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Uninorms with non-trivial unit element on the bounded lattices

Funda Karacal?, Kiibra Karacair®*
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Abstract. In this paper, we focus on uninorms with non-trivial unit on bounded lattices. Based on the
existence a t-norm T acting on [0, e] as well as a t-conorm S acting on [e, 1], we present some construction
methods for uninorms on a bounded lattice, where some additional conditions on the bounded lattice and
the neutral element ¢ are required. The role of these additional conditions is emphasized. Finally, we
present some results and some illustrative examples derived from these methods.

1. Introduction

There has recently been a rapidly growing interest in uninorms. They play an important role in theory
and practice, some of their uses are decision-making process, fuzzy control systems, fuzzy inference systems,
fuzzy logic and fuzzy systems modeling ([5, 17, 19-21]). Uninorms on unit interval, which is a bounded
lattice, has been introduced by Yager and Rybalov in ([22]). Some structures and properties of uninorms on
unit interval have been studied in ([8]). The notation of uninorms has been expanded on bounded lattices
in the work of Karagal and Mesiar ([14]). They have also presented methods for constructing uninorms as
well as some properties of uninorms on bounded lattices. In some other works, researchers have focused
on various methods to generate aggregation functions such as t-norm, uninorm, uni-nullnorm on bounded
lattices see ([1, 2, 6,9-13, 15]) .

Uninorms on bounded lattices are functions that satisfies commutative, associative, increasing with
respect to the both variables and has a neutral element e. In this study, we concentrate on the construction
methods of uninorm on bounded lattices. It is clear that Uf(e, e) = e if U is a uninorm on the bounded lattice
L with the neutral element e. Thus, we interested in the existence of uninorms satisfying U(x, y) = e for
some (x, y) € (L\{e})?>. More precisely, in this paper, we introduce some construction methods which satisfy
U(x, y) = e for some (x, y) € I, X .. The proposed methods are significant because they address a gap in the
literature: uninorms with non-unit elements have not yet been studied.

The structure of the article is arranged as follows. In Section 2, we list some definitions, theorems
and notations concerning lattices and aggregation functions which will be use in the paper. Section 3
offers some construction methods to produce on bounded lattices, and gives some explanations derived

from these methods. Also, in this section additional examples are provided. Conclusions are discussed in
Section 4.
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2. Preliminaries

A set L is called a partially ordered set denoted by (L, <) if it is equipped with a binary relation <
satisfying reflexivity (a < a for all 2 € L), antisymmetry (@ = b whenevera < band b < a fora,b € L) and
transitivity (2 < c whenevera < band b < cfora,b,c € L). a € L (b € L) is called the smallest element (the
greatest element), denoted by 0 (1), ifa < x (x < b) forall x € L.

Let ACL aelL(bel)iscalled alower bound of A (a upper bound of A) if a < x (x < b) for x € A.

The set of the lower bounds of A (the set of the upper bounds of A ) is represented by A (A). 1 A (07) is

called infumum (supremum) if A (A) has the smallest element 1 A (03). Specifically, when A = {a, b}, the
supremum (infumum) of A is denoted by a vV b (a A b).

L is called a lattice if there existsa Vband a A b for alla,b € L. Also, it is called bounded lattice, denoted
by (L, £, 0, 1) if the smallest element 0 € L and the greatest element1 1 € L.

Let (L, <,0,1) be a bounded lattice and a,b € L with a < b. Sub-intervals of L are defined as:

[a,b]={xeLlL|la<x<b},(@bl={xella<x<b},

[a,b)={xeL|la<x<b},(ab)={xel|la<x<b}.

The elements x and y are called comparable if x < y or y < x, denoted by x }f y. Otherwise, x and y
are called incomparable, denoted by x || y. I, denotes the set of incomparable elements with a € L, that is
I, = {x € L | x|| a}. Readers can refer to [3] for more information.

We denote the cardinality of a set A by |A|.

2.1. Some definitions and theorems concerning uninorms on bounded lattices L

This section presents essential concepts of triangular norms, triangular conorms and uninorms on
bounded lattices and some results related to alternating associativity that will be used through the paper.

Definition 2.1. ([11]) Let S be a nonempty set, A, B, C be subsets of S and U be a binary operation on S. H is called
alternating associative on (A, B, C) if for any [X, Y, Z] of (A, B, C) it satisfies

H(H(x,y),z) = H(x,H(y,z)) forallxe X, ye Y,z € Z.

Theorem 2.2. ([11]). Let S be a nonempty set and A, B, C be subsets of S and H be a commutative binary operation
onS.

(i) IfH(H(x,y),z) = H(x, H(y,z)) = HH(x,z),y) forall x € A, y € Band z € C, then H is alternating associative
on (A,B,QC).

(ii) If HH(x, y),z) = H(x, H(y,z)) for all x, y € A, z € B, then H is alternating associative on (A, A, B).
(iii) If H(H(x, y),z) = H(x, H(y,z)) for all x € A, y,z € B, then H is alternating associative on (A, B, B).

Theorem 2.3. ([11]) Let A1, A, -+ , A, be nonempty,

i=1

and H be commutative binary operation on S. Then H associative on S if the following statements hold:
(i) H is alternating associative on (A;, Aj, Ax) for every combination {i, j,k} of size 3 chosen {1,2,--- , n}.
(ii) H is alternating associative on (A;, A;, A) for every combination {i, j} of size 2 chosen {1,2,--- ,n}.
(iii) H is alternating associative on (A;, Aj,A]-)for every combination {i, j} of size 2 chosen {1,2,--- ,n}.
(iv) H is alternating associative on (A;, Ai, A;) for everyi € {1,2,--- ,n}.

Remark 2.4. It can be easily seen that if (iii) holds, then (iv) also holds in Theorem 2.3.
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Definition 2.5. ([16]) Let (L, <,0, 1) be a bounded lattice. A triangular (co)norm T (briefly t-(co)norm) is a binary
operation on L which is commutative, associative, monotone and has neutral element 1 (0).

We will denote by 7“ and S, the set of all t-norms on sublattice [0, 4] and the set of all t-conorms on
sublattice [a, 1] for a € L, respectively.

Example 2.6. [16] Let (L, <,0,1) be a bounded lattice. Two basic t-norms Ty and T, on a bounded lattice L are
respectively given by

y ifx=1,
Tw(x,y) =3x ify=1,
0 otherwise,

and

Ta(x,y) =xAy.

Two basic t-conorms Sp and Sy on a bounded lattice L are respectively given as follows:

y ifx=0,
Sp(x,y) =3x ify=0,
1 otherwise,

and

Svix,y)=xVy.

Let T1 (51) and T; (S2) be two t-norms (t-conorms) on L. T; (S;) is called smaller than T (S,) if for any
elements x, y € L, T1(x, y) < To(x, y) (S1(x, y) < Sa(x, y)). The smallest and greatest t-norms (t-conorms) on a
bounded lattice L are given respectively by Tw (Sv) and T'x (Sp).

Definition 2.7. ([13, 14]) Let (L, <,0, 1) be a bounded lattice. An operation U : 12 — L is called a uninorm on L
(shortly a uninorm, if L is fixed) if it is commutative, associative, increasing with respect to the both variables and has
a neutral element e € L.

Proposition 2.8. ([14]) Let (L, <,0,1) be a bounded lattice, e € L\{0, 1} and U be a uninorm on L with the neutral
element e. Then the following results hold:

i) Te = Uljoep = [0,€]*> — [0, €] is a t-norm on [0, e]*.
ii) Se = Ul = [e, 11> - [e, 1] is a t-conorm on [e, 1]*.

