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Homological invariants of edge ideals of power graphs of finite groups
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Abstract. This article examines the homological invariants, including Castelnuovo-Mumford regularity,
projective dimension, and Betti numbers, of the edge ideals associated with the power graphs of integer
modulo groups. We characterize the edge ideals of power graphs of groupZn with 2-linear resolution and
list all of their Betti numbers. We explicitly determine the projective dimension and extremal Betti numbers
of power graphs of Zn. For the power graph of Zn, where n is the product of three distinct primes, the
initial graded Betti numbers of its edge ideal are investigated alongside the Hilbert series. We present a
general inequality for the Betti numbers and the regularity of edge ideals of power graphs of Zn.

1. Introduction

Given a polynomial ring R = K[x1, . . . , xn] over a field K with intermediates x1, . . . , xn and standard
degree grading, a set of finite simple graphs of order n and the quadratic square free monomial ideals in R
have a one-to-one natural mapping. Given a simple finite graph G with vertex set V(G) = {x1, . . . , xn} and
edge set E(G), a edge ideal I(G) associated with G and is defined as I(G) = {xix j : {xi, x j} ∈ E(G)} ⊆ R (see,
Villarreal [30]). The edge ring of G is the quotient ring R/I(G). According to the Hilbert-Syzygy theorem,
the graded R-module R/I(G) has a minimumN-graded free resolution that is unique

0→
sη⊕

j=η+1

R(− j)βe, j → · · · −→

si⊕
j=i+1

R(− j)βi, j −→ · · ·→

s1⊕
j=2

R(− j)β1, j → R→ R/I(G)→ 0,

of length η ≤ n. The projective dimension η of R/I(G) is the length of the smallest graded free resolution of
edge ring, which is expressed as pd(R/I(G)) (or, when G is understood, pd(G)). The projective dimension
reveals structural graph features like cycles and chordality. It is constrained above by the order n of G.
Additionally, R(− j) is a graded free R-module with rank one generated in degree j. The i-th graded Betti
number of i-th syzygy module in degree j is denoted by βi, j(R/I(G)) (or βi, j(G), when there is no ambiguity).
It is the number of generators with degree j in the i-th stage of the resolution. A Betti table contains the
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arrangement of the Betti numbers. The minimal free resolution of an edge ideal over a polynomial ring
is described by its algebraic invariants βi, j(G). They play a key role in comprehending the algebraic and
combinatorial characteristics of the graph related to the edge ideal. It is evident that βi, j(G) = 0, for any
j < i + k, if I(G) is generated by elements of degree greater or equal to k. Therefore, for every 1 ≤ i ≤ η,
the graded Betti numbers of interest are βi,i+k(I(G)). To represent the linear strand of the smallest resolution
of I(G), the numbers βi,i+k(G) for non-negative i count the number of linear syzygies that appear in the
resolution [26]. The regularity of I(G) is a crucial situation; if it is two, such edge rings (or graphs) are
referred to as the Fröberg’s characterization. The resolution in this case appears to be

0→ R(−η − 1)βη, j −→ · · · → R(−3)β2, j→R(−2)β1, j → R→ R/I(G)→ 0.

Finding the Betti numbers βi, j is often somewhat difficult, but for square-free monomial ideals like I(G),
the fundamental concept to explore βi, j(G) is Hochster’s formula (see, [16, 26]), which is mentioned in the
next section. However, because they are defined in terms of the dimension of reduced homology, it is
still difficult to identify βi, j(G). Additionally, the Betti numbers βi, j(G) of fat forests are determined using
the Hilbert series idea [13]. The numerous homological invariants of I(G) that are encoded by the free
resolution of the edge ideal I(G) are closely related to the invariants of the underlying combinatorial graph
G. Projective dimension, Castelnuovo-Mumford regularity (shortly regularity), and occasionally extremal
Betti Numbers are some significant algebraic invariants related to I(G). The regularity of I(G) roughly
quantifies the intricacy of ideals and modules. The regularity of I(G) is expressed as

regK(I(G)) = max
{
j − i : βKi, j(G) , 0

}
.

The projective dimension of I(G) is defined by

pdK(I(G)) = max
{
i : βKi, j(G) , 0 for some j

}
.

The gradual development of these invariants can be observed in [10, 11, 21, 30]. Fröberg [13] identified
the Betti numbers and their Alexander duals for fat forests. Mohammadi and Moradi [22] presented
resolutions for unmixed bipartite graphs. The Betti numbers of edge ideals of certain split graphs were
examined by the authors in [29], [28] provides graded Betti numbers for a class of bipartite graphs. Both
the underlying graph and the characteristic of field affect the Betti numbers, regularity, and projective
dimension of I(G) of a general graph G. However, in the current study, these homological invariants are
not affected by the characteristic of field. Thus, using the shortened notations, we write βKi, j(R/I(G)) =

βi, j(G), regK(R/I(G)) = reg(G) and pdK(R/I(G)) = pd(G). A Betti number βi, j , 0 of G is known as extremal
Betti number if βl,ℓ = 0, for all l ≥ i, ℓ ≥ j+ 1 and ℓ− l ≥ j− i, that is, if βi, j is the non-zero top left “corner” in a
block of zeroes in the Macaulay “Betti” diagram. Extremal Betti numbers, which account for “notches” in
the form of the minimal free resolution, are used to compute regularity. In this sense, extremal Betti numbers
are a refinement of Mumford-Castelnuovo regularity. Bayer, Charalambous, and Popescu [3] investigated
the extremal Betti numbers and their application to monomial ideals. Corso and Nagel [9] demonstrated
that the edge rings of Ferrer’s graphs are 2-linear in resolution. Chen [8] calculated the minimal resolution
of all edge rings using 2-linear. Fröberg [12] addressed a conjecture about 2-linear resolution of edge rings.

