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Moduli of continuity of functions in Holder’s class and solution of Van
der Pol-Duffing equations by Legendre wavelet

Shyam Lal?, Deepak Kumar Singh®*

?Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi-221005, India

Abstract. In this paper, Legendre wavelet is considered. The convergence analysis of Legendre wavelet
series for functions in the Holder’s class is studied. Two new moduli of continuity and two estimators of
functions in Holder’s class, using Legendre wavelets, have been determined. These moduli of continuity
and estimators are novel, sharper and among the best possible in wavelet analysis. The Van der Pol-Duffing
equation can be expressed physically in three ways: single well, double well, and double hump. The Leg-
endre wavelet collocation approach is introduced to solve the Van der Pol-Duffing equations, and their
solutions are obtained by this technique as well as Runge-Kutta method (ODE45). These solutions are
compared and it is observed that the absolute errors between exact and Legendre wavelet solution are less
than the absolute errors between exact and ODE45 solution of Van Der Pol-Duffing equation. Hence, the
proposed method is more effective and accurate than ODE45 method.

1. Introduction

Wavelet theory has found applications in a variety of fields in recent decades. The approximation of
functions belonging to a particular class using wavelet methods has been discussed by many researchers,
such as Devore [7], Morlet [12], Meyer [11], and Debnath [6]. The approximation by an orthogonal family
of functions is widely used in science and engineering. The sine-cosine functions, block-pulse functions,
Legendre, Laguerre, and Chebyshev wavelet sets of functions are the most commonly used orthogonal
functions. The orthonormal wavelets provide bases for many important spaces. Aside from their traditional
applications in signal and image processing, the wavelet basis has received attention for numerical solutions
of integral and fractional order differential equations. Wavelets are new tools for solving differential
equations [10], estimating moduli of continuity [2], and function approximation. In the Holder’s class,
wavelets help in the most accurate representation of functions. Many wavelets are well-known, including
the Haar wavelet, Fibonacci wavelet, and Wilson wavelet, etc. One of the simplest wavelets types used in
wavelet analysis is the Haar wavelet. Due to its simplicity and wide range of applications, it is employed in
the solution of both integral and differential equations. There is a non-smooth character in the Haar wavelet
due to this reason, estimating the moduli of continuity and the approximation of smooth function by it is
a challenging task. By using Legendre wavelets, this flaw is almost eliminated, also moduli of continuity
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and function approximations are estimated with more accuracy. Sripathy [15] discussed the wavelet-based
approximation for solving differential equations.

Steffens [16] was the first to investigate the moduli of continuity of functions. To the best of our
knowledge, no work has been done on the modulus of continuity of a function in Holder’s class using the
Legendre wavelet. In order to conduct a more in-depth investigation in this area, this paper determines the
moduli of continuity and approximation of functions in Holder’s class.

Galerkin, collocation, and other well-known techniques can be used to solve a variety of linear and
nonlinear differential equations. The wavelet technique can solve these equations in very efficient and
appropriate ways. This encourages us to consider the Legendre wavelets for solving differential equations.
Furthermore, Gliner et al. [8] proposed Legendre collocation method for solving differential equations.

In recent decades, there has been a significant rise in research on chaos and chaotic systems, which
are non-linear in nature. This study focuses on the dynamics of non-linear oscillators, specifically the Van
der Pol and Duffing oscillators [9]. The Van der Pol oscillator also explains how a pacemaker handles the
abnormal heart rate of the human heart and how the entire cardiac system can be designed to function
as a Van der Pol oscillator. The most commonly used chaotic oscillator for detecting weak signals is
the Duffing oscillator. Even though the Duffing oscillator is widely used for weak signal detection, it is
also used to solve physical, engineering, & even biological problems. The majority of scientific issues are
intrinsically nonlinear. Except a limited number of these problems, most of them do not have exact solution.
The Analytical perturbation approach and numerical methodology are used to solve some of them. The
main purpose of this paper is to obtain the numerical solution of Van der Pol-Duffing equations [17] by
using Legendre wavelet collocation method. This equation has no exact solution and can not be efficiently
evaluated using other numerical techniques. The main characteristic of this technique is that it reduces the
problem to a system of algebraic equations.

This paper is organized as follows: Section 2 is introductory, in which the importance of moduli
of continuity, Legendre wavelet, and approximation of functions in Holder’s class, along with related
literature, are studied. Section 3 covers the investigation of the convergence analysis of the Legendre
wavelet series and certain lemmas that will be required in the subsequent sections. In section 4, the
theorem concerning the moduli of continuity of f — S,-1 /(f) has been established, and its detailed proof is
also discussed in this section. In section 5, the process of solving the problem of the Van der Pol-Duffing
equations using the Legendre collocation method has been introduced and provides several numerical
examples related to the Van der Pol-Duffing equations in various physical situations (single well, double
well & double hump) to demonstrate the accuracy of the proposed method. Finally, the main conclusions
are summarized in section 6.

2. Definitions and Preliminaries

2.1. Legendre Wavelets and its properties

Wavelets constitute a family of functions constructed from dialation and translation of a single function
W € [%(IR), called mother wavelet. Let

W, (t) = Ialzl‘l’(%), a#0  (Daubechies[5]).