Proposition 2.9. ([14]) Let (L, <,0,1) be a bounded lattice, e € L\{0, 1} and U be a uninorm on L with the neutral
element e. Then the following properties hold:

i) x ANy <U(x,y) <xVyfor(x,y) €[0,e] x[e,1] U [e, 1] X [0, e].
ii) U(x,y) < x for (x,y) € Lx[0,e].
iii) U(x,y) <y for (x,y) € [0,e] X L.
iv) U(x,y) <x Ayfor(x,y) €[0,e] x[0,e].
v) x < U(x,y) for (x,y) € Lx[e, 1].
vi) y < U(x, y) for (x,y) € [e,1] X L.
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vii) x V y < U(x, y) for (x,y) € [e, 1] X [e, 1].

Definition 2.10. ([4]) Let (L, <,0,1) be a bounded lattice. An operation U : L2 — L is called locally internal if it
satisfies U(x,y) € {x,x Ay, x V y, y}.

Proposition 2.11. ([4]) Let (L, <,0,1) be a bounded lattice, e € L\{0, 1} and U be a uninorm on L with the neutral
element e. If U is locally internal, then U is an idempotent uninorm.

3. Eight uninorm construction methods on bounded lattices

Since our aim is to investigate the existence and construction methods of uninorms with the neutral
element e on the bounded lattices, which satisfy U(x, y) = e for some x, y € L\ {e} in addition to the trivial case
U(e,e) = e. Before doing so, we introduce the notation of unit element that will serve for the construction
and analysis of such uninorms.

Definition 3.1. Let (L, <,0, 1) be a bounded lattice, x € L, e € L\{0,1} and U : L> — L be a uninorm with the neutral
element e. x is called a unit element of L if there exist an element y of L such that U(x,y) = e. From Ul(e, e) = e for
the uninorm U, e is a trivial unit element. If x € L\ {e} is a unit element, then it is called a non-trivial unit element.
In addition, if U has non-trivial unit elements, it is called a uninorm with non-trivial unit element on L.

In the following proposition, we find that for which cardinality of I, the condition U(x, y) = e holds for
all (x,y) € I, X L.

Proposition 3.2. Lef (L, <,0,1) be a bounded lattice, e € L\{0,1} and U : L2 — L be a uninorm with the neutral
element e. If U(x, y) = e for all (x,y) € (I,)?, then | I, |< 1.

Proof. Let us suppose that I, # @ and x, y € I,. We have that U(x, U(y, y)) = U(x,e) = x and U(U(x, y), y) =
U(e, y) = y. Then, the associativity of U implies that x = y. Consequently, | [, [<1. O

Proposition 3.3. Let (L, <,0,1) be a bounded lattice, e € L\{0,1} and U : L> — L be a uninorm with the neutral
element e such that U(x,x) = eforallx € L. Ifa # bfora,b €1, thena || b.

Proof. Let a,b € I, with a # b. Suppose that a < b. It is obtained that b = U(e,b) = U(U(a,a),b) =
U(a, U(a, b)) < U(b, U(a, b)) = U(U(b,b),a) = U(e,a) = a by the properties of U, which contradicts a < b.
Similarly, it can be shown that b « a. Hence, it follows thata || b. O

Proposition 3.4. Lef (L, <,0,1) be a bounded lattice and e € L\{0,1}. There is no uninorm U : L2 — L with the
neutral element e such that U(x, y) = e for all (x,y) € [0,e) X (e, 1].

Proof. Assume that U : L?> — L is a uninorm with the neutral element e satisfying U(x,y) = e for all
(x,y) €10,e) x (e, 1]. From y € (e, 1], it follows thate < y = U(e, y) < U(y, y). Hence U(y, y) € (¢, 1]. We have
that U(x, U(y,y)) = eand U(U(x, y),y) = Ule,y) = y for (x,y) € [0,e) X (¢,1]. It is obtained that y = e from
the associativity of U, which is a contradiction. [J

Proposition 3.5. Lef (L, <,0,1) be a bounded lattice, e € L\{0, 1} and I, = {a, b, c} such that a || b || c. Then, there is
no uninorm with the neutral element e satisfying the conditions U(a,a) = U(b,c) = e, U(b,b) = cand U(c,c) = b.

Proof. Assume that there exists a uninorm thatsatisfies the conditions above. If U(g, b) < e, then U(a, U(a, b)) <
U(a,e) = a. Also, we have U(a, U(a, b)) = U(U(a,a),b) = b by the associativity of U. Consequently, it is ob-
tained that b < a, which contradicts a || b. It follows U(a,b) £ e. Similarly, it is seen that U(a, b) # e.
Finally, let us suppose that U(a,b) € L. If U(a,b) = a, then U(a, U(a,b)) = U(a,a) = e. We also know
U(U(a,a),b) = U(e, b) = b. Thus, the associativity of U implies e = b, which contradicts b € I,. Similarly, the
contradiction is obtained when U(a, b) € {b, c}. Consequently there doesn’t exist a uninorm that satisfies the
conditions above. [J
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Definition 3.6. Let (L, <,0,1) be a bounded lattice, e € L\{0,1} and I, = {a, b, c} such thata || b || c. Denote the class
of all uninorms U on L with the neutral element e satisfying the conditions U(a,a) = U(b,b) = U(c, c) = e by U, .

The following proposition characterizes some properties of U, where U € U°, .
abc

Proposition 3.7. Let (L, <,0,1) be a bounded lattice, e € L\{0,1} and I, = {a,b,c} such thata || b || c. If U € U, ,
then the following statements holds:

i) U(a,b) =c,

it) U(b,c) = a,

iii) U(a,c) = b.

Proof. We only prove that statement (i) holds. First, we show that U(a,b) € I.. Suppose that U(a,b) < e
or U(a,b) > e. Then, from the monotonicity and associativity of U it follows that b < a or 2 < b, which
is a contradiction. Hence, U(a,b) € I, that is, U(a,b) = a or U(a,b) = b or U(a,b) = c. We have that
b = U(b,e) = U, U(a,a)) = U(a, U(a,b)) = U(a,a) = e by the associativity of U when U(a, b) = a, which
is contradiction. Hence, it is obtained that U(a,b) # a. In a similar way, we can observe that U(a, b) # b.
Consequently, it must hold that U(a,b) =c. O

Theorem 3.8. Let (L, <,0,1) be a bounded lattice, e € L\{0,1}, T € T7¢,S € S, and I, = {a,b,c} such thata || b || c.
Define the binary operation U2 : L* — L given, for all x,y € L, as

T(xv,y) (x,y)€[0,e)?
e (x,y) € {(a,a),(b,b),(c),
. cpneden

TS _ a xly € (,C), c, ’
oW =30 @y el@o,ca),
y (x,y) €L x([0,e) U (e, 1]) U (e, 1] X [0,e) U {e} X L,
x (x, ) €([0,e)U (e, 1]) x I, U[0,e) X (e,1] UL X {e},
S,y) (xy) € (e 1]

Then, U'? is a uninorm if and only if x < y for all x € [0,€), y € I, and x > y for all x € (¢,1], y € L.

Proof. Necessity. Letx € [0,¢), y € I, . By the monotonicity of U'?, wehave thatx = U2 (x, y) < U (e, y) = .
By x € (¢, 1], y € I, it is trivial that x # y. Similarly, it can be seen that x > y for all x € (¢, 1], y € L.
Sufficiency. It is clear that U’} is commutative and e is a neutral element of U’ . Thus, we demonstrate

only the monotonicity and the associativity of U’?.