In this contribution, we will demonstrate that the edge rings of a class of graphs derived from a power
graph of integral modulo n group have 2-linear resolution when n is a prime power. We compute all of the
graded Betti numbers that exist within its linear stand. Furthermore, we present the Beti numbers βi, j of a
power graph ofZn where n is the product of three primes and j = i+1. We show that the projective dimension
of such graphs is n − 1, and the extremal Betti number is ϕ(n) + 1, where ϕ represents Euler’s function. As
a result, we find enormous classes of edge rings with odd extremal Betti numbers. We characterize power
graph of Zn with regularity 2 and show that the regularity is at least 3 for remaining value of n. More
information on the extremal Betti numbers of graded algebras may be found in [3, 20, 22–25].

All graph taken into consideration in this study are finite and simple. The graph G = G(V(G),E(G)) has
the vertex set V(G) = {x1, . . . , xn} and the edge set E(G), which contains pairs of vertices {xi, x j}. An induced
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subgraph H of a graph G is a subgraph such that vertices u and v are adjacent in H if and only if they are so
in G. We denote the induced subgraph on the vertex set V′ by G[V′]. The number of edges that are adjacent
to a vertex v of G is its degree dv. A complete graph, denoted by Kn, has every pair of distinct vertices
adjacent. The complement G of a graph G with the same vertex set as V(G) is a graph in which two distinct
vertices of G are adjacent if and only if they are not in G. It is clear that the edge set E(G) = E(Kn) \ E(G).
The complement of Kn is a completely disconnected graph, denoted as Kn. A subset S of vertex set V(G) is
known as a independent set if the induced subgraph on set G[S] � K|S|, which means that S is a subset of
pairwise non-adjacent vertices. A clique is a collection of pairwise adjacent vertices. Cn represents a cycle
of order n. A graph G is said to be chordal graph, if C3 is its only induced cycle. Equivalently, for n ≥ 4,
every induced cycle Cn has a chord (an edge that connects two vertices but is not part of the cycle itself). If
G is chordal, then G is a co-chordal graph. A graph G is called weakly chordal graph if there is no induced
chordless Cn in G and G for n ≥ 5, meaning that each induced cycle in G and G is of length at most 4.
Similarly, we denote vertex set as V(G) = {x1, . . . , xn} = [xn].

The article is organized as follows: Section 2 discusses simplicial complexes and Hochster’s formula
used for calculating the graded Betti numbers of edge ideal. In Section 3, we find the homological invariants
of edge ideal of power graphs of finite cyclic groupZn, discuss their regularity, projective dimension, graded
Betti numbers and Hilbert series.

2. Simplicial complexes and Hochster’s formula

A simplicial complex ∆ = ∆(G) on vertex set V(G) = {x1, x2, . . . , xn} is a collection of its subsets such that
each {xi} ∈ ∆ and if F ∈ ∆, then each subset F′ of F is in ∆. Roughly speaking ∆ is closed under set inclusion
operation. The maximal faces of ∆ under inclusion are referred to as facets, while an element F ∈ ∆ is
known as face. If |F| − 1 = δ, then F ∈ ∆ is referred to as a δ-dimensional face (δ-face). The dimension of ∆,
indicated by dim ∆, is defined as δ, where max{|F| : F ∈ ∆} = δ + 1. The symbol comp(∆) represents the
number of connected components of ∆. If ∆′ is a subset of simplicial complex ∆, it is called a subcomplex
of ∆, which means that ∆′ is a simplicial complex and ∆′ ⊆ ∆. The induced subcomplex ∆S associated with
S ⊆ V(∆) is defined as a simplicial complex ∆S = {F ∈ ∆ | F ⊆ S}. A simplicial subcomplex ∆′ of a simplicial
complex ∆ is said to be full simplicial complex if every simplex in ∆ whose vertices all belong to ∆′ is also
in ∆′. A simplicial complex ∆ with only one facet is called a simplex, which means that every subset of
the vertex set V is in ∆. The representation of a simplex of dimension δ (δ-simplex) is ⟨x1, . . . , xδ+1⟩ or ⟨X⟩,
where X = [xδ+1].A simplicial complex ∆ ∗∆′′ = {α∪ β : α ∈ ∆, β ∈ ∆′′} is the result of joining two simplicial
complexes on different vertex sets, ∆ and ∆′′.

Consider the vertex set [xn] of a finite simple graph G. Next, the simplicial complex

∆(G) =
{
S : S is an independent subset of [xn]

}
,

on V(G) is called the independent complex of G. Similarly, a clique complex is defined on V(G) of G. For a vertex
set [xn] with a simplicial complex ∆, the squarefree monomial ideal I∆ in R = K[x1, x2, . . . , xn] generated by
all squarefree monomials xi1 xi2 . . . xip such that {xi1 , xi2 , . . . , xip } is not a face of ∆ is known as Stanley-Reisner
ideal, that is,

I∆ = {xi1 xi2 . . . xip | {xi1 , xi2 , . . . , xip } < ∆} ⊂ R.

