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Explicit values and vanishing coefficients for Ramanujan’s continued
fractions of order twenty with applications

Shraddha Rajkhowaa, Nipen Saikiaa,∗

aDepartment of Mathematics, Rajiv Gandhi University, Rono Hills, Doimukh-791112, Arunachal Pradesh, India

Abstract. Two q-continued fractions of order twenty are obtained from a general continued fraction identity
of Ramanujan. Some theta-function identities are established for the two continued fractions and are used
to prove general theorems for the explicit evaluation of the continued fractions. Some partition theoretic
results and vanishing coefficients arising from q-products of the continued fractions are also offered.

1. Introduction

For complex numbers σ and q, define the q-product as

(
σ; q

)
∞

:=
∞∏

t=0

(
1 − σqt

)
, |q| < 1. (1)

For simplicity, we will write

(σ1; q)∞(σ2; q)∞(σ3; q)∞ · · · (σm; q)∞ =
(
σ1, σ2, σ3, . . . , σm; q

)
∞
.

Ramanujan’s general theta-function f(1, h) [4, p. 34] is

f(1, h) =
∞∑

t=−∞

1t(t+1)/2ht(t−1)/2, |1h| < 1. (2)

Jacobi’s triple product identity [4, p. 35, Entry 19] is

f(1, h) = (−1,−h, 1h; 1h)∞ = (−1; 1h)∞(−h; 1h)∞(1h; 1h)∞. (3)
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Three specific instances of f(1, h) [4, p. 36, Entry 22 (i)-(iii)] are

ϕ(q) := f(q, q) =
∞∑

t=−∞

qt2
, (4)

ψ(q) := f(q, q3) =
∞∑

t=0

qt(t+1)/2 (5)

and

f (−q) := f(−q,−q2) =
∞∑

t=−∞

(−1)tqt(3t−1)/2, (6)

respectively. Ramanujan in his second notebook [14, p. 299] recorded a continued fraction of order eight,
known as the Ramanujan-Göllnitz-Gordon continued fraction defined by

H(q) := q1/2 (q; q8)∞(q7; q8)∞
(q3; q8)∞(q5; q8)∞

= q1/2 f(−q,−q7)
f(−q3,−q5)

=
q1/2

1 + q +
q2

1 + q3 +
q4

1 + q5 + · · ·

, |q| < 1. (7)

Göllnitz [8], Gordon [9] and Andrews [1] also independently rediscovered and proved (7). An alternative
proof of (7) was also given by Ramanathan [13]. Ramanujan also offered the following theta-function
identity [14, p. 299] for H(q):

1
H(q)

−H(q) =
ϕ(q2)

q1/2ψ(q4)
. (8)

Proof of (8) can be found in [4, p. 221]. Chan and Huang [7] found many identities involving the continued
fraction H(q) and evaluated explicitly H(e−π

√
n/2) for several positive integers n. Baruah and Saikia [3]

established some general theorems for explicit evaluations of H(q) and evaluated some values.
Apart from particular q-continued fractions, Ramanujan also recorded some general continued fraction

identities in his notebooks. For example, Ramanujan gave the following general continued fraction identity
[4, p. 24, Entry 12]: let 1, h and q are complex numbers with |1h| < 1 and |q| < 1, or that 1 = h2l+1 for some
integer l, then

(12q3, h2q3; q4)∞
(12q, h2q; q4)∞

=
1

1 − 1h +
(1 − hq)(h − 1q)

(1 − 1h)(q2 + 1) +
(1 − hq3)(h − 1q3)

(1 − 1h)(q4 + 1) + · · ·

. (9)

Replacing q by q5 in (9), setting {1 = q, h = q4
} and {1 = q2, h = q3

}, and then simplifying using (3) and
the results that {(q23; q20)∞ = (q3; q20)∞/(1 − q3)} and {(q21; q20)∞ = (q; q20)∞/(1 − q)}, we derive following two
continued fractions of order twenty as

T1(q) := q
(q3, q17; q20)∞
(q7, q13; q20)∞

= q
f(−q3,−q17)
f(−q7,−q13)

