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Abstract. In this paper, we focus on uninorms with non-trivial unit on bounded lattices. Based on the
existence a t-norm T acting on [0, e] as well as a t-conorm S acting on [e, 1], we present some construction
methods for uninorms on a bounded lattice, where some additional conditions on the bounded lattice and
the neutral element e are required. The role of these additional conditions is emphasized. Finally, we
present some results and some illustrative examples derived from these methods.

1. Introduction

There has recently been a rapidly growing interest in uninorms. They play an important role in theory
and practice, some of their uses are decision-making process, fuzzy control systems, fuzzy inference systems,
fuzzy logic and fuzzy systems modeling ([5, 17, 19–21]). Uninorms on unit interval, which is a bounded
lattice, has been introduced by Yager and Rybalov in ([22]). Some structures and properties of uninorms on
unit interval have been studied in ([8]). The notation of uninorms has been expanded on bounded lattices
in the work of Karaçal and Mesiar ([14]). They have also presented methods for constructing uninorms as
well as some properties of uninorms on bounded lattices. In some other works, researchers have focused
on various methods to generate aggregation functions such as t-norm, uninorm, uni-nullnorm on bounded
lattices see ([1, 2, 6, 9–13, 15]) .

Uninorms on bounded lattices are functions that satisfies commutative, associative, increasing with
respect to the both variables and has a neutral element e. In this study, we concentrate on the construction
methods of uninorm on bounded lattices. It is clear that U(e, e) = e if U is a uninorm on the bounded lattice
L with the neutral element e. Thus, we interested in the existence of uninorms satisfying U(x, y) = e for
some (x, y) ∈ (L\{e})2. More precisely, in this paper, we introduce some construction methods which satisfy
U(x, y) = e for some (x, y) ∈ Ie × Ie. The proposed methods are significant because they address a gap in the
literature: uninorms with non-unit elements have not yet been studied.

The structure of the article is arranged as follows. In Section 2, we list some definitions, theorems
and notations concerning lattices and aggregation functions which will be use in the paper. Section 3
offers some construction methods to produce on bounded lattices, and gives some explanations derived
from these methods. Also, in this section additional examples are provided. Conclusions are discussed in
Section 4.
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2. Preliminaries

A set L is called a partially ordered set denoted by (L,≤) if it is equipped with a binary relation ≤
satisfying reflexivity ( a ≤ a for all a ∈ L), antisymmetry (a = b whenever a ≤ b and b ≤ a for a, b ∈ L) and
transitivity (a ≤ c whenever a ≤ b and b ≤ c for a, b, c ∈ L). a ∈ L (b ∈ L) is called the smallest element (the
greatest element), denoted by 0 (1), if a ≤ x (x ≤ b) for all x ∈ L.

Let A ⊆ L. a ∈ L (b ∈ L) is called a lower bound of A (a upper bound of A) if a ≤ x (x ≤ b) for x ∈ A.
The set of the lower bounds of A (the set of the upper bounds of A ) is represented by A (A). 1A (0A) is
called infumum (supremum) if A (A) has the smallest element 1A ( 0A). Specifically, when A = {a, b}, the
supremum (infumum) of A is denoted by a ∨ b (a ∧ b).

L is called a lattice if there exists a∨ b and a∧ b for all a, b ∈ L. Also, it is called bounded lattice, denoted
by (L,≤, 0, 1) if the smallest element 0 ∈ L and the greatest element1 1 ∈ L.

Let (L,≤, 0, 1) be a bounded lattice and a, b ∈ L with a ≤ b. Sub-intervals of L are defined as:
[a, b] = {x ∈ L | a ≤ x ≤ b}, (a, b] = {x ∈ L | a < x ≤ b},
[a, b) = {x ∈ L | a ≤ x < b}, (a, b) = {x ∈ L | a < x < b}.
The elements x and y are called comparable if x ≤ y or y ≤ x, denoted by x ∦ y. Otherwise, x and y

are called incomparable, denoted by x ∥ y. Ia denotes the set of incomparable elements with a ∈ L, that is
Ia = {x ∈ L | x ∥ a}. Readers can refer to [3] for more information.