The Stanley-Reisner ring of ∆ is the quotient ringK[∆] = R/I∆. On the other hand, we can attach a simplicial
complex ∆ on the vertex set [xn] such that I = I∆ for any squarefree monomial ideal I ⊆ R = K[x1, x2, . . . , xn].
Therefore, for an edge ideal I(G) in a ring R = K[x1, x2, . . . , xn], the simplicial complex ∆(G) associated with
a graph G on the set [xn] is expressed as

∆(G) =
{
{xi1 xi2 . . . xip } ⊆ V : {xi1 xi2 . . . xip } is a independent set

}
,

such that I(G) = I∆(G). That is, edge ideal I(G) is same as the Stanley-Reisner I∆(G) of the independent complex
∆(G). An edge ring R/I(G) is equivalent to a Stanley-Reisner ring R/I∆(G). We will now use the terms edge
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ring (edge ideal) and Stanley-Reisner (Stanley-Reisner ideal) interchangeably for a graph G. To calculate
the graded Betti numbers of Stanley-Reisner ringK[∆], we recall an intriguing result attributed to Hochster
[16] (also see, [26]). This formula relates the graded Betti numbers of I∆ to the dimensions of the reduced
homology of the simplicial complex ∆ on [xn].

Theorem 2.1 ([16], Hochster’s formula). The graded Betti number βi, j of the Stanley-Reisner ring K[∆] = R/I∆
in degree j is given by

βi, j(K[∆]) =
∑
S⊆V
|S|= j

dimKH̃ j−i−1(∆S;K), (1)

for each i, j ≥ 0.

Clearly, the regularity of Stanley-Reisner ideal of a graph satisfies reg(I∆(G)) ≥ 2. Furthermore,
reg(R/I(G)) = reg(G) = reg(I(G)) + 1. The Fröberg’s classification of edge ideals refers to the classifica-
tion of the Stanley-Reisner ideal of graphs with regularity 2, that is, classification of edge ideals using linear
resolutions [11], so that reg(I(G)) ≤ 2 if and only if G is chordal. This type of characterisation, known as
Fröberg’s 2-linear resolution characterization of edge rings, is extremely valuable in algebraic combina-
torics. Graphs with a regularity of at least 3 are yet to be fully characterized. For some advances on graphs
with edge regularity 3, we refer to [10]; for other developments, see [13, 15, 32] and the references therein.

3. Homological invariants of edge ideals of power graphs of finite groups

Several types of graphs can be associated to algebraic structures like Cayley graph of a group, zero
divisor graph of a ring [4], comaximal graphs of rings [27], commuting graphs of groups [5], power graphs
[18] and several other classes of algebraic graphs [2].

The directed power graph of a semigroup Ω is a directed graph with vertex set Ω such that for x, y ∈ Ω
there is an arc form x to y if and only if x , y and yi = x for some positive integer i [18]. The undirected
power graph P(G) of a group G has been defined in [6] as an undirected graph with vertex set as G and
two vertices x, y ∈ G adjacent if and only if xi = y or y j = x, for 2 ≤ i, j ≤ n. First survey of power graph
was carried by Abawajy, Kelarev and Chowdhury [1] and a recent one by Kumar, Selvaganesh, Cameron
and Chelvam [17]. Figure 1 (a) shows the power graph of finite cyclic group Z6, and (b) Figure 1 show its
independent simplicial complex.

0
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3

4

5

(a) Power graph of Z6

1

54

0

2

3

(b) Independent simplicial complex of P(Z6)

Figure 1: Power graphs of Z6 and its simplicial complex with 0 and 1-faces

Consider the power graph P(Zn) of the cyclic group Zn = {0, 1, . . . ,n − 1}. It is easy to see that each
element of Zn can be written as integral modulo n of the identity element 0. So, 0 is adjacent to all other
elements of P(Zn). Also, we note that the invertible elements α = {a ∈ Zn : (a,n) = 1} generate all elements
ofZn and there are ϕ(n) such elements, where ϕ is Euler function and (a,n) represents the highest common
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factor of a and n. Thus, it follows thatϕ(n)+1 elements inZn generate all other elements and by definition of
power graph they form a clique of size ϕ(n)+1 in graphP(Zn).Next, we take into account other n−ϕ(n)−1
non invertible elements ofZn.Mehranian, Gholami and Ashrafi [19] proved that n−ϕ(n)− 1 non invertible
elements of Zn form a special graph whose induced subgraphs are isomorphic to Kϕ(di), where di < {1,n} is
a divisor of n. Furthermore, each vertex of Kϕ(di) is adjacent to every vertex of Kϕ(d j) if di divides d j. Also,
in the same article, it is proved that the automorphism group of P(Zn) is Aut(P(Zn)) � Sϕ(n)+1 ×

∏
i Sϕ(i),

where i is a divisor of n other than 1 and n, and Sn is a symmetric group.
We will study the homological properties of power graphs ofZn and characterize the value of n such that

the Stanley-Reisner ideal has 2-linear resolution. Thereby, it contributes the combinatorial classification
of Fröberg’s 2-linear resolution of Stanley-Reisner ideal. Also, we discuss their regularity, projective
dimension, Betti numbers including the extremal Betti number. With j = i+ 1,we have the following result
presenting the extremal Betti number and the projective dimension of power graphs.

Theorem 3.1. The extremal Betti number of P(Zn) is ϕ(n) + 1 and its projective dimension is n − 1.

