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Abstract. The vertices of a k-token graph of a graph G correspond to k indistinguishable tokens placed on
k different vertices of G. Changing some conditions on both the nature of the tokens and the number of
tokens allowed in each vertex of G, we define a generalization of token graphs, which we call generalized
token graphs or simply supertoken graphs, which have different applications. Depending on the above
conditions, different families of graphs (such as the Cartesian k-th power of G by itself) are obtained, and
we present some of their properties, including order, size, and connectivity.

1. Definition and particular cases

Given some integers 7, k, we denote by C} (with k < 1) and (R}, respectively, the sets of combinations
and multisets with repetition of n elements taken k at a time. Recall that the cardinalities of both sets are
I = (}) and |CRY| = ("*7).

Let G = (V,E) be a graph on n vertices. Let k and s be positive integers such that s < k. Then, the
k-supertoken graph F;(G) [or F;,_ (G)] is the graph in which each vertex corresponds to a distribution of k
equal [or different] tokens between the 1 vertices of G, and in such a way that no vertex can receive more
than s tokens. Thus, every vertex of the k-supertoken graph corresponds to a multiset of unordered [or
ordered] symbols representing the vertices of G. Moreover, two vertices of F(G) [or F}_,(G)] are adjacent
if the symmetric difference of their corresponding multisets is a pair of adjacent vertices u,v € V. In other
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words, each vertex of the k-supertoken graph is defined by the multiset of vertices of G having a token,
and we can go from a vertex to an adjacent one in F(G) [or F},,(G)] by simply moving, in G, one token to
a feasible adjacent vertex. In Figure 1(a)-(e) there are different 2-supertokens graphs of the cycle G = Cy4
(n =4).

Figure 1: (a) The graph Cy4; (b) The supertoken graph F;(C4) = F»(Cy) = Kpy C F%(C4); (c) The supertoken graph F%(C4); (d) The
supertoken graph Féxl(C4) c Fﬁxl(C4); (e) The supertoken graph F§X1(C4) = C40Cy. The tokens are white or gray, and the rhombuses
in (b)—(e) represent the vertices of the supertoken graphs.

The supertoken graphs have been widely applied in various fields involving computer science, physics,
chemistry, and so on. For example, moving tokens along the edges of a given graph to reach a final configu-
ration is a class of reconfiguration problems in computer science; see Bonnet, Miltzow, and Rzvazewski [3].
Moreover, the colored token problem is attributed to Yamanaka, Horiyama, Mark Keil, Kirkpatrick, Otachi,
Saitoh, Uehara, and Uno [11]. See also Yamanaka, Demaine, Ito, Kawahara, Kiyomi, Okamoto, Saitoh,
Suzuki, Uchizawa, and Uno [10]. In physical and chemical applications, a class of supertoken graph is
related to the exchange Hamiltonians in quantum mechanics (see Audenaert, Godsil, Royle, and Rudolph
[1]). Besides, the minimum cycle basis construction of a class of supertoken graphs may be used to confirm
that state-dependent coupling of automata in such a way that it does not violate the principle of microscopic
reversibility, see Hammack and Smith [7].

Let us begin by giving the different kinds of k-supertoken graphs of a graph G (with n vertices and m
edges), indicating the section in which they are dealt with (see a scheme in Table 1):
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’ s\ tokens H all equal all different ‘
I F{(G) = F(G) Foa(©)
Token graph or symmetric power
1<s<k F(G) F. . (G)
k F(G) Ft (G)=Go Y. oG
Reduced power Cartesian product

Table 1: Particular cases of the k-supertoken graph.

o The k tokens are indistinguishable, and the maximum number of tokens per vertex is one: F}((G) =
Fr(G) (Section 3).

o The k tokens are indistinguishable, and the maximum number of tokens per vertexiss, with1 <s < k:
F;(G) (Section 4).

o The k tokens are indistinguishable, and the maximum number of tokens per vertex is k: Fﬁ(G)
(Section 5).

o Thek tokens are all different, and the maximum number of tokens per vertex is one: F}cxl (G) (Section 6).
o The k tokens are all different, and the maximum number of tokens per vertex is s, with 1 < s < k:

F;.,(G) (Section 7).

o The k tokens are all different, and the maximum number of tokens per vertex is k: fol (G) =GO ®, oG,
which is the Cartesian k-th product of G (Section 8).

When the tokens are indistinguishable, we say that they have the same color. Otherwise, we consider
that each token has a different color from the others.

2. Generalized token graphs

In this section, we deal with results that can be applied to all generalized token graphs. For a graph
G = (V,E), define an unordered k-tuple (or an ordered k-tuple) (a1, ay, . . ., @) to be a vertex of the supertoken
graph F(G) (or F}_,(G), respectively) with a; € V satisfying the number of times a vertex of G appears with
a token in {ay, ay,...,ar} is less than s + 1.

Observe that
FX(G) C FAG) C - CFX(0) "
and
FLo(G) CFL (G) €+ S FL(G). -

Barik and Verma [2] showed that if G is a connected graph, then, for 2 < k < 7, Fx(G) cannot be a tree for
n > 4 and contains at least two cycles for n > 5. Then, we get the following proposition from (1) and (2).

Proposition 2.1. Let F;(G) and F;_ (G) be two k-supertoken graphs of a connected graph G with order n, where
1 <'s < k. Then, the following statements hold.

(i) For2 <k <%, the k-supertoken graph F;(G) cannot be a tree for n > 4;

(i) For 2 <k <n -2, the k-supertoken graph F;_ | (G) cannot be a tree for n > 4.
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Proof. 1t suffices to prove that F;(G) and F;_,(G) contain at least one cycle. Since F}((G) = Fx(G) cannot be
a tree for n > 4, it follows from (1) that F;(G) cannot be a tree for 1 <s < kand 2 < k < 7. Next, consider

F_ ,(G) for2 < k < n—2. Suppose first that the maximum degree A of G is at least 3. Let ug be a vertex with
degree A(G), and u1, uy, uz € Ng(up), neighbors of up in G. Let ay, ..., ax-2 € V(G)\{uo, 11, up, uz}. Note that

(uo, ur, 01, - - ., Qk-2), (U2, U1, a1, ..., ax-2), (U2, Uho, 1, ..., 0k-2), (U2, U3,01,...,0k2),

(wo, Uz, a1, ..., ak-2), (1, U3, a1, ..., k-2), (U1,uo, 1, ..., -2), (U1, U2, 1, ..., A%-2),

(uo, uz, 11, ..., ak—2), (Uz, U, 1, ..., ak-2), (U3, o, 1, ..., -2), (U3, U1, 1, ..., 0Qk-2),
(up, ur, a1, ..., 0_2)

isacyclein F}{xl(G). Assume next that A(G) < 2. Then, G must be a path P, or a cycle C,,. Moreover, F]lxl(Pn)
and F,lxl(Cn) contain at least one cycle for k < n — 2 (the proofs are shown in Propositions 6.1 and 6.3). It
follows that F]lxl(G) contains at least one cycle for 2 < k < n — 2. Together with (2), forany 1 <s <k, F_,(G)
contains at least one cycle. [J

Denote by dg(u, v) the distance between u and v in G. For a connected graph G, the following theorem
gives a sufficient condition for all cases of supertoken graphs to be connected.