We denote the cardinality of a set A by |A|.

2.1. Some definitions and theorems concerning uninorms on bounded lattices L
This section presents essential concepts of triangular norms, triangular conorms and uninorms on

bounded lattices and some results related to alternating associativity that will be used through the paper.

Definition 2.1. ([11]) Let S be a nonempty set, A,B,C be subsets of S and U be a binary operation on S. H is called
alternating associative on (A,B,C) if for any [X,Y,Z] of (A,B,C) it satisfies

H(H(x, y), z) = H(x,H(y, z)) for all x ∈ X, y ∈ Y, z ∈ Z.

Theorem 2.2. ([11]). Let S be a nonempty set and A,B,C be subsets of S and H be a commutative binary operation
on S.

(i) If H(H(x, y), z) = H(x,H(y, z)) = H(H(x, z), y) for all x ∈ A, y ∈ B and z ∈ C, then H is alternating associative
on (A,B,C).

(ii) If H(H(x, y), z) = H(x,H(y, z)) for all x, y ∈ A, z ∈ B, then H is alternating associative on (A,A,B).

(iii) If H(H(x, y), z) = H(x,H(y, z)) for all x ∈ A, y, z ∈ B, then H is alternating associative on (A,B,B).

Theorem 2.3. ([11]) Let A1,A2, · · · ,An be nonempty,

S =
n⋃

i=1

Ai

and H be commutative binary operation on S. Then H associative on S if the following statements hold:

(i) H is alternating associative on (Ai,A j,Ak) for every combination {i, j, k} of size 3 chosen {1, 2, · · · ,n}.

(ii) H is alternating associative on (Ai,Ai,A j) for every combination {i, j} of size 2 chosen {1, 2, · · · ,n}.

(iii) H is alternating associative on (Ai,A j,A j) for every combination {i, j} of size 2 chosen {1, 2, · · · ,n}.

(iv) H is alternating associative on (Ai,Ai,Ai) for every i ∈ {1, 2, · · · ,n}.

Remark 2.4. It can be easily seen that if (iii) holds, then (iv) also holds in Theorem 2.3.
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Definition 2.5. ([16]) Let (L,≤, 0, 1) be a bounded lattice. A triangular (co)norm T (briefly t-(co)norm) is a binary
operation on L which is commutative, associative, monotone and has neutral element 1 (0).

We will denote by T a and Sa the set of all t-norms on sublattice [0, a] and the set of all t-conorms on
sublattice [a, 1] for a ∈ L, respectively.

Example 2.6. [16] Let (L,≤, 0, 1) be a bounded lattice. Two basic t-norms TW and T∧ on a bounded lattice L are
respectively given by

TW(x, y) =


y if x = 1,
x if y = 1,
0 otherwise,

and

T∧(x, y) = x ∧ y.

Two basic t-conorms SD and S∨ on a bounded lattice L are respectively given as follows:

SD(x, y) =


y if x = 0,
x if y = 0,
1 otherwise,

and

S∨(x, y) = x ∨ y.

Let T1 (S1) and T2 (S2) be two t-norms (t-conorms) on L. T1 (S1) is called smaller than T2 (S2) if for any
elements x, y ∈ L, T1(x, y) ≤ T2(x, y) (S1(x, y) ≤ S2(x, y)). The smallest and greatest t-norms (t-conorms) on a
bounded lattice L are given respectively by TW (S∨) and T∧ (SD).

Definition 2.7. ([13, 14]) Let (L,≤, 0, 1) be a bounded lattice. An operation U : L2
−→ L is called a uninorm on L

(shortly a uninorm, if L is fixed) if it is commutative, associative, increasing with respect to the both variables and has
a neutral element e ∈ L.

Proposition 2.8. ([14]) Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1} and U be a uninorm on L with the neutral
element e. Then the following results hold:

i) Te = U|[0,e]2 : [0, e]2
→ [0, e] is a t-norm on [0, e]2.

ii) Se = U|[e,1]2 : [e, 1]2
→ [e, 1] is a t-conorm on [e, 1]2.

