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Abstract. In this study, the relationship between the Cauchy-Schwarz inequality and matrix norms
and singular values is discussed. First, the classical form of the Cauchy-Schwarz inequality is recalled,
and its extended versions in matrix space are examined. Then, the connections between singular values
and unitarily invariant norms are addressed, and various inequalities are derived in this context. In
particular, the majorization properties of singular values for Hermitian and positive semidefinite matrices
are investigated.

1. Introduction

Let Mn(C) be the space of all n × n complex matrices. For an arbitrary matrix A, let |A| ≡ (A∗A)1/2. Here,
A∗ is the conjugate transpose of A, and the square root of the eigenvalue of A∗A is called the singular value
of matrix A. Symbolically, si(A) =

√
λi (A∗A) = λ1/2

i (A∗A) = λi (A∗A)1/2 = λi(|A|), meaning si(A) = λi(|A|).
Let x = (x1, x2, . . . , xn) ∈ Rn. When we arrange the components of this vector in descending order, we obtain
x↓ =

(
x↓1, x2

↓, . . . , x↓n
)
, where x↓1 ≥ x↓2 ≥ . . . ≥ x↓n. For x = (x1, x2, . . . , xn) and y =

(
y1, y2, . . . , yn

)
∈ Rn, if for

k = 1, 2, . . . ,n;
k∑

i=1

x↓i ≤
k∑

i=1

y↓i

then the vector x is said to be weakly majorized by y, denoted as x ≺w y.
If x ≺w y and also
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n∑
i=1

xi =

n∑
i=1

yi

then x is said to be majorized by y, denoted as x ≺ y. Thus, majorization includes weak majorization. To use
majorization, s(A) = (s1(A), s2(A), . . . , sn(A)) is arranged in descending order as s1(A) ≥ s2(A) ≥ . . . ≥ sn(A).
If A is a Hermitian matrix, its eigenvalues are real and can be ordered as λ1(A) ≥ . . . ≥ λn(A). For Hermitian
matrices A and B, if A−B ≥ 0, then B ≤ A. Hence, λ j(B) ≤ λ j(A) 1 ≤ j ≤ n. This results is known as Weyl’s
Monotonicity Principle.

• For an arbitrary matrix A, A∗A ≥ 0.

• For A ≥ 0, X∗AX ≥ 0.

• If A,B ≥ 0, then A + B ≥ 0.

•
(

A B
B∗ C

)
≥ 0⇒

(
A −B
−B∗ C

)
≥ 0,

(
C B
B∗ A

)
≥ 0. Additionally;

The direct sum of matrices A,B ∈Mn(C) is defined as A ⊕ B =
(

A 0
0 B

)
and denoted by A ⊕ B.

A norm ||.|| on Mn(C) is called a unitarily invariant norm if for all A ∈ Mn(C) and unitary matrices U,V ∈
Mn(C),

∥UAV∥ = ∥A∥

holds. Unitarily invariant norms are monotonically increasing functions of singular values.
Let H be an inner product space. For x, y ∈ H,

|⟨x, y⟩| ≤ ∥x∥∥y∥

is known as the classical Cauchy-Schwarz Inequality.
Let a and b be positive numbers. For 0 ≤ v ≤ 1,

Hv(a, b) =
avb1−v + a1−vbv

2

is called the Heinz Mean. The Heinz Mean lies between the geometric mean and the arithmetic mean, and
can be written as

√

ab ≤ Hv(a, b) ≤
a + b

2
.

Bhatia and Davis [6] generalized this to matrices. For positive semidefinite matrices,∥∥∥A1/2B1/2
∥∥∥ ≤ ∥Hv(A,B)∥ ≤

∥∥∥∥∥A + B
2

∥∥∥∥∥
holds.
Let A be a Hermitian matrix. If for all x ∈ Cn,

⟨Ax, x⟩ ≥ 0

then A is called a positive semidefinite matrix. (If ⟨Ax, x⟩ > 0 for x , 0, then A is called a positive definite
matrix.) Moreover, for any x, y ∈ Cn and A ≥ 0, the following inequality:

|⟨Ax, y⟩|2 ≤ ⟨Ax, x⟩⟨Ay, y⟩

is a generalized form of the Cauchy-Schwarz inequality, (See [11], p. 221).
For a positive semidefinite matrix A,
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∥Ax∥2 ≤ ∥A∥⟨Ax, x⟩.