Proof. Let ∆(P(Zn)) = ∆ be the simplicial complex of P(Zn). Then by Hochster’s formula (1), we have

βi, j(P(Zn)) =
∑

S⊆V(P(Zn))
|S|= j

dimKH̃ j−i−1(∆S;K), (2)

where i, j ≥ 0.Also, note that ∆ is not connected as there are ϕ(n)+ 1 simplicial of dimension zero and other
simplices of unknown dimension due to the fact that other part of power graph is not known. So, j = i + 1
and with this information, βi, j(G) is non-zero and since the number of connected components in ∆ is greater
than 1. In particular there are ϕ(n) + 2 connected components as there are exactly ϕ(n) + 1, 0-dimensional
facets in ∆ and ∆V(P(Zn))\S has only one connected component, where S is the set of non-zero non-invertible
elements. Thus, the extremal Betti number is ϕ(n) + 1 and projective dimension is n − 1.

For n = pα, where p is prime and α is a positive integer, P(Zn) is complete graph, so its regularity is 2
and its only Betti numbers are given as

βi, j(P(Zn)) =

i
( pα

i+1

)
if j = i + 1,

0 otherwise.

Next, we discuss the homological invariants ofP(Zn) when n is other than prime power. If n = 2p where
p ≥ 3 is a prime. Then the component ofP(Zn) on non-zero non-unit elements ofZn is a star graph of order
n − ϕ(n) − 1 and remaining vertices are isolated. Thus, there is no induced cycle greater than order 4. So, it
follows that P(Zn) is co-chordal and hence regularity of its edge ideal is 2. So, by Fröberg, the edge ideal of
I(P(Zn)) has two linear resolution and by applying Theorem 2.1, it can be proven that all its Betti numbers
are given by

βi, j(P(Zn)) =


i
((p−1

i+1

)
+

( p
i+1

)
+

(p
i

))
+

∑
a+b=i+1

a,b>1
i
(p

a
)(p−1

b

)
+

∑
a+b=i
a,b>1

a
(p

a
)(p−1

b

)
for j = i + 1

0 otherwise.

(3)

For n = 2 · 3, the Betti numbers of P(Z6) shown in Figure 1 are given below:

β1,2 = 1
(
2
2

)
+ 1

(
3
2

)
+ 1

(
3
1

)
+ 1

(
3
1

)(
2
1

)
= 1 + 3 + 3 + 6 = 13,

β2,3 = 2
(
3
3

)
+ 2

(
3
1

)(
2
2

)
+ 2

(
3
2

)(
2
1

)
+

(
3
1

)(
2
1

)
= 2 + 3 · 6 + 12 = 32
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β3,4 = 3
(
3
3

)
+ 3

(
3
2

)(
2
2

)
+ 3

(
3
3

)(
2
1

)
+

(
3
1

)(
2
2

)
+ 2

(
3
2

)(
2
1

)
= 33

β4,5 = 4
(
3
3

)(
2
2

)
+ 2

(
3
2

)(
2
2

)
+ 3

(
3
3

)(
2
1

)
= 4 + 2 · 6 = 16, β5,6 = 3

(
3
3

)(
2
2

)
= 3.

By computer calculations using Macaulay 2.0 [14], the Betti number are same as above and are given as:

0 1 2 3 4 5

total: 1 13 32 33 16 3

0: 1 . . . . .

1: . 13 32 33 16 3

Figure 2: Betti table of the minimal free resolution of R/I(P(Z6)).

When n =
∏t

i=1 pαi
i with i ≥ 2, then the complement of induced subgraph of P(Zn) on n − ϕ(n) − 1

elements always contains C4 as an induced subgraph, since for any two divisors e1 and e2 with (e1, e2) = 1,
their corresponding induced subgraphs are Ke1 and Ke2 , and they form a complete bipartite graph P(Zn).
Thus, the regularity of I(P(Zn)) is at least 3.We make the above observations precise in the following result.

Theorem 3.2. Let I(P(Zn)) be the edge ideal of P(Zn). Then, we have

reg(I(P(Zn)))

= 2, if n is a prime power or n = 2p, where p is prime
≥ 3, otherwise.

Next, we discus the regularity of P(Zn)) for other values of n. We consider the following definitions: A
matching in of G is a subset of E(G) such that no two edges have a common vertex, that is, sort of subgraph
consisting of pairwise disjoint edges only. If no two vertices belonging to any two given edges of a matching
of G are adjacent, then such a matching is known as the induced matching (that is, the induced subgraph of
a matching is induced matching). For an induced matching M of G, the cardinality of M is its size. The
size β of the maximum induced matching in M is the induced matching number of G, denoted by ind(G).
The induced matching of size β of G can be regarded as the βK2 induced subgraph of G. For a graph G,
the two disjoint edges e1 = {yi, y j}, and e2 = {zi, z j} are said to be 3-disjoint if e1 and e2 are disjoint and their
induced subgraph is 2K2. A collection of edges {e1, . . . , e1} is called pairwise 3-disjoint collection if ei and
e j are 3-disjoint, for 1 ≤ i, j ≤ t with i , j. It is clear that the induced matching number of G is the largest
cardinality of pairwise 3-disjoint subset of edges (see [31]). The following result relates the regularity of
edge ring of G with its induced matching number.

Theorem 3.3 ([15]). If G is a chordal graph, then reg(G) = ind(G).