=
q(1 − q3)

(1 − q5) +
q5(1 − q2)(1 − q8)

(1 − q5)(1 + q10) +
q5(1 − q12)(1 − q18)

(1 − q5)(1 + q20) + · · ·

(10)

and

T2(q) := q2 (q, q19; q20)∞
(q9, q11; q20)∞

= q2 f(−q,−q19)
f(−q9,−q11)

=
q2(1 − q)

(1 − q5) +
q5(1 − q4)(1 − q6)

(1 − q5)(1 + q10) +
q5(1 − q14)(1 − q16)

(1 − q5)(1 + q20) + · · ·

, (11)
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respectively.
We establish theta-function identities and modular relations for T1(q) and T2(q) in Sect. 2. Sect. 3

is devoted to proving general theorems for explicit evaluation of the two continued fractions. In Sect.
4, we derive some partition-theoretic results from the theta-function identities of T1(q) and T2(q) using
colour partition of integer. Finally, we offer vanishing coefficient results arising from the q-products of the
continued fractions in Sect. 5.

2. Theta-function identities and modular relations for T1(q) and T2(q)

This section is devoted to proving some theta-function identities and modular relations for the continued
fractions T1(q) and T2(q).

Theorem 2.1. We have

(i) T−1
1 (q) ± T1(q) =

ϕ(∓q5)f(±q2,±q8)
qψ(q10)f(−q3,−q7)

,

(ii) T−1
2 (q) ± T2(q) =

ϕ(∓q5)f(±q4,±q6)
q2ψ(q10)f(−q,−q9)

,

(iii)
(
T−1

1 (q) − T1(q)
) (

T−1
2 (q) − T2(q)

)
=

ϕ2(q5)ψ(q)
q3ψ2(q10)ψ(q5)

,

(iv)
(
T−1

1 (q) + T1(q)
) (

T−1
2 (q) + T2(q)

)
=

ϕ2(−q5)ϕ(−q10)
q3ψ2(q10)ψ(q5)χ(−q)χ(−q2)

,

(v)
(
T−1

1 (q) − T1(q)
)
+

(
T−1

2 (q) − T2(q)
)
=

ϕ(q5)f(q, q4)f(−q2,−q3)
q2ψ(q10)χ(−q) f (q5) f (−q20)

,

(vi)
(
T−1

1 (q) + T1(q)
)
+

(
T−1

2 (q) + T2(q)
)
=

ϕ(−q5) f (q)
q2ψ(q10)χ(−q) f (−q20)

.

Proof. From (10), we obtain√
T−1

1 (q) −
√

T1(q) =
f(−q7,−q13) − qf(−q3,−q17)√

qf(−q3,−q17)f(−q7,−q13)
. (12)

From [4, p. 46, Entry 30 (ii) and (iii)], we note that

f(1, h) = f(13h, 1h3) + 1 f(h/1, 15h3). (13)

Setting {1 = −q, h = q4
} and {1 = q, h = −q4

} in (13), we obtain

f(−q, q4) = f(−q7,−q13) − qf(−q3,−q17) (14)

and

f(q,−q4) = f(−q7,−q13) + qf(−q3,−q17), (15)

respectively. Employing (14) in (12), we find that√
T−1

1 (q) −
√

T1(q) =
f(−q, q4)√

qf(−q3,−q17)f(−q7,−q13)
. (16)

Similarly, from (10) and applying (15), we deduce that√
T−1

1 (q) +
√

T1(q) =
f(q,−q4)√

qf(−q3,−q17)f(−q7,−q13)
. (17)
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Combining (16) and (17), we arrive at

T−1
1 (q) − T1(q) =

f(−q, q4)f(q,−q4)
qf(−q3,−q17)f(−q7,−q13)

. (18)

Again, from [4, p. 46, Entry 30 (i),(iv)], we note that

f(1, 1h2)f(h, 12h) = f(1, h)ψ(1h) (19)

and

f(1, h)f(−1,−h) = f(−12,−h2)ϕ(−1h). (20)