Proposition 2.9. ([14]) Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1} and U be a uninorm on L with the neutral
element e. Then the following properties hold:

i) x ∧ y ≤ U(x, y) ≤ x ∨ y for (x, y) ∈ [0, e] × [e, 1] ∪ [e, 1] × [0, e].

ii) U(x, y) ≤ x for (x, y) ∈ L × [0, e].

iii) U(x, y) ≤ y for (x, y) ∈ [0, e] × L.

iv) U(x, y) ≤ x ∧ y for (x, y) ∈ [0, e] × [0, e].

v) x ≤ U(x, y) for (x, y) ∈ L × [e, 1].

vi) y ≤ U(x, y) for (x, y) ∈ [e, 1] × L.
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vii) x ∨ y ≤ U(x, y) for (x, y) ∈ [e, 1] × [e, 1].

Definition 2.10. ([4]) Let (L,≤, 0, 1) be a bounded lattice. An operation U : L2
−→ L is called locally internal if it

satisfies U(x, y) ∈ {x, x ∧ y, x ∨ y, y}.

Proposition 2.11. ([4]) Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1} and U be a uninorm on L with the neutral
element e. If U is locally internal, then U is an idempotent uninorm.

3. Eight uninorm construction methods on bounded lattices

Since our aim is to investigate the existence and construction methods of uninorms with the neutral
element e on the bounded lattices, which satisfy U(x, y) = e for some x, y ∈ L\{e} in addition to the trivial case
U(e, e) = e. Before doing so, we introduce the notation of unit element that will serve for the construction
and analysis of such uninorms.

Definition 3.1. Let (L,≤, 0, 1) be a bounded lattice, x ∈ L, e ∈ L\{0, 1} and U : L2
→ L be a uninorm with the neutral

element e. x is called a unit element of L if there exist an element y of L such that U(x, y) = e. From U(e, e) = e for
the uninorm U, e is a trivial unit element. If x ∈ L\ {e} is a unit element, then it is called a non-trivial unit element.
In addition, if U has non-trivial unit elements, it is called a uninorm with non-trivial unit element on L.

In the following proposition, we find that for which cardinality of Ie the condition U(x, y) = e holds for
all (x, y) ∈ Ie × Ie.

Proposition 3.2. Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1} and U : L2
→ L be a uninorm with the neutral

element e. If U(x, y) = e for all (x, y) ∈ (Ie)2, then | Ie |≤ 1.

Proof. Let us suppose that Ie , ∅ and x, y ∈ Ie. We have that U(x,U(y, y)) = U(x, e) = x and U(U(x, y), y) =
U(e, y) = y. Then, the associativity of U implies that x = y. Consequently, | Ie |≤ 1.

Proposition 3.3. Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1} and U : L2
→ L be a uninorm with the neutral

element e such that U(x, x) = e for all x ∈ Ie. If a , b for a, b ∈ Ie, then a ∥ b.

Proof. Let a, b ∈ Ie with a , b. Suppose that a < b. It is obtained that b = U(e, b) = U(U(a, a), b) =
U(a,U(a, b)) ≤ U(b,U(a, b)) = U(U(b, b), a) = U(e, a) = a by the properties of U, which contradicts a < b.
Similarly, it can be shown that b ≮ a. Hence, it follows that a ∥ b.

Proposition 3.4. Let (L,≤, 0, 1) be a bounded lattice and e ∈ L\{0, 1}. There is no uninorm U : L2
→ L with the

neutral element e such that U(x, y) = e for all (x, y) ∈ [0, e) × (e, 1].

Proof. Assume that U : L2
→ L is a uninorm with the neutral element e satisfying U(x, y) = e for all

(x, y) ∈ [0, e) × (e, 1]. From y ∈ (e, 1], it follows that e < y = U(e, y) ≤ U(y, y). Hence U(y, y) ∈ (e, 1]. We have
that U(x,U(y, y)) = e and U(U(x, y), y) = U(e, y) = y for (x, y) ∈ [0, e) × (e, 1]. It is obtained that y = e from
the associativity of U, which is a contradiction.