Theorem 2.2. Let G = (V, E) be a connected graph with maximum degree A(G). For 1 <s <k, if k < A(G), then
the supertoken graphs F;(G) and F;_,(G) are connected. Moreover, for A(G) < k < n, the supertoken graph F}(G) is
connected, except for FL(G).

Proof. We first show that F{(G) is connected for 1 < s < k < n, except for F3(G). The cases k = 1 and
(k,s) = (n,1) are trivial. We prove it by induction on s with 1 < s < k. Fors =1, F;(G) is connected,
since G is connected (see, for instance, Dalf6, Duque, Fabila-Monroy, Fiol, Huemer, Trujillo-Negrete, and
Zaragoza Martinez [4], and Barik and Verma [2]). Suppose that F;(G) is connected forl<s<k-1. We
next show that FIS(“(G) is also connected. Since the k tokens are indistinguishable in F(G), the vertices in
V(FIS(“(G))\V(F;(G)) can be partitioned into V1, V5,..., V| ay such that

Vii= 1A € VIETHGN\VEUG)) t Ai = (U1, oo Uty oo Uiy Uiy Uit Uy) ¢
N—— N——
s+1 s+1

where the number of times a vertex of G appears with a token in #;1,...,u, is less than s + 1. Let
Vo = V(Pi(G)). It suffices to prove that for any vertex A; € V; withi =1,..., Lﬁj, there exists a path
from A; to one vertex A;_1 in V;_1. Since s + 1 > 2 and k < n, there exists a vertex w € V(G)\{uy,...,u,}.
Moreover, there exists a path from one of u1, ..., u; to win G, as G is connected. Without loss of generality,
assume that u; is the vertex among {u1, ..., u;} satisfying dg(u;, w) = mini<j;{dc(uj, w)}. Denote the path
from u; to w by P = wywiw, ---wyw. It follows that wy,..., w, & {uy,...,ui1}. Let A;y € Viq such that
AirAi1 = {uj,whand By, By, ..., B, € V; U Vi such that A;AB; = {u;, wj} for j = 1,2,...,p. Then, there exists
apath A;B1B, - -+ B,A;_1 in F{"'(G), as desired.

Next, consider Fj_ (G) for 1 <s <k < A(G). We use induction on s. For s = 1, we will prove that Fllxl(G)
is connected in the following claim. For 1 < s < k — 1, using a similar approach as above, we find that
FZ;%(G) is connected if F}_, (G) is connected. Let us go back to the case where s = 1. Let vy € V be the vertex
with maximum degree A = A(G), and v, ..., va be the neighbors of vg. Let Vs = {vg, v, ..., va}. Let F,lxl(Vs)
be the subgraph of F}(xl(G) induced by the vertices in V.

Claim: F|  (Vs) is connected for k < A(G).

Let Sp (with A + 1 vertices) be a star with vertex set Vs and vy be its central vertex, and Fixl(S A) be the
supertoken graph of Sy. Note that F_ (Sa) is a subgraph of F_ (Vs). It suffices to prove that F_,(Sa) is

connected. Let A7, A),..., A} be the vertices of F}((SA) withp = (A;('l), and A; be the set of vertices, where
each vertex in A; corresponds to a distinct permutation of the tokens in the vertex A fori = 1,...,p, which
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implies that |A;| = k! foreveryi =1,...,p. Note that V(Fixl(SA)) = A UAU---UA,. Let (a1, az, ..., a) be
one vertex of F}cxl(S A)- We show that there is a path between every pair of vertices in A;, wherei =1,...,p,
that is, there is a path from (ay, ..., ax) to (o(a1), . .., 0(ax)), where ¢ is a permutation of {a, ..., ax}.

Case1. vy € {aq,..., 01},

Without loss of generality, suppose that @y = vp. Since k < A — 1, there are at least two vertices
u,v € Vs\{vg, az, ..., ax}. Let o(vp) = aj, with 1 < j; < k. Note that there exists j, with2 < j, <kand j, # j;
such that o(az) = aj,, which implies o(a2) # vo. We have

('(J(),az,. . .,D(jz,...,Oék) ~ (u,az,...,(ij,. . .,Ckk)

~ (Way,...,0,...,0)

~ (Wa,...,0,...,0r)

~ (U,00,.-.,0,...,0)

~ (M,Oéjz,. ..,v,...,ak)

~ (vo,@jy, -, 0, 0p) = (00, 0(02),...,0, .00, k). (3)
There are still at least two vertices u, a; € Vg\{vg, 0(a2),...,v, ..., ax}. Then, by a similar analysis as above,
we get that there is a path from (vg, 0(a2), ..., v, ..., ax) to (vo, 0(az), ..., 0(aj,-1), 0", 0(@j,41), - . ., (%)), where
U" # aj,. Moreover, we obtain

(vo, o(@),...,0(aj-1),0", 0(aj+1),..., o(ozk))

aj,0(az),...,0(@;-1),0,0(@j+1),- -, o(ak))

¢

¢

(
(,0(2), .., 0@, 1), 00, 0@ 1), - ., ()
(

aj,, 0(a2), ..., 0@, 1), 0(@;,), 0(@j41), - ., ()

(a(vo), o(az),...,o0(aj-1),0(a;),0(@j+1), -, a(ozk)> . 4)

Case 2. vy ¢ {a1,..., ).