- Monotonicity: We prove that if y < z for y,z € L, then U 2 (x,y) < U'°(x,2) forall x € L. If x = e or
(v,2) = (e,e) or (y,2) € [0,e)* U (¢,11* or (y,2) € I, X I, with y = z, then the proof is immediate. Thus, let us
show that it is valid for all remaining cases.

1. Suppose that (x, y) € [0,€)? and z € [¢, 1] U L.
UTS

abc(x’ y) = T(X, y) <x= U;;JSC(JC,Z).
2. Suppose that (x, y) € {(a,4), (b,b), (c,c)} and z € (¢, 1].

UTS

ny)=e<z= U;}SC(x,z).

3. Suppose that (x,y) € {(a,b),(b,a)} or (x,y) € {(bc),(c,b)} or (x,y) € {(a¢),(ca)}, and z € (¢, 1]. Take
(x,y) € {(a, ), (b,a)} without losing generality.

UaTbi (x,y)=c<z= UZ;; (x, 2).

4. Suppose that (x,y) € {a,b,c} X [0,e). Take x = a without losing generality.
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41. If z = ¢, then
UaTbsc(x, Y=y<a= Ugbsc(x, z).
42. Ifz € (e, 1], then
llaTbi(x, Y=y<z= Uzbi(x, z).
43. If z = a, then
llﬂTbSC(x, y=y<e= U;i(x,z).
44. If z = b, then
UgTbSC(x, y=y<c= LIaTbSC(x, z).
4.5. If z = ¢, then
UL (x,y) =y <b=UL(x,2).
5. Suppose that (x, y) € [0,e) X (I, U {e}) and z € (e, 1].
UaThsc(x, Y)=x= LIaThSC(x, z).
6. Suppose that (x, y) € (e, 1] X (I, U {e}) and z € (e, 1].

uTS

b y) =x < S(x,z) = LIaTbSC(x, ).
7. Suppose that (x,y) € (¢, 1] X [0, ¢).
7.1. Ifz € (e, 1], then

uTS

abc

vy =y<x<S(kxz) = LIZbSC(x,z).
7.2. If z € I, U {e}, then
UgTbSC(x, Y=y<x= Ugbsc(x,z).
8. Suppose that (x,y) € I, X {¢} and z € (¢, 1].

UaTbSC(x, yY=x<z= UaTbSc(x, z).

466

. Associativity: We prove that US> (U3 (x, y),z) = UL (x, UL (y,2)) for all x,y,z € L. If e € {x,y,z}, the
proof is immediate. By Theorems 2.2 and 2.3 considering L\{e} = {a} U {b} U {c} U [0, e) U (e, 1] we show the
associativity of UT. If x=y=z=aorx=y=z=borx=y=z=corx,y,z€[0,e)* orx,y,z € (¢, 1] then

the proof is clear. Thus, we only check the following cases:

1. Letx=a,y=bandz=c.

Ui (Une (%, y),2) = Uy (Ul (a,b), ¢) = Ui (c,c) = e,
Ul (x, UlP (y,2)) = U (a, U (b, ¢) = ULy (a,a) = e,
UL (UL (x,2),y) = UL (U (a,¢),b) = ULS (b, b) =e.
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. Letx=a,y=bory=c,andz €[0,e) U (¢ 1]. Take y = b without losing generality.

Ui (UL (x, ), 2) = Ul (Ul (a,b), 2) = UR (e, 2) = 2,
UTS (xr, UL (y,2)) = UL (0, UTS (b, 2)) = Ul (a,2) = 2,
U (UTS (x,2), y) = UTS(UTS(a,2),b) = UM (2, b) = 2.

. Letx=b,y=c,andz€[0,e) U (e, 1].

U (UTS (x, ), 2) = US(UIE (b, 0),2) = U'S(a,2) = 2,
Ul (e, Ul (y,2)) = Ul (b, Ul (¢, 2)) = Ul (b,2) = 2,
u;i(uZhi(x’ Z)’ y) = ug;jsc(ugbsc(b/ Z)/ C) = UﬂTbi(Z, C) = Z.

. Letxel,ye(el],z€[0,e).
uTS

abc
Ul (x, Ul (y,z)) = UL (x,2) = z,

UL (UL (x,2), y) = Ul (z,y) = z.

( uTS

abc

(x,y),2) = U, (y,2) =z,

. Letx =y =aand z = borz = c. Take z = b without losing generality.

Ul (U (x, y),2) = UL (UL (a,a),b) = UL

abc

(6, b) =b,

ULs (x, Ul (y,2)) = UL (a, UL (a, b)) = UL,

abc

(a,c)=0.
. Letx =y =band z =aorz = c. Similar to item (V).
. Letx =y =cand z =aor z = b. Similar to item (V).
. Letx=yel,andz€[0,e) U (e 1].
Ui (U y),2) = Upi(e,2) = 2,
UL (x, U (y,2)) = U (x,2) = z.
. Letx,ye[0,e)and z € I, U (¢, 1].
Uy (U (x5, ), 2) = Un (T, ), 2) = T, ),
Uy, Ugie(y, ) = Uge (5, y) = Tx, )
. Letx,y € (e, 1]and z € L.
Uy (U (5, 9),2) = Uja(S(x, 1), 2) = S(x, ),

Ui (x, Ul (y,2)) = Ul (x, y) = S(x, y).

Uz
. Letx,y € (e,1]and z € [0, ¢).
UZ;;SC(UZhSC(x/ y)/ Z) = UZLSC(S(xI y)/ Z) =2z,

UL (x, U (y,2)) = U (x,2) = z.
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In particularly, if T = Ty and S = Sy in Theorem 3.8, then the following corollary can be obtained.

Corollary 3.9. Let (L, <,0,1) be a bounded lattice, e € L\{0,1}, T€e 7°,S € S, and I, = {a,b,c} such thata || b || c.
Define the binary operation UﬂTbVZS 1 L* — L given, forall x,y € L, as

0 (x,y) €0,e),
(v, y) € {(a,a), (b, D), (c, )},
(v, y) € {(a, b), (b, a)},
(x,y) € {(b,0), (c, b)}, @)
(x, y) € {(a,0), (c,a)},

e
Cc
wpes ey =1
v @y el x(0,0U (1)U 11x[0,¢ Ul xL,
X
X

abc

(x,y) €([0,e0) U (e, 1]) x [, U[0,€) X (e, 1]U L x {e},
Vy (x,y) € (1]

Then, UZ;C’SV is a uninorm if and only if x < y forall x € [0,e), y € I, and x > y forall x € (¢, 1], y € L.

If we consider the construction method in Theorem 3.8 , the t-norm T € 7° given by T = Ty and the
t-conorm S € S, given by S = Sy, then we obtain the following result that yields the smallest element of the
set of all uninorms on L which possesses the following properties.

Proposition 3.10. (L, <,0,1) be a bounded lattice, I, = {a,b,c} such thata || b || c, x < y forall x € [0,¢), y € I, and
x>y forall x € (e,1], y € L. If L\L, is a chain, then the smallest element of U, is urwsy,

abc
Proof. Let U € U, be an arbitrary uninorm on L. We show that UZ;C’SV (x,y) < U(x,y) for all (x,y) € L X L.

When y = ¢, the proof is clear. Then, considering the commutative property of U and LIﬂTngSV, we only
examine the following cases.
- Let (x, y) € [0,¢)%. Then, U"*"(x, y) = 0 < U(x, y).