Proposition 3.5. Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1} and Ie = {a, b, c} such that a ∥ b ∥ c. Then, there is
no uninorm with the neutral element e satisfying the conditions U(a, a) = U(b, c) = e, U(b, b) = c and U(c, c) = b.

Proof. Assume that there exists a uninorm that satisfies the conditions above. If U(a, b) ≤ e, then U(a,U(a, b)) ≤
U(a, e) = a. Also, we have U(a,U(a, b)) = U(U(a, a), b) = b by the associativity of U. Consequently, it is ob-
tained that b ≤ a, which contradicts a ∥ b. It follows U(a, b) ≰ e. Similarly, it is seen that U(a, b) ≯ e.
Finally, let us suppose that U(a, b) ∈ Ie. If U(a, b) = a, then U(a,U(a, b)) = U(a, a) = e. We also know
U(U(a, a), b) = U(e, b) = b. Thus, the associativity of U implies e = b, which contradicts b ∈ Ie. Similarly, the
contradiction is obtained when U(a, b) ∈ {b, c}. Consequently there doesn’t exist a uninorm that satisfies the
conditions above.
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Definition 3.6. Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1} and Ie = {a, b, c} such that a ∥ b ∥ c. Denote the class
of all uninorms U on L with the neutral element e satisfying the conditions U(a, a) = U(b, b) = U(c, c) = e byUe

abc.

The following proposition characterizes some properties of U, where U ∈ Ue
abc.

Proposition 3.7. Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1} and Ie = {a, b, c} such that a ∥ b ∥ c. If U ∈ Ue
abc,

then the following statements holds:
i) U(a, b) = c,
ii) U(b, c) = a,
iii) U(a, c) = b.

Proof. We only prove that statement (i) holds. First, we show that U(a, b) ∈ Ie. Suppose that U(a, b) ≤ e
or U(a, b) > e. Then, from the monotonicity and associativity of U it follows that b ≤ a or a ≤ b, which
is a contradiction. Hence, U(a, b) ∈ Ie, that is, U(a, b) = a or U(a, b) = b or U(a, b) = c. We have that
b = U(b, e) = U(b,U(a, a)) = U(a,U(a, b)) = U(a, a) = e by the associativity of U when U(a, b) = a, which
is contradiction. Hence, it is obtained that U(a, b) , a. In a similar way, we can observe that U(a, b) , b.
Consequently, it must hold that U(a, b) = c.

Theorem 3.8. Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1}, T ∈ T e, S ∈ Se and Ie = {a, b, c} such that a ∥ b ∥ c.
Define the binary operation UTS

abc : L2
→ L given, for all x, y ∈ L, as

UTS
abc(x, y) =



T(x, y) (x, y) ∈ [0, e)2,
e (x, y) ∈ {(a, a), (b, b), (c, c)},
c (x, y) ∈ {(a, b), (b, a)},
a (x, y) ∈ {(b, c), (c, b)},
b (x, y) ∈ {(a, c), (c, a)},
y (x, y) ∈ Ie × ([0, e) ∪ (e, 1]) ∪ (e, 1] × [0, e) ∪ {e} × L,
x (x, y) ∈ ([0, e) ∪ (e, 1]) × Ie ∪ [0, e) × (e, 1] ∪ L × {e},
S(x, y) (x, y) ∈ (e, 1]2.

(1)

Then, UTS
abc is a uninorm if and only if x < y for all x ∈ [0, e), y ∈ Ie and x > y for all x ∈ (e, 1], y ∈ Ie.

Proof. Necessity. Let x ∈ [0, e), y ∈ Ie . By the monotonicity of UTS
abc, we have that x = UTS

abc(x, y) ≤ UTS
abc(e, y) = y.