If we restrict the values of dialation and translation parameter to a = a; kb= @2n —1)boag™,a90 > 1,by > 0
respectively, the following family of discrete wavelets is constructed:

Wi(t) = lagl W (aft — (21 — 1)bo)
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Now, taking ap = 2, W(t) = 2"212“1 Pm(§), and by = 1, the Legendre wavelet W(k, 1, m, t), generally denoted

by \Psfjm(t), over the interval [0, £), is defined by:

n

-1
€§t<F

2k-1
0, otherwise.

vl (#) = & (1)

o { 2f [2uelp (2t _ oy 4 1),
where n = 1,2,...,251, k is the level of resolution and can assume any fixed positive integer value, m =
0,1,2,..M represents the degree of Legendre polynomial Py(t) [1, 13]. Here M can assume any fixed

positive integer value, and ¢ is the normalized time. In above definition, the coefficient ‘/2*’2’;1 is used

for orthonormality, and the Legendre polynomials P,,(t) of degree m can be determined with the aid of
following recurrence formulae:

Po(t) = 1, Py(t) = £, Pyron (£) = (211’;1: 11)th(t) - (%)Pm_l(t), m> 1. @)

The set {P,,(t) : m = 0,1,2,3,...} in the Hilbert space 12[-1,1] is an orthogonal set. The orthogonality of
Legendre polynomials on the interval [-1, 1] implies that

' 2 2
<Pm,Pn> = f Pm(t)Pn(t)dt ) = { 2n+17 ’ (3)

) Tm+1m TN 0, m#n.

Furthermore, the set of wavelets \IJ% makes an orthonormal basis of L2[0, £), i.e.

£
( (L)
w%&ﬁm=£W&wﬁﬂwh%qu @)

where 0,,,» denotes the Kronecker delta function defined by

1, n=n;
6n,n' = .
0, otherwise.

The Legendre polynomials have some interesting properties that are highly useful in the study of con-
vergence analysis of Legendre wavelet series and in the error analysis of function approximation using
Legendre wavelet.

® If -1 <t <1 and n is any positive integer, then

IP.(H)l <1 and |Pn(t)|<{#}z.

1-12)
.o 1 d
(ii) Py(t) = —Zm — E (Pm+1(t) _ Pm—l(t)) )
n—1

1 (-1) 2 (n-1)! . )

(iii) f Pt = | T n is odd;
0 0, n is even.
Din n is even;
() PA(0) = { () /

n is odd.

o
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To simplify the factorials that appear in properties (iii) and (iv), we used Stirling’s approximation n! =
n"e™ V2nin for large value of n.

2.2. Legendre wavelet expansion and approximation of function
The function f € L?[0, ¢) is expressed in the Legendre wavelet series as

fo) = i i V() (5)

n=1 m=0
¢
where Cnm = <f/ \I](nL,)m> = f f(t)‘y;j,)m(t) (6)
0
The (281, M + 1) partial sums of series (5) is given by
21 M
Szk—lrM(t) = Z Z Cn,m\P(r:,)m(t) @)
n=1 m=0

in which C and ¥" (t) are 25-1(M + 1) vectors of the form

T _
C' = [C1,0, C1,1,+-C1,M,€C2,0,C2,1 44y C2, My +evee- , C2k71,0, ey C2k—1,M] and

(L) (L) (L) (L) (L) (L) (L) (L)
W () = [W) 0, Wy e s Yo, Wt s W gy e w

7 zk—‘l/ol b4

(L) T
\sz,1 , M]

The Legendre wavelet approximation Ey-1,,(f) of a function f € L?[0,¢) by (21, M + 1)" partial sums
Sy pm(f) of its Legendre wavelet series is given by

Epe i (f) = sﬂﬁ}g”f = S (P2, (8)

Ifll = ( fo o dt)é

If Eyii(f) — 0 as k, M — oo then Ey-1 y(f) is called the best approximation of f of order LM + 1)
(Zygmund [18]).

where,

2.3. Modulus of continuity and function of generalized Holder’s class
The Modulus of continuity of a function f € L?[0, ¢) is defined as

W(f,0) = supllf(- +h) = f()ll2

0<h<d

¢ 3
= sup (fo If(t+h) —f(t)|2dt) : )

0<h<é
It is remarkable to note that W (f, 0) is a non-decresing function of 6 and W (f,9) — 0 as 6 — 0* (Chui [3]).
A function f is said to be in generalized Holder’s class H*?[0,¢) of order a, 0 < v < 1, if f satisfies
flc+b - f(x) = O(o(HNIH"), Vx,t,x+t€[0,6) (GDas[4]) (10)
where ¢(t) is positive, monotonic increasing function of ¢ such that [t{*¢(t) — 0 ast — 0*. It should be noted

that if ¢(t) = constant, then the generalised Holder’s class H**[0, {) corresponds to the known Holder’s
class H[0, ¢).
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3. Convergence analysis of Legendre wavelet series

In this section, we show that the Legendre wavelet expansion of a function in the generalized Holder’s
class converges uniformly to the function. For this the following lemma has been deduced.

Lemma 3.1. If the Legendre wavelet expansion of a function f in the generalized Holder’s class H*¢[0, {)
converges uniformly, then this wavelet expansion converges to the function f.