. Let (x,y) € (¢, 1]*. Then, UuTngSV (x,y) = x Vy. Also, we know that x vV y < U(x, y) by Proposition 2.9 (vii).
Hence, U;}"zSV (x, ) =xVy<Ux,y).

-Let (x,) €[0,¢) X (¢, 1]. Then, U}"*(x, ) = x < U(x, ) by Proposition 2.9 (vii).

. Let (x, y) € I, X I,. Due to the deﬁmtlon of UTbWS ¥ and Proposition 3.7, it follows that UTWSv (x,y) = Ulx, ).

. Let (x,y) € I, X ([0,e) U (¢, 1]). Take x = a without losing generality and y < e. We obtam that U(a, y) <
U(a, e) = a from the monotonocity of U. If U(a, y) = a, then y = ¢, which is a contradiction. So, it is obtained
that U(a, y) < a. Hence, we have U(a, y) it y from the fact that L\I, is a chain. Let us suppose that U(a, y) # y.
It follows that U(a, y) < y or U(a, y) > y. If U(a, y) < y, then from the monotonocity and the associativity of
U, we obtain that y = U(e, y) = U(U(a,a),y) = U(a, U(a, y)) < U(a, y), which is a contradiction. Similarly, it
can be seen that that U(a, y) £ y. Hence, we have that U(a, y) = y

In summary, it is obtained that U;"ZSV (a,y) =y = U(a, y) when x = g and y < e. Analogously, we can

show that UZLYSV (a,v) =y = U(a, y) for y > e. Consequently, U;bvzs Y(x,y) < U(x, y) if (x, y) € L, X ([0,e) U (e, 1]).
O

The next theorem gives a new construction method for uninorm which is an element of the set U7, .

Theorem 3.11. Let (L, <,0,1) be a bounded lattice, e € L\{0,1}, T € 7°,S € S, and I, = {a, b, c} such thata || b || c.
Define the binary operation U'[S : L* — L given, for all x,y € L, as

T(x,y) (x,y)€[0,e)?

(x, y) €{(aa),b,b), (o),

(x,y) €{(a,b),(b,a)},

(x, y) € {(b,0),(c,b)},

(x, y) €f(@c), (ca), 3)
(x,y) €l x([0,e)U(e, 1) U {e} X L,

(x,y) € ([0,e) U (e, 1]) X I, UL X {e},

xVy (x,y)€(e1]x[0,e)U[0,e) X (e 1],

S, y) (% y) € (e 1]~

Uyl (v, y) =

abc

RS TR a0
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Then, U] is a uninorm if and only if x < y for all x € [0,¢), y € I, and x > y for all x € (¢, 1], y € L.
In particularly, if T = T and S = Sp in Theorem 3.11, then the following corollary can be obtained.

Corollary 3.12. Let (L, <,0,1) be a bounded lattice, e € L\{0,1}, T € T¢,S € S, and I, = {a,b,c} such thata || b || c.
Define the binary operation U:bTC 290 2 12 — L given, for all x,y € L, as

€[0,e?,

€{(a,a),(b,b),(c, o)},

€ {(a,b), (b,a)},

€{(b,0),(c,b)},

€{(a, o), (c,a), 4)

>
<

Uy, ™ (6, y) =

abc

<
<

— R RS TR OO0 R

Then, LI;bTCASD is a uninorm if and only if x < y forall x € [0,¢), y € , and x > y forall x € (¢,1], y € L.
The following proposition presents the greatest element of U’ on certain bounded lattices.

Proposition 3.13. (L, <,0,1) be a bounded lattice, I, = {a,b,c} such thata || bl c, x < y forall x € [0,¢), y € I, and
x>y forallx € (e,1], y € I,. If L\L is a chain, then the greatest element of U, is utinoo,

abe

In the following example, we first present a lattice L; with a t-norm T = T and a t-conorm S = S,. Next
if we take in Theorem 3.8 with a = x3, b = x4, ¢ = x5, the uninorm LIQXS;;S can be obtained as in Table 1.

Example 3.14. Consider the bounded lattice (L1 = {0, x1, X2, X3, X4, X5, €, X6, X7, X8, X9, X10, X11, 1}, <, 0, 1) character-
ized by the Hasse diagram in Figure 1.

N,
NN
NS
N
N
|

X1

0

X3

Figure 1: Lattice diagram of L;.
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If we apply the formula (1) in Theorem 3.8 with a = x3, b = x4, ¢ = x5 and take that T = T,, S = Sy, the

corresponding uninorm UQ,&}S is given in Table 1.

ll;gi;s 0 X1 X2 X3 X4 X5 e X6 X7 Xg X9 X10 X11 1
00 0 O 0 0 0 0 0 0 0 0 0
X1 0 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1
X2 0 X1 X2 X2 X2 X2 X2 X2 X2 X2 X2 X2 X2 X2
X3 0 x4 x e X5 X4 X3 X6 X7 Xs X9 X100 X11 1
X4 0 x1 x x5 e X3 X4 X6 X7 Xs X9 X100 X11 1
X5 0 X1 Xo X4 X3 e X5 X6 X7 pe X9 X100 X11 1
e 0 X1 X2 X3 X4 X5 e X6 X7 X X9 X100 X11 1
X6 0 X1 X2  Xg X6 X6 X6 X6 Xy Xs X9 X100 X11 1
X7 0 x1 x0 xy X7 X7 X7 X7 X7 1 X9 x10 1 1
Xs 0 X1 Xy Xg X8 pe Xg Xg 1 Xg 1 1 X11 1
X9 0 X1 X2 X9 X9 X9 X9 X9 X9 1 X9 1 1 1
X10 0 x1 x x10 X0 X100 X0 X0 X0 1 1 xp 1 1
X11 0 x x xi1 X1 xi1 o x;i1 oxnn 1 xr 11 xi1 1
1 0 x1 x 1 1 1 1 1 1 1 1 1 1 1

. : TASv
Table 1: The uninorm U, /\;}. on L;.

By applying the formula (3) in Theorem 3.11 witha = x3, b = x4, c = x5 and T = Tx, S = Sy , the uninorm
Ug,ai; can be obtained as in Table 2.

Ugﬁi; 0 X1 X2 X3 X4 X5 e X6 Xy X8 X9 X10 X11 1

0 0 0 0 0 0 0 X6 X7 Xg X9 X100 X11 1
X1 0 X1 X1 X1 X1 X1 X X¢ X7 X§ Xo X0 X111
X2 0 X1 X2 X2 X2 X2 X2 X6 Xy Xg X9 X10 X11 1
X3 0 X1 X2 e X5 X4 X3 X6 X7 X X9 X10 X11 1
X4 0 X1 X2 X5 e X3 X4 X6 X7 Xg X9 X110 X11 1
X5 0 X1 Xo X4 X3 e X5 X¢ X7 Xg X9 X0 x11 1
e 0 X1 X2 X3 X4 X5 e X6 X7 Xg X9 X10 X11 1
X6 X6 X6 Xe¢ Xe¢ X¢ X¢ X¢ X¢ X7 X§ X9 Xig Xn1 1
X7 X7 X7 X7 X7 X7 X7 X7 X7 X7 1 X9 X10 1 1
X8 Xg Xg pe Xg X8 Xg Xg X8 1 Xg 1 1 X11 1
X9 X9 X9 X9 X9 X9 X9 X9 X9 X9 1 X9 1 1 1
X10 X0 X0 X0 X0 X0 X0 X0 X0 X0 1 1 xp 1 1
X11 X1 X1 X1 X1 X1 X X xnn 1 x1 101 xin 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 2: The uninorm U253 on L.