Let 0 be a permutation of {ay,...,a;} with o(a;) = @;, and o(a},) = ai, and 7 be a permutation of
{vo, a2, ..., )} such that 7(vg) = aj, T(a},) = vy, and 7(a;) = o(a;) for 2 <i < kand i # j. It follows from
Case 1 that there is a path from (vp, @, . .., ax) to (1(vo), T(a2), ..., T(ax)) = (@), 0(a2), ..., v, ..., 0(a)). Note
that

(UOraZI- ..,O(k) ~ (0(1, Qag, .. .,(Xk) (5)
and

(@j,0(a2), ..., 00,...,0@) ~ (aj,0(a2),... a1... 0a)
= (0-(051), O-(0(2)/ ey G((X]'Z), ceey O(ak))' (6)
Thus, there is a path between every pair of vertices in A; fori=1,...,p.
As shown before, we get that F,(S,) is connected for 1 < s < k. This implies that there is a path from A’
to A;. in F}((SA) foreveryi,j=1,...,pand i # j. Thus, for any vertex B! € A; and B;. € Ajwithi,j=1,...,p
and i # j, we have that there exists a path from B; to B; in F!

kx1
the proof of the claim.

Since F,, ,(Vs)is asubgraph of F | (G), it suffices to show that for any vertex A* € V(F,_ (G)\V(F,, ,(Vs)),

;here is a path from A" to one of the vertices in F11<x1(V5)' Consider the vertex (aj,a;,..., a;) in V(F}txl(G)).
et

(Sa), that is, it is connected. This completes

Vo=@, a5,...,00) € VL, (G) 1 a, ..., 0 € Vi),
and

Vi= {03, 0}) € V(FL4(G) : &,...,a, eV\Vsandd_,...,a € Vs},
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forevery i = 1,2,...,k. Note that V; = V(F, ,(Vs)) and V(F,  (G)\V(F},(Vs)) = V; U V5 U--- U V;. Thus,
it suffices to prove that, for any vertex A} € V: with i = 1,...,k, there exists a path from A; to a vertex
Ap in V5. We use induction on i, where 1 < i < k. For i = 1, without loss of generality, suppose that
Al = (a;,a;,...,oz;) € V] such that a] € V\Vs and ..., € Vs. Then, there exists a path from a] to a
vertex of {a), ..., a;} (since G is connected). Without loss of generality, assume that a; is the vertex among
{ay,..., a;} satisfying dg(a}, a}) = miny<jk dg(a, a;). Denote the path from «] to a; by P* = ajwjw} - “wpay.
If there exists a vertex w; such that w; € Vs, then we have

Al = (a;,a;,...,a,*()

i

(wy,a3,...,a;) (token 1 moved from a] to wy)

~ (w;, @, ..., ) = A

*

1}, we obtain

Consider next that wj, .. LWy, ¢ Vs. It implies that o} # vy. Forvg ¢ {a}, ...,

Al = (&), qf...,q))
~ (aj,...,v0,...,qa;) (token t moved from a; to vp)
~ (wi,...,00,...,4;)
~ (W,...,v,..., %)
~ (a:,...,vo,...,a;):Aa.

For vy € {a}, ..., a7}, suppose that a; = vy with r # t. Thus,

Al = (a),...,a...,04,,...,00)
~ (a},...,a;,...,1,...,a;) (token r moved from a;, = vy tou € Vs\{ay, ..., a;})
~ (aj,...,00,...,U,...,a;) (token t moved from a; to vy)
~ (WY, 00,0, Uy, O)

~ (w;,...,vo,...,u,...,ak)

~ (aj,...,00,...,U,...,0;) = Ag.
Suppose next that for any vertex A} € V7, there exists a path from A’ to a vertex Aj in Vi, where 1 <i < k-1.
Without loss of generality, assume that A}, = (o], ...,a},,,a},,,...,a;) € Vi suchthataj,...,a;,, € V\Vs

7+l
and «},,,...,a; € Vs. Using a similar approach as above, we find that there exists a path from a vertex
A’ to avertex A7 € V. Together with the hypothesis, there is a path from A; | to a vertex Aj in Vj, as

desired. [
Example 2.3. Consider the graph G shown in Figure 2 and its supertoken graphs F(G) and F;_,(G) with k = 4 <
5=A(G)ands = 2.

Note that Fi(G) is connected. Let Vo = V(F{(G)). We get that the vertices in V(F3(G))\V(F}(G)) can be
partitioned into V1, V, such that

Vi:= {(ul,uz, Uz, Ug) : Ujy = uj,, and uj, u;, u;, are distinct}
and
Vy = {(ul,uz,ug,u4) TUj = U, * Uj, = 1/!]‘4}.

We show that there is a path from any vertex A; € V; to one vertex Aj_1 € Vi1 in Fi(G). First, for i = 1, consider
a vertex Ay = (6,6,2,0) € Vy. We see that 1 ¢ {6,2,0} and the path from 6 to 1 is P = 6201. Let By = (6,2,2,0),
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B, = (6,0,2,0) and Ay = (6,1,2,0) € Vg, so that A ABy = {6,2}, BiAB, = {2,0}, and BoAAg = {0,1}. Then, the
path is A1B1B2Ag. Next, for i = 2, consider a vertex Ay = (6,6,2,2) € V,. Recall that O ~ 2. Then, the path is AyA;.
Hence, we obtain a path from a vertex A; € V; (fori = 1,2) to a vertex A;_1 € V.

Next, consider F2 | (G). Using a similar analysis as above, we just show that Fy ,(G) is connected. Let Ss be a

star with vertex set {0,1,2,3,4,5} and 0 be its central vertex (we define S, as a graph with n + 1 vertices). Recall

that F}_,(Ss) is a subgraph of F} (G). We first show that F}, (Ss) is connected. In this case, let A}, A), ..., Al

be the vertices of Fy(Ss) (with indistinguishable tokens), and A; be the set of vertices such that each vertex in A;
corresponds to a distinct permutation of the tokens in the vertex A/ for i =1,...,15. So, the vertices of F}, ,(Ss) are
U}:51 A;. Now, let B] = (1,2,3,4) € A be a vertex in F411x1(55)' We want to show there is a path from vertex B to

vertex C} in Ay. Suppose that o is a permutation of {1,2,3,4} such that o(1) = 3,0(2) = 1,03) = 4,0(4) = 2, that
is, C} = (0(1),0(2),0(3),0(4)) = (3,1,4,2). Let T be a permutation of {0,2,3,4} such that ©(0) = 3,7(2) = 0, 7(3) =
0(3) =4,7(4) = 6(4) = 2. As shown in (3), we have

0,2,3,4) ~ (5,2,3,4) ~ (5,2,3,0) ~ (5,2,3,1) ~ (5,2,0,1) ~ (5,2,4,1) ~ (0,2,4,1).
Similarly, we get

0,2,4,1) ~ (3,2,4,1) ~ (3,0,4,1) ~ (3,5,4,1) ~ (3,5,4,0) ~ (3,5,4,2) ~ (0,5,4,2).
As shown in (4), we obtain

0,5,4,2) ~ (3,5,4,2) ~ (3,0,4,2).

