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Explicit values and vanishing coefficients for Ramanujan’s continued
fractions of order twenty with applications

Shraddha Rajkhowa?, Nipen Saikia®"

*Department of Mathematics, Rajiv Gandhi University, Rono Hills, Doimukh-791112, Arunachal Pradesh, India

Abstract. Two g-continued fractions of order twenty are obtained from a general continued fraction identity
of Ramanujan. Some theta-function identities are established for the two continued fractions and are used
to prove general theorems for the explicit evaluation of the continued fractions. Some partition theoretic
results and vanishing coefficients arising from g-products of the continued fractions are also offered.

1. Introduction

For complex numbers o and g, define the g-product as

(o]

(0;9) = H (1 - aqt), lql < 1. (1)
t=0
For simplicity, we will write
(01, 9)0(02; )0 (03; Qoo+ + (Omi oo = (01,02, 03, - -, Om; ) -
Ramanujan’s general theta-function f(g, 1) [4, p. 34] is
T(g/ h) — Z gt(t+1)/2ht(t—1)/2, |gh| <1. (2)
t=—00
Jacobi's triple product identity [4, p. 35, Entry 19] is
f(g,1) = (=9, =h, gh; gh)eo = (=g; gh)eo (=1 gh)os (g1 G- 3)
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Three specific instances of {(g, 1) [4, p. 36, Entry 22 (i)-(iii)] are

[

o@) =g =) 4 ©)
t=—00
l/’(ﬂ) - f(q; qS) — Z qt(t+1)/2 (5)
=0
and
fleq) = T=q, =) = ), (D@2, 6)
t=—c0

respectively. Ramanujan in his second notebook [14, p. 299] recorded a continued fraction of order eight,
known as the Ramanujan-Gollnitz-Gordon continued fraction defined by
12 @)@ 0% BY: f(-9.-q") _ q
3. 48 5.48) —g3 —g5) 2 ’
(0% 9%)e0(8°; 1) i(=4° =) g+ T__
q

1+q5+...

1/2

H(q) =g lgl < 1. (7)

1+4%+

Gollnitz [8], Gordon [9] and Andrews [1] also independently rediscovered and proved (7). An alternative
proof of (7) was also given by Ramanathan [13]. Ramanujan also offered the following theta-function
identity [14, p. 299] for H(g):
2

i~ HO = s

Hi(q) 929 (")
Proof of (8) can be found in [4, p. 221]. Chan and Huang [7] found many identities involving the continued
fraction H(q) and evaluated explicitly H(e ™ V*/2) for several positive integers n. Baruah and Saikia [3]
established some general theorems for explicit evaluations of H(g) and evaluated some values.

Apart from particular g-continued fractions, Ramanujan also recorded some general continued fraction
identities in his notebooks. For example, Ramanujan gave the following general continued fraction identity
[4, p. 24, Entry 12]: let g, h and g are complex numbers with |gh| < 1 and |g| < 1, or that g = h#*! for some
integer /, then

(79’ 1P 0w 1

(924, 124; 7*)eo (g = hg)(h = g9)

(g = he*)(h — 94°)
I=gh)g*+1)+--
Replacing g by ¢° in (9), setting {g = q,h = ¢*} and {g = ¢4°,h = ¢°}, and then simplifying using (3) and
the results that {(%;9°) = (1°;9%°)/(1 — g°)} and {(§*; 7%°)e = (9;9%°)0/(1 — g)}, we derive following two
continued fractions of order twenty as

(8)

©)

1—-gh+
(1-gh(g*+1) +

(q3, q17’. qzo)oo f(_q?;’ _q17) q(l _ qS)
T = = = 10
1(9) q(q7, 73 ). qf(—q7, —q1%) 1-g+ PA-PA-7) (10)
(= B)(1 + 419 + P(1-q")1-9"%)
q q (1_q5)(1+q20)+...
and
5 @9%0 e L (-4,-q") 7*(1-¢q)
R N e 71— 91 -q% - W

(1 - ‘15) + qS(l _ q14)(1 _ q16)

(1-4°%(1+4") + A=)+ )+
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respectively.

We establish theta-function identities and modular relations for Ti1(g) and T»(g) in Sect. 2. Sect. 3
is devoted to proving general theorems for explicit evaluation of the two continued fractions. In Sect.
4, we derive some partition-theoretic results from the theta-function identities of T1(q) and T>(q) using
colour partition of integer. Finally, we offer vanishing coefficient results arising from the g-products of the
continued fractions in Sect. 5.