Setting {1 = −q3, h = −q7
} in (19) and {1 = −q, h = q4

} in (20), we obtain

f(−q3,−q17)f(−q7,−q13) = f(−q3,−q7)ψ(q10) (21)

and

f(−q, q4)f(q,−q4) = f(−q2,−q8)ϕ(q5), (22)

respectively. Employing (21) and (22) in (18), we obtain

T−1
1 (q) − T1(q) =

ϕ(q5)f(−q2,−q8)
qψ(q10)f(−q3,−q7)

. (23)

Squaring (17), we obtain

T−1
1 (q) + T1(q) =

f2(q,−q4)
qf(−q3,−q17)f(−q7,−q13)

− 2. (24)

From [4, p. 46, Entry 30 (v),(vi)], we note that

f2(1, h) = f(12, h2)ϕ(1h) + 21f(h/1, 13h)ψ(12h2). (25)

Setting 1 = q and h = −q4, we obtain

f2(q,−q4) = f(q2, q8)ϕ(−q5) + 2qf(−q3,−q17)f(−q7,−q13). (26)

Employing (21) and (26) in (24) and simplifying, we arrive at

T−1
1 (q) + T1(q) =

ϕ(−q5)f(q2, q8)
qψ(q10)f(−q3,−q7)

. (27)

Combining (23) and (27), we complete the proof of (i).
Proof of (ii) is identical to the proof of (i), so we omit.
Again, from (i) and (ii), we have(

T−1
1 (q) − T1(q)

) (
T−1

2 (q) − T2(q)
)
=

ϕ2(q5)f(−q2,−q8)f(−q4,−q6)
q3ψ2(q10)f(−q3,−q7)f(−q,−q9)

. (28)

From [4, p. 258, Entry 9(vii)], we have

f(−q,−q4)f(−q2,−q3) = f (−q) f (−q5), (29)

f(q, q4)f(q2, q3) =
ϕ(−q5) f (−q5)

χ(−q)
(30)
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and

f(q, q9)f(q3, q7) = χ(q) f (−q5) f (−q20). (31)

Replacing q by q2 in (29) and replacing q by −q in (31) and then using in (28), we obtain

(
T−1

1 (q) − T1(q)
) (

T−1
2 (q) − T2(q)

)
=

ϕ2(q5) f (−q2) f (−q10)
q3ψ2(q10)χ(−q) f (q5) f (−q20)

. (32)

Again, by q-series manipulation one can easily see that

χ(−q) =
f (−q)
f (−q2)

, and f (q) =
f 3(−q2)

f (−q) f (−q4)
. (33)

Simplifying (32) with the help of (33), we arrive at (iii). Employing the same procedure and using (30), we
arrive at (iv). Again, employing (i) and (ii), we have

(
T−1

1 (q) − T1(q)
)
+

(
T−1

2 (q) − T2(q)
)
=
ϕ(q5)

[
qf(−q2,−q8)f(−q,−q9) + f(−q4,−q6)f(−q3,−q7)

]
q2ψ(q10)f(−q3,−q7)f(−q,−q9)

. (34)

From [4, p. 45, Entry 29], we have

f(a, b)f(c, d) = f(ac, bd)f(ad, bc) + af(b/c, ac2d)f(b/d, acd2); f or ab = cd. (35)

Setting {a = −q2, b = −q8, c = −q, d = −q9
} and {a = −q4, b = −q6, c = −q3, d = −q7

} in (35), we obtain

f(−q2,−q8)f(−q,−q9) = f(q3, q17)f(q11, q9) − q2f(q7, q13)f(q−1, q21) (36)

and

f(−q4,−q6)f(−q3,−q7) = f(q7, q13)f(q12, q8) − q4f(q3, q17)f(q−1, q21), (37)

respectively. Using (36), (37) in (34) and replacing q by −q in (31) and then employing in (34), we arrive at

(
T−1

1 (q) − T1(q)
)
+

(
T−1

2 (q) − T2(q)
)
=
ϕ(q5)