In 1952, Kato [12] showed that for any matrix T ∈Mn(C), x, y ∈ Cn and α ∈ [0, 1],

|⟨Tx, y⟩|2 ≤ ⟨(T∗T)αx, x⟩⟨(TT∗)1−αy, y⟩.

In 1994, Furuta [10] showed that for any T ∈Mn(C) x, y ∈ Cn, α, β ∈ [0, 1], and α + β ≥ 1,

|⟨T|T|α+β−1x, y⟩|2 ≤ ⟨|T|2αx, x⟩⟨|T∗|2βy, y⟩.

More detailed and good works on singular values inequalities have been discussed recently in [1],[3],[4],[5],
[14],[15],[17].
In this paper, we generalize some inequalities involving singular values and norm inequalities for 2 × 2
positive semidefinite block matrices in a different perspective.

LEMMAS

In this section, we list some results that will be used in our further considerations. The first lemma was
mentioned by Kittaneh [13].

Lemma 1.1. Let A,B,C ∈Mn(C), with A,B ≥ 0. Then(
A C∗

C B

)
is a positive if and only if

|⟨Cx, y⟩|2 ≤ ⟨Ax, x⟩⟨By, y⟩,

for all x, y ∈ Cn.

This is an extension of the Cauchy-Schwarz inequality.

Lemma 1.2. [20] (von Neumann): Let A,B ∈Mm×n . Then

s(A) ≺w s(B)⇔ ∥A∥ ≤ ∥B∥,

for all unitarily invariant matrix-vector norms ∥.∥ on ∈Mm×n.

Y.Tao proved the following lemma, which is used in many studies:

Lemma 1.3. [18] Let A,C ∈Mn(C) and
(

A B
B∗ C

)
≥ 0. Then

2s j(B) ≤ s j

(
A B
B∗ C

)
j = 1, 2, . . . ,n.

W.Audeh and F.Kittaneh showed the following lemma in [2].

Lemma 1.4. Let A,B,C ∈Mn(C) such that
(

A B
B∗ C

)
≥ 0. Then

s j(B) ≤ s j(A ⊕ C) j = 1, 2 . . . ,n.

F.Zhang proved the following lemma, which is used in many studies:

Lemma 1.5. [20] Let H and K be n × n Hermitian matrices. Then(
H K
K H

)
≥ 0⇔ ±K ≤ H⇒ |s(K)| ≺w s(H)⇒ ∥K∥ ≤ ∥H∥.
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Burqan and F.Kittaneh showed the following lemma in [9].

Lemma 1.6. Let A,B,C ∈Mn(C) and
(

A B
B∗ C

)
≥ 0. Then

s j (B + B∗) ≤ s j((A + C) ⊕ (A + C)) j = 1, 2 . . . ,n

and
∥B + B∗∥ ≤ ∥A + C∥.

R.Bhatia and F.Kittaneh proved the following lemma in [7].

Lemma 1.7. For all n × n matrices A and B;

2s j (A∗B) ≤ s j (AA∗ + BB∗) j = 1, 2, . . . ,n.

Lemma 1.8. [19] Let A and B be positive matrices. Then

s(A ⊕ A) ≺w s((A + B) ⊕ (A − B)).

Lemma 1.9. [16] Let M,N be square matrices of the same size. Then(
M K
K∗ N

)
≥ 0⇒ s(K) ≺w

1
2
{λ(M) + λ(N)}.

Lemma 1.10. [19] Let x, y, z ∈ Rn. If 2x ≺ y + z, then (x, x) ≺ (y, z).