2. Theta-function identities and modular relations for T1(q) and T»(q)

This section is devoted to proving some theta-function identities and modular relations for the continued
fractions T1(q) and T»(q).

Theorem 2.1. We have

PFP)T(£4%, £4°)
(@) (-4% —-97)’
PFP)F(xq*, £4°)
PY@O)i(-q9,-9°)
7@ - Ti@) (T3 (@) - Ta() =

0 T'@£Ti(g) =

(i) T,'(q) +Ta(q) =

OX () (q)
PYAaOY(g°)
P*(=)p(=9"°)
PYA@OP@x(-x (=42’
d@)i(q, 4 (=4 —7°)
PY@OX=9f(°) f(=3%)
o(=9°)f(9)
Y@ )x(-a)f(-3*)

(i1d)

(T
(i) (T7'@) + Ti(@) (T (@) + Ta@)) =
) (T

)
)

@) - Ti@) + (T3'(@) - Tag) =
)

@) (T7'@) + Tu@) + (T3 (@) + T2(@)

Proof. From (10), we obtain
N (=", =4") - qi(=4*,—q"7)
VI @) = VTi(g) = . (12)
' Vat(=4%, i (~q7, —q"%)
From [4, p. 46, Entry 30 (ii) and (iii)], we note that

H(g,h) = 1(g°h, gh) + g 11/ 9, 9°1). (13)
Setting {g = —q,h = ¢*} and {g = q,h = —¢*} in (13), we obtain

f(~4,9%) = (=47, ~4") - 9f(~4°,—4"") (14)
and

i, ~4") = (=", =4") + qi(=¢°, -, (15)

respectively. Employing (14) in (12), we find that

f( 9.9 )

VI @ - VTi(9) : (16)
\/ f(— 17)T 13)

Similarly, from (10) and applymg (15), we deduce that

4
VTl_l(q) + \/T(Q) = \/q f(ql 7) . (17)

i(=4% =4")i(=47, —q")
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Combining (16) and (17), we arrive at

O (G MM AD)
T @~ T® = s i, )

Again, from [4, p. 46, Entry 30 (i),(iv)], we note that
i(g, gh*)i(h, g°h) = (g, By (gh)

and
T(!]/ h)f(_g/ _h) = T(_gzl _h2)¢(_gh)

Setting {g = —¢%, h = —=¢”} in (19) and {g = —q, h = ¢*} in (20), we obtain
=0, —a")i(=q", —q") = 1(-4°, =" )¢(q"°)

and
f(=q,4Y1@q,~4") = 14>, ~a*)p(@),

respectively. Employing (21) and (22) in (18), we obtain

_ @)’ 1)

(@i, —q)
Squaring (17), we obtain

T;Y(q) - Ta(q)

(9, —4% s

qi(=4°, - (-7, —q%)
From [4, p. 46, Entry 30 (v),(vi)], we note that

(g, h) = 1(g%, 1*)p(gh) + 297/ g, T h)p(5°H?).
Setting g = g and h = —¢*, we obtain

(9, ~4" = 1¢%, ) (=0") + 2q7(~4°, —4")i(=q", =q").
Employing (21) and (26) in (24) and simplifying, we arrive at

P(=4")i(4* 4%

@)=, —)

Combining (23) and (27), we complete the proof of (i).
Proof of (ii) is identical to the proof of (i), so we omit.
Again, from (i) and (ii), we have

T4 (g) + T1(q) =

T (q) + Ta(g) =

PPN (=%, —4*)i(—q*, —4°)
PY2Aq0)i(—q>, —4")i(-9,-4°)

(T, @) - Tv@) (T3 (9) - Ta() =
From [4, p. 258, Entry 9(vii)], we have
f(~q, 40", =) = F~) f(=0"),

P(=°) f(=q°)

4 2 3y _
f(q,9)q", q°) = =0

754

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)
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and

i(9,9)@ 7)) = x@) f(~°) fF(=7%). (31)

Replacing g by 4% in (29) and replacing g by —g in (31) and then using in (28), we obtain
¢*@)f ) f(=q™)

OB ,' () - = : 32
('@ -T@) (720 - ) = ey ore ) 2)
Again, by g-series manipulation one can easily see that
f=a) =1’
—q) = , d = 1° 33
CO= ey IO e )