Proof of lemma.
Assuming that the Legendre wavelet expansion of f eH*?[0, £) uniformly converges to a function g, i.e.

g(t) = i f S V() (11)

n=1 m=0
where ¢, = (f, Wym). Since the series (11) is uniformly convergent to g(t) on the interval [0, £], g(t) is
integrable, and the series (11) is term-by-term integrable. Additionally, since every Legendre wavelet basis

‘I’g,L,,)ﬂ(t) is intragrable, g(t)W, «(t) is also integrable, as the product of two integrable functions is integrable.
From (11) it follows that

4 4 (o) o)
W) = HW,o(£)dt = an P (8) $ P (1)t
0,00 = [ a0 fO{ZZc ()} (0

n 0

Com { wlh () ‘I/(L)(t)dt}
0

Thus (g, Wnm) = {(f, Wpm) forn=1,2,3.....
m=0,1,2,3,....

Finally, equation (11) represents the Legendre wavelet expansion of functions f and g with the same wavelet
coefficients. Therefore, g = f on [0, {).

Theorem 3.2. In the Holder’s class H*?[0, £), a function f(t) can be expanded as an infinite sum of Legendre
wavelets series, and the series converges uniformly to f(t), i.e.

f(t) = Zchm an(®

n=1 m=0

Proof of theorem 3.2 From (6)

(L) 2(:71"1) (L)
Cnm = <f' ‘yn,m> = —y f(x)‘yn,m(x)dx

2(k=1)

/2 1 E=y 2kx
mr % ’ fx)Py, ( —2n+1)dx
rz e f

2(k=1)

/2m+1 x (t+2n 1)¢ tdt 2kx B
7 ( ) m(t)zk, 7 2n+1=t

V2m +1V¢

kel
2

N

Let, C=



¢

2k

@2m+1)¢

(

1 1
‘f‘taPm(ﬂdt:\f‘t“
0 0

T o2m+1

2m+1

[
[0
[ ofo

2m + 1dt

(P~ Py )
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) I 1 Pm(t)dt]

))Pm(t)dt ]

(t+2n-1)¢
2k

2n-1)¢
2k

)Pm(t)dt - f(

A

a)Pm(t)dt] by eqn. (2.10)

(t+2n—1)¢
2k

)

1 1
f O(%) P, ()t + f O(t“)Pm(—t)dt]
0 0

@n—1)¢
2k

{t
2%

{t
2%

fo 1(—1)mO(t“)Pm(t)dtH

fo 1 O(t“)Pm(t)dtH

here C ¢ is some constant.

1
f O(t*)P, (1)t
0

Jol

+

1
f O(t*)P, (1)t
0

Vol )] [ epuion]),
fo 1 t“Pm(t)dt’:

(Puea(®) = Puca

+

(12)

1 d

1

1
f at® (P (t) — P(m—l)(t))dt]

o Jo
1

f fa_l(P(mn)(t) - P(m—l)(t))dt
0

1
f t“-l(P<m+1>(t) -
0

1
a1 @m+1)
fo t 1(Tp(m+1)(t) -

(m+1)

2m+1)
m m

Piusy(t) — tP,(t)

2m+1)
= th(t))dt

tWJ(Pmﬁqﬂt)—tpm(ﬂ)dt
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—a j; 1 t“‘l(P<m+1)(t) - th(t))dt ‘

m

1
f t“Pm(t)dt’ <
0

a 1 1
s—( f a1 P(m+1)(t)‘dt+ f 2 Pm(t)‘dt)

m\ Jo 0

1 1

a a-1 T a T

— t —(t t —dt
m(fo Vamrna-n” +f0 \/Zm(l—tZ)d)

1 a-1 1 a
:5( [— f ! dt+1/lf t—dt)
m\\2m+1) J, Vi-g 2m Jy V1i-g2
1 a-1 1 a

=3,/1(f ! dt+f ! dt)

mN2m\Jo V1-p o Vi-12

(04 T \/EF%
Lo [ €

m \ 2m

IN

(13)

From equation(12),

Jeun| < C

k+1
2%

ol
)

2
2 1 (1 1\ 6V (¢
ol <L 55 * 5 57) #(5 (14
1

2 O (1 1\ L -
|Cn,m| SLf m($+%)¢ (—),szl as n<27°. (15)

For m = 0 equation (12) becomes

e szﬂ(é)(f)(%)[' [ 1 P

- szf(%)ad)(z_i)(a -1+ 1

> ) €2a+1 L 1
enal” < G (a+1)¢(?)n<l+2a> (16

Since Yo Yopo1 o is convergent &= a>1& b> 1.

2,
Hence Y.0" 1 Yy |cn,m| is convergent as

iy YV Vv 1.1
YN feun| sLp £ qbz(?)zz n(lizm(ﬁ + %) <o asO<a<l (17)

2.
Also Y., |cn,0| is convergent as

(e8]

el 2 ) £ro+l ¢ 1
Z—;|Cn'0| SCf(oz+1)¢(?)2‘am<O°’as O<a =<1 (18)

n=1
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From equation (17) & (18), Y.;21 Ym0 |cr,,m(2 is convergent because

i i lewn = i lenol” + i i enn” < co. (19)

n=1 m=0 n=1 n=1 m=1

Let (Sp1 0, f)(t) denote the (251, M) partial sums of series (5) i.e.