Lemma 1.11. [8] Let X,Y be Hermitian matrices and ±Y ≤ X. Then

s j(Y) ≤ s j(X ⊕ X) 1 ≤ j ≤ n.

T.Furuta has proved the following lemma in [10].

Lemma 1.12. Let A,B ≥ 0 and 0 ≤ α ≤ 1. Then

s j

(
AαB1−α

)
≤ s j(αA + (1 − α)B) 1 ≤ j ≤ n.

2. Main Results

Theorem 2.1. Let A and B be positive semidefinite matrices. For all x, y ∈ Cn and α ∈ [0, 1], the following inequality
holds: ∣∣∣∣〈(AαB1−α + A1−αBα

)
x, y

〉∣∣∣∣2 ≤ 〈(
A2α + A2−2α

)
x, x

〉 〈(
B2−2α + B2α

)
y, y

〉
.

Proof. Let X =
(

Aα B1−α

A1−α Bα

)
. Then X∗ =

(
Aα A1−α

B1−α Bα

)
. We have

X∗X =
(

Aα A1−α

B1−α Bα

) (
Aα B1−α

A1−α Bα

)
=

(
A2α + A2−2α AαB1−α + A1−αBα

B1−αAα + BαA1−α B2−2α + B2α

)
≥ 0.

From Lemma 1.1, we obtain;∣∣∣∣〈(AαB1−α + A1−αBα
)

x, y
〉∣∣∣∣2 ≤ 〈(

A2α + A2−2α
)

x, x
〉 〈(

B2−2α + B2α
)

y, y
〉

which proves the statement.
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Corollary 2.2. For α = 1/2, ∣∣∣∣〈2
((

A1/2 + B1/2
))

x, y
〉∣∣∣∣2 ≤ ⟨(2A)x, x⟩⟨(2B)y, y⟩

is obtained. Specifically, if A is replaced by A2 and B is replaced by B2, we get

|⟨(A + B)x, y⟩|2 ≤
〈
A2x, x

〉 〈
B2y, y

〉
.

In addition, using properties of inner product, it is easily seen that

|⟨(A + B)x, y⟩|2 ≤ ⟨Ax,A∗x⟩ ⟨By,B∗y⟩
= ⟨Ax,Ax⟩ ⟨By,By⟩

= ∥Ax∥2 ∥By∥2.

From different perspective, we have the following result as well.

Theorem 2.3. Let A,B ≥ 0. For all x, y ∈ Cn and α ∈ [0, 1]. Then∣∣∣∣〈(AαB1−α
)

x, y
〉∣∣∣∣2 ≤ 〈

A2αx, x
〉 〈

B2−2αy, y
〉
.

Proof. Let X =
(

Aα B1−α

0 0

)
. Then X∗ =

(
Aα 0

B1−α 0

)
.

X∗X ≥ 0⇒
(

Aα 0
B1−α 0

) (
Aα B1−α

0 0

)
=

(
A2α AαB1−α

B1−αAα B2−2α

)
≥ 0.

From Lemma 1.1, we obtain ∣∣∣∣〈(AαB1−α
)

x, y
〉∣∣∣∣2 ≤ 〈

A2αx, x
〉 〈

B2−2αy, y
〉
.

Corollary 2.4. For α = 1/2, ∣∣∣∣〈(A1/2B1/2
)

x, y
〉∣∣∣∣2 ≤ ⟨Ax, x⟩⟨By, y⟩.

Theorem 2.5. Let A,B ≥ 0 and α ∈ [0, 1]. Then

s j

(
AαB1−α + B1−αAα

)
≤ s j

((
A2α + B2−2α

)
⊕

(
A2α + B2−2α

))
.

Proof. Let X =
(

Aα B1−α

0 0

)
. Then X∗ =

(
Aα 0

B1−α 0

)
.