Simplifying (32) with the help of (33), we arrive at (iii). Employing the same procedure and using (30), we
arrive at (iv). Again, employing (i) and (ii), we have

o) af(=% —4%)(~9,~°) + T(=q", ~4)i(~4", —7")]

(T7'@ - T1@) + (T @) - T2() = P e ey (34)
From [4, p. 45, Entry 29], we have

i(a, b)i(c,d) = f(ac, bd)i(ad, be) + ai(b/c,acd)i(b/d, acd?);  for ab = cd. (35)
Setting {a = —¢%,b = —¢*,c = —q,d = —=¢°} and {a = —¢*,b = —¢°,c = —¢°,d = —¢} in (35), we obtain

i~ ~4°)i(=q,—4") = 7(@*,4")i@¢", 4") - 47", )i, 47 (36)
and

i(=4*, 4", -4") =i’ ,4")i@" ¢°) - "1, 4)ia ", 47"), (37)

respectively. Using (36), (37) in (34) and replacing g by —q in (31) and then employing in (34), we arrive at

o) (1@, 4 + qi@®,47) (7@, 4") - 1(a, "))

('@ - Tit0) + (72" - o) = PY@OX ) ) f(=42) ’ %)
where we have used the fact that f(g71, %) = 47 f(g,9").
Setting {g = q,h = q*} and {g = —¢%, h = —¢°} in (13), we obtain

i@.q" = 1@, 4") +4i(q>,q7) (39)
and

i =0) =1’ 4") = 1°7(0,47), (40)

respectively. Employing (39) and (40) in (38), we arrive at (v). Proof of (vi) is similar to the proof of (v), so
omitted. O

Theorem 2.2. For any non-negative integer n, we have

. @), if n=0 d2
() T{@)T}(—q) = { _Tlg(Z,%, lf} 7151 ((Irnn%d 2)).

(i) Ty() T5(—q) = T5(4%).
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Proof. From (10), we note that

i'(-¢°,—q") _ '(¢°.9")

T T} (=q) = (-1)"g"" r—s STt (41)
Setting {g = ¢°,h = g} and {g = ¢/, h = q'%} in (20), we find that

@, aH=0°, =q7) = 1(=4°, =)o (- (42)
and

1@, q°)iq", =) = 14", ~")p(~4>), (43)
respectively. Employing (42) and (43) in (41), we obtain

T (@Ti(-9) = (—1)”112”w = (-D)"T}(q%). (44)

f1(—q'4, —q?6)
Noting the fact that n is even if # = 0 (mod 2) and odd if # =1 (mod 2) in (44), we complete the proof of
(i). Proof of (ii) is identical to the proof of (i), so we omit. O

3. Explicit evaluations of T;(q) and T>(q)

In this section, we establish general theorems to find explicit values of T1(q) and T>(g) with the help of
the explicit values of the continued fractions I(q) and J(q) of order ten established in [12]:

I(q) = g4 @99 = P f(-q,-9") _ (1 -q) (45)
(0%,4% ") =) R el ) Gl 9!
1-g?)+ 512(1 — g13/2)(] — 1712
1—a52)(1 4 o5y 4 =g — g7
@ =g +q)+(1_q5/2)(1+q10)+...
and
@)= gL lET, ) 7 0-7) (46)
: 3, 7; 10 o — 3’_ 7 5/2 1-— 1/2 1-— 9/2 :
@,97:q%) f(=4° —47) (1= 52 + 7 A—g A -q")

q5/2(1 _ qll/Z)(l _ q19/2)

1- q5/2)(1 +q°) + 1- 6]5/2)(1 +q0) +---

We will use the parameter s4 ,, which is the particular case, k = 4 of the parameter sy, defined by Berndt [6,
p- 9, (47)]:

Syn = L, — \E/Z, (47)
VB fq)
where n is a positive real number. It is useful to note that Baruah and Saikia [3] proved the following
formula for the explicit evaluation of H(g) [3, p. 275, (3.5)]:
1
_ —n\n/4y — »2
e H(e ) =25y, (48)

Baruah and Saikia [3] calculated many explicit values of the parameter s4, to evaluate explicit values of
H(q) by appealing to (48). In [12], authors proved some general theorems for the explicit evaluation of I(g)
and [(g) and evaluated some explicit values. For example, they evaluated

P(e™V2/5) = (—1 + \/2(5 -2 \/5)) / \/5 — 245, (49)
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PP =5 (—1 +\265-2 «/5)) /(5-2v5)", (50)
5+ V5 /101 + VB) + \/10(20+8\/§—5\/2(1+ w/§)—3\/10(1+ «/3))]
2\/10(5+ V5 — J10(1 + «/5))

Be™ \/5) - [ , (51)

and

\/5[—5+ V5 — J10(1 + V5) + \/10(20+8\/5—5\/2(1+ \/5)—3\/10(1+ \/5))]

P V) = B . (52)
x/§(5+ V5 — 4/10(1 + «/5))

In the next theorem, we give general formulas for explicit evaluation of T1(g) and T>(g).