Then, there exists a path from (0,2, 3,4) to (7(0), ©(2), 7(3), t(4)) = (3,0,4,2). Moreover, from (5) and (6), we have
0,2,3,4) ~ (1,2,3,4) and (3,0,4,2) ~ (3,1,4,2). Thus, there exists a path from B; =(1,23,4)toC; =(3,1,4,2).

Then, we show that, for any vertex A* € V(Fixl(G))\V(F}lxl(%)), there is a path from A* to one of the vertices in
V(F},,(S5)). In this case, let

Vi = {(al,acz, az,04) € V(F}Lxl(G)) T, a0,a3,04 €1{0,1,2,3,4, 5}},
and
V= {(al,az, a3, 04) € V(F}lxl(G)) :aj,...,aj€16,7,8,9} and
X, €10,1,2,3,4,5)},

for every i = 1,2,3,4. We want to show that there is a path from vertex A} € V to a vertex in V. First, let
A} =(7,1,0,4) € V] with dg(7,0) < dg(7,1) = dc(7,4) and P} = 7620. Observe that 2 € V(Ss). It follows that

A} =(7,1,0,4) ~(6,1,0,4) ~ (2,1,0,4) € V.
Suppose that A5 = (7,6,0,4) € V. Note that ds(6,0) < dg(7,0). It follows that

A; =(7,6,0,4) ~(7,2,0,4) ~ (7,2,3,4) ~ (7,0,3,4) ~ (6,0,3,4) ~ (2,0,3,4) € Va. (7)
Next, let A = (7,6,8,4) € V3. Recall that 6 ~ 2 and 8 ~ 3. Together with (7), we have

A; =(7,6,8,4) ~(7,6,3,4) ~ (7,2,3,4) ~ (7,0,3,4) ~ (6,0,3,4) ~ (2,0,3,4) € Va.
Now, assume that A} = (7,6,8,9). It follows that

A, = (7,6,8,9) ~(7,6,3,9) ~ (7,6,0,9) ~ (7,6,0,8) ~ (7,6,0,3) ~ (7,6,1,3)
~ (7,2,1,3)~(7,0,1,3) ~ (6,0,1,3) ~ (2,0,1,3) € V.

So, we obtain a path from a vertex A eV: (fori=1,2,3,4) to a vertex Ay eV = V(F1X1(55)).
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Figure 2: A connected graph G with maximum degree A(G) = 5.

Proposition 2.4. For 1 < s < k < n, the supertoken graph F(S,) and F;
bipartite.

1 (Sn) of a star S, (with n + 1 vertices) are

Proof. Let V(S,) = {0,1,...,n}. Note that the vertices in V(F;(5,)) (or V(F}, ,(5:))) can be partitioned into
Vo, Va,..., VLKJ such that

Vi={A=(ay,qq,...,qx) 1 jy =--- = aj = 0for jy, ..., ji € [k]}.

Let X and Y be the unions of all V; with odd and even indices i, respectively. Then no edges join pairs of
vertices belonging to X, and the same is truein Y. O

3. The token graphs F, (G) = Fx(G)

In this case, the k tokens are indistinguishable, and the maximum number of tokens per vertex is one.
The token graph F}(G) = F,(G) has order (}) and size (Z:f)m Fi(G) is the known k-th symmetric power of
G (see Audenaert, Godsil, Royle, and Rudolph [1]), later renamed k-token graph of G by Fabila-Monroy,
Flores-Pefialoza, Huemer, Hurtado, Urrutia, and Wood [5]. See an example in Figure 1(b) for the case
G =C4 (n =4)and k = 2, where F}(Cy) = Ky 4.

In particular, when G is the complete graph K, the token graph F}(K,) is the distance-regular graph
known as the Johnson graph J(n, k), which is closely related to some issues of coding theory. See, for instance,
Godsil [6].

3.1. Isomorphism between the token and supertoken graphs of paths
When G = P, the path graph on n vertices, we have the following result.

Lemma 3.1. For every k < n, the following isomorphism holds
Fllc(Pn) = FZ:IIE(PkH)'

Proof. Let us show a one-to-one mapping between the corresponding vertex sets that is a graph isomor-
phism. Every vector (a, ..., ax+1) representing a vertex of FZ:’;(PkH) is mapped to a vertex of F;(Pn) in the
following way:

o Ifi # k+1, then ¢; is replaced by a; 0’s and one 1.
o If i =k + 1, then ay,4 is replaced by «; 0’s.

For instance, when k + 1 = n —k = 6 (n = 11), we get the following maps (the maps are defined from the
vertices of F&(Pg) to the vertices of F1(P11)):

(3/ 0/ 0/ 1/ 0/ 2) H (0/ 0/ O/ 1/ 1/ 1/ 0/ 1/ 1/ 0/ 0) = (4/ 5/ 6/ 8/ 9);
1,1,1,1,1,1) — (0,1,0,1,0,1,0,1,0,1,0) = (2,4,6,8,10).
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This gives a vector (1, ...,Bn) with n — k 0’s and k 1’s, which corresponds to a vertex of a; 0’s. (As shown
in the example, the positions of the 1’s indicate the vertices of P, having a token). Then, in terms of the a’s,

a vertex of F{(P,) is a vector of k components (8], ...,B;) (representing the vertices of P, having a token)
computed as

ﬁll =0£1+1,
B, =ar+ar+2,

k
Conversely, in terms of the (8/)’s, the vector of k + 1 components representing a vertex of FZ:Q(P;(H) is
ai = ﬁi - 1/
@ =p-p-1

a =p—F,-L
Ak+1 =n- ,B;(

Moreover, in both graphs, the adjacencies correspond to moving one unit one step backward or forward,
so that the mappings are an isomorphism, as claimed. [J

For instance, Figure 3 shows the isomorphic graphs F;(P7) and Fg(P3). For example, notice the vertex
equivalences

1,3,1) +— (0,1,0,0,0,1,0) = (2,6),
0,500 +— (1,0,0,0,0,0,1) = (1,7).