X∗X =
(

Aα 0
B1−α 0

) (
Aα B1−α

0 0

)
=

(
A2α AαB1−α

B1−αAα B2−2α

)
≥ 0. Thus

(
A2α + B2−2α AαB1−α + B1−αAα

AαB1−α + B1−αAα A2α + B2−2α

)
≥ 0.

By Lemma 1.6,
s j

(
AαB1−α + B1−αAα

)
≤ s j

((
A2α + B2−2α

)
⊕

(
A2α + B2−2α

))
is obtained.

Corollary 2.6. From Lemma 1.2, ∥∥∥AαB1−α + B1−αAα
∥∥∥ ≤ ∥∥∥A2α + B2−2α

∥∥∥ .
For α = 1/2, ∥∥∥A1/2B1/2 + B1/2A1/2

∥∥∥ ≤ ∥A + B∥.
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Specifically, if A is replaced by A2 and B is replaced by B2,

∥AB + BA∥ ≤
∥∥∥A2 + B2

∥∥∥
holds.

Theorem 2.7. Let A ∈Mn(C) and α, β ∈ [0, 1] , α + β ≥ 1. Then

s j

(
A|A|α+β−1

)
≤ s j

(
|A|2α ⊕ |A|2β

)
.

Proof. Observe that (
|A|2α A|A|α+β−1

|A∗|α+β−1 A∗ |A|2β

)
≥ 0.

It is clear that this matrix is positive semidefinite due to Furuta’s result [10]. Therefore, by Lemma 1.3,

2s j

(
A|A|α+β−1

)
≤

(
|A|2α A|A|α+β−1

|A∗|α+β−1 A∗ |A|2β

)
is obtained. Also, using Lemma 1.4,(

|A|2α A|A|α+β−1

|A∗|α+β−1 A∗ |A|2β

)
≤ 2s j

(
|A|2α ⊕ |A|2β

)
can be written. Connecting these two inequalities; we get

2s j

(
A|A|α+β−1

)
≤

(
|A|2α A|A|α+β−1

|A∗|α+β−1 A∗ |A|2β

)
≤ 2s j

(
|A|2α ⊕ |A|2β

)
.

That is;
2s j

(
A|A|α+β−1

)
≤ 2s j

(
|A|2α ⊕ |A|2β

)
.

Rearranging this inequality, as result

s j

(
A|A|α+β−1

)
≤ s j

(
|A|2α ⊕ |A|2β

)
is obtained.

Theorem 2.8. Let A and B be positive semidefinite matrices and α ∈ [0, 1]. Then

2s j(A ⊕ B) ≤ s j

((
A2α + A2−2α

)
⊕

(
B2α + B2−2α

))
f or j = 1, 2, . . . ,n.

Proof. Let X =
(

Aα 0
0 Bα

)
and Y =

(
0 A1−α

B1−α 0

)
. Then X∗ =

(
Aα 0
0 Bα

)
and Y∗ =

(
0 B1−α

A1−α 0

)
.

Hence

X∗Y =
(

Aα 0
0 Bα

) (
0 A1−α

B1−α 0

)
=

(
0 A
B 0

)
.

Since s j(A) = s j (A∗) = s j (|A∗|), s j (X∗Y) = s j(A ⊕ B). On the other hand,

XX∗ =
(

Aα 0
0 Bα

) (
Aα 0
0 Bα

)
=

(
A2α 0

0 B2α

)
,

YY∗ =
(

0 A1−α

B1−α 0

) (
0 B1−α

A1−α 0

)
=

(
A2−2α 0

0 B2−2α

)
and also
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XX∗ + YY∗ =
(
A2α 0

0 B2α

)
+

(
A2−2α 0

0 B2−2α

)
=

(
A2α + A2−2α 0

0 B2α + B2−2α

)
≥ 0.

By Lemma 1.7,
2s j(A ⊕ B) ≤ s j

((
A2α + A2−2α

)
⊕

(
B2α + B2−2α

))
f or j = 1, 2, . . . ,n

is obtained.