Theorem 3.1. We have
(i) Ty V) = Ty(e™V12) = 282 0 J(e™V2), (53)

(i) Ty'(e™V"2) = Ta(e™V1I2) = 253 0 171 (e VP2, (54)
Proof. Employing (8) and (46) in Theorem 2.1(i), we obtain

T ' (q) - Ta(q) = ( - H(q5/2)) J(@)- (55)

_1
H(g>?)
Setting g = ¢ V"/2 in (55), we obtain

-1¢,—1 —T 1 —T —T
T V") - Tie W):(H(e_n e VB | e N2, (56)

Employing (48) (replace n by 25n) in (56), we arrive at (i). Proof of (ii) follows identically from Theorem 2.1
(). O

Remark 3.2. From Theorem 3.1, one can easily find the explicit values of T1(e”™ V') and To(e™V'/2) with the
help of the parameters s4, and explicit values of 1(q) and J(q). For example, taking n = 8/5, employing the value

S440 = 27341 + VB)¥*Q2 + 3V2 + VB)* from [3] and then employing (50) and (49) in Theorem 3.1 (i) and (ii),
respectively, we obtain

Ny _ 1 Y - VIO 44
Ti(e 2/5)_4(5_2\/5)3/4 5V2-w— V10 -w+4- vz (57)

and
4\/—1 +4/10-445
Ty(e™V2P) = , (58)
4.0+ (5-2V5)41 + \/5)\/14+6(\/§+ V5 + V10)
where

w:—7—3\/5—3«/5—3«/1_0+(3\/E+7\/§+6+6\/5) \/5-25,
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z=—45-30V2-20V5 - 15 V10 + (20 VIO + 45 V2 + 65 + 20 V5) /5 - 2V5
and

a:—1+(3\/ﬁ+7\/§+9+4\/5) \/5—2\/5.

Aguain, taking n = 4/5, employing the value sy = 27/2(1 + \/5)3/8(1 + V5 + 2(1 + \/g))l/4 from [3] and then
employing (52) and (51) in Theorem 3.1 (i) and (ii), respectively, we obtain

Ti(e™ V) = }L( —5l/4 2741 + V5P i \/(1 +V5+ 420+ VB) - A
(5+ V5 - /1001 + V5))

2V10(1 + VBY2(1 + V5 + /21 + V5)) -A)
(5+ V5- {1001 + V5))
and

Ta(e™ ¥5) = %(—23/4(1 + V5)2(5+ V5 — 1001 + V5)!/* \/A—1(1 + V5 + 2(1+ V5)
+\/4+ (201 + V5P2(1+ V5 + 21 + V5)) \/ 10(5 + V5 - 4101 + V5)))- A1), (60)

A=-5+V5- /101 + V5) + \/10(20+8\/§—(5+3\/§)\/2(1+ V5)).

Theorem 3.3. We have
() Ti(=q) = -Ti@)T;*@),
(i) Ta(=9) = ~To(d")T; ().

+ |16+ (59)

where

Proof. Setting n = 2 in Theorem 2.2 (i), and n# = 1 in (ii), we arrived at (i) and (ii), respectively. [

From the above theorem, we can easily evaluate the explicit values of T1(—g) and T>(—q) for any values of
g, if we know the explicit values of T1(g), T1(9%), T2(9) and T2(g?).

4. Some partition-theoretic results

In this section, we show that colour partition identities can be obtained from the theta-function identities
established in Theorem 2.1 using colour partition of integer. As example, we deduce two partition-theoretic
identities from the theta-function identities of the continued fraction T;(g). One can also obtain similar
identities from the other theta-function identities of Theorem 2.1. First, we give the definition colour
partition of a positive integer n and its generating function.