X3X4X5

Remark 3.15. It is easy to check that uninorms U'3 and UL5 given in Tables 1 and 2 are different from each other.

Definition 3.16. Let (L, <,0,1) be a bounded lattice, e € L\{0, 1} and I, = {a, b} such that a || b. Denote the class of
all uninorms U on L with the neutral element e satisfying the condition U(a, b) = e by U,

The following proposition characterizes some properties of U, where U € U,. Also, it will be used in
the proof of Proposition 3.22.
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Proposition 3.17. Let (L, <,0,1) be a bounded lattice, e € L\{0,1} and I, = {a, b} such that a || b. If U € U, then
the following statements holds:

i) U(a,a) = b,

ii) U(b,b) = a.

Proof. i) First, we prove that U(a, a) || e. Let us suppose that U(a,a) }f e. Then, either U(a,a) < e or U(a,a) > e.
If U(a,a) < e, then U(U(a,a),b) < U(e,b) = b from the monotonicity of U. Also, it is easy to obtain that
U(U(a,a),b) = a by the associativity of U. Hence, a < b, contradicting a || b. Then, U(a,a) £ e. Similarly,
verify U(a,a) # e. Then, U(a,a) || e. Suppose that U(a,a) = a. It follows that a = U(e,a) = U(U(b,a),a) =
U(b, U(a,a)) = U(b,a) = e by the properties of U. Consequently, we obtain a = ¢, which is a contradiction.
Then, this implies that U(a,a) = b.

ii) It can be proven easily in a smilar way to (i). O

In the following, by Theorem 3.18 and Theorem 3.23, we investigate the existence of uninorms with
non-trivial unit element under which some conditions when | I, |= 2.

Theorem 3.18. Let (L, <,0,1) be a bounded lattice, e € L\{0,1}, T € 7¢, S € S, and I, = {a, b} such that a || b.
Define the binary operation U'> : L* — L given, for all x,y € L, as

T(x,y) (x,y) €[0,e7,
e (x,y) =@, b)or (x,y) = (b,a),
b (x,y) = (a,a),
Uy(x,y) =3 a (x,y) = (D), ®)
y (x,y) €L, x([0,e) U (e, 1]) U (e,1] X [0,e) U {e} X L,
X (x, ) €([0,e)U(e,1]) x I, U[0,e) X (e,1] UL X {e},
S

.y (y eElP

Then, U'? is a uninorm if and only if x < y for all x € [0,¢), y € I, and x > y for all x € (¢, 1], y € L.

Proof. Necessity. Letx € [0,¢), y € I,. By the monotonicity of UZbS, we have thatx = UaTbS (x,y) < UTS (e,y) =
It is trivial that x # y from x € (¢, 1], y € I.. Hence, x < y holds. Dually it can be easily obtained other case
Sufficiency. We can see that U'? is commutative and e is a neutral element of U'?. Hence, we show only

the monotonicity and the associativity of U’?.

- Monotonicity: We prove that if y < z for y,z € L, then U (x,y) < U'S(x,z) forall x € L. If x = e or
(v,2) = (e,e) or (y,z) € [0,e)* U (¢, 1]? or (y,z) € I, X I, with y = z, then the proof is immediate. Hence, we
consider only remain the following cases.

1. Suppose that (x, y) € [0,€)? and z € [¢, 1] U L.
UTS () =Tk y) <x= UTS(x ).

2. Suppose that (x,y) = (a,b) or (x,y) = (b,a), and z € (¢, 1].
UTS(x y=e<z= UTS(x Z).

3. Suppose that (x, y) = (a,a) or (x,y) = (b,b), and z € (¢, 1]. Take (x, y) = (a, a) without losing generality.
UTS(x y=b<z= LITS(x z).

4. Suppose that (x, y) € {a} X [0,¢) or (x,y) € {b} X [0,¢). Take (x, y) € {a} X [0, e) without losing generality.

4.1. If z = ¢, then

UTS(x Y=y<x= UaTbS(x, z).



6.

7.

8.

. Associativity: We prove that U%>(U%(x, y),2) =
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4.2. If z € (¢, 1], then
UTS(x Y=y<z= UTS(x z).
4.3. If z = g, then
UgTbS(x, y=y<b= llaTbs(x,z).
44. Ifz = b, then
UTS(x yy=y<e= U;S(x,z).
Suppose that (x, y) € (e, 1] X [0, e).
5.1. If z € (¢, 1], then
UTS(x Y =y<x<5(k,z2) = LITS(x z).
5.2. Ifz € I, U {e}, then
UTS(x Y=y<x= LITS(x z).
Suppose that (x,y) € [0,€) X (I, U {e}) and z € (¢, 1].
UTS(x y)=x= UTS(x z).
Suppose that (x,y) € (¢,1] X (I, U {e}) and z € (¢, 1].
UTS(x y)=x<5(x,z) = U;S(x,z).
Suppose that (x,y) € I, X {e} and z € (e, 1].

UaTS(x y)—x<z—U 5(x, 2).

472

UTS (x, UTS(]/, z)) for all x,y,z € L. The proof is clear

when e € {x,y,z} since e is the neutral element of U;S Let us consider Theorems 2.2 and 2.3 and L\{e} =

{a} U

clear. Hence, we only check the remain following cases:

1. Letx=a,y=band z € [0,e) U (e, 1].

U Ul (x,y),z) = UL(UE@,b),z) = U (e,2) = z,

UL (x, Ul (y,2) = U (a, UL (b,2)) = U (a,2) = z,
U U (x,z),y) = U (U (a,2),b) = U (z,b) =z

2. Letxel,ye(e1l]andz €[0,e).

Uz (U (x,y),2) = Uiy (y,2) = 2,

UTS(x LITS(y,z)) = LITS(x z) =2z,
Uy (UL (x,2),y) = Uy (zy) =z

BYul0,e)U(e1]. Ifx=y=z=aorx=y=z=borx,vy,z € [0,e)® or x,y,z € (¢,1]%, then the proof is
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3. Letx=y=aandz="b,orx =y =band z = a. Take x = y = g and z = b without losing generality.
ul>Wuki(x,y),z) = U(U R (@a,a),b) = UL (b,b) =a,
UTS(x UTS(y, z)) = UTS(a UTS(a b)) = UTs(a e) =a.
4. Letx=y=aorx=y=>b,and z € [0,¢) U (¢, 1]. Take x = y = a without losing generality.
UTS (UTS(x Y),z) = UTS(UTS (a,a),z) = UTS (b,2) =z,
UTs(x LI (y, z))UTS(a UaTs(a 7)) = U (a z) = z.
5. Letx,ye€[0,e)andz € [, U (e, 1].
Uy (U (x,y),2) = Uy (T(x, y), 2) = T(x, y),
Uy (x, U (y,2) = Uy (6, ) = T(x, ).
6. Letx,y € (e, 1]and z € L.
UL (UL (x,y),2) = UL (S(x, y),2) = S(x, v),
Uy, (v, Uy (y,2)) = Uy (%, ) = S(x, ).
7. Letx,y € (¢,1]and z € [0, e).
UL (UL (x, y),2) = UL (S(x, ), 2) = 2,

UL (x, Ul (y,2)) = U (x,2) = z.
O

Remark 3.19. In Theorem 3.18, in general, the constraint x < y for all x € [0,¢), y € L, and x > y for all x € (e, 1],
y € I, cannot be omitted. In the following, we provide an example of a lattice that does not satisfy this condition on
which the function UaThS defined in Theorem 3.18 is not a uninorm. Further we demonstrate that U;, = 0.

