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Abstract. In this study, the relationship between the Cauchy-Schwarz inequality and matrix norms

and singular values is discussed. First, the classical form of the Cauchy-Schwarz inequality is recalled,
and its extended versions in matrix space are examined. Then, the connections between singular values
and unitarily invariant norms are addressed, and various inequalities are derived in this context. In

particular, the majorization properties of singular values for Hermitian and positive semidefinite matrices
are investigated.

1. Introduction

Let M,,(C) be the space of all n X n complex matrices. For an arbitrary matrix A, let |A| = (A*A)l/ 2 Here,
A is the conjugate transpose of A, and the square root of the eigenvalue of A*A is called the singular value
of matrix A. Symbolically, s(A) = /A; (A*A) = 1}* (A*A) = A;(A*A)'* = A,(|Al), meaning s;(A) = A;(|Al).
Letx = (x1,x2,...,x,) € R". When we arrange the components of this vector in descending order, we obtain
xb = (xi,le,...,x#), where x!

1= xﬁ > ... 2> x,ﬁ. For x = (x1,x2,...,x,) and y = (y1,Y2,...,Yn) € R, if for
k=1,2,...,n

then the vector x is said to be weakly majorized by y, denoted as x <, v
If x <, y and also
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i=1

i=1
then x is said to be majorized by y, denoted as x < y. Thus, majorization includes weak majorization. To use
majorization, s(A) = (s1(A), s2(A), ...,s,(A)) is arranged in descending order as s1(A) > s2(A) > ... > s,(A).
If A is a Hermitian matrix, its eigenvalues are real and can be ordered as A1(A) > ... > A,(A). For Hermitian
matrices A and B, if A~ B > 0, then B < A. Hence, A;(B) < Aj(A) 1 < j < n. This results is known as Weyl’s
Monotonicity Principle.

e For an arbitrary matrix A, A"A > 0.
e ForA>0,X"AX > 0.
e IfA,B>0,thenA+B >0.

A B A -B C B .\
( B C )20$( B C )20,( B A )ZO.Addltlonally,'

0
0 B
A norm ||| on M,(C) is called a unitarily invariant norm if for all A € M,,(C) and unitary matrices U,V €
M,(C),

The direct sum of matrices A, B € M,,(C) is defined as A® B = and denoted by A @ B.

IUAV]| = [lAll

holds. Unitarily invariant norms are monotonically increasing functions of singular values.
Let H be an inner product space. For x,y € H,

<, )l < lxdlllyll

is known as the classical Cauchy-Schwarz Inequality.
Let a and b be positive numbers. For0 <v <1,

avbl—v + al—vbv

Hy(a, b) = >

is called the Heinz Mean. The Heinz Mean lies between the geometric mean and the arithmetic mean, and

can be written as b
+
Vab < Hy,(a, b) < 2 >

Bhatia and Davis [6] generalized this to matrices. For positive semidefinite matrices,

”Al/zBl/ZH < ||Hy(A,B)|| <

A+BH

holds.
Let A be a Hermitian matrix. If for all x € C”,

(Ax,x) >0

then A is called a positive semidefinite matrix. (If (Ax,x) > 0 for x # 0, then A is called a positive definite
matrix.) Moreover, for any x, y € C" and A > 0, the following inequality:

KAx, I < (Ax, x)}Ay, y)

is a generalized form of the Cauchy-Schwarz inequality, (See [11], p. 221).
For a positive semidefinite matrix A,
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|Ax|* < [|Al{Ax, x).
In 1952, Kato [12] showed that for any matrix T € M,(C), x,y € C" and a € [0, 1],

KTx, ) < (T°T)*x, x)((TT") "y, y).
In 1994, Furuta [10] showed that for any T € M,,(C) x,y € C",a,f € [0,1],and a + f > 1,

KTITI P, )P < (TP, (T Py, y).

More detailed and good works on singular values inequalities have been discussed recently in [1],[3],[4],[5],
[14],[15],[17].

In this paper, we generalize some inequalities involving singular values and norm inequalities for 2 x 2
positive semidefinite block matrices in a different perspective.

LEMMAS

In this section, we list some results that will be used in our further considerations. The first lemma was
mentioned by Kittaneh [13].

Lemma 1.1. Let A, B, C € M,(C), with A,B > 0. Then
A C
C B

KCx, )P < (Ax, x)(By, ),

is a positive if and only if

forallx,y € C".
This is an extension of the Cauchy-Schwarz inequality.