(
f(q7, q13) + qf(q3, q17)

) (
f(q9, q11) − q2f(q, q19)

)
q2ψ(q10)χ(−q) f (q5) f (−q20)

, (38)

where we have used the fact that f(q−1, q21) = q−1 f (q, q19).
Setting {1 = q, h = q4

} and {1 = −q2, h = −q3
} in (13), we obtain

f(q, q4) = f(q7, q13) + qf(q3, q17) (39)

and

f(−q2,−q3) = f(q9, q11) − q2f(q, q19), (40)

respectively. Employing (39) and (40) in (38), we arrive at (v). Proof of (vi) is similar to the proof of (v), so
omitted.

Theorem 2.2. For any non-negative integer n, we have

(i) Tn
1 (q)Tn

1 (−q) =
{ Tn

1 (q2), i f n ≡ 0 (mod 2)
−Tn

1 (q2), i f n ≡ 1 (mod 2).

(ii) Tn
2 (q)Tn

2 (−q) = Tn
2 (q2).
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Proof. From (10), we note that

Tn
1 (q)Tn

1 (−q) = (−1)nq2n f
n(−q3,−q17)
fn(−q7,−q13)

×
fn(q3, q17)
fn(q7, q13)

. (41)

Setting {1 = q3, h = q17
} and {1 = q7, h = q13

} in (20), we find that

f(q3, q17)f(−q3,−q17) = f(−q6,−q34)ϕ(−q20) (42)

and

f(q7, q13)f(−q7,−q13) = f(−q14,−q26)ϕ(−q20), (43)

respectively. Employing (42) and (43) in (41), we obtain

Tn
1 (q)Tn

1 (−q) = (−1)nq2n f
n(−q6,−q34)
fn(−q14,−q26)

= (−1)nTn
1 (q2). (44)

Noting the fact that n is even if n ≡ 0 (mod 2) and odd if n ≡ 1 (mod 2) in (44), we complete the proof of
(i). Proof of (ii) is identical to the proof of (i), so we omit.

3. Explicit evaluations of T1(q) and T2(q)

In this section, we establish general theorems to find explicit values of T1(q) and T2(q) with the help of
the explicit values of the continued fractions I(q) and J(q) of order ten established in [12]:

I(q) := q3/4 (q, q9; q10)∞
(q4, q6; q10)∞

= q3/4 f(−q,−q9)
f(−q4,−q6)

=
q3/4(1 − q)

(1 − q5/2) +
q5/2(1 − q3/2)(1 − q7/2)

(1 − q5/2)(1 + q5) +
q5/2(1 − q13/2)(1 − q17/2)
(1 − q5/2)(1 + q10) + · · ·

(45)

and

J(q) := q1/4 (q2, q8; q10)∞
(q3, q7; q10)∞

= q1/4 f(−q2,−q8)
f(−q3,−q7)

=
q1/4(1 − q2)

(1 − q5/2) +
q5/2(1 − q1/2)(1 − q9/2)

(1 − q5/2)(1 + q5) +
q5/2(1 − q11/2)(1 − q19/2)
(1 − q5/2)(1 + q10) + · · ·

. (46)

We will use the parameter s4,n, which is the particular case, k = 4 of the parameter sk,n defined by Berndt [6,
p. 9, (4.7)]:

s4,n =
f (q)

√
2q1/8 f (−q4)

, q = e−π
√

n/2, (47)

where n is a positive real number. It is useful to note that Baruah and Saikia [3] proved the following
formula for the explicit evaluation of H(q) [3, p. 275, (3.5)]:

1
H(e−π

√
n/4)
−H(e−π

√
n/4) = 2s2

4,n. (48)

Baruah and Saikia [3] calculated many explicit values of the parameter s4,n to evaluate explicit values of
H(q) by appealing to (48). In [12], authors proved some general theorems for the explicit evaluation of I(q)
and J(q) and evaluated some explicit values. For example, they evaluated