2k M-1
w
Spaa)HO =YY cum®
n=1 m=0
Now to prove that {(SZHM f )(1‘)}M€]N is a cauchy sequence in L2[0, ¢).
For M > N,
2k-1 M-1 2k-1 N-1 2
2 (L) (L)
WS f) = Sz = | X, T com = 32 3 o 01 W0
=0 =1m’'=0
2k1 (N-1 1 2k1 N-1
(L) (L)
_ ( ; J V- Y 3, o V0 I
n=1 \m=0 m=N =1m'=
2k M-1
= Z Cnm\y(L) (t)”

k 2k—l M-1
(L)
)9 2ERES ¥ W
n=1 m=N n’=1 m’'=N
2k-1 M1
Z Z |CTl,l’l’l|2
n=1 m=N
. k-1 o0 2, . . . .
Since Zf,zl Y=o Icn,m) is convergent series which implies
2k-1 M1
2
IS a0 f) = Sz n /L =Y Y lewnl = 0as MN = .
n=1 m=N

This implies that {(SzmM f )}ME]N is a cauchy sequence in L2[0, ¢). Since L*[0, {) is a Banach space, the cauchy

sequence {(SZk—llM f)}Me]N converges to a function g (say). by lemma 3.1, g = f.

Theorem 3.3. If f(t) is the exact solution of the Van Der Pol-Dulffing differential equation, then its Legendre

k-1
wavelet solution Y'2_, Y"1 c, (,f,)m(t) converges to the exact solution f(f) as M — oo.

Proof Let (Sy-1,:f)(t) denote the (251, M) partial sums of series Ziz Yoo Cun Wy (1) e

k-1 p

2
Sz AO =Y Y Cu Wil

=1 m=0

[y

=

Now to prove that {(Szk—lrM f )(1‘)}M€]N is a cauchy sequence in L?[0, 1).
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For M > N,
2k-1 M- k-1 N1 2
2 (L) )
KSa-sinh) = Szondl = | X, Z Wit~ X, 3, one V1 0
n=1 m=0 =1lm’'= 2
2 N-1 M-1 2k-1 N-1
- Z[Z+ Je 0= T, Yot
n=1 =0 m=N =1m’'=0
2k-1 p-1
w®
= Z Cn,m\lj (t)”
n=1 m=N
-1 M-1 261 M-1
(L) (L)
= <Z Cn,m nm(t) Z (o \I/n m'(t)>
n=1 m=N =1 m’=N
2k-1 p-1
=YYk
n=1 m=N

. . k= oo 2, . . . .
By means of Bessel’s inequality, we found that Zi:i Ym=0 )cn,m| is convergent series, which implies

2k-1 M1

(S 2e-1, 00 ) — (Szk-l,Nf)”i = Z Z lcnml* — 0 as M, N — oco.

n=1 m=N

This means that {(SZHM f )}MdN is a Cauchy sequence in L2[0, £). Since L?[0, ¢) is a Banach space, the cauchy

sequence {(SQHM f)}ME]N converges to a function g(t) (say). To prove that g = f, let p and g be arbitrary
constants, wherep = 1,2, ..., 2k-1 " and 9=0,1,2,..

() -9t , Wyi( t)) (f(t), W, 0) = (9(t), W, ()
{9, W, ()
=Cpg— Q\ﬁm (Soe1mf) ‘I’;)q(f)>

= —hm <(52" 1Mf) \Il;”q(t)>

2k M-1
(L) (L)
= ¢y ~lim _ Z{ZO‘CM W, (1), WD)
p=1 q=

= Cpg = Cpq = 0.
(L)

< fO -9, ¥, q(t)> 0 Vp,q as p, g are arbitrary
= g(t) = f()

thus ):n -1 Z o Cum ;L/)m(t) converges to f(t) as M — oo.
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4. Modulus of continuity and Error estimation

In this paper, the following theorem has been proved.

Theorem 4.1. If a function f € H**[0, {) and its Legendre wavelet expansion be
O =) oW ®
n=1 m=0

having (25!, M + 1) partial sums

2kl

(S m(H) B =Y Z Con P (F)

n=1 m=0

Then the Moduli of continuity of f — (Szk—l/M( f )) satisfies

@ W ((f ~ Sy10f), %) = sup ||(f = Sues0f) ¢ + ) = (f = Spr0f) O

0<hszik
P(z5)
:O(z—>]
(ii) ((f Sxuif), k)_ sup ||(f Sy paf) 41 = (f = Sacupaf) Ol
0<h<

:O( o)
2ka M +1

], M=>1.

