0, 1) (0, 1, 0) (1, 0, 0)
(1, 0, 1) (1, 1, 0) (1, 1, 0) (0, 1, 1) (0, 1, 1) (1, 0, 1)

Table 7: Edges in F2
3×1(S4) corresponding to 01 for r0 = 1 and r1 = 1.

Alternatively, from (15), we have

1∑
r0=0

1∑
r1=0

(r0 + 1)
(

3
r0 + 1, r1

)
h(3, 3 − r0 − r1 − 1, 2)

= 1 ·
(
3
1

)
· h(3, 2, 2) + 1 ·

(
3

1, 1

)
· h(3, 1, 2) + 2 ·

(
3

2, 0

)
· h(3, 1, 2) + 2 ·

(
3

2, 1

)
· h(3, 0, 2) = 27 + 18 + 18 + 6 = 69.

8. The Cartesian product Fk
k×1

(G) � G□ (k)
· · · □G

In this case, the k tokens are different, and the maximum number of tokens per vertex is k. The supertoken

graph Fk
k×1(G) � G□ (k)

· · · □G is the Cartesian k-th product of G by itself. Then, Fk
k×1(G) has order nk and size

mknk−1. See an example in Figure 1(e) for the case G = C4 (n = 4) and 2 tokens of different colors.

Proposition 8.1. If G = (V,E) is a (not necessarily regular) graph, then the supertoken graph Fk
k×1(G) is isomorphic

to the Cartesian product G□ (k)
· · · □G.
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Proof. Let Fk = Fk
k×1(G) and Gk = G□ (k)

· · · □G. Each vertex of Fk can be represented by a vector (u1,u2, . . . ,uk),
where ui ∈ V is the vertex with token i ∈ {1, . . . , k}. This vertex is adjacent to the vertices

(v1,u2, . . . ,uk) with v1 ∼ u1 (token 1 moved from u1 to v1),
(u1, v2, . . . ,uk) with v2 ∼ u2 (token 2 moved from u2 to v2),

...

(u1,u2, . . . , vk) with vk ∼ uk (token k moved from uk to vk).

(16)

Besides, each vertex of Gk is also represented by a vector (u1,u2, . . . ,uk), where ui is a vertex of the i-th

factor (copy of G) of the product G□ (k)
· · · □G, and its adjacent vertices are as in (16). This proves the claimed

isomorphism.
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