I2(e−π
√

2/5) =
(
−1 +

√
2(5 − 2

√

5)
)
/

√
5 − 2

√

5, (49)
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J2(e−π
√

2/5) = 5
(
−1 +

√
2(5 − 2

√

5)
)
/
(
5 − 2

√

5
)3/2

, (50)

I2(e−π/
√

5) =

−5 +
√

5 −
√

10(1 +
√

5) +

√
10(20 + 8

√
5 − 5

√
2(1 +

√
5) − 3

√
10(1 +

√
5))


2

√
10

(
5 +
√

5 −
√

10(1 +
√

5)
) , (51)

and

J2(e−π/
√

5) =

√
5

−5 +
√

5 −
√

10(1 +
√

5) +

√
10(20 + 8

√
5 − 5

√
2(1 +

√
5) − 3

√
10(1 +

√
5))


√

2
(
5 +
√

5 −
√

10(1 +
√

5)
)3/2

. (52)

In the next theorem, we give general formulas for explicit evaluation of T1(q) and T2(q).

Theorem 3.1. We have

(i) T−1
1 (e−π

√
n/2) − T1(e−π

√
n/2) = 2s2

4,25n J(e−π
√

n/2), (53)

(ii) T−1
2 (e−π

√
n/2) − T2(e−π

√
n/2) = 2s2

4,25nI−1(e−π
√

n/2). (54)

Proof. Employing (8) and (46) in Theorem 2.1(i), we obtain

T−1
1 (q) − T1(q) =

(
1

H(q5/2)
−H(q5/2)

)
J(q). (55)

Setting q = e−π
√

n/2 in (55), we obtain

T−1
1 (e−π

√
n/2) − T1(e−π

√
n/2) =

(
1

H(e−π
√

25n/4)
−H(e−π

√
25n/4)

)
J(e−π

√
n/2). (56)

Employing (48) (replace n by 25n) in (56), we arrive at (i). Proof of (ii) follows identically from Theorem 2.1
(ii).

Remark 3.2. From Theorem 3.1, one can easily find the explicit values of T1(e−π
√

n/2) and T2(e−π
√

n/2) with the
help of the parameters s4,n and explicit values of I(q) and J(q). For example, taking n = 8/5, employing the value
s4,40 = 2−3/4(1 +

√
5)3/4(2 + 3

√
2 +
√

5)1/4 from [3] and then employing (50) and (49) in Theorem 3.1 (i) and (ii),
respectively, we obtain

T1(e−π
√

2/5) =
1

4(5 − 2
√

5)3/4
−5
√

2 · w −
√

10 · w + 4 ·
√

z (57)

and

T2(e−π
√

2/5) =
4

√
−1 +

√
10 − 4

√
5

4 · σ + (5 − 2
√

5)1/4(1 +
√

5)
√

14 + 6(
√

2 +
√

5 +
√

10)
, (58)

where

w = −7 − 3
√

2 − 3
√

5 − 3
√

10 +
(
3
√

10 + 7
√

2 + 6 + 6
√

5
) √

5 − 2
√

5,
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z = −45 − 30
√

2 − 20
√

5 − 15
√

10 +
(
20
√

10 + 45
√

2 + 65 + 20
√

5
) √

5 − 2
√

5

and

σ = −1 +
(
3
√

10 + 7
√

2 + 9 + 4
√

5
) √

5 − 2
√

5.

Again, taking n = 4/5, employing the value s4,20 = 2−1/2(1 +
√

5)3/8
(
1 +
√

5 +
√

2(1 +
√

5)
)1/4

from [3] and then
employing (52) and (51) in Theorem 3.1 (i) and (ii), respectively, we obtain

T1(e−π/
√

5) =
1
4

(
− 51/4 23/4(1 +

√
5)3/4(

5 +
√

5 −
√

10(1 +
√

5)
)3/4

√
(1 +

√

5 +
√

2(1 +
√

5)) · A

+

√√√√√√√√
16 +

2
√

10(1 +
√

5)3/2(1 +
√

5 +
√

2(1 +
√

5)) · A(
5 +
√

5 −
√

10(1 +
√

5)
) )