Proof of theorem 4.1
(i) By dividing the interval [0, £) into the 2¥~! number of subintervals as [(’;13[ ST
The error between f(t) and its Legendre wavelet expansion in interval [(7;_11)5, 2—5)

(L)

enlt) = FOX|sar o )6 = o0y ()

(L) (L)

= f(t)X[%,z%)(f) f W, W, o)

= FOuear o ) [ f f(x)qui‘fo(x)(x)dx] W)

27
= f(t)X[(;’;_l;[IZ;( )( )_ %(ﬁ e f( ) X] \/z

Zk 1 2k 1 2k—1 2;?7,[1
- f L ft)dx |- 7| f(x)dx
=

21

k=1 21'51
- 27 [j(.nl)l (f(t) - f(x)) dx] .

oF1

782
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2k—1 By
mmwmm7—fﬁmtﬂww
k-1
zk—l :[ R
—7—L¥(Mthﬂ)]
21 rda A EA
<% | Joow ololz ) ] e
oK1
2k-1 e £ L
- ooz 5] )z
ceof L)L o
le,, (8)] < fqb(zk—_l) = ris constant
I:li(
k=T
llenll3 = f(w lea ()Pt
k-1
s oo £\ e (ET
= Cro (F) 22D fw—w at

k-1

) ) ) 5 €2a+1
lle,ll5 < Cro (F) S(k—T)(2a+1)

The error between f(t) and its Legendre wavelet expansion in interval [0, €), is given by

@O = (S200) O = fOx, o),

o=

= f(t)X[ )(t) +f(t [ )(t) +f(t)X[ 2 3 3 ) t) +.
+ FOX[u ey + - +fmq@1w)m-{@mﬂﬁ)

o[ @Dt _ne )U U[(zk 1-1)¢ )(t) - (SZ“ 1 O(f)) (t)

""""" k=T 7 9k=1 )reeees

k-1 k-1

= 2 FOX[e ey = ) cuntno(®)
n=1 n=1
zk 1

= Y (A o )~ crotnolt)
n=1
k-1

en(DX[ee e )(®)
) 2k= 26—

=

783
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) 4
If = (Sz0(H)I, = fo IF(t) = (Sa10(H) ()Pt

¢ (2] :
- fo [Zen(t))([ = /)(t)}

n=1

- [ f[z}kj(ena)x[ -~ f)<t>)]

n=1

DY f en Ozt ) O) (e (DXt )

1< n#n’' < 2k-1

-[ [Z 02 ,zzs><f>)2] i

n=1

-f f e Oy o))

2kl

2
= e. —
E [ n[ e ,anfl)Hz

Zk 1
€2a+1 5 €2a+1 1
< ZC ¢ (2k 1)2(k 1)QRa+1) f(zb (zk 1) (k- 1)(2a+1)

1~ (520 = Cr o 55 ) e

(=) ¢
||f — (Sy«l/o(f))”z = O(QijzikT)a]

W((f ~Syiof), %) = sup 1(f = Sarof ) (E+ 1) = (f = Szer0f) Bl

0<h£2ik
<I(f = Szr0f) b+ 11 (f = Sz1,0f) I

=201 (f = Sy1.0f) Il

Pz)
= 20 (;{T)a]

:O(sb(z%)é’“]

2(k-1)a

((f Sp-10f ) ) = ((P;f; 112511]‘



(i1) Consider

f)

f(#) = Sorr pa(f)()

(f(B) = Sger m(N(B)?

If = Spr (DI

If = Soer m(HII3

IN

IN
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n=1 M+1<

1< ngn/< 2k-1

(L)

nm mn(t)

k-1

(L)
C"m nm(t) chnm nm(t

=1 m=0

Z ]ch,m‘l’:,)m(t) 2Z:chm w0,
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k—1
2 (6N L 0\S 1 © 1
<r,—(L 2(—) +f —d
f2<k+1>(zk) P\ ;[(M+1)2 2
k-1
AT 1 —1\°
< - = - j—
<Ly 2(k+1)(2k) ¢ (2k);[(M+l) +(m )M+1]
B 2 (6N (L 1 1 1
=L 2<k+1>(§) ¢ (?) [(1\4+1)+1\/1+1]><2
AN
IF =SsmNlk < s (5) ol7)
f 2 ,Mf f 2k ¢2k M1

ol%) e
2ka M +1

w(( F=Spim f)%) = sup 1(F = Sorpaf ) (E+ 1) = (f = Syerpf) Ol

0<h£2ik
<I(f = Szr0f) b+ 11 (£ = Sz f) I
= 2I(f = Syrauf) Il
s)e

=0| ——|.
2ka /M +1

Thus, this theorem is completely established.
The following corollaries are derived from theorem 4.1.

Corollary 4.2. If a function f € H™[0,¢), then the Legendre wavelet approximation Ex-1,,(f) of f by
Sp-1 p(f) is given by

. . S S P(5)
(@) (Ezkfl,of) =min||f = (Sp1pf)ll2 = min||f - Z{ oW, ol = O(zz(lT)a]
} . U S O(5) £
(Zl) (Ezk—l,Mf) = min ||f — (Szk—lfo)“Z = min ”f — ; mZ:O Cn,m\yn,m(t)HZ =0 [W] , M>1

The proof of corollary 4.2 can be developed in parallel to the proof of theorem 4.1, independently.

Remark
a,p . . . q L e
If the function f € H "[0,{), then the moduli of continuity W(( f=Sp1py f), %) = O(Z(f:)zf/%) and the

Ly pa
2:f;>2i/;m) — 0 as k — 0o, M— oo. Hence W((f - Szk’lfo)’ 7) and

Eqi1 py(f) are best possible modulus of continuity and approximation of functions respectively in wavelet
analysis. It is also observed that

error of approximation (EZHM f) = O(

w((f ~ Syepif), %) <2Es1u(f).