The above result is even true for weakly chordal graphs (see [31]), as chordal graphs are weakly chordal.
For n = pq, with 2 < p < q are primes. The power graph of G � P(Zn) consist of ϕ(n) + 1 vertices of

degree n − 1, p − 1 vertices of degree ϕ(n) + p − 1 and q − 1 vertices of degree ϕ(n) + q − 1. So, structure of
G is completely known with V1 = {v ∈ V(P(Zn)) : dv = n − 1},V2 = {v ∈ V(P(Zn)) : dv = ϕ(n) + p − 1} and
V3 = {v ∈ V(P(Zn)) : dv = ϕ(n) + q − 1}. Now, it is easy to see that K|V2 |,|V3 | is the connected component of
P(Zn) and it implies that G is not co-chordal. Thus, regularity of I(P(Zn)) is at least three. Let Ω be any
subset of V(P(Zn). If Ω is a subset of Vi with |Ω| ≥ 5, then the induced subgraph G[Ω] cannot be a cycle,
since for even cases G[Ω] � K|Ω|. If Ω is a subset of V(P(Zn)) such that Ω ∩ Vi , ∅ and Ω ∩ V j , ∅, then
G[Ω] is K|Ω|. Again choosingΩ such that it intersects non trivially each Vi, then G[Ω] is always with a cord,
since any two vertices in V2 (or V3) will be connected by an edge and are connected to all other vertices
considered from V1. Thus, P(Zn) is chordal and its regularity is same as the induced matching number.
Now, e1 = {u, v} with u, v ∈ V2 and e2 = {w, x} with w, x ∈ V3 is an induced matching as e1 ∩ e2 = ∅ and
G[e1 ∪ e2] � 2K2. Thus the induced matching number of P(Zn) is 2, and the regularity of I(P(Zn)) = 3, since
regI(G) = reg(G) + 1.We make it precise in the following result.
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Proposition 3.4. The regularity of edge ideal of P(Zn) is 3.

Let xi be the vertices of V1. Then the facets of the simplicial complex of edge ideal of P(Zn) are: 0-
dimensional facets {xi} and facet V2 ∪ V2. The following result gives the graded Betti numbers in the linear
strand of I(P(Zn)) with j = i + 1.

Theorem 3.5. The Betti number of I(P(Zn)) are given by

βi, j(P(Zn)) = i
((
ϕ(p)
i + 1

)
+

(
ϕ(q)
i + 1

)
+

(
ϕ(n) + 1

i

))
+

∑
a+b=i+1

a,b>1

i
(
ϕ(n) + 1

a

)(
ϕ(p)

b

)

+
∑

a+b=i+1
a,b>1

i
(
ϕ(n) + 1

a

)(
ϕ(q)

b

)
+

∑
a+b+c=i+1

a,b,c>1

a
(
ϕ(n) + 1

a

)(
ϕ(p)

b

)(
ϕ(q)

c

)
.

Proof. Let P(Zn) be the zero divisor graph ofZn with n = pq. From the above observation, the vertex set of
V(P(Zn)) can be partitioned into mutually disjoint subsets Vi for i = 1, 2, 3. The induced subgraphs of Vi
are Kϕ(n)+1,Kϕ(p) and Kϕ(q), respectively. Let ∆ = ∆(P(Zn)) be the simplicial complex of P(Zn). The facets of
∆ are: 0-dimensional facets {xi} and facet V2 ∪V2. By using Hochster’s formula (1), the initial Betti numbers
can be found by the following formula

βi,i+1(P(Zn)) =
∑

S⊆V(P(Zn))
|S|= j

dimKH̃ j−(i+1)(∆S;K). (4)

With the above observations and i − 1 = j, above expression can be written as

βi, j(Γ(Zn)) =
∑
S⊆Vi
|S|= j

dimKH̃0(∆S;K) +
∑
S∈S∗
|S|= j

dimKH̃0(∆S;K),
(5)

where S∗ =
{
W ⊆ V(P(Zn)) : |W| − 1 = i, W non-trivially intersects Vi

}
. We recall that dimKH̃0(∆S;K) =

comp(∆S) − 1 for any subset S of V(P(Zn)). So, any subset S of Vi will contribute |S| − 1 to βi,i+1(G). Thus,
we have∑

S⊆Vi
|S|= j

dimKH̃0(∆S;K) = i
(
ϕ(p)
i + 1

)
+ i

(
ϕ(q)
i + 1

)
+ i

(
ϕ(n) + 1

i

)
.

Now, for the other quantity of (5), we evaluate the non-zero contribution of other subsets of S∗. The possible
consideration of subset S in are V1 ∪ V2, V1 ∪ V3 and V1 ∪ V2 ∪ V3. The case V2 ∪ V3 is ignored since its
homotopy is connected and comp(∆S)− 1 for any S ∈ V2 ∪V3. For the first case, let S ⊆ V1 ∪V2 be as subset
such that |S ∩ V1| = a, and |S ∩ V2| = b, where a and b are positive integers and |S| = i + 1. As ∆S consists
of 0-dimensional subcomplex, so dimKH̃0(∆S;K) = comp(∆S) − 1 = a + b + 1 − 1 = i. Choosing a elements
from V1 and b elements from V2, the contribution of such a subset to βi,i+1(G) is given as∑

a+b=i+1
a,b>1

i
(
ϕ(n) + 1

a

)(
ϕ(p)

b

)
.