(59)

and

T2(e−π/
√

5) =
1
2

(
− 23/4(1 +

√

5)3/2(5 +
√

5 −
√

10(1 +
√

5))1/4

√
A−1(1 +

√

5 +
√

2(1 +
√

5))

+

√
4 +

(
2(1 +

√

5)3/2
(
1 +
√

5 +
√

2(1 +
√

5)
)√

10
(
5 +
√

5 −
√

10(1 +
√

5)
))
· A−1

)
, (60)

where

A = −5 +
√

5 −
√

10(1 +
√

5) +

√
10

(
20 + 8

√

5 − (5 + 3
√

5)
√

2(1 +
√

5)
)
.

Theorem 3.3. We have

(i) T2
1(−q) = −T2

1(q2)T−2
1 (q),

(ii) T2(−q) = −T2(q2)T−1
2 (q).

Proof. Setting n = 2 in Theorem 2.2 (i), and n = 1 in (ii), we arrived at (i) and (ii), respectively.

From the above theorem, we can easily evaluate the explicit values of T1(−q) and T2(−q) for any values of
q, if we know the explicit values of T1(q), T1(q2), T2(q) and T2(q2).

4. Some partition-theoretic results

In this section, we show that colour partition identities can be obtained from the theta-function identities
established in Theorem 2.1 using colour partition of integer. As example, we deduce two partition-theoretic
identities from the theta-function identities of the continued fraction T1(q). One can also obtain similar
identities from the other theta-function identities of Theorem 2.1. First, we give the definition colour
partition of a positive integer n and its generating function.

A partition of a positive integer n is a non-increasing sequence of positive integers, called parts, whose
sum equals n. A part in a partition of n is said to have r colours if each part has r copies and all of them are
viewed as distinct objects. For any positive integer n and r, let Cr(n) denote the number of partitions of n with
each part has r distinct colours. For example, if each part of partition of 3 has 2 colours, say white (indicated
by the suffix w) and black (indicated by the suffix b), then the number of 2 colour partition of 3 is 10, namely
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3w, 3b, 2w + 1w, 2w + 1b, 2b + 1w, 2b + 1b, 1w + 1w + 1w, 1w + 1w + 1b, 1w + 1b + 1b, 1b + 1b + 1b.
The generating function of Cr(n) is given by

∞∑
n=0

Cr(n)qn =
1

(q; q)r
∞

. (61)

For positive integers s,m and r, the quotient

1
(qs; qm)r

∞

(62)

is the generating function of the number of partitions of n with parts congruent to s modulo m and each
part has r colours. For example,

1
(qs1 ; qm)r

∞(qs2 ; qm)r
∞

=
1

(qs1 , qs2 ; qm)r
∞

(63)

is the generating function of the number of partitions of positive integer with parts congruent to s1 or s2
modulo m and each part has r distinct colours. For convenience, we use the notation

(qr±; qt)∞ := (qr, qt−r; qt)∞, (64)

where r and t are positive integers and r < t. It is also useful to note here that

ϕ(−q) =
(q; q)2

∞

(q2; q2)∞
. (65)

Theorem 4.1. Let S1(n) := number of partitions of n into parts ≡ ±2, ±3, ±8 or ±10 (mod 20) such that the parts
≡ ±3 and ±10 (mod 20) have 2 colours.
Let S2(n) := number of partitions of n into parts ≡ ±2, ±7, ±8 or ±10 (mod 20) such that parts ≡ ±7 and ±10
(mod 20) have 2 colours.
Let S3(n) := number of partitions of n into parts ≡ ±3, ±5 and ±7 (mod 20) with 2 colours.
Then for any integer n ≥ 2,

S1(n) − S2(n − 2) − S3(n) = 0.