Example 3.20. Consider the bounded lattice (L, = {0,e,x,a,b,1},<,0,1) characterized by the Hasse diagram in
Figure 2. There is no uninorm U : L* — L with the neutral element e such that U(a,b) = e. Suppose that there is
such a uninorm U . Then, it is obtained U(0,b) < U(e,b) = b by the monotonicity of U. Observe that in this case
then either U(0,b) = 0 or U(0,b) = b. Also, it follows U(x,a) = 0 or U(x,a) = a from U(x,a) < U(e,a) = a. Let
U(x,a) = 0. We have U(x, U(a, b)) = U(x,e) = x and U(U(x,a),b) = U(0,b). It is obtained x = U(0,b), which is a
contradiction. Similarly, when U(x,a) = a, we obtain a contradiction. Hence, ’Ll;’b =0.

N

e a b

0

Figure 2: Lattice diagram of L,.
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In particularly, if T = Ty and S = Sy in Theorem 3.18, then the following corollary can be obtained.

Corollary 3.21. Let (L, <,0,1) be a bounded lattice, e € L\{0, 1} and I, = {a, b} such that a || b. Define the binary
operation UZbWSV : L2 — L given, forall x,y € L, as

0 (x,y) €[0,e)?,
e (x,y)=@Db)or(x,y) = (b,a),

b (x,y) = (aa),

Ul (x,y)=1{ a (x,y) = (b,b), ©6)
y () €lex([0,e)U (e, 1) U (e, 1] x [0,e) U {e} X L,

X (x,y) €([0,e)U (e, 1) x [, U[0,e) X (e, 1] UL X {e},

xVy (x,y) €1

Then, uuwaSv is a uninorm if and only if x < y forall x € [0,e), y € [, and x > y forall x € (¢, 1], y € L.
The following proposition presents the smallest element of U, on certain bounded lattices.

Proposition 3.22. (L, <,0,1) be a bounded lattice, I, = {a,b} such thata || b, x < y forallx € [0,e), y € [ and x > y
forall x € (e, 1], y € L. If L\I, is a chain, then the smallest element of U, is UaTbWSV.

Proof. Let U € U, be an arbitrary uninorm on L. We show that UaThW S(x, y) < U(x,y) forall (x,y) € L x L.
When y = e, the proof is clear. Also, it is proved in a manner similar to Proposition (3.8) when (x,y) €
[0,e)2U (e, 1]>U[0,e) x (¢, 1]. Then, considering the commutative property of U and UZbWSV, we only examine
the following cases.

. Let (x, y) € I, X L. Due to the definition of LIaTbWS v and Proposition 3.17, it follows that UaThWSV (x,y) = U(x, v).
. Let (x,y) € L X ([0,e) X (¢,1]). Take x = a without losing generality and y < e. We obtain that U(a, y) <
U(a, e) = a from the monotonocity of U. If U(a, y) = a, then y = ¢, which is a contradiction. So, it must be
that U(a, y) < a. Hence, we have U(a, y) it y from the fact that L\I, is a chain.

« When U(a, y) < y. From the monotonocity and the associativity of U, it follows U(b, y) = U(U(a, a), y) =
U(a, U(a, y)) < U(a,y). Then, U(b,y) < U(a, y). Furthermore, we know that U(b, y) < U(b,e) = b from the
monotonocity of U. If U(b, y) = b, then y = ¢, which is a contradiction. Then, it must be that U(b, y) < b.
Hence, we have U(b, y) it y from the fact that L\I, is a chain.

-Suppose that U(b, y) > y. Itfollows U(b, y) > U(a, y) that from U(a, y) < y. We have that U(a, y) = U(b, y)
by U(a, y) < U(b, y) and U(b, y) < U(a, v).

- Suppose that U(b,y) < y. It is obtained that U(a,y) = U(U(b,b),y) = U, Ub,y) < Ub,y) by
the monotonocity and associativity of U. We again have that U(a, y) = U(b, y) by U(a, y) < U(b,y) and
U, y) < U(a, y). In summary, we obtain U(a, y) = U(b, y) when U(b, y) It y. Finally, it follows the following
equations:

U(a, U(a, y)) = U(a, U(b, y))
U(Ua,a),y) = U(U(a, b), y)
U, y) =Ule,y) = y.

Verify that U(b, y) = y implies U(a,y) = y. U">'(a,y) = y = U(a, y).
« When U(a, y) > v. UﬂTbWSV (ay)=y<U@,y).
Hence, it is obtained that UZhWSV (a,y) =y < U(a,y) when x =g and y < e. In an analogous way, we can show
that U;WSV (a,y) < U(a, y) for y > e. Consequently, U;WSV (x,y) < U(x,y)if (x,y) € L. x ([0,e) U (e, 1]).
0

In the following, we will introduce another uninorm construction method on the bounded lattices
satisfying the constrains as in Theorem 3.18.
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Theorem 3.23. Let (L,<,0,1) be a bounded lattice, e € L\{0,1}, T € T7¢, S € S, and I, = {a, b} such that a || b.
Define the binary operation Ul : L* — L given, for all x,y € L, as

T(x,y) (x,y)€l0,e)?

(x, y) = (ab)or(x,y) = (b,a),

(x, 3/) = (a,a),

(x,y) = (b,b), 7)
(x,y) € L x ([0,e) U (e, 1]) U {e} X L,

(x, 1) €(0,e)U (e 1]) x I, UL X {e},

xVy (x,y)e[0,e) x(e,1]U (e, 1] x [0,¢),

S(x,y) (% y) € (e 1

U y) =

R QTN

Then, UL}® is a uninorm if and only if x < y for all x € [0,e), y € I, and x > y for all x € (e, 1], y € .

Proof. The proof is similar to the proof of Theorem 3.18. [J

In particularly, if T = T and S = Sp in Theorem 3.23, then the following corollary can be obtained.

Corollary 3.24. Let (L, <,0,1) be a bounded lattice, e € L\{0,1} and I, = {a, b} such that a || b. Define the binary
operation LI;bT SR Ny § given, forall x,y € L, as

xAy (x,y)€[0,e)?
e (x,y) =(a,b)or (x,y) = (b,a),
M

1TASp _J)a x,y)=(b,0),

U "=y oy el x (0,0 1)U e XL, ®)

x (x,y) € ([0,e) U (e, 1]) X I, UL X {e},
xVy (xy)el0,e)x(e1]U (e, 1]1x[0,e),
1 (x, ) € (e, 1]%.

Then, U;bTASD is a uninorm if and only if x < y forall x € [0,€), y € L, and x > y for all x € (¢, 1], y € L.

The following proposition is proved in a way dual to Proposition 3.22.

Proposition 3.25. (L, <,0,1) be a bounded lattice, I, = {a, b} such thata || b, x < y forallx € [0,e), y € [, and x > y
forall x € (e, 1], y € L. If L\I, is a chain, then the greatest element of U, is U;bTASD.

The following example demonstrates that the methods described in Theorems 3 and 4 are different on
the same bounded lattice.