Hence the modulus of continuity is sharper than the approximation of function in H*’[0, ¢) by Legendre
wavelet method.
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5. Algorithm of the Legendre collocation method for solving Van der Pol-Duffing oscillators

The Van der Pol-Duffing oscillator is defined by the following non-linear equation [14]:
d?y

d
—5 —u(l- yZ)d—f +ay + By’ = Feos@t), y(0)=1, y'(0) =0 20)

Here, y represent the displacement from the equilibrium position, while F and w are the amplitude and
frequency of the external excitation, respectively. u > 0 stands for the damping parameter of the system,
B represents the nonlinear stiffness parameter, a is a system parameter, and ¢ denotes time. The Van der
Pol-Dulffing equation can be represented in three basic physical situations: single well (a > 0, > 0), double
well (@ <0, > 0), and double hump (o > 0, < 0).

According to theorem 3.2, the Legendre wavelet solution is given by:

k-1

y(t) = Zchm wn(®) (21)

n=1 m=0

This solution converges to the exact solution of equation (20). The Legendre collocation method is used to
determine the unknown coefficients ¢, ,,. A total of 28-1(M + 1) conditions exists for the determination of
these coefficients:

C1,0, C1,15 +++s CL,Ms €2,05 €2,1++44s CO My +vveee , C2k71/0, C2k71,1, ooy Czk—lfM.

Equation (20) is subject to two initial conditions, which yield the following two conditions:

2k 1 2k 1
y(0) =Y’ ch W@ =1, Y(0) = Xchm ) (0) = (22)
n=1 m=0 n=1 m=0

It is important to note that an additional 2¥1(M + 1) — 2 conditions are needed to determine all the unknown
coefficients. These extra conditions can be obtained using equations (20) and (21). Put the value of y(t) from
equation (21) into equation (20), we obtain:

k-1 25
ZZC W) - [ZZcm nm(t)

k-1
[chnm nm(t

n=1 m=0 n=1 m=0 n=1 m=0
2k1 2kl
+a[22cm ) +ﬁ(22cm nma)] = Feos(a) (23)
n=1 m=0 n=1 m=0

By evaluating the above equation at discreate points, also known as collocation points:

j—05

L " =342 M+1
2T M+1) M+1)

tj=

2-1(M + 1) — 2 equations are obtained. By equations (22) and (23), we have systems of 2 1(M+1) equations
that can be solved for ¢, .
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5.1. Numerical examples

Several numerical examples are presented to demonstrate the effectiveness and applicability of the Leg-
endre collocation method in solving the Van der Pol-Duffing equations.

Example 1. If ¢ = = u = 0 and F = w = 1, then equation (20) becomes
y' +y=cost), y0)=1, y(0)=0 24

having the exact solution y(t) = cos(t) + %t sin(#).

1 . .
[y(t1) — y(t2)| = | cos(t1) — cos(t2)| + §|t1 sin(t;) — t2 sin(ty)|
s (t1+t2) . (fz—tl
= 2sin | ——— |sin (=

t, —t 1
2 —tl, Sltsin(t) = 2 sin(to)

1
)| + §|t1 sin(t1) — to sin(ty)|

<2
- 2

Using the Lagrange mean value theorem for the function ¢ sin(¢) on [0, 1] :
|ty sin(t1) — t2 sin(ty)| < 2|ty — to|, t1,t2 €[0,1]

ly(t1) — y(t)| < |t2 = t1l + [t — £
= 2|t — to]

Hence, y € H'[0,1). According to lemma 3.1, y(t) can be expressed as

21 M

y(t) = Z Z Cn,mq"n,m(t) (25)

n=1 m=0

Applying the Legendre collocation method for k = 1 and M = 20, the corresponding values of ¢, , are given
by

c10 = 0.9920553242776083760279995998,  c11 = —0.009118325084029652106168424789
c12 = —0.004963534050058385915182707, 13 = —0.001405349501863297441520287345
—0.000146682519146904362604734,  ¢15 = 0.0000092225730394209363879330674
c16 = 0.6730607373968889330486757 X 107, ¢17 = —0.209586793646632357510679 x 1077
c18 = —0.116410596836768205488319 x 1078, 19 = 0.2448852461278252013421688 x 1071°
c110 = 0.1095935967721507594052446 x 1071, ¢; 11 = —0.1743273616310277444326 x 1073

C14

c1,12 = —0.703053491884161084353806 x 107'°, ¢; 13 = 0.41331496391269957296085 x 10~
c114 = —0.232727695570334355686669 x 10716, ¢;15 = 0.13571277056502477458072 x 1071
c116 = —0.903633004248579591954796 x 107, ¢117 = 0.38929629524463675645493 x 10~17

c118 = —0.242763969004858296177242 x 107, ¢; 19 = 0.57269814387729177062575 x 10~
c1,20 = —0.00000000000000000034590135751157302870493440840707



By substituting the Legendre wavelet coefficients c,,, from above into equation (25), the explicit form
of the approximate solution to equation (24) is obtained. A comparison between the exact solution, the
Legendre wavelet solution based on the Legendre collocation method, and the solution obtained by ODE45
method for different values of ¢ is shown in table 1.1. It has been demonstrated that the solution obtained
by the Legendre wavelet method is superior to the ODE45 solution and is nearly identical to the exact
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solution. This demonstrates the efficiency of this technique.