A partition of a positive integer 1 is a non-increasing sequence of positive integers, called parts, whose
sum equals n1. A part in a partition of # is said to have r colours if each part has r copies and all of them are
viewed as distinct objects. For any positive integer n and r, let C,(n) denote the number of partitions of n with
each part has r distinct colours. For example, if each part of partition of 3 has 2 colours, say white (indicated
by the suffix w) and black (indicated by the suffix b), then the number of 2 colour partition of 3 is 10, namely
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3w1 3br 2w + 1wr zw + 1b/ zb + 1w/ 2b + 1b/ 1w + 1w + 1w; ]-w + 1w + 1b/ 1w + 1b + 1b/ 1b + 1b + 1b'
The generating function of C,(n) is given by

- 1
C,(n)g" = . 61
,;g o s 1
For positive integers s, m and r, the quotient
1
62
T ©2

is the generating function of the number of partitions of n with parts congruent to s modulo m and each
part has r colours. For example,

1 _ 1
(@ 9M5%@2 9% @, 97295

(63)

is the generating function of the number of partitions of positive integer with parts congruent to s; or s,
modulo m and each part has r distinct colours. For convenience, we use the notation

(qri; qt)oo = (qr, qt—r,, qt)oo’ (64)
where r and f are positive integers and r < t. It is also useful to note here that

_ @95
(@5 7)o

P(=4) (65)
Theorem 4.1. Let S1(n) := number of partitions of n into parts = £2, +3, +8 or £10 (mod 20) such that the parts
= +3 and £10 (mod 20) have 2 colours.
Let Sy(n) := number of partitions of n into parts = £2, +7, £8 or £10 (mod 20) such that parts = +7 and +10
(mod 20) have 2 colours.
Let S3(n) := number of partitions of n into parts = £3, 5 and £7 (mod 20) with 2 colours.
Then for any integer n > 2,

51(1) = S2(n = 2) = 53(n) = 0.

Proof. Employing (4), (5) and (10) in (23), we obtain

(q7i; qZO)oo ) (q3r; qZO)OO (qu,Si; qZO)w(qloi; qZO)Eo _

- - 66
(q3i;q20)oo q (q7t; qZO)m (q3i,7i;q20)m(q51’- qZO)go ( )
Dividing (66) by (q*37£8%; 320) , (¢'°%, ¢*°)2,, we obtain
2
! 1 ! - 0. 67)

(P+10%; 720)2 (g2+5%; ¢20) o, B (q7:{:,101:;q20)%0 (2*8%; 42) N (g35%7%; 202,

The above quotients of (67) represent the generating functions for C1(n), Co(n) and Cs(n), respectively. Hence, (67)
is equivalent to

Y S = Y Sa(mg" = ) Samq" =0, (68)
n=0 n=0 n=0

where we set 51(0) = S2(0) = S3(0) = 1. Equating coefficients of q* on both sides of (68), we arrive at the desired
result. [
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To verify Theorem 4.1, we construct the following table with n = 8:

518)=5 |5(6)=1|538)=4

8 2+2+2 | 5,43,

3y +3, +2 5 + 34

3r+3,+2 5, +3,

3g+3,+2 5, +3,
24+2+2+2

Theorem 4.2. Let Xi(n) := the number of partitions of n into parts = +3, +4, +5 or £10 (mod 20) such that the
parts = £3 and £5 (mod 20) have 2 colours.

Let X5(n) := the number of partitions of n into parts = +4, £5, £7 or +10 (mod 20) such that parts = £5 and +7
(mod 20) have 2 colours.

Let X3(n) := the number of partitions of n into parts = £2, £3, £7 or +8 (mod 20) such that parts = +3 and +7
(mod 20) have 2 colours.

Then for any integer n > 2,

Xl(Tl) + Xz(l’l - 2) — Xs(n) = 0.
Proof. Employing (5), (10) and (65) in (27), employing the same procedure, we obtain

1 g 1

(q3i,5i;q20)go(q4i,101;qZO)m + (q5t,7i-; qZO)%o(qﬁ,lOi;qZO)oo = (qBiJi;qZO)go(qu,Si;qZO)oo'

(69)

The above quotients of (69) represent the generating functions for Xi(n), Xo(n) and Xz(n), respectively. Hence, (69)
is equivalent to

Y Xamq" + 3 Y Xa(mg" = ) Xs(m)g" =0, (70)
n=0 n=0 n=0

where we set X1(0) = X2(0) = X3(0) = 1. Equating coefficients of q" on both sides of (70), we arrive at the desired
result. [

To verify Theorem 4.2, we construct the following table with n = 7:

Xi(7)=2]X06)=2] X3(7) =4

4+3, 5, 7,

4+3, 5y 7q
3,+2+2
3;+2+2

5. Vanishing Coefficients

Recently, many authors have studied vanishing coefficients in the arithmetic progressions of several
g-series expansions. One can see [2], Hirschhorn [10] and references there in for details. In this section, we
offer vanishing coefficient results obtain from the g-series expansion of the continued fractions T1(g), T2(q)
and their reciprocals.
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Theorem 5.1. If

(9] (o8]

* — T 7 ) n
Ti(q) = q 'Ti(q) = TE Z _ZB anq and T*( ) anq ,
n=0 n=0

then
(i) swone2=0 and (i) iy, =0.

Proof. J. M. Laughlin [11] stated the following p-dissection formula

(qt, qt’ qr+s, qt—r—s’. qt)oo E i (qpt, ql’t, qﬁr+s+jt, q(P_f)t—Pr—s,. th)m

(qs/ qt—s, qr/ qt—r/. qt)oo - = q (qjt+s, q(p—j)t—s, qpr’ q(t—r)p,. qpt)oo ’

(71)

where all of the powers of g in each of the infinite products on the right hand side must be multiples of p
and the integer r must satisfy gcd(r, p) = 1. Now, setting t = 20,7 = 7,5 = 10 and p = 5 in (71), we obtain

@007, 70 @72 (@550 %00 )
@79, 77,45 ) (q35,q65,q100)m[(qlo’q%,qloO)m 1 (@, 779, 7100,
ot %, 7'%; '), o @', 475; 4'9),. Pl T @3, 75, 41),, ] 7
(@, ;7). @, 3, %), (q90 qlo qloO)
Multiplying both sides of (72) by (4'%;4%°)% /(4°°; 4*°)%, and then simplifying, we obtain
i (@1 202,19 419002 (5, 455, 4100) . (0%, 454
L Snf] (q20 7292 (4%, 455, 410). (q10,q90,q100)m q (qso,qm,qloo)m
11 @00 @070 | 5@ 7779 -
1 (G, 450; 410).., q (79, 4%0; 4100 q (q90,q10, qloo)m ] (73)
Extracting the terms involving °"*? from (73), dividing by 4 and then replacing 4° by g, we obtain
= 2. 14\2 (120, 1202
Y Sovad’ = ¢ @59)5067597)s 74)

o @*%94%@°% 4% 4%°)

Since the right hand side of (74) contains no term involving ¢*", extracting the terms involving ¢*" in (74),
we arrive at (i).
Again, setting t = 20,7 = 3, s = 10 and p = 5 in (71), we obtain

13

(q g%°,q%,q .qZO) (q100 100)2 (q25 1775.11100)0o 3(q45 55 100)00 6(q65 35 100)00
@007 P @56 00, O (q3°,q70, 7). (q5°,q50, 9'%)e
9 (q85, q15,. qloo)oo 1 (quS =5. q100)

q (q70, q30/- qloo)oo q (q90’ qlo, quO)m ] (75)

Multiplying both sides of (75) by (4'%;4%°)%/(4°°; 4*°)%, and then simplifying, we obtain

Z’O: _ 20)2 (q100 100)2 (q25/ q75,. q100)00 3 (q45/ q55,. q100)00 . (q65 35 100)00
~ (qZO q20)2 (qlS q85 q100) (qu/ q90; quO)m q (qSO/ q70,. q100)00 q (q50/ q50, q100)00
’ (q85’ q15. 100)oo " (q105 . q100)oo

q (q70’ q30; q100)oo q (q90, qlol q100)oo ] (76)
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Extracting the terms involving g”"** from (76), dividing by 4* and then replacing 4° by g, we obtain

iy f_qW¢&W%%é -
5n+4 - ' - .
n=0 (q4/ q4)%0 (qé/ qu q20)oo

Since the right hand side of (77) contains no term involving g%, extracting the terms involving g*" in (77),
we arrive at (ii). O
The proof of the next theorem is similar to the proof of Theorem 5.1, so we omit the proof here.

Theorem 5.2. If

= f(—q, —q19) 0 1 00
T* = 2T -_ = Cn n and — C;l ‘rl,
2(q) = q " Ta(q) f(—q°, —q'1) nZ=5 q _Ta(q) ;‘ q
then
(i) clons5 =0 and (i) cjp,.9=0.
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