Example 3.26. Consider the bounded lattice (Lg = {0, x1, X2, X3, X4, X5, X¢, X7, X3, €, X9, X10, X11, 1}, <, 0, 1) character-
ized by the Hasse diagram in Figure 3, T = T, and S = Sy, Besides, the lattice L3 can be seen to easily satisfy the
constraints of Theorem 3.18 and Theorem 3.23.
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I
NP
I
7N
N

Figure 3: Lattice diagram of Ls.
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Take a = x7, b = xg. From the construction method in Theorem 3.18, we obtain the uninorm defined in Table 3.

szxiv 0 X1 X2 X3 X4 X5 X6 e Xy Xg X9 X10 X11 1
0 o 0o 0 0 0 0 0 O 0 0 0 0 0 0
X1 0 X1 0 X1 X1 0 X1 X1 X1 X1 X1 X1 X1 X1
X2 0 O X2 0 Xy X2 X2 X2 X2 X2 X2 X2 X X
X3 0 X1 0 X3 X1 0 X3 X3 X3 X3 X3 X3 X3 X3
X4 0 X1 X2 X1 X4 X2 X4 X4 X4 X4 X4 X4 X4 X4
X5 0 0 X2 0 X2 X5 X5 Xs X5 X5 X5 X5 X5 X5
X6 0 X1 X2 X3 X4 X5 X Xe X6 X6 X6 X6 X6 X6
e 0 X1 X2 X3 X4 X5 X € Xy Xg X9 X10  X11 1
Xy 0 X1 X2 X3 X4 X5 X6 Xy pe e X9 X10 X11 1
Xg 0 X1 X2 X3 X4 X5 X6 pe e X7 X9 X10 X11 1
X9 0 X1 X2 X3 X4 X5 X X9 X9 X9 X9 X10 X11 1
X10 0 x x2 X3 X4 X5 Xe¢ X0 X0 X0 X0 X0 xnp 1
X11 0 x x2 x3 X4 X5 Xe X11 X11 X1 X1 xnn xpp 1
1 0 X1 X2 X3 X4 X5 Xg 1 1 1 1 1 1 1

Table 3: The uninormUA%" on L;.

X7Xg

By applying the formula (7) in Theorem 3.23, where a = x7,b = xs, the uninorm Uy, can be obtained as in

Table 4.
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U}JXA&SV 0 X1 X2 X3 X4 X5 X6 e Xy Xg X9 X10 X11 1
0 0 0 0 0 0 0 0 0 0 0 X9 X10 X11 1
X1 0 X1 0 X1 X1 0 X1 X1 X1 X1 X9 X10 X11 1
X2 0 0 X2 0 X2 X2 X2 X2 X2 X2 X9 X10 X11 1
X3 0 X1 0 X3 X1 0 X3 X3 X3 X3 X9 X10 X11 1
X4 0 X1 X2 X1 X4 X2 X4 X4 X4 X4 X9 X10 X11 1
X5 0 0 X2 0 X2 X5 X5 X5 X5 X5 X9 X10  X11 1
X6 0 X1 X2 X3 X4 X5 X6 X6 X6 X6 X9 X10 X11 1
e 0 X1 Xo X3 X4 X5 X¢ @€ X7  Xg X9 x10 Xx11 1
Xy 0 X1 X2 X3 X4 X5 X6 X7 Xg e X9 X10 X11 1
pe 0 X1 X2 X3 X4 X5 X6 pe e X7 X9 X10 X11 1
X9 X9 X9 X9 X9 X9 X9 X9 X9 X9 X9 X9 xp x11 1
X10 X10 X0 X0 X0 X0 X0 X0 X0 X10 X0 X0 X0 Xiu 1
X11 X1 X1 X X1 X X1 X X1 X X1 X1 X X 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 4: The uninorm U}CZ@: Y on L;.

Therefore, it is worth nothing that the uninorms U;f and U!T S may not be same in general.

Proposition 3.27. Let (L, <,0,1) be a bounded lattice, e € L\{0, 1} and I, = {a, b} such that a || b. Then, there is no
uninorm U : L* — L with the neutral element e such that U(a,a) = U(b,b) = e.

Proof. Suppose that U : L* — L with the neutral element e such that U(a,a) = U(b,b) = e. We claim
that U(a, b) || e. Suppose that U(a,b) < e. From the monotonicity, associativity and commutativity of U,
it follows that b = U(b,e) = U(b,U(a,a)) = U(a, U(a,b)) < U(a,e) = a, which contradicts a || b. Then, it
holds that U(a, b) £ e. Analogously, we can observe that U(a, b) # e. Hence, it must hold that U(a, b) € L.
We obtain U(a,b) = a or U(a,b) = b from U(a,b) € I,. Let us suppose that U(a,b) = a. It follows that
U(a, U(a, b)) = U(a,a) = eand b = U(e, b) = U(U(a,a),b). By the associativity of U we have that b = e, which
contradicts b € I,. Thus, we obtain that U(a, b) # a. It is similarly observed that U(a, b) # b. Hence, there is
no uninorm U : L? — L with the neutral element e such that U(a,a) = U(b,b) =e. O

Definition 3.28. Let (L, <,0,1) be a bounded lattice, e € L\{0, 1} and I, = {a}. Denote the class of all uninorms U
on L with the neutral element e satisfying the condition U(a,a) = e by U.

Next, we introduce four new methods to produce uninorms on bounded lattices, where | I, |= 1 and
x<yforallx €[0,¢e), y € I, and x > y for all x € (¢, 1], y € I.. We omit their proofs since they can be proven
in similar fashion as done in Theorem 3.18.

Theorem 3.29. Let (L, <,0,1) be a bounded lattice, e € L\{0,1}, T € 7¢, S € S, and I, = {a}. Define the binary
operation UL® : L* — L given, for all x,y € L, as

T(x,y) (x,y)€l0,e),

e (x,y) el xI,
UaTs(x, =13y (x,y) €l x([0,e)U(e,1]) U (e, 1] x [0,€) U fe} X L, 9)
x (x, ) €(0,e)U(e,1]) x I, U[0,e) X (e,1] UL X {e},

S@,y) (v y) €1l
Then, U® is a uninorm if and only if x < y forall x € [0,¢), y € I, and x > y for all x € (¢, 1], y € L.

Example 3.30. Consider the bounded lattice (Ly = {0, x1, x2, €, x3,x4,1}, <,0, 1) characterized by the Hasse diagram
in Figure4, T=Trand S = S,.
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Figure 4: Lattice diagram of L,.

By applying the formula (9) in Theorem 3.29 with a = x3, the uninorm U,ZASV can be obtained as in Table 5.

U_QSV 0 x1 x e x3 x4 1
0 o o0 o o o0 o0 o0
X1 0 x1 x1 x1 X1 X1 x1
X2 0 x 1 X2 X2 X2 X2 X2
e 0 x1 x e x3 xg4 1
3
X 0 x1 x x3 e xg 1
3 3
X4 0 X1 X2 X4 X4 X4 1
1 0 x1 x 1 1 1 1

Table 5: The uninorm UZ;SV onLy.

In particularly, if T = T and S = Sy in Theorem 3.29, then the following corollary can be obtained.

Corollary 3.31. Let (L, <,0,1) be a bounded lattice, e € L\{0,1}, T € 7°¢, S € S, and I, = {a}. Define the binary
operation ULWS" : L2 — L given, for all x,y € L, as

0 (x,y) €[0,e),
e (x,y)el, X1,
us e,y =4 y (x,y) €I, x ([0,€) U (e, 1]) U (e, 1] X [0,) U {e} X L, (10)
X (x,y) €([0,0)U (e, 1]) x I, U[0,€) X (e, 1]U L x {e},
xVy (xy) €1

Then, U"*" is a uninorm if and only if x < y for all x € [0,¢), y € [, and x > y for all x € (¢, 1], y € L.