By x ∈ (e, 1], y ∈ Ie, it is trivial that x , y. Similarly, it can be seen that x > y for all x ∈ (e, 1], y ∈ Ie.
Sufficiency. It is clear that UTS

abc is commutative and e is a neutral element of UTS
abc. Thus, we demonstrate

only the monotonicity and the associativity of UTS
abc.

• Monotonicity: We prove that if y ≤ z for y, z ∈ L, then UTS
abc(x, y) ≤ UTS

abc(x, z) for all x ∈ L. If x = e or
(y, z) = (e, e) or (y, z) ∈ [0, e)2

∪ (e, 1]2 or (y, z) ∈ Ie × Ie with y = z, then the proof is immediate. Thus, let us
show that it is valid for all remaining cases.

1. Suppose that (x, y) ∈ [0, e)2 and z ∈ [e, 1] ∪ Ie.

UTS
abc(x, y) = T(x, y) ≤ x = UTS

abc(x, z).

2. Suppose that (x, y) ∈ {(a, a), (b, b), (c, c)} and z ∈ (e, 1].

UTS
abc(x, y) = e < z = UTS

abc(x, z).

3. Suppose that (x, y) ∈ {(a, b), (b, a)} or (x, y) ∈ {(b, c), (c, b)} or (x, y) ∈ {(a, c), (c, a)}, and z ∈ (e, 1]. Take
(x, y) ∈ {(a, b), (b, a)}without losing generality.

UTS
abc(x, y) = c < z = UTS

abc(x, z).

4. Suppose that (x, y) ∈ {a, b, c} × [0, e). Take x = a without losing generality.



F. Karaçal, K. Karacair / Filomat 40:2 (2026), 461–482 466

4.1. If z = e, then

UTS
abc(x, y) = y < a = UTS

abc(x, z).

4.2. If z ∈ (e, 1], then

UTS
abc(x, y) = y < z = UTS

abc(x, z).

4.3. If z = a, then

UTS
abc(x, y) = y < e = UTS

abc(x, z).

4.4. If z = b, then

UTS
abc(x, y) = y < c = UTS

abc(x, z).

4.5. If z = c, then

UTS
abc(x, y) = y < b = UTS

abc(x, z).

5. Suppose that (x, y) ∈ [0, e) × (Ie ∪ {e}) and z ∈ (e, 1].

UTS
abc(x, y) = x = UTS

abc(x, z).

6. Suppose that (x, y) ∈ (e, 1] × (Ie ∪ {e}) and z ∈ (e, 1].

UTS
abc(x, y) = x ≤ S(x, z) = UTS

abc(x, z).

7. Suppose that (x, y) ∈ (e, 1] × [0, e).

7.1. If z ∈ (e, 1], then

UTS
abc(x, y) = y < x ≤ S(x, z) = UTS

abc(x, z).

7.2. If z ∈ Ie ∪ {e}, then

UTS
abc(x, y) = y < x = UTS

abc(x, z).

8. Suppose that (x, y) ∈ Ie × {e} and z ∈ (e, 1].

UTS
abc(x, y) = x < z = UTS

abc(x, z).

• Associativity: We prove that UTS
abc(U

TS
abc(x, y), z) = UTS

abc(x,U
TS
abc(y, z)) for all x, y, z ∈ L. If e ∈ {x, y, z}, the

proof is immediate. By Theorems 2.2 and 2.3 considering L\{e} = {a} ∪ {b} ∪ {c} ∪ [0, e) ∪ (e, 1] we show the
associativity of UTS

abc. If x = y = z = a or x = y = z = b or x = y = z = c or x, y, z ∈ [0, e)2 or x, y, z ∈ (e, 1]2, then
the proof is clear. Thus, we only check the following cases:

1. Let x = a, y = b and z = c.

UTS
abc(U

TS
abc(x, y), z) = UTS

abc(U
TS
abc(a, b), c) = UTS

abc(c, c) = e,

UTS
abc(x,U

TS
abc(y, z)) = UTS

abc(a,U
TS
abc(b, c)) = UTS

abc(a, a) = e,

UTS
abc(U

TS
abc(x, z), y) = UTS

abc(U
TS
abc(a, c), b) = UTS

abc(b, b) = e.
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2. Let x = a, y = b or y = c, and z ∈ [0, e) ∪ (e, 1]. Take y = b without losing generality.