Lemma 1.2. [20] (von Neumann): Let A,B € M, . Then

s(A) <w s(B) & Al < [IBIl,

for all unitarily invariant matrix-vector norms ||.|| on € M.

Y.Tao proved the following lemma, which is used in many studies:

B

Lemma 1.3. [18] Let A, C € M,,(C) and ( ; C

) > 0. Then

25]'(B)SS]'(§,r g) i=12,...,n

W.Audeh and EKittaneh showed the following lemma in [2].

Lemma 1.4. Let A, B, C € M,,(C) such that ( 4 > 0. Then

‘)
B C
si(B)<sj(AeC) j=1,2...,n
F.Zhang proved the following lemma, which is used in many studies:
Lemma 1.5. [20] Let H and K be n X n Hermitian matrices. Then
( H K

oK ) >0 & +K < H = [s(K)| <o s(H) = [IKI| < [IH].
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Burqan and F.Kittaneh showed the following lemma in [9].

B

Lemma 1.6. Let A, B, C € M,,(C) and( ; C

) >0. Then

si(B+B) <sj(A+C)o(A+C) j=12...,n

and
[IB+ B*|| < ||A + ]l

R.Bhatia and FKittaneh proved the following lemma in [7].
Lemma 1.7. For all n X n matrices A and B;

25;(A'B) <s;(AA"+BB") j=1,2,...,n.
Lemma 1.8. [19] Let A and B be positive matrices. Then

S(A® A) <y s(A+ B)® (A - B)).

Lemma 1.9. [16] Let M, N be square matrices of the same size. Then

( ]I\</I ﬁ ) >0 = s(K) <w %{/\(M) + A(N)}.
Lemma 1.10. [19] Let x,y,z € R". If 2x < y + z, then (x,x) < (y, 2).
Lemma 1.11. [8] Let X, Y be Hermitian matrices and +Y < X. Then

si(Y)<sj(XeX) 1<j<n

T.Furuta has proved the following lemma in [10].

Lemma 1.12. Let A,B>0and 0 < a < 1. Then

sj(A“B'™) <sj(@A+(1-a)B) 1<j<n.

2. Main Results

Theorem 2.1. Let A and B be positive semidefinite matrices. For all x,y € C" and a € [0, 1], the following inequality
holds:

|<(AaB1—a + Al—aBa) X, }/>|2 < <(A2“ + A2—2a) X, x> <(B2—2a + B2a) y, }/>~

AQ Bl—at . A% Al—at
Proof. Let X = ( Al-e pa ) Then X* = ( B« pa ) We have
. A Alfa A% Bl—a
XX = (Bl—a B« )(Al—a B« )

A2a +A2—2a AaBl—a +A1—aBa
= Bl-ape + Bapl-a B2-2a 4 B2a > 0.

From Lemma 1.1, we obtain;
’(( Aepl Al—aBa> X, y>’2 < (( a2 AZ—Za) X, x> <(B2—2a N B2a>y, y>

which proves the statement.
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Corollary 2.2. Fora =1/2,

(2((a72 + B2)x, y>|2 <(A)x, xX(2B)y, v)

is obtained. Specifically, if A is replaced by A% and B is replaced by B2, we get

K(A +B)x, )P < (A%, x) (B, y).
In addition, using properties of inner product, it is easily seen that
K(A +B)x, )I* < (Ax, A"x) (By, B'y)
= (Ax, Ax) (By, By)
= |AxIP |1Byl*.
From different perspective, we have the following result as well.
Theorem 2.3. Let A,B > 0. Forallx,y € C" and a € [0,1]. Then
2
|<(A"‘B1_“) x, y>| < <A2"‘x, x> <B2_2“y, y> .

Ae Bl . AY 0
Proof. Let X = ( 0 0 ) Then X* = ( Bl o )
. A“ 0 AY Bl—a AZa AaBl—a
XXZOﬁ(Bl—a 0)( 0 0 )_(BlaAa B272a )20

From Lemma 1.1, we obtain
(aB =), )| < (4%, 2) (B2, ).
Corollary 2.4. Fora =1/2,
(a12B12), y>'2 < (Ax, x)(BY, ).
Theorem 2.5. Let A,B > 0and a € [0,1]. Then

5j(A*B™ + BI0A%) <5 (A% + B> 2) @ (A% + B*)).