Figure 3: The graphs F;(P7) (left) and Fg(Pg) (right).

More results on token graphs can be found in papers by Leafios and Ndjatchi [8], Leafios and Trujillo-
Negrete [9], Dalf6, Duque, Fabila-Monroy, Fiol, Huemer, Trujillo-Negrete, and Zaragoza Martinez [4], and
Barik and Verma [2].

4. The supertoken graphs Fls((G)

In this case, the k tokens are indistinguishable, and the maximum number of tokens per vertex is s, with
1 < s < k. The supertoken graph Fi(G) has order given by the number of integer solutions (xy, ..., x,), with
0<x;<sfori=1,...,n, of the equation x; + --- + x,, = k. This corresponds to the difference between the
number of solutions with x; > 0 and the ones with x; > s + 1 for at least one i from {1, ..., n}.
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Proposition 4.1. Let G = (V,E) be a graph on n vertices. The order and size of the supertoken graph F(G) are,
respectively,

Lk/(s+1)]
veon= Y, ol ) = ke, ®
=0
and
w—s+1
G <G>>|-|E|[sz(n 219+ ), 6= fn- 2k—s—1,s>} ©)
i=1

with @ = min{2s — 2,k — 1}. In (9), we define f(n,0,s) = 1 when j =k —s.

Proof. Let S be the set of non-negative integer solutions (xi, ..., x,) of the equation x; + --- + x, = k. Then,
IS| = ICR}| = (”+k 1) Among x1,...,x,, at most I = [k/(s + 1)] numbers have values greater than s. For

i=1,. l let P; be the set of non-negative integer solutions (xy, ..., x,) with x; > s + 1. Then,
n+k—-(s+1)-1 n+k-(s+1)-1
|P;| = = .
k—(s+1) n—1

Moreover, we have
n+k—-js+1)-1 n+k—js+1)-1

puneant =TT

for j = 1,...,1. Note that the order of the supertoken graph F/(G) is exactly the difference between the
number of solutions with x; > 0 and the ones with x; > s + 1 for at least one i, with i = 1,...,n. By the
inclusion-exclusion principle, we find that

[V(FL(G)) IS| =P, UP;, U---U P,

|S|—Z|P,~|+Z|P,~lmP,~2|+~ (=)' Y 1P, AP, NN Py

Eefr )

n-—1

Consider one edge uv € E. Then, the edges corresponding to uv in F(G) are
{ALA, Ay =(,a0,...,a0), Ay = (U,a,...,ar) witha; € Viori=2,...,k}.

Suppose that t is the number of elements equal to # or v in {a», ..., ax}. Let v = min{2s — 2,k — 1}. It follows
that 0 <t < w and the remaining elements of a», ..., ax except for {u, v} are chosen from V\{u, v}, and there
are f(n—2,k—t—1,s) possible combinations with repetition. Let t, and t, be the numbers of elements equal
to u and v, respectively, with ¢, + t, = t. First, consider 0 < f < s — 1. The solutions on t, + t, = t are

ty=0,t, =t t,=1t,=t=1;, ---; t, =t,t,=0.

Then, there are t + 1 possible combinations with repetition. Hence, the number of possible combinations
with repetition of {a,, ..., ) with0 <t <s-11is

S

s—1
Z(t+ Dfn-2k—t-1,5= Zif(n —2,k—1i,5).
t=0

i=1
Next, consider s < t < w. The solutions on t,, + f, = t are

ty=s—1,t,=t—(s—-1); t,=s-2,t,=t—(s—-1)+1;, ---; t,=t—(s—1),t, =s—1.
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Then, there are 2s — 1 — ¢ possible combinations with repetition. It follows that the number of possible
combinations with repetition of {ay, ..., ax} withs <t < wis

@ w—s+1
Z(Zs —1-Hf(n-2k—t-1,5) = Z - fn—2k—s—js). (10)
t=s j=1

Note that j < w —s + 1 and w < k — 1. The variable j in equation (10) satisfies j < k — 5. Finally, we get the
number of possible combinations with repetition of ay, ..., ax is

s w—s+1

Zif(n—z,k—i,s)+ Z - )fn=2k=s-js),

=1 =1

where w = min{2s — 2,k — 1}. Therefore, the equation (9) holds since G has size |E|. [

Note that since we cannot have more than k tokens in a vertex, any situation where s > k is treated the
same as s = k.
As an example (see Figure 4), the order of F%(C4) is f(4,3,2) = 16 and the size of F%(C4) according to (9) is

2
E(F3(Cy)) = 4[2 if(2,2,2)+ f(2,0, 2)] =32.

i=1

As another example, Fi(C4) has 31 vertices and 72 edges, coinciding with formulas (8) and (9). From (8),
the order of F3(Cy) is

f(4,4,3) = (4 Z i 1) - (‘11)(4 e _41__1(3 ¥ 1)) = (;) - 4@) =35-4=3l.

Note that @ = min{2s — 2,k — 1} = 3. From (9), the size of F}(Cy) is

3 1
4[Zif(2,4 ~i,3)+ ) (3-)f24-3- j,3)]
1

i=1 =
4(1£(2,3,3) +2£(2,2,3) +3f(2,1,3) + 2f(2,0,3))

()4 +) 2

4.18 =72

The vertices of F}(Cy) and the edges in F3(C,) corresponding to the edge 12 in C, are listed in Tables 2 and 3.

(1234) (1123) (1124) (1134) (2213) (2214) (2234) (3312) (3314)
(3324) (4412) (4413) (4423) (1122) (1133) (1144) (2233) (2244)
(3344) (1112) (1113) (1114) (2221) (2223) (2224) (3331) (3332)
(3334) (4441) (4442) (4443)

Table 2: Vertices in FZ(C4).
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(1334) [ (1344) | (1333) | (1244) | (1112) | (1122)
(2334) | (2344) | (2333) | (2444) | (2112) | (2122)
(1134) | (1133) | (1144) | (1234) | (1233) | (1244)
(2134) | (2133) | (2144) | (2234) | (2233) | (2244)
(1113) | (1123) | (1223) | (1114) | (1134) | (1224)
(2113) | (2123) | (2223) | (2114) | (2134) | (2224)

Table 3: Edges in Fi(C4) corresponding to the edge 12 in Cy.

223 233
224 133
123 234
122 334
112 344
124 134
113 244
114 144

Figure 4: The graph Pg (Cy).