Variable (t) Exact solution Legendre solution M=20 | Solution by ODE 45
0 1 1 1
0.1 0.999995836110367 0.999995836110335 0.999995836118480
0.2 0.999933510920748 0.999933510920679 0.999933510938151
0.3 0.999664520124807 0.999664520124702 0.999664520146955
0.4 0.998944662464615 0.998944662464475 0.998944662481346
0.5 0.997438946541424 0.997438946541250 0.997438946537228
0.6 0.994728356928189 0.994728356927983 0.994728356882647
0.7 0.990318377817680 0.990318377817445 0.990318377706047
0.8 0.983649145706974 0.983649145706712 0.983649145500912
0.9 0.974107077603032 0.974107077602744 0.974107077271467
1 0.961037798272088 0.961037798271778 0.961037797782178

Tablel.1 : Comparison between exact and Legendre solutions for different values of ¢.

Variable (t)

Absolute error =
|[Exact solution-Legendre solution|

Absolute error =
|[Exact solution-ODEA45 solution|

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0

0

0.032085445411667 x10~'2
0.068833827526760 x10~'2
0.104805053524615 x10712
0.139888101102770 x10~'2
0.173638881051374 x10~'2
0.205502281858116 x107'2
0.235367281220533 x10~'2
0.262789789928775 x10~'2
0.287880830285303 x10~'2
0.309863246172881 x10~'2

0.008112954752448 x10~°
0.017402967955604x10~7
0.022147950140550x10~°
0.016730949958799x10~°
0.004195976899268x10~°
0.045541903581636x10~7
0.111632925126059%x10~°
0.206062056307132 x10~7
0.331564997679834 x10~°
0.489910001455485 x10~?

Tablel.2 : Absolute error of the exact solution with Legendre solution and ODE45 solution.
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Fig.1. The graphs of exact, Legendre and ODE45 solutions for different values of ¢.

Example 2. (Single well) If « = 0.5,  =0.5, u = 0.1, F = 0.5 and w = 0.79, then equation (20) becomes

d?y 5 dy 3
5 ~ 010 =) +05y+05)° = 0.5c08(0.79%), y(0) =1, y'(0) =0 (26)

Using Legendre collocation method for k = 1 and M = 3, the values of ¢, , are given by

c1,0 = 0.91791262880180932885030014658, 1,1 = —0.068950283076048889432284333513
c12 = —0.0155932558525764034290374414,  c1,3 = 0.00093373938757727503841134790453

Appling Legendre collocation method for k = 1 and M = 5, the values of ¢, ,, are given by

c1,0 = 0.9216789461902895935869304213269,  c1,; = —0.0665116043290528470185665688275
c12 = —0.015662501380973395605825515400,  ¢1,3 = 0.000779476509441346728775392985859
c1,4 = 0.00005498917810706699288535681768,  c15 = —0.0000118575568165822652818695886

By substituting the Legendre wavelet coefficients ¢, ,, from above into equation (25), the explicit form of
the approximate solution to equation (26) is obtained.
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Variable (t) | Legendre solution M=3 | Solution by ODE 45 | Legendre solution M=5
0 1 1 1
0.1 0.997216221376900 0.997502849384376 0.997510682936606
0.2 0.989062520884312 0.990045163226671 0.990068054994725
0.3 0.975835351587300 0.977725786077155 0.977764780595462
0.4 0.957831166550928 0.960702463426295 0.960756916220771
0.5 0.935346418840263 0.939183087567294 0.939252017908430
0.6 0.908677561520369 0.913415056073070 0.913497248747009
0.7 0.878121047656311 0.883673496319420 0.883767486370842
0.8 0.843973330313154 0.850249110913629 0.850353430455005
0.9 0.806530862555964 0.813436335485702 0.813549710210282
1 0.766090097449804 0.773522390112571 0.773642991878140

Table2 : Comparison between ODE45 and Legendre solutions for different values of M.

0.95 [~

y(t)

0.85

08

075 *

= = @= = - oded5
M=5

—_— =3

| |

0.2 0.3 0.4

0.5 0.6
t

0.7

Fig.2. The graphs of ODE45 and Legendre solutions for different values of M.
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Example 3. (Double hump) Now, solve equation (20) for« = 0.5, § = -0.5, u = 0.1, F = 0.5, and w = 0.79.
Using Legendre collocation method for k = 1 and M = 3, the values of ¢, are given by

c1,0 = 1.0781646925258586553056300349,
c1,2 = 0.0193845949587195074178153953,

c1,1 = 0.0691693302147339688136910838868
c1,3 = 0.0006444937985274081644411033272
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Appling Legendre collocation method for k = 1 and M = 5, the values of ¢, ,, are given by

c1,0 = 1.08453291252079453742796193,
c12 = 0.01993416216743432386684610,
c1,4 = 0.00009263184185320123695211,

c1,1 = 0.073940458102977563331538928293
c1,3 = 0.000475061162451110117584615787
c1,5 = 0.000017917572330980356795486159

Variable (t) | Legendre solution M=3 | Solution by ODE 45 | Legendre solution M=5
0 1 1 1
0.1 1.002123268635160 1.002500774247598 1.002440554227072
0.2 1.008629488165635 1.010012363126603 1.009822871205626
0.3 1.019723279028916 1.022563047075262 1.022221731630769
0.4 1.035609261662494 1.040202595777685 1.039704691501554
0.5 1.056492056503860 1.063007463804532 1.062350052502435
0.6 1.082576283990506 1.091088970289386 1.090264832384714
0.7 1.114066564559923 1.124604856306245 1.123602735347982
0.8 1.151167518649602 1.163774818150023 1.162582122421577
0.9 1.194083766697034 1.208900893902217 1.207503981846024
1 1.243019929139710 1.260393969535203 1.258769899454484

Table3 : Comparison between ODE45 and Legendre solutions for different values of M.