At B [ A0
Proof. Let X = ( 0 o ) Then X* = ( Be o )
" A¢ 0 Ae Bl-e A2 Aapgl-a
XX = ( Bl-«a 0 )( 0 0 ) = ( Bl—aAa BZ—za ) > 0. Thus

A2a + B2—2a AaBl—a + Bl—aAa
( AaBl—a + Bl—aAa A2a + B2—2a ) > 0.

By Lemma 1.6,
5/ (AaBl—a + Bl—aAa) < 5; ((AZa + BZ—Za) ® (A2a + B2—2a>)
is obtained.

Corollary 2.6. From Lemma 1.2,

”AaBl—a + Bl—aAa” < ”AZa + BZ—Za” )

Fora=1/2,
||AY/2BY2 + B2AM2|| < ||A + BII.
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Specifically, if A is replaced by A? and B is replaced by B?,
IAB + BA| < ||A? + B
holds.
Theorem 2.7. Let A € M, (C)and o, € [0,1], a + p > 1. Then
s (AIAIP) <55 (JAPY @ |APF).

Proof. Observe that

|A|2a A|A|a+/3—1 -
|A*|a+ﬁ—1 A* |A|2ﬁ = U.

It is clear that this matrix is positive semidefinite due to Furuta’s result [10]. Therefore, by Lemma 1.3,

A2 AlAla+B-1
2sj(A|AI“+ﬁ‘1)s( A Al )

|A*|a+ﬁ—1 A:e |A|2[3
is obtained. Also, using Lemma 1.4,

|A|2a A|A|a+ﬁ—1
( g ape | S2i(APelAR)
can be written. Connecting these two inequalities; we get

|A|2a A|A|a+ﬁ—1

-1
ZS]‘ (A|A|a+ﬁ ) < ( IA*|a+/S—1 A* |A|2/3

) < 25; (JAP* @ |APF).

That is;
25; (AIAI"*F1) < 25; (JAP @ |AP¥).

Rearranging this inequality, as result
s (AIAIPF) <55 (AP @ |APF)

is obtained.

Theorem 2.8. Let A and B be positive semidefinite matrices and a € [0,1]. Then

25(A®B) <5;((A™ + A¥) @ (B> + B*)) for j=1,2,...,n.

A* 0 0 Al . A* 0 iy 0 Bl
Proof.Leth(O Ba)ande(Bl_a 0 ) Thean(O Ba)ande(Al_a 0 )

[ A* 0 0 A\ (0 A
xv=(5 5 (s %0 )=(5 5)

Since s;(A) = 5; (A*) = 5; (|A"]), 5; (X*Y) = 5;(A ® B). On the other hand,
. [AY 0 A 0\ (A2 0
XX_(O B"‘)(O B“)_( 0 BZ“)’

) 0 Al—a 0 Bl—a A2—20( 0
YY —( Bl_a 0 )( Al_a 0 )—( 0 B2—2a )

Hence

and also
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2 2-2a
XX+ YY" = (A : ) + (A Bzoza)

0 B~ 0
A2a +A2—2a 0
= ( 0 B2 4 B2—20z) =0

By Lemma 1.7,
25(A®B) <5;((A* + A>) @ (B + B**)) for j=1,2,...,n

is obtained.

Corollary 2.9. From Lemma 1.2,

||(A2a + AZ—Za) I (BZa + BZ—Za)
2

lA® Bl <
is found. Fora =1,
”(A2 +1)@ (B2 +1)”

<
lA@Bl < .

is obtained.
Theorem 2.10. Let A € M,,(C) and o € [0,1]. Then
5i(A) < 5 ((A"A)" @ (AA)'™).

Proof. Observe that

(A*A)* A
( A:e (AA*)l—a ) 2 0

We know that this matrix is positive semidefinite due to Kato’s result [12]. From Lemma 1.3,
(A*A)* A
ZS](A) S S]( A* (AA*)l—a
can be derived. Also, using Lemma 1.4,
(A*A)" A “ A\a nl-a
sj( A Ayt | S ((aa) e AA)™)
is obtained. Connecting these two inequalities;
25i(A) < 25, ((A"A)" @ (AA")'™)
si(A) < 5 ((A"A)" @ (AA)'™)
is obtained.
Theorem 2.11. Let A,B > 0and a € [0,1]. Then
sj(A°BI™ + BIA%) <5; (A% + B ) @ (A% + B*™)) for j=1,2,...,n
a
Proof. Let X = /1\70[ 0 . Then X* =
B 0
. 0
XX = ( A )

From Lemma 1.8 and Lemma 1.9,

Aa Bl-a )

0
AQ Bl a AZa AaBl—a
0 = Bl—aAa B2—2a = 0.
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S],<AaB1—a + Bl—aAa) /\j((AZa + BZ—Za) @ (AZa + BZ—Za))

si((A% + B20) @ (A% + B220))
Since it is known that x < y (component-wise) = x <, y;

s (AaBlfa + BlfaAa) <us ((A2a + Bzfza) ® (A2a + Bzfza))
is obtained.