For the second case, let S ⊆ V1 ∪ V3 be as subset such that |S ∩ V1| = a, and |S ∩ V3| = b, where a and
b are positive integers and |S| = i + 1. As ∆S consists of 0-dimensional simplexes, so dimKH̃0(∆S;K) =
comp(∆S) − 1 = a + b = i and its contributes to βi,i+1(G) is given as∑

a+b=i+1
a,b>1

i
(
ϕ(n) + 1

a

)(
ϕ(q)

b

)
.
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For the last case, let S ⊆ V1∪V2∪V3 be as subset such that |S∩V1| = a, |S∩V2| = b and |S∩V3| = c, where a, b
and c are positive integers and |S| = i + 1. As ∆S consists of 0-dimensional simplexes and other simplexes
of V2 ∪ V3, so dimKH̃0(∆S;K) = comp(∆S) − 1 = a + 1 − 1 = a, and the total contributions of such subsets to
βi,i+1(G) is given by∑

a+b+c=i+1
a,b,c>1

a
(
ϕ(n) + 1

a

)(
ϕ(p)

b

)(
ϕ(q)

c

)
.

Therefore, substituting all these cases in Theorem 5, we obtain the required result.

The proof of the expression related to all graded Betti numbers of P(Z2p) given in (3) can be deduced
from above result with some modifications in its proof.

If dim∆ = d−1, then the f -vector (face vector) of ∆ is defined as ( f−1, f0, . . . , fd−1), where fi is the number
of i-dimensional faces of ∆. Also, by convention f−1 counts the number of the empty face and is taken as
f−1 = 1. The f -polynomial of ∆ is defined as f∆(x) =

∑d
i=0 fi−1xd−i. The h-polynomial of ∆ is obtained from

f -polynomial by replacing x by x − 1 and we get corresponding h-vector. Thus,

d∑
i=0

fi−1(x − 1)d−i =

d∑
i=0

hixd−i, (6)

where h-vector is (h0, h1, . . . , hd).For example the f -vector of∆(K3) is (1, 3, 3, 1), f -polynomial is x3+3x2+3x+1,
h-vector is (1, 0, 0, 0) and h-polynomial is x3.

Another type of h-polynomial (see, [7]) is given as∑
i

hixi =

d∑
i=1

fi−1xi(1 − x)d−i.

The h-vector in above h-polynomial is same as in (6). The coefficients of f -polynomial and h-polynomial
are related by the following relation (see, [7])

hi =

i∑
j=0

(−1)i− j
(
d − j
i − j

)
f j−1, and fi−1 =

i∑
j=0

(
d − j
i − j

)
h j, (7)

where 0 ≤ i ≤ d. Obviously, fd−1 =
∑d

i=0 hi. The degree of h-polynomial is at most d.
The f -vector of∆ represents the number of faces in each dimension. It is a fundamental entity that offers

information on the structure of ∆. The h-polynomial is a concise and informative technique to express the
combinatorial structure of ∆. It converts complicated facial information (recorded by the f -vector) into an
algebraic and combinatorial form. For the simplicial complex ∆ on n vertices with f -vector ( f−1, f0, . . . , fd−1)
and h-vector (h0, h1, . . . , hd), the Hilbert series (Hilbert-Poincaré) of Stanley–Reisner ringK[∆] of ∆ is

H(K[∆], t) =
d∑

i=0

fi−1ti

(1 − t)i =
h0 + h1t + · · · + hdtd

(1 − t)d
.

Since, G is a graph with n vertices, rewriting the above series as

H(K[∆], t) =
d∑

i=0

fi−1ti

(1 − t)i =
(1 − t)n−d(h0 + h1t + · · · + hdtd)

(1 − t)n .

Let h′(t) = (1 − t)n−d(h0 + h1t + · · · + hdtd) =
∑n

i=1 h′i . Then the relation between h′i and h j (vectors) is given by
the following expression

h′i =
i∑

j=0

(−1)i− j
(
n − d
i − j

)
h j,
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where 0 ≤ i ≤ n and h j is given by (7). Thus, the Hilbert series ofK[∆] can be written as

H(K[∆], t) =
1

(1 − t)n

n∑
i=0

h′i t
i. (8)

Let M be a graded finite R-module (R = K[x1, x2, . . . , xn]) with finite projective dimension and graded free
resolution (see [7], Lemma 4.1.13). Then the relation between Hilbert series and graded Betti numbers are
given by the following expression

H(M, t) =

∑
i, j(−1)iβi,i+ jt j

(1 − t)n . (9)

By equating (8) and (9), we obtain the Betti numbers with the help of h and h′ vectors.
Keeping in view the faces of ∆(P(Zn)), it follows that the f -vector of ∆(P(Zn)) is

f (∆(P(Zn))) =
(
1,n, ϕ(n)

)
,

and its f -polynomial is F∆(P(Zn))(x) = x2+nx+ϕ(n).The h-polynomial is H∆(P(Zn))(x) = x2+(n−2)x+ϕ(n)+1−n,
and the corresponding h-vector of ∆(P(Zn)) is

h(∆(P(Zn))) =
(
1,n − 2, ϕ(n) + 1 − n

)
.

The Hilbert series is

H(K[∆(P(Zn))], t) =
1 + (n − 2)t + (ϕ(n) + 1 − n)t2

(1 − t)2

=
(1 − t)n−2

(
1 + (n − 2)t + (ϕ(n) + 1 − n)t2

)
(1 − t)n . (10)

From the above expression and definition of h′i , we have

h′i+2 =

i+2∑
j=0

(−1)i+2− j
(

n − 2
i + 2 − j

)
h j,

and with (7), h j =
∑ j

b=0(−1) j−b(2−b
j−b

)
fb−1.