Proof. Employing (4), (5) and (10) in (23), we obtain

(q7±; q20)∞
(q3±; q20)∞

− q2 (q3±; q20)∞
(q7±; q20)∞

−
(q2±,8±; q20)∞(q10±; q20)2

∞

(q3±,7±; q20)∞(q5±; q20)2
∞

= 0. (66)

Dividing (66) by (q2±,3±,7±,8±; q20)∞(q10±, q20)2
∞, we obtain

1
(q3±,10±; q20)2

∞(q2±,8±; q20)∞
−

q2

(q7±,10±; q20)2
∞(q2±,8±; q20)∞

−
1

(q3±,5±,7±; q20)2
∞

= 0. (67)

The above quotients of (67) represent the generating functions for C1(n), C2(n) and C3(n), respectively. Hence, (67)
is equivalent to

∞∑
n=0

S1(n)qn
− q2

∞∑
n=0

S2(n)qn
−

∞∑
n=0

S3(n)qn = 0, (68)

where we set S1(0) = S2(0) = S3(0) = 1. Equating coefficients of qn on both sides of (68), we arrive at the desired
result.
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To verify Theorem 4.1, we construct the following table with n = 8:

S1(8) = 5 S2(6) = 1 S3(8) = 4
8 2 + 2 + 2 5r + 3r

3r + 3r + 2 5r + 31
3r + 31 + 2 51 + 3r
31 + 31 + 2 51 + 31

2 + 2 + 2 + 2

Theorem 4.2. Let X1(n) := the number of partitions of n into parts ≡ ±3, ±4, ±5 or ±10 (mod 20) such that the
parts ≡ ±3 and ±5 (mod 20) have 2 colours.
Let X2(n) := the number of partitions of n into parts ≡ ±4, ±5, ±7 or ±10 (mod 20) such that parts ≡ ±5 and ±7
(mod 20) have 2 colours.
Let X3(n) := the number of partitions of n into parts ≡ ±2, ±3, ±7 or ±8 (mod 20) such that parts ≡ ±3 and ±7
(mod 20) have 2 colours.
Then for any integer n ≥ 2,

X1(n) + X2(n − 2) − X3(n) = 0.

Proof. Employing (5), (10) and (65) in (27), employing the same procedure, we obtain

1
(q3±,5±; q20)2

∞(q4±,10±; q20)∞
+

q2

(q5±,7±; q20)2
∞(q4±,10±; q20)∞

=
1

(q3±,7±; q20)2
∞(q2±,8±; q20)∞

. (69)

The above quotients of (69) represent the generating functions for X1(n), X2(n) and X3(n), respectively. Hence, (69)
is equivalent to

∞∑
n=0

X1(n)qn + q2
∞∑

n=0

X2(n)qn
−

∞∑
n=0

X3(n)qn = 0, (70)

where we set X1(0) = X2(0) = X3(0) = 1. Equating coefficients of qn on both sides of (70), we arrive at the desired
result.

To verify Theorem 4.2, we construct the following table with n = 7:

X1(7) = 2 X2(5) = 2 X3(7) = 4
4 + 3r 5r 7r
4 + 31 51 71

3r + 2 + 2
31 + 2 + 2

5. Vanishing Coefficients

Recently, many authors have studied vanishing coefficients in the arithmetic progressions of several
q-series expansions. One can see [2], Hirschhorn [10] and references there in for details. In this section, we
offer vanishing coefficient results obtain from the q-series expansion of the continued fractions T1(q), T2(q)
and their reciprocals.
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Theorem 5.1. If

T∗1(q) := q−1T1(q) =
f(−q3,−q17)
f(−q7,−q13)

=

∞∑
n=0

snqn and
1

T∗1(q)
=

∞∑
n=0

s′nqn ,

then
(i) s10n+2 = 0 and (ii) s′10n+4 = 0.