Corollary 2.12. Fora =1/2,
s(A'2B'2 + B'2A'?) <, s((A+ B)® (A + B)),
and if A is replaced by A? and B is replaced by B;

S(AB + BA) <y s (A2 + B?) @ (A? + B?))

is found. This inequality was obtained by Bhatia and Kittaneh (see, [9], Proposition 6.2).

Theorem 2.13. Let A,B > 0and a € [0,1]. Then
25i(A + B) < 5 (A™ + A72 + B + B2 90).

AQ Al—a

Proof. Let X = ( B« pa

). Then

2a 2-2a
X*X:(A +B A+B )

A+B A?2a 4 B2a

and

2a 220
ZS]'(A+B)SS]'(A B A+B )

A+B A%2a 4 B
is obtained.

Corollary 2.14. From Lemma 1.2,

2”A + B” < A+B A2—2a + BZa

( A2e 4 B2-2a A+B )

is found.

Theorem 2.15. Let A,B > 0. For 0 < a < 1 and r is a positive integer. Then
1
25; (A% (A% + B2) B7) < 5 (A2 + B2 2)
Proof. For any matrix X, the polar decomposition is X = UP. Then,
(XX = X(X'X)' X

A 0
Bl—a 0/

Aa(AM + BZ*Za)rAa Aa(A2a + B2—2a)rB1—a
Bl—a(AZa + B2—2a)rAa Bl—a(AZa + B2—2a)rBl—a

can be easily seen. For X = (

(XX*)H—I — X(X*X)rX* — (

770
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is obtained. Moreover, (XX*)*! and (X*X)"*! are unitarily equivalent, and their singular values are equal.
Using Lemma 1.11, seen that

zsj<Aa(A2a + BZ_ZLY)*Bl_a)

IN

S]‘((XX*)H—l)
S]((X*X) r+1)

sj((Az"‘ + BZ—Za)r+1) _
Corollary 2.16. For o = 1/2, we get
si(AV(A+BYBY?) <si(A+ By 1<j<n.
This inequality was obtained by Bhatia and Kittaneh (see,e.g.,[18]).
Theorem 2.17. Let A and B be positive semidefinite matrices. For all x,y € C" and a € [0,1]. Then

KAx, P < (A%, 2) (A2, ).

A« Al—a
0 0

A% 0
Al 0

} AQ 0 A2 Al—a AZa A
XX_(Al‘“ o)( 0 0 )‘( A A22“)’

KAx, ) < (A%*x, x)(A* >y, y)
= (A%, A%x)(AT 0y, Al-oy)
< lA*xPIIAT i
< lAxllA™ .

Proof. Let X = ( ) Then X* = ( ) Thus,

From Lemma 1.1,

In particular, fora =land A=1;
I, o1 < iyl
is obtained. This inequality is the known Cauchy-Schwarz Inequality.

Theorem 2.18. Let A € M,,(C) and a € [0,1]. Then

S(A+A) <y s ((A*A)“ + (AA*)l‘“).

Proof. Let
[ (AA)" A
M= ( A* (AA*)l—a =0,
and
3 (AA*)l—a A*
Ne(A A e
So )
[ (ATA)* + (AAY) A+ A"
M+N = ( A+ A (A" A) + (AAyi-e |20

From Lemma 1.5,
+(A+A) < (AA)" + (AA*)l‘“

S(A+A") <u s ((A"A) +(AAY)' )

is obtained.
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Corollary 2.19. From Lemma 1.2,
A+ A"l < [|(A"A)* + (AAT)|

is found.

Z
Z

*

Theorem 2.20. Let ( ) > 0 and M, N be square matrices of the same size.

=~

(5(K), s(K)) <w (A(M), A(N)).

Proof. 1f ( % Ilf[ ) > 0, then using Lemma 1.9, we get

S(K) <o 3 1AM) + AN,

By Lemma 1.10,
(s(K), s(K)) <w (A(M), A(N))

is obtained.

Corollary 2.21. Using Lemma 1.2 and since ||A & B|| = max{||M]||, |IN]|}; we get

K|l < [IM & NI|.
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