By (8) the Hilbert series of edge ring of P(Zn) is given as follows

H(K[∆(P(Zn))], t) =

∑n−1
i=0

∑2
j=0(−1)iβi,i+ jti+ j

(1 − t)n

=
1 +

∑n−1
i=1 (−1)i

(
βi,i+1ti+1 + βi,i+2ti+2

)
(1 − t)n . (11)

By (10) and (11), we obtain

h′i+2 = (−1)i+1βi+1,i+2(G) + (−1)iβi,i+2(G).

It follows that βi,i+2(G) = (−1)ih′i+2 + βi+1,i+2(G). Now summing up all these entities, we have

βi,i+2(G) = (−1)i
i+2∑
j=0

(−1)i− j+2

(
n − 2

i + 2 − j

) j∑
b=0

(−1) j−b
(
2 − b
j − b

)
fb−1 + βi+1,i+2(G),
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where βi+1,i+2 is given in Theorem 3.5 and f -vector as (1,n, ϕ(n)). Which gives the complete list of Betti
numbers of I(P(Zn)) for n = pq with primes p < q.

Next, we discuss the homological invariants of P(Zn) with n = pqr, where p < q < r are primes. By
the definition of P(Zn), there are ϕ(n) + 1 vertices which are adjacent to all other vertices of P(Zn), we
denote such a vertex set by V1 and its cardinality by w. Also, there are other mutually disjoint subsets Vdi ,
where di is a proper divisor of n.We note that di is in {p, q, r, pq, pr, qp} and their corresponding cardinalities
are denoted by ni for 1 ≤ i ≤ 6. Thus, each vertex of Kϕ(p) is adjacent to every vertex of Kϕ(pq) and Kϕ(pr),
each vertex of Kϕ(q) is adjacent to every vertex of Kϕ(pq) and Kϕ(qr) and each vertex of Kϕ(r) is adjacent to
every vertex of Kϕ(pr) and Kϕ(qr). As, with P(Zn) for n = pq, it is easy to see that P(Zpqr) is chordal graph
and {e1, e2, e3} is its induced matching, where e1 = {v1, v2}, vi ∈ V(Kϕ(pq)), e2 = {u1,u2},ui ∈ V(Kϕ(pr)) and
e3 = {w1,w2},wi ∈ V(Kϕ(qr)). Thus, regularity of edge ideal is I(P(Zn)) = 4.

Proposition 3.6. The regularity of edge ideal of P(Zn) with 2 ≤ p < q < r is 4.

Next, we find its all Betti numbers with j = j + 1. The proof is very constructive. We first state result as
below.

Theorem 3.7. The Betti number of I(P(Zn)) with 2 ≤ p < q < r and j = i + 1 are given by

βi, j(P(Zn)) = i
(

w
i + 1

)
+

6∑
j=1

i
(

ni

i + 1

)
+

∑
a+b=i+1

a,b≥1

6∑
j=1

i
(
w
a

)(
ni

b

)
+

∑
a+b=i+1

a,b≥1

i
(
n1

a

)((
n4

b

)
+

(
n5

b

))

+
∑

a+b=i+1
a,b≥1

i
(
n2

a

)((
n4

b

)
+

(
n4

b

))
+

∑
a+b=i+1

a,b≥1

i
(
n3

a

)((
n5

b

)
+

(
n6

b

))
+

∑
a+b+c=i+1

a,b,c≥1

a
(
w
a

)( ∑
i< j

1≤i< j≤6

(
ni

b

)(
ni

b

))

+
∑

a+b+c=i+1
a,b,c>1

(
n1

a

)(
c
(
n2

b

)(
n4

c

)
+ a

(
n3

b

)(
n5

c

)
+ c

(
n4

b

)(
n5

c

))
+

∑
a+b+c=i+1

a,b,c>1

(
n2

a

)(
c
(
n4

b

)(
n5

c

)
+ a

(
n3

b

)(
n6

c

))

+
∑

a+b+c=i+1
a,b,c>1

a
(
n3

a

)(
n5

b

)(
n6

c

)
+

∑
a+b+c+d=i+1

a,b,c,d≥1

a
(
w
a

)((
n1

b

)((n2

c

)( ∑
i=3,5,6

(
ni

d

)
+ d

(
n4

d

))
+

(
n3

c

)((n4

d

)

+

(
n6

d

)
+ d

(
n5

d

))
+

((
n4

c

)
+

(
n5

c

))(
n6

d

))
+ b

(
n1

b

)(
n4

c

)(
n5

d

)
+

(
n2

b

)
((n3

c

)((
n4

d

)
+

(
n5

d

)
+ d

(
n6

d

))
+

(
n4

c

)(
n5

d

)
+

(
n5

c

)(
n6

d

))
+

(
n3

b

)(
n4

c

)
((n5

d

)
+

(
n6

d

))
+ b

(
n6

d

)((n2

b

)(
n4

c

)
+

(
n3

b

)(
n5

c

)))
+

∑
a+b+c+d+e=i+1

a,b,c,d,e≥1

(
w
a

)((
n1

b

)((n2

c

)((n3

c

)((n5

e

)
+

(
n6

e

))
+

(
n4

d

)((n5

e

)

+

(
n6

e

))
+

(
n5

d

)(
n6

e

))
+

(
n3

c

)((n4

d

)((n5

e

)
+

(
n6

e

))
+

(
n5

d

)(
n6

e

))
+

(
n4

c

)(
n5

c

)(
n6

c

))
+

(
n2

b

)(
n3

c

)(
n4

d

)((n5

e

)
+

(
n6

e

)))
+

∑
a+b+c+d+e+ f=i+1

a,b,c,d,e, f≥1

a
(
w
a

)((
n1

b

)(
n2

c

)(
n3

c

)((n4

e

)(
n5

f

)
+

(
n4

e

)(
n6

f

))
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+

(
n4

d

)(
n5

e

)(
n6

f

)((n1

b

)((n2

c

)
+

(
n3

c

))
+

(
n2

b

)(
n3

c

)))
+

∑
a+b1+···+b6=i+1

a,bi≥1

a
(
w
a

) 6∏
i=1

(
ni

bi

)
.