UTS
abc(U

TS
abc(x, y), z) = UTS

abc(U
TS
abc(a, b), z) = UTS

abc(c, z) = z,

UTS
abc(x,U

TS
abc(y, z)) = UTS

abc(a,U
TS
abc(b, z)) = UTS

abc(a, z) = z,

UTS
abc(U

TS
abc(x, z), y) = UTS

abc(U
TS
abc(a, z), b) = UTS

abc(z, b) = z.

3. Let x = b, y = c, and z ∈ [0, e) ∪ (e, 1].

UTS
abc(U

TS
abc(x, y), z) = UTS

abc(U
TS
abc(b, c), z) = UTS

abc(a, z) = z,

UTS
abc(x,U

TS
abc(y, z)) = UTS

abc(b,U
TS
abc(c, z)) = UTS

abc(b, z) = z,

UTS
abc(U

TS
abc(x, z), y) = UTS

abc(U
TS
abc(b, z), c) = UTS

abc(z, c) = z.

4. Let x ∈ Ie, y ∈ (e, 1], z ∈ [0, e).

UTS
abc(U

TS
abc(x, y), z) = UTS

abc(y, z) = z,

UTS
abc(x,U

TS
abc(y, z)) = UTS

abc(x, z) = z,

UTS
abc(U

TS
abc(x, z), y) = UTS

abc(z, y) = z.

5. Let x = y = a and z = b or z = c. Take z = b without losing generality.

UTS
abc(U

TS
abc(x, y), z) = UTS

abc(U
TS
abc(a, a), b) = UTS

abc(e, b) = b,

UTS
abc(x,U

TS
abc(y, z)) = UTS

abc(a,U
TS
abc(a, b)) = UTS

abc(a, c) = b.

6. Let x = y = b and z = a or z = c. Similar to item (V).

7. Let x = y = c and z = a or z = b. Similar to item (V).

8. Let x = y ∈ Ie and z ∈ [0, e) ∪ (e, 1].

UTS
abc(U

TS
abc(x, y), z) = UTS

abc(e, z) = z,

UTS
abc(x,U

TS
abc(y, z)) = UTS

abc(x, z) = z.

9. Let x, y ∈ [0, e) and z ∈ Ie ∪ (e, 1].

UTS
abc(U

TS
abc(x, y), z) = UTS

abc(T(x, y), z) = T(x, y),

UTS
abc(x,U

TS
abc(y, z)) = UTS

abc(x, y) = T(x, y).

10. Let x, y ∈ (e, 1] and z ∈ Ie.

UTS
abc(U

TS
abc(x, y), z) = UTS

abc(S(x, y), z) = S(x, y),

UTS
abc(x,U

TS
abc(y, z)) = UTS

abc(x, y) = S(x, y).

11. Let x, y ∈ (e, 1] and z ∈ [0, e).

UTS
abc(U

TS
abc(x, y), z) = UTS

abc(S(x, y), z) = z,

UTS
abc(x,U

TS
abc(y, z)) = UTS

abc(x, z) = z.
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In particularly, if T = TW and S = S∨ in Theorem 3.8, then the following corollary can be obtained.

Corollary 3.9. Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1}, T ∈ T e, S ∈ Se and Ie = {a, b, c} such that a ∥ b ∥ c.
Define the binary operation UTWS∨

abc : L2
→ L given, for all x, y ∈ L, as

UTWS∨
abc (x, y) =



0 (x, y) ∈ [0, e)2,
e (x, y) ∈ {(a, a), (b, b), (c, c)},
c (x, y) ∈ {(a, b), (b, a)},
a (x, y) ∈ {(b, c), (c, b)},
b (x, y) ∈ {(a, c), (c, a)},
y (x, y) ∈ Ie × ([0, e) ∪ (e, 1]) ∪ (e, 1] × [0, e) ∪ {e} × L,
x (x, y) ∈ ([0, e) ∪ (e, 1]) × Ie ∪ [0, e) × (e, 1] ∪ L × {e},
x ∨ y (x, y) ∈ (e, 1]2.