Alternatively, we note that, for s > 0, f(n,k,s) in (8) is the (s + 1)-nomial coefficient satisfying the
recurrence

f(n,k,s)= ZS:f(n -1,k—1,9).
i=0

For example, fors =2 and n =0,1,2,.. ., the trinomial coefficients turn out to be

1
1,1
1,2,3,2,1
1,3,6,7,6,3,1
1,4,10,16,19,16,10,4,1

Let G have vertices indexed by the integers 1,2,...,n. Then, each vertex of the supertoken graph F;(G)
can be represented by a vector (a1, ..., a,), where a; € [0, s] is the number of tokens of the only color placed
at the vertex i € [1,n]. In particular, the (classic) k-token graph Fi(G) = F,%(G), with 0 < k < n, has vertices
labeled by the binary n-vectors with k 1’s and n — k 0’s. Then, the known isomorphism Fy(G) = F,,_(G) (see
Fabila-Monroy, Flores-Pefialoza, Huemer, Hurtado, Urrutia, and Wood [5]) is a consequence of the map

(a1,...,0n) > (a_l,...,oz_,,),whereﬁz land 1 =0.



X. Song et al. / Filomat 40:2 (2026), 721-738 733

5. The supertoken graphs F’;(G)

Let G be a graph of order # and size m. In this case, the k tokens are indistinguishable, and the maximum
number of tokens per vertex is k. The supertoken graph FQ(G) has order |V(F]’§(G))| =CR} = ”*fl). Note
that we can also get this value from (8) since this formula is also valid for s = k.

Proposition 5.1. The supertoken graph F’;(G) has size

EEG))] = m(” - 2).

k-1
Proof. Consider one edge uv € E(G). Then, the edges corresponding to uv in F’;(G) are
{ALA, DAL= ,an,...,01), Ay = (0,az,...,ar) witha; € V(G) fori=2,...,k}.

Since the maximum number of tokens per vertex is k in F’;(G), each vertex in {ao, ..., a} has at most k — 1

tokens. Hence, the number of possible combinations with repetition of {5, ..., a} is (”;]_‘IZ) The result
holds as G has size m. [

See an example in Figure 1(c) for the case G = C4 (n = 4) and k = 2. This kind of supertoken graph was
introduced by Hammack and Smith [7], who named them reduced power graphs.

If G = K,, then the vertices of the supertoken graph P’;(KW) represent the different possible states of a
multiprocessor with n memory modules and k (indistinguishable) processors.

6. The supertoken graphs F;xl(G)

In this case, the k tokens are different, and the maximum number of tokens per vertex is one. The

supertoken graph F  (G) has order (n’_l—'k), and size mk (:1;3)1'), See an example in Figure 1(d) for the case

G = C4 (n = 4) and 2 tokens of different colors.

6.1. The supertoken graphs of paths and cycles

Let G be a graph with V(G) = {1,2,...,n}. For a vertex (a1, a2,...,ax) in F,lcxl(G), where «a; € [n] for
i=1,2,...,k we define

(ay, ... ap) 2 (a1, @, ..., k) (11)
if there exists an integer j such that a;. < aj,and aj = a; for I € [k]\{j}, and

(aill a,zlr R a],(,) z (0(1, az, ..., ak) (12)
if there exists an integer j such thata’/ > a;, and a;’ = q;forl € [k]\{j}. For a vertex (a1, ay, ..., ax), we refer to
the. Ver.tex (o, 5, .. ¥ a,’() satisfyling (11) as being on the left of (a1, ay, . . ., ax), and the vertex (af,af,..., a,’(’)
satisfying (12) as being on the right of (a1, a2, . .., ax).

Proposition 6.1. Let G = P,, be a path with order n. Then, F_|(G) contains at least one cycle for k < n — 2, and
does not contain any cycle for k = n —1,n. Moreover, for k = n, F__|(G) is the graph with n! isolated vertices, and
F_,(G)=P,U---UP, fork=n—1.
————
(n-1)!
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Proof. Define V(P,) ={1,2,...,n}. Let (a1, a2, ..., ax) be one vertex of F}cxl(Pn), where a; € [n] and a, ...,
are distinct. The case k = n is trivial. If k < n — 2, then we can choose a3, ...,ar € {5,...,n}, that is, there
are tokens at vertices 1 and 3 (#; = 1 and a; = 3). Thus, (1,3,as,...,a), (1,4,as,...,0¢), 2,4,0a3,...,ar),
(2,3,a3,...,ar),and (1,3, a3, ..., a) is a cycle, as desired. Suppose next that k = n — 1. Consider the vertex
(a1,a2,...,ar), where 1,n € {ay,...,ar}. Then, there exists exactly one vertex (0‘/1'&/2/"'/"‘1/() satisfying
(af, ..., 1) = (a1,02,..., ) Onits left and exactly one vertex (af, a7, ... sy satisfying (&}, a3, ..., )
> (a1,ay,...,ax) on its right. Thus, starting from the vertex (a1, @, ..., ax), the leftmost vertex must be
(t(1),7(2),...,7(n — 1)) and the rightmost vertex must be (0(2), 6(3),..., 6(n)), where 7 is a permutation on
{1,...,n =1} and o is a permutation on {2, ..., n}. Moreover, we see that there are no more vertices adjacent
to any of the vertices in the path starting from (ai, ay, ..., ax) with end vertices (7(1),7(2),...,t(n — 1))
and (0(2),0(3),...,0(n)). A vertex (a;,a;,...,a;) with 1 ¢ {a;,a;,...,a;} orn ¢ {a;,a;,...,ak} must be
included in the path starting from one vertex (a1, ay, ..., ar) with 1,n € {ay, ..., ax}. The set {a1, a, ..., ax}
has k! = (n — 1)! possible permutations, so F(ln—1)><1(P") =P,U---UP,. O
(n-1)!

*

Example 6.2. The supertoken graph F}_, (Py) is shown in Figure 5.

(1,2,3) (1,2,4) (1,3,4) (2,3,49) 2,3,1) (2,41 (3,41 (3,42 3,1,2) 4,1,2) 4,1,3) 4,23)
(1,3,2) (1,4,2) (1,4,3) (2,4,3) 2,1,3) (2,1,4) (3,1,4) (3,2,4) 3,2,1) 4,2,1) 4,3,1) 43,2

Figure 5: The supertoken graph Féxl (Py).