Corollary 2.9. From Lemma 1.2,

∥A ⊕ B∥ ≤

∥∥∥∥(A2α + A2−2α
)
⊕

(
B2α + B2−2α

)∥∥∥∥
2

is found. For α = 1,

∥A ⊕ B∥ ≤

∥∥∥∥(A2 + I
)
⊕

(
B2 + I

)∥∥∥∥
2

is obtained.

Theorem 2.10. Let A ∈Mn(C) and α ∈ [0, 1]. Then

s j(A) ≤ s j

(
(A∗A)α ⊕ (AA∗)1−α

)
.

Proof. Observe that (
(A∗A)α A

A∗ (AA∗)1−α

)
≥ 0.

We know that this matrix is positive semidefinite due to Kato’s result [12]. From Lemma 1.3,

2s j(A) ≤ s j

(
(A∗A)α A

A∗ (AA∗)1−α

)
can be derived. Also, using Lemma 1.4,

s j

(
(A∗A)α A

A∗ (AA∗)1−α

)
≤ 2s j

(
(A∗A)α ⊕ (AA∗)1−α

)
is obtained. Connecting these two inequalities;

2s j(A) ≤ 2s j

(
(A∗A)α ⊕ (AA∗)1−α

)
s j(A) ≤ s j

(
(A∗A)α ⊕ (AA∗)1−α

)
is obtained.

Theorem 2.11. Let A,B ≥ 0 and α ∈ [0, 1]. Then

s j

(
AαB1−α + B1−αAα

)
≤ s j

((
A2α + B2−2α

)
⊕

(
A2α + B2−2α

))
f or j = 1, 2, . . . ,n.

Proof. Let X =
(

Aα 0
B1−α 0

)
. Then X∗ =

(
Aα B1−α

0 0

)
.

XX∗ =
(

Aα 0
B1−α 0

) (
Aα B1−α

0 0

)
=

(
A2α AαB1−α

B1−αAα B2−2α

)
≥ 0.

From Lemma 1.8 and Lemma 1.9,
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s j

(
AαB1−α + B1−αAα

)
≤ λ j

(
(A2α + B2−2α) ⊕ (A2α + B2−2α)

)
= s j

(
(A2α + B2−2α) ⊕ (A2α + B2−2α)

)
.

Since it is known that x ≤ y (component-wise)⇒ x ≺w y;

s
(
AαB1−α + B1−αAα

)
≺w s

((
A2α + B2−2α

)
⊕

(
A2α + B2−2α

))
is obtained.

Corollary 2.12. For α = 1/2,

s
(
A1/2B1/2 + B1/2A1/2

)
≺w s((A + B) ⊕ (A + B)),

and if A is replaced by A2 and B is replaced by B2;

s(AB + BA) ≺w s
((

A2 + B2
)
⊕

(
A2 + B2

))
is found. This inequality was obtained by Bhatia and Kittaneh (see, [9], Proposition 6.2).

Theorem 2.13. Let A,B ≥ 0 and α ∈ [0, 1]. Then

2s j(A + B) ≤ s j

(
A2α + A2−2α + B2α + B2−2α

⊕ 0
)
.

Proof. Let X =
(

Aα A1−α

B1−α Bα

)
. Then

X∗X =
(

A2α + B2−2α A + B
A + B A2−2α + B2α

)
and

2s j(A + B) ≤ s j

(
A2α + B2−2α A + B

A + B A2−2α + B2α

)
is obtained.

Corollary 2.14. From Lemma 1.2,

2∥A + B∥ ≤

∥∥∥∥∥∥
(

A2α + B2−2α A + B
A + B A2−2α + B2α

)∥∥∥∥∥∥
is found.

Theorem 2.15. Let A,B ≥ 0. For 0 ≤ α ≤ 1 and r is a positive integer. Then

2s j

(
Aα

(
A2α + B2−2α

)r
B1−α

)
≤ s j

(
A2α + B2−2α

)r+1
.