Proposition 3.32. (L, <,0,1) be a bounded lattice, I, = {a}, x < y forall x € [0,e), y € I, and x > y for all x € (e, 1],
y € L. If L\L, is a chain, then the smallest element of US is U} ™"

Proof. The proof can be shown in a manner similar to that of Proposition 3.22. [
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Theorem 3.33. Lef (L, <,0,1) be a bounded lattice, e € L\{0,1}, T € 7¢, S € S, and I, = {a}. Define the binary
operation ULT® : L2 — L given, forall x,y € L, as

T(x,y) (x,y)€[0,e)

e (x,y) el X1,
_lY (x,y) € L x([0,e) U (¢, 1]) U {e} X L,
UPeN =13 @ye0oU)xLULX e, (1)

xVy (x,y)e(e1]1x[0,e)Ul0,e)x (e 1],
S(x,y) (x,y) € (1]

Then, U5 is a uninorm if and only if x < y forall x € [0,¢), y € I, and x > y for all x € (¢, 1], y € L.

In particularly, if T = T and S = Sp in Theorem 3.33, then the following corollary can be obtained.

Corollary 3.34. Let (L, <,0,1) be a bounded lattice, e € L\{0,1}, T € 7¢, S € S, and I, = {a}. Define the binary
operation UL""P : L2 — L given, for all x,y € L, as

x,y) € [0,¢)?,
x,y) €l X1,

AY E
(,y) €lex([0,e)U (e, 1]) Uie} X L,
(
(
(

x,y) €([0,) U (e, 1)) x L. UL x {e}, (12)

x,y) € (e, 1] X [0,e) U [0,e) X (¢, 1],
x,y) € (e, 1%

x
e

1T,Sp _J Y
U (o y) =9 5
xVy

1

Then, U is a uninorm if and only if x < y for all x € [0,¢), y € I, and x > y for all x € (¢, 1], y € L.

Proposition 3.35. (L, <,0,1) be a bounded lattice, I, = {a}, x < y forall x € [0,¢e), y € I, and x > y for all x € (e, 1],
y € L. If L\L, is a chain, then the greatest element of US is U™ "P.

Proof. The proof can be shown in a manner similar to that of Proposition 3.22. [
Example 3.36. Consider the bounded lattice (Ly = {0, x1, x2, €, X3, x4, 1}, <, 0, 1) characterized by the Hasse diagram

in Figure 4. By applying the formula (11) in Theorem 3.33 with a = x3, the uninorm U}QT "v can be obtained as in
Table 6.

Ug AV X1 X, e x3 xg 1
0 0 0 0 0 0 =x 1
X1 0 X1 X1 X1 X1 X4 1
X2 0 X1 X2 X2 X2 X4 1
e 0 x1 x e x3 x4 1
X3 0 x1 x x3 e xg 1
X4 X4 X4 X4 X4 X4 Xa 1
1 11 1 1 1 1 1

Table 6: The uninorm Ug "5V on Ly.

Definition 3.37. Let (L, <,0,1) be a bounded lattice, e € L\{0, 1} and I, = {a}. Denote the class of all uninorms U
on L with the neutral element e satisfying the condition U(a,a) = a by U;.

In the following, we get the following Theorems 3.38 and 3.41 satisfying this condition.
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Theorem 3.38. Lef (L, <,0,1) be a bounded lattice, e € L\{0,1}, T € 7¢, S € S, and I, = {a}. Define the binary
operation U2TS : 12 — L given, forall x,y € L, as

T(x,y) (x,y)€[0,e)?

a (v y) el XL,
U5, y)={ vy (x,y) €, x([0,e) U (e, 1)) U (¢, 1] x [0,€) U {e} X L, (13)
X (x, 1) €(0,0)U(e1]) x I, U[0,e) X (e,1] UL x {e},

S(x,y) (x,y)€ (e 1%

Then, U2 is a uninorm if and only if x < y forall x € [0,e), y € L,and x > y forall x € (e,1], y €I, .

Example 3.39. Consider the bounded lattice (Ly = {0, x1, x2, €, X3, x4,1}, <, 0, 1) characterized by the Hasse diagram
in Figure 4, T = Tp and S = Sy. By using the construction approach in Theorem 3.38 with a = x3, we find the
uninorm U,ZQTASV defined in Table 7.

UJZCST AV X1 X e x3 x4 1
0 O 0 0 0o O 0 O
X1 0 x1 x1 x1 x1 x1 X
X2 0 X1 X2 X2 X2 X2 X2
e 0 x1 x e x3 x4 1
X3 0 x1 x x3 x3 x4 1
X4 0 X1 X2 X4 X4 X4 1
1 0 x1 x 1 1 1 1

Table 7: The uninorm LI,%ST SV on Ly.

Remark 3.40. Due to the Tables 5, 6 and 7, it is easy to check that the uninorms UL°, UXTS and U2TS are different
from each other.

Theorem 3.41. Let (L, <,0,1) be a bounded lattice, e € L\{0,1}, T € 7¢, S € S, and I, = {a}. Define the binary
operation U3 : L* — L given, for all x,y € L, as

T(x,y) (x,y)€[0,e)?

a (x,y) el x1,
_Jy (x,y) €l x([0,e)U(e, 1) Ufe} XL,
U=y =9 3 (x,y) € ([0,) U (e,1]) x L. UL X {e}, (14)

xVy (x,y)e(e1]1x[0,e)Ul0,e)x (e 1],
S(x,y) (x,y) € (1]

Then, U3 is a uninorm if and only if x < y forall x € [0,¢), y € I, and x > y for all x € (¢, 1], y € L.

Example 3.42. Consider the bounded lattice (Ly = {0, x1, X2, e,x3,x4, 1}, <,0, 1) characterized by the Hasse diagram
in Figure 4. We exploit the construction method in Theorem 3.41 with a = x3 to construct a uninorm such that

U(a,a) = a and we choose T = Tx and S = Sy. The uninorm UisTASV is listed in Table 8.
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Uﬁz ) X1 X e x3 x4 1
0 0O 0 0 0 0 x4 1
X1 0 X1 X1 X1 X1 X4 1
X2 0 X1 Xp  Xp  Xo X4 1
e 0 x1 x e x3 x4 1
X3 0 X1 X2 X3 X3 X4 1
X4 X4 X4 X4 X4 X4 X4 1
1 11 1 1 1 1 1

Table 8: The uninorm LI,?(’g A on Ly.

Remark 3.43. Two uninorms U2TS and U3TS given by the Examples 3.39 and 3.42 differ from each other on the
bounded lattice Ly.

Remark 3.44. (i) It is easy to see that the uninorms derived from Theorems 3.8, 3.11, 3.18, 3.23, 3.29 and 3.33 are
not idempotent. Therefore, we conclude that these uninorms are not locally internal.

(ii) If we take T = Tp and S = Sy in Theorems 3.38 and 3.41, then the uninorms derived from them are locally
internal.

4. Conclusions

In Proposition 3.2, it has been demonstrated that if U is a uninorm on L with neutral element e and
satisfies U(x, y) = e for all (x, y) € (I,), then |I,| = 1. Additionally, we have proposed construction methods
that reveal the existence of the uninorms discussed in Proposition 3.2. Motivated by this proposition
3.2, we have revealed some construction methods for uninorms that satisfy the condition U(x, y) = e for
some (x,y) € I, X I, particularly when |I,| # 1. We have also discussed the relationships among the
presented methods. Furthermore, these methods have been introduced within the new uninorm classes:
ults ulls e ue, , Uts, ulls e U, ULS, Up™ e U, UZS, U™ € UZ. Moreover, we have found that the

abc’” ~"abc abc’ “ab’ Ta ab’ 1 X
greatest and smallest elements of these classes on some special lattices.
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