Proof. J. M. Laughlin [11] stated the following p-dissection formula

(qt, qt, qr+s, qt−r−s; qt)∞
(qs, qt−s, qr, qt−r; qt)∞

=

p−1∑
j=0

q jr (qpt, qpt, qpr+s+ jt, q(p− j)t−pr−s; qpt)∞
(q jt+s, q(p− j)t−s, qpr, q(t−r)p; qpt)∞

, (71)

where all of the powers of q in each of the infinite products on the right hand side must be multiples of p
and the integer r must satisfy 1cd(r, p) = 1. Now, setting t = 20, r = 7, s = 10 and p = 5 in (71), we obtain

(q20, q20, q17, q3; q20)∞
(q10, q10, q7, q13; q20)∞

=
(q100; q100)2

∞

(q35, q65; q100)∞

[ (q45, q55; q100)∞
(q10, q90; q100)∞

+ q7 (q65, q35; q100)∞
(q30, q70; q100)∞

+q14 (q85, q15; q100)∞
(q50, q50; q100)∞

+ q21 (q105, q−5; q100)∞
(q70, q30; q100)∞

+ q28 (q125, q−25; q100)∞
(q90, q10; q100)∞

]
. (72)

Multiplying both sides of (72) by (q10; q20)2
∞/(q20; q20)2

∞ and then simplifying, we obtain

∞∑
n=0

snqn =
(q10; q20)2

∞(q100; q100)2
∞

(q20; q20)2
∞(q35, q65; q100)∞

[ (q45, q55; q100)∞
(q10, q90; q100)∞

+ q7 (q65, q35; q100)∞
(q30, q70; q100)∞

+q14 (q85, q15; q100)∞
(q50, q50; q100)∞

+ q21 (q105, q−5; q100)∞
(q70, q30; q100)∞

+ q28 (q125, q−25; q100)∞
(q90, q10; q100)∞

]
. (73)

Extracting the terms involving q5n+2 from (73), dividing by q2 and then replacing q5 by q, we obtain

∞∑
n=0

s5n+2qn = q
(q2; q4)2

∞(q20; q20)2
∞

(q4; q4)2
∞(q6, q14; q20)∞

. (74)

Since the right hand side of (74) contains no term involving q2n, extracting the terms involving q2n in (74),
we arrive at (i).

Again, setting t = 20, r = 3, s = 10 and p = 5 in (71), we obtain

(q20, q20, q13, q7; q20)∞
(q10, q10, q3, q17; q20)∞

=
(q100; q100)2

∞

(q15, q85; q100)∞

[ (q25, q75; q100)∞
(q10, q90; q100)∞

+ q3 (q45, q55; q100)∞
(q30, q70; q100)∞

+ q6 (q65, q35; q100)∞
(q50, q50; q100)∞

+q9 (q85, q15; q100)∞
(q70, q30; q100)∞

+ q12 (q105, q−5; q100)∞
(q90, q10; q100)∞

]
. (75)

Multiplying both sides of (75) by (q10; q20)2
∞/(q20; q20)2

∞ and then simplifying, we obtain

∞∑
n=0

s′nqn =
(q10; q20)2

∞(q100; q100)2
∞

(q20; q20)2
∞(q15, q85; q100)∞

[ (q25, q75; q100)∞
(q10, q90; q100)∞

+ q3 (q45, q55; q100)∞
(q30, q70; q100)∞

+ q6 (q65, q35; q100)∞
(q50, q50; q100)∞

+q21 (q85, q15; q100)∞
(q70, q30; q100)∞

+ q12 (q105, q−5; q100)∞
(q90, q10; q100)∞

]
. (76)
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Extracting the terms involving q5n+4 from (76), dividing by q4 and then replacing q5 by q, we obtain

∞∑
n=0

s′5n+4qn = q
(q2; q4)2

∞(q20; q20)2
∞

(q4; q4)2
∞(q6, q14; q20)∞

. (77)

Since the right hand side of (77) contains no term involving q2n, extracting the terms involving q2n in (77),
we arrive at (ii).

The proof of the next theorem is similar to the proof of Theorem 5.1, so we omit the proof here.

Theorem 5.2. If

T∗2(q) := q−2T2(q) =
f(−q,−q19)
f(−q9,−q11)

=

∞∑
n=0

cnqn and
1

T∗2(q)
=

∞∑
n=0

c′nqn ,

then
(i) c10n+5 = 0 and (ii) c′10n+9 = 0.
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