Proof. For any matrix X, the polar decomposition is X = UP. Then,

(XX∗)r+1 = X(X∗X)rX∗

can be easily seen. For X =
(

Aα 0
B1−α 0

)
,

(XX∗)r+1 = X(X∗X)rX∗ =

 Aα(A2α + B2−2α)rAα Aα(A2α + B2−2α)rB1−α

B1−α(A2α + B2−2α)rAα B1−α(A2α + B2−2α)rB1−α





M. F. Meniz et al. / Filomat 40:2 (2026), 763–772 771

is obtained. Moreover, (XX∗)r+1 and (X∗X)r+1 are unitarily equivalent, and their singular values are equal.
Using Lemma 1.11, seen that

2 s j

(
Aα(A2α + B2−2α)∗B1−α

)
≤ s j

(
(XX∗) r+1

)
= s j

(
(X∗X) r+1

)
= s j

(
(A2α + B2−2α) r+1

)
.

Corollary 2.16. For α = 1/2, we get

s j

(
A1/2(A + B)rB1/2

)
≤ s j(A + B)r+1, 1 ≤ j ≤ n.

This inequality was obtained by Bhatia and Kittaneh (see,e.g.,[18]).

Theorem 2.17. Let A and B be positive semidefinite matrices. For all x, y ∈ Cn and α ∈ [0, 1]. Then

|⟨Ax, y⟩|2 ≤
〈
A2αx, x

〉 〈
A2−2αy, y

〉
.

Proof. Let X =
(

Aα A1−α

0 0

)
. Then X∗ =

(
Aα 0

A1−α 0

)
. Thus,

X∗X =
(

Aα 0
A1−α 0

) (
Aα A1−α

0 0

)
=

(
A2α A
A A2−2α

)
.

From Lemma 1.1,

|⟨Ax, y⟩|2 ≤ ⟨A2αx, x⟩⟨A2−2αy, y⟩
= ⟨Aαx,Aαx⟩⟨A1−αy,A1−αy⟩
≤ ∥Aαx∥2∥A1−αy∥2

≤ ∥Aαx∥∥A1−αy∥.

In particular, for α = 1 and A = I ;
|⟨x, y⟩| ≤ ∥x∥∥y∥

is obtained. This inequality is the known Cauchy-Schwarz Inequality.

Theorem 2.18. Let A ∈Mn(C) and α ∈ [0, 1]. Then

s (A + A∗) ≺w s
(
(A∗A)α + (AA∗)1−α

)
.

Proof. Let

M =
(

(A∗A)α A
A∗ (AA∗)1−α

)
≥ 0,

and

N =
(

(AA∗)1−α A∗

A (A∗A)α

)
≥ 0.

So

M +N =
(

(A∗A)α + (AA∗)1−α A + A∗

A + A∗ (A∗A)α + (AA∗)1−α

)
≥ 0.

From Lemma 1.5,
±(A + A∗) ≤ (A∗A)α + (AA∗)1−α

s(A + A∗) ≺w s
(
(A∗A)α + (AA∗)1−α

)
is obtained.
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Corollary 2.19. From Lemma 1.2,
∥A + A∗∥ ≤

∥∥∥(A∗A)α + (AA∗)1−α
∥∥∥

is found.

Theorem 2.20. Let
(

M K
K∗ N

)
≥ 0 and M,N be square matrices of the same size.

(s(K), s(K)) ≺w (λ(M), λ(N)).

Proof. If
(

M K
K∗ N

)
≥ 0, then using Lemma 1.9, we get

s(K) ≺w
1
2
{λ(M) + λ(N)}.

By Lemma 1.10,
(s(K), s(K)) ≺w (λ(M), λ(N))

is obtained.

Corollary 2.21. Using Lemma 1.2 and since ∥A ⊕ B∥ = max{∥M∥, ∥N∥}; we get

∥K∥ ≤ ∥M ⊕N∥.
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