1.3 T T T T T T T T T
1.25
1.2
= = = = ode45
= —®— M=5
= 1.15 -
—3—— M=3
1.1 ]
1.05 -
19 . .
(o] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig.3. The graphs of ode45 and Legendre solution’s for different values of M.

792

Example 4.(Double well) Now solve equation (20) for « = -0.5,  =0.5, ¢ = 0.1, F = 0.5, and w = 0.79.
Using Legendre collocation method for k = 1 and M = 3, the values of ¢, , are given by

c1,0 = 1.090676258868589681478179562,
c12 = 0.013918318174360617848376472,

c1,1 = 0.073603437859569070060942960382
c1,3 = —0.00214923055005250696105663178
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Appling Legendre collocation method for k = 1 and M = 5, the values of ¢, ,, are given by

c1,0 = 1.075972378104262192799093322605, c1,1 = 0.0637429500685030956190247614466
c12 = 0.013996785103445973489713273379, c1,3 = —0.001403879692512236415325462350
c14 = —0.0001935521259210314947238639, c1,5 = —0.000000671442147438563522044492

Variable (t) | Legendre solution M=3 | Solution by ODE 45 | Legendre solution M=5
0 1 1 1
0.1 1.003459510606984 1.002496602038700 1.002476075109690
0.2 1.013383136064287 1.009945356556822 1.009880085668257
0.3 1.029088516826441 1.022221704543159 1.022104466066525
0.4 1.049893293347976 1.039114504665607 1.038946120687192
0.5 1.075115106083421 1.060322231572470 1.060105750483720
0.6 1.104071595487307 1.085448985298767 1.085187179559220
0.7 1.136080402014165 1.114001011140708 1.113696681745338
0.8 1.170459166118523 1.145384622684424 1.145042307181143
0.9 1.206525528254913 1.178906589155956 1.178533208892013
1 1.243597128877864 1.213778144111941 1.213378969368522

Table4 : Comparison between ODE45 and Legendre solutions for different values of M.

25 T T T T T T T T
2
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——®— M=5
—l— M=
15 - 3
A
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1
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig.4. The graphs of ODE45 and Legendre solutions for different values of M.
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Fig.5. The graphs of Legendre solutions for f = F = 0.5, y = 0.1, » = 0.79, M = 5.

6. Conclusions

6.1. Conclusions

(i) In theorem 4.1, the moduli of continuity have been computed and given by:

w((f ~ Syeiof), 2—{’;) =0
W((F - Sarmf). 2—‘;) =0
(ii) By corollary 1,

Ex19(f) = O

Ey1 p(f) = O

s5) ¢
%)ao as k— oo,

Ly pa
M — 0 as k> oo,M — o0.
2k A/M + 1

i) 0
ﬁb(zz(lk{—l))a)_)o as k — oo,

Ly pa
M -0 as k— oo,M — oo.
2ka A[M +1

794

Thus, W ((f - Squ/of) , 2—‘;), 144 ((f - Squ,Mf) , 2%), Eqi10(f), and Epi-1 y(f) are the best possible estimators in

wavelet analysis.
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Fig.7. The graphs of Legendre solution’s fora = F = 0.5, u = 0.1, v = 0.79, M = 5.
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(iii) From theorem 4.1 and corollary 4.2, it is observed that:

w(( f=Sxcrof), %) < 2Eys4(f),
w(( = Syin f)%) < 2By ().

Hence, the moduli of continuity W (( f =Sy f) , 2—[k) and W (( f=So1pm f) , 2—‘;) are superior and more pre-
cise than the approximations Ey-1 o(f) and Epi1 5(f), respectively.

(iv) Equation (20) is solved using the Legendre collocation technique for specific values of the @ and f
parameters. Tables 1 to 4 display some values of y for the three primary physical scenarios. Figures 1 to 7
compare and plot the results of the numerical solution based on the ODE45 technique with those obtained
using the Legendre collocation method. The comparison with numerical data demonstrates that the so-
lution achieved through the Legendre collocation method exhibits a very high level of accuracy, which is
deemed acceptable. Moreover, the accuracy of the solution increases as the degree of the polynomial (M)
increases. After demonstrating the efficiency of the Legendre collocation method as a powerful analytical
technique, the effects of the constant parameter « & f on the response is shown in figures 1 to 7. Using the
derived Legendre wavelet solutions, diagrams for the single well case (o = 0.5, = 0.5), double well case
(o« = =05, p = 0.5), and double hump case (¢ = 0.5, B = —0.5) of the Van der Pol oscillator are presented
in figures 2,4, and 3, respectively. A key advantage of the proposed Legendre collocation technique is its
ability to provide solutions for all possible values of the constant parameters « and f.
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