Proposition 6.3. Let G = C, be a cycle with order n. Then, F ,(G) contains at least one cycle for k < n —1, and
does not contain any cycle for k = n. Moreover, for k = n, the supertoken graph F,__,(G) is the graph with n! isolated
vertices and F,_(G) = Cyu-1) U -+ U Cpuy) fork =n — 1.

(n-2)!

Proof. The case k = n is trivial, and the case k < n — 2 is similar to Proposition 6.1. Consider k = n — 1.
Denote V(C,) = {1,2,...,n}. Let 0 be a permutation on {1, ..., n} such that 6(i) = i + 1 (mod n). For a vertex
(1,00, ..., 0r) In F;xl(C”) satisfying that {a1, az, ..., ax} is a permutation on {2, 3,...,n} with a; = n, there is
no vertex being on its right from the definition shown in (12). Then, we define the relation («], ... ,00) =
(a1, ..., ap) if a;. =1land a = for I € [k]\{j}, which implies that (ay,...,0(a)),..., &) = (a1, ..., @], ..., &%)
Then, for any vertex (a1, a, ..., ax) in Fllxl(C,,), there exists a vertex (aj,aj, ..., a;) on its right satisfying
(af,a,...,00) = (a1,a2,...,a). Moreover, the path from (a1, a2 ,..., &) to (o(a1),0(az), ..., 0(ax)) is of
length k = n — 1. Note that (0" (a1),0"(a2),..., 0" (ax)) = (a1, a2, ...,ax). Thus, there is a cycle of length
n(n —1) including (a1, ay, . .., ax). Observe that the set {a1, ay, . .., ax)} has k! = (n — 1)! possible permutations

and k of them are in the same cycle of length n(n — 1). Thus, F}nfl)xl(C”) =Chp-1) U---UCypumry. O

(n-2)!

Example 6.4. The supertoken graph F}_,(Cy) is shown in Figure 6.
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(1,2,3) (1,3,2)

4,1,3) 4,3,1) (1,4,3)
4,1,2) 4,2,1) (2,4,3)
(3,1,2) 3,2,1) (2,1,3)

(3,41 (3,1,4)

Figure 6: The supertoken graph F;xl (Cy).

7. The supertoken graphs szl(G)

In this case, the k tokens are different, and the maximum number of tokens per vertexiss, with1 < s < k.

For integers t1, ..., t; satisfying f; + - - - + t; < k, we define (n k ti) = m

Proposition 7.1. Let G = (V,E) be a graph on n vertices. The order and size of the supertoken graph F;_,(G) are,
respectively,

L5
s+1 n k N
V(FLa (G = Z(—ly( ) 2, (t- t )<n = )T = K 5), (13)
j=0 tiy tiy ooty 2541 sty
tiy +t,-2+-~-+t,,.5k
and
|E(FL(G))| = |EI Z (ru + 1)(7‘ 17 )h(n -2k—ry—1r,-1,9). (14)

0<ry,1rp<s—1
rutr,<k—1

k
...,tii

Specifically, for j = 0, we define the second sum Zt,l iyt 2541 (r ) to be equal to 1 in (13), and forr, +r, =k -1,
11/

tiy +t,-2+-»-+t,,.5k
we define h(n,0,s) to be 1 in (14).
Proof. Let (a1, ay, ..., ax) be a vertex of Fixl(G). We get |V(F’]§X1(G))| = n*. Suppose that j is the number of

distinct vertices appearing at least s + 1 times in ay, @, . .., a¢. Then, j < Lﬁj. Let P; C V(Fﬁxl(G)) be the set
where at leasts + 1 of a1, ay, ..., ax are equal to vertex i € V. Then,

5 (k o
Pi= Y (t,)m—l) 3

ti=s+1
Moreover, we have
k N —
|Piy NN P;j| = Z ( )(”—]) v
till 7 ti,‘

t,’l ’tiz""’t"]‘ >s+1
tiy +iy +-~-+t,j <k

forj:l,...,LLJ.

s+1
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By the inclusion-exclusion principle, we find that

k
L)

VLGN = Y 1P+ Y 1Py 0Pyl -+ (<11 Y

o] n k

Z(—D]( ) 2, (t- t)(n—j)“ﬁ'"fw.

=0 ] e
t,<1+t,v2+~'~+t;/.§k

IV(F}, (Gl = [V(FL, (G - 'Ph U---UP;

Pilmpizﬁ'--ﬁpiL

k
14

Consider one edge uv € E. Then, the edges corresponding to uv in Fj_ (G) are

{ALAy: Au=(a,...,ai=1u,...,ar), Ay, =(1,...,0; =0,...,0)
with a; € V for j € [k]\{i}}.

Let r, and r, be the numbers of elements equal to u and v in {a, ..., ax}\{a;}. It follows that 0 < 7,7, <s-1
and r, + 1, <k — 1. We get the number of edges corresponding to uv in F;_,(G) is

k
Y, (u+D) h(n—2,k =1, — 15— 1,5). (15)
0<ry,ro<s—1 w1

ry+ry<k—1

Therefore, the equation (14) holds. O

Example 7.2. Consider a star Sy (with 5 vertices) with vertex set V(S4) = {0, 1,2, 3,4}, where 0 is the central vertex.
The order of the supertoken graph F3,(Ss) is h(5,3,2) = 5° + DG = 1)°3 = 120. We show the edges in
F3..,(S4) corresponding to the edge 01 in G. Let A = (ay, az,a3) € V(F3,,(S4)) and B = (B1, B2, 3) € V(F3,,(54))
such that a; = 0 and B; = 1 for some i € [3] and a; = B; for j € [3]\{i}. We consider all possible cases of A and B. Let
ro and r1 be the numbers of elements equal to 0 and 1 in {a1, an, az}\{ai}. Since s = 2, it follows that 0 < ro,r; < 1.
Then, there are four possible combinations of values for o and r;.

Case 1. rp = O and r; = 0. Here, the value i can be 1,2, or 3, that is, there are 3 possible values for i. For the

remaining elements in {a1, az, az}\{a;}, the possible combinations are
{2,3},13,2},{2,4}, 14,2}, (3,4}, 14,3}, {2, 2}, {3, 3}, {4, 4}.

In this case, there are 3 X 9 = 27 edges corresponding to 01, see Table 4.