The computation of the above result are quite constructive, its proof is similar to that of Theorem 3.5, we
sketch main ideas of its proof: We need to consider all subsets V1 and Vdi and there collection which makes
a non-zero contribution to βi, j(P(Zn)). Keeping in view simplicial complex ∆ = ∆(P(Zn)) and Theorem
2.1 and connected components comp(∆S) where S in any set of V(P(Zn)) such that ∆S contributes non
trivially to initial Betti numbers. First consider S ⊆ V1 (or Vdi ) and calculate dimKH̃0(∆S;K) for ∆S and their
choices. Next, we take collection of two sets from V1 (or Vdi ) and consider a set S intersecting two sets
non-trivially, compute comp(∆S) and their total contribution to βi,i+1(P(Zn)). We ignore those sets S such
that comp(∆S) = 1, as it contributes nothing to βi,i+1(P(Zn)). Now, take collection of three sets among V1
(or Vdi ) such that they intersect non-trivially a set S, then compute comp(∆S) and their total contribution to
βi,i+1(P(Zn)). Similarly, we proceed with four (five, six, and seven) subsets from V1 (and Vdi ), and consider a
non empty subset intersecting non-trivially all these collection of subsets of V(P(Zn)), check if comp(∆S) ≥ 2
(otherwise ignore,) choose common elements form S and V1 (or Vdi ), calculate dimKH̃0(∆S;K) and count
their final contribution to βi,i+1(P(Zn)). Finally, summing all such cases, we obtain the required result as
given in Theorem 3.7.

With the structure of G � P(Zn), the dimension of ∆ = ∆(P(Zn)) is 2. So, ∆ consist of i-faces for 0 ≤ i ≤ 2.
Clearly, the number of 0-faces are n (order of G.) The number of 1-faces are the edges in ∆, which are
ϕ(n)(ϕ(n) + 4), since the induced subgraph of non invertible elements of G from a subgraph C, where each
vertex of Kϕ(di) is adjacency to each vertex of Kϕ(di+1), and each vertex of Kϕ(d1) is adjacency to each vertex
of Kϕ(d6), for i = p, pr, r, qr, q, pq. Thus, there are ϕ(n), 1-faces between Vdi for i = p, q, r and ϕ(n)2, 1-between
vertices of Vdi for i ∈ {pq, pr, qr}, ϕ(n), 1-faces between Vi and V j for (i, j) ∈ {(p, qr), (q, pr), (r, pq)}. And the
2-face of ∆ exists among (Vi,V j,Vk) for (i, j, k) ∈ {(p, q, r), (pq, pr, qr)} are ϕ(n) and ϕ(n)2, respectively. Thus,
the f -vector is(

1,n, ϕ(n)
(
ϕ(n) + 4

)
, ϕ(n)

(
ϕ(n) + 1

))
.

By using (7), it is easy to calculate the h-vector as(
1,n − 3, ϕ(n)

(
ϕ(n) + 4

)
+ 3 − 2n,n − 3ϕ(n) − 1

)
.

The Hilbert series is

H(K[∆(P(Zn))], t) =
1 + (n − 3)t + ϕ(n)

(
ϕ(n) + 4

)
+ 3 − 2n)t2 + (n − 3ϕ(n) − 1)t3

(1 − t)3

=
(1 − t)n−3

(
1 + (n − 3)t + ϕ(n)

(
ϕ(n) + 4

)
+ 3 − 2n)t2 + (n − 3ϕ(n) − 1)t3

)
(1 − t)n .

Thus, from above results, it remain quite difficult to find all the graded Betti numbers of edge ideals of
P(Zn), for other values of n. Next, we establish some inequalities in this regard. For the initial Betti numbers
of I(P(Zn)), we have the following result.

Theorem 3.8. For n =
∏t

i=1 ni with proper divisor di for 1 ≤ i ≤ k, the Betti number of I(P(Zn)) satisfies

βi, j(P(Zn)) ≥ i
((
ϕ(p)
i + 1

)
+

k∑
i=1

(
ϕ(di)
i + 1

))
+

∑
a+l1+···+lk=i+1

a,li≥1

k∑
j=1

i
(
ϕ(n) + 1

a

)(
ϕ(di)

li

)

+
∑

a+l1+···+lk=i+1
a,li>1

a
(
ϕ(n) + 1

a

) k∏
i=1

(
ϕ(dk)

li

)

with equality holding if and only if n is product of two distinct primes.
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Conclusion

This paper investigates algebraic invariants associated with power graphs of cyclic groups, that isP(Zn)
of cyclic group Zn. For the case where n factors into three distinct primes, we determine: (1) the projective
dimension, (2) extremal Betti numbers, and (3) the initial graded Betti numbers of P(Zn), accompanied
by its Hilbert series. Furthermore, we establish bounds relating the regularity of edge ideals to their Betti
numbers for general power graphs. The results provide new insights into the homological properties of
these graph-theoretic representations of finite cyclic groups. However, advancements for the other values
of n of edge ideals of P(Zn) remains yet to be investigated, and is an open direction for future work.
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