0,2,3) [ (0,3,2) | (0,2,4) [ (0,4,2) | (0,3,4) [ (0,4,3) | (0,2,2) | (0,3,3) | (0,4,4)
1,2,3) | (1,3,2) | (1L2,4) | (1,4,2) | 1,3,4) | (1,4,3) | (1,2,2) | (1,3,3) | (1,4,4)
2,0,3) | 3,0,2) | 2,0,4) | (4,0,2) | (3,0,4) | 4,0,3) | (2,0,2) | (3,0,3) | (4,0,4)
21,3 | 31,2 | 214 | @12 | G149 | 41,3 | (212 | (G13) | 41,4
2,3,0) | 3,2,0) | 2,4,0) | (4,2,0) | (3,4,0) | 4,3,0) | (2,2,0) | (3,3,0) | (44,0)
231 | 321 | 241) | 421|341 | 431 | (221|331 | 441)

Table 4: Edges in F§X1(54) corresponding to 01 for rp = 0and r; = 0.

Case 2. ro = 0 and r1 = 1. Here, the value i can be 1,2, or 3, and there exist j € [3]\{i} such that aj = 1. So,
there are 6 possible ordered pairs for (i, j), which are (1,2),(1,3),(2,3),(2,1),(3,1), and (3,2). For the remaining
elements in {ay, az, asi\{a;, aj}, the possible combinations are {2},{3},{4}. In this case, there are 6 X 3 = 18 edges
corresponding to 01, see Table 5.
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0,1,2) | (0,1,3) | (0,1,4) | (0,2,1) | (0,3,1) | (0,4,1) | (2,0,1) | (3,0,1) | (4,0,1)
(1,1,2) | (1,1,3) | (1,1,4) | 1,2,1) | (1,3,1) | (1,41 | 2,1,1) | (3,1,1) | (4, 1,1)
(1,0,2) | (1,0,3) | (1,0,4) | (1,2,0) | (1,3,0) | (1,4,0) | (2,1,0) | (3,1,0) | (4,1,0)
(1,1,2) |1 (1,1,3) | (1,1,4) | (1,2,1) | (1,3,1) | (1,4,1) | (2,1,1) | (3,1,1) | (4,1,1)

Table 5: Edges in F%X] (S4) corresponding to 01 for rg =0 and r = 1.

Case 3. 1o = 1 and ry = 0. There exist i1,ip € [3] such that a;, = a;, = 0. Then, there are 3 possible ordered pairs
for (i1, i), which are (1,2),(1,3), and (2,3) (here, (i2,i1) = (2,1) is the same as (ip,i1) = (1,2)). For the remaining
elements in {a1, @, as}\{a,, ai,}, the possible combinations are {2}, {3}, {4}. Moreover, for a;; = a;, = 0, we find that
there exists j € {iy, ip} satisfying B; = 1 and B; = ay for | € {i1, 2}\{j}. Thus, j can be iy or iy, which implies that there
are 2 values for j. In this case, there are 2 X 3 X 3 = 18 edges corresponding to 01, see Table 6.

(0,0,2) [ (0,0,3) [ (0,0,4) [ (0,2,0) | (0,3,0) | (0,4,0) | (2,0,0) | (3,0,0) | (4,0,0)
1,0,2) | (1,0,3) | (1,0,4) | (1,2,0) | (1,3,0) | (1,4,0) | (2,1,0) | (3,1,0) | (4,1,0)
(0,0,2) | (0,0,3) | (0,0,4) | (0,2,0) | (0,3,0) | (0,4,0) | (2,0,0) | (3,0,0) | (4,0,0)
0,1,2) | (0,1,3) | (0,1,4) | (0,2,1) | (0,3,1) | (0,4,1) | 2,0,1) | 3,0,1) | (4,0,1)

Table 6: Edges in F§X1(54) corresponding to 01 for rg = 1 and ry = 0.

Case 4. ro = 1and r1 = 1. Here, o, = aj, = 0 and a; = 1. Then, there are 3 possible ordered pairs of (i1, 12, 13),
which are (1,2,3),(1,3,2), and (2,3,1). Moreover, for a;, = ay, = 0, we see that there exists j € {iy, ir} satisfying
Bj = land B; = &y for | € {i1,i2}\{j}. Thus, j can be iy or iy, which implies that there are 2 values for j. In this case,

there are 2 x 3 = 6 edges corresponding to 01, see Table 7. Therefore, the number of edges in F3, | (S4) corresponding
to01is 27 + 18 + 18 + 6 = 69.

0,0,1)
(1,0,1)

0, (0,1,0) | (1,0,0)
L ©11) | 1,01)

1,0) [ (1,0,0) [ (0,0,
L0 | 1,10 ] (01,

7 7

Table 7: Edges in F§X1(54) corresponding to 01 forrg = 1and ry = 1.

Alternatively, from (15), we have

1 1 3
Y Z(‘)(ro + 1)(r0 1 rl)h(3,3 ~r-11-1,2)

7’0=0}’1=
= 1~3~h(322)+1~ 3 h(3,1,2) +2- 3 h(3,1,2) +2- 3 “h(3,0,2) =27 + 18 + 18 + 6 = 69
- 1 aaid 1,1 s 2,0 s 2’1 s - - .

(k)

8. The Cartesian product P;(‘xl(G) = GO -+ 0G

In this case, the k tokens are different, and the maximum number of tokens per vertexis k. The supertoken

graph F{ _(G) = GO . 0G is the Cartesian k-th product of G by itself. Then, F{ ,(G) has order n* and size
mkn*~1. See an example in Figure 1(e) for the case G = C4 (n = 4) and 2 tokens of different colors.

Proposition 8.1. If G = (V, E) is a (not necessarily reqular) graph, then the supertoken graph Fixl(G) is isomorphic
to the Cartesian product GO ®. oG,
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Proof. Let F¥ = Ff (G)and GF = Go ®. 5G. Bach vertex of F* can be represented by a vector (u1,uy, . .., ),
where u; € V is the vertex with token i € {1, ..., k}. This vertex is adjacent to the vertices

(v1,uz, ..., ux) with v; ~ up (token 1 moved from u; to vy),

(u1,v3,...,ux) with v, ~ u; (token 2 moved from u, to v;),
(16)

(uy, uo, . .., v¢) with v ~ 1, (token k moved from uy to vy).

Besides, each vertex of GF is also represented by a vector (uq,uy,...,u;), where u; is a vertex of the i-th

factor (copy of G) of the product GO ®. 06, and its adjacent vertices are as in (16). This proves the claimed
isomorphism. [J
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