(2)

Then, UTWS∨
abc is a uninorm if and only if x < y for all x ∈ [0, e), y ∈ Ie and x > y for all x ∈ (e, 1], y ∈ Ie.

If we consider the construction method in Theorem 3.8 , the t-norm T ∈ T e given by T = TW and the
t-conorm S ∈ Se given by S = S∨, then we obtain the following result that yields the smallest element of the
set of all uninorms on L which possesses the following properties.

Proposition 3.10. (L,≤, 0, 1) be a bounded lattice, Ie = {a, b, c} such that a ∥ b ∥ c, x < y for all x ∈ [0, e), y ∈ Ie and
x > y for all x ∈ (e, 1], y ∈ Ie. If L\Ie is a chain, then the smallest element ofUe

abc is UTWS∨
abc .

Proof. Let U ∈ Ue
abc be an arbitrary uninorm on L. We show that UTWS∨

abc (x, y) ≤ U(x, y) for all (x, y) ∈ L × L.
When y = e, the proof is clear. Then, considering the commutative property of U and UTWS∨

abc , we only
examine the following cases.
• Let (x, y) ∈ [0, e)2. Then, UTWS∨

abc (x, y) = 0 ≤ U(x, y).
• Let (x, y) ∈ (e, 1]2. Then, UTWS∨

abc (x, y) = x ∨ y. Also, we know that x ∨ y ≤ U(x, y) by Proposition 2.9 (vii).
Hence, UTWS∨

abc (x, y) = x ∨ y ≤ U(x, y).
• Let (x, y) ∈ [0, e) × (e, 1]. Then, UTWS∨

abc (x, y) = x ≤ U(x, y) by Proposition 2.9 (vii).
• Let (x, y) ∈ Ie × Ie. Due to the definition of UTWS∨

abc and Proposition 3.7, it follows that UTWS∨
abc (x, y) = U(x, y).

• Let (x, y) ∈ Ie × ([0, e) ∪ (e, 1]). Take x = a without losing generality and y < e. We obtain that U(a, y) ≤
U(a, e) = a from the monotonocity of U. If U(a, y) = a, then y = e, which is a contradiction. So, it is obtained
that U(a, y) < a. Hence, we have U(a, y) ∦ y from the fact that L\Ie is a chain. Let us suppose that U(a, y) , y.
It follows that U(a, y) < y or U(a, y) > y. If U(a, y) < y, then from the monotonocity and the associativity of
U, we obtain that y = U(e, y) = U(U(a, a), y) = U(a,U(a, y)) ≤ U(a, y), which is a contradiction. Similarly, it
can be seen that that U(a, y) ≮ y. Hence, we have that U(a, y) = y.

In summary, it is obtained that UTWS∨
abc (a, y) = y = U(a, y) when x = a and y < e. Analogously, we can

show that UTWS∨
abc (a, y) = y = U(a, y) for y > e. Consequently, UTWS∨

abc (x, y) ≤ U(x, y) if (x, y) ∈ Ie × ([0, e)∪ (e, 1]).

The next theorem gives a new construction method for uninorm which is an element of the setUe
abc.

Theorem 3.11. Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1}, T ∈ T e, S ∈ Se and Ie = {a, b, c} such that a ∥ b ∥ c.
Define the binary operation U1TS

abc : L2
→ L given, for all x, y ∈ L, as

U1TS
abc (x, y) =



T(x, y) (x, y) ∈ [0, e)2,
e (x, y) ∈ {(a, a), (b, b), (c, c)},
c (x, y) ∈ {(a, b), (b, a)},
a (x, y) ∈ {(b, c), (c, b)},
b (x, y) ∈ {(a, c), (c, a)},
y (x, y) ∈ Ie × ([0, e) ∪ (e, 1]) ∪ {e} × L,
x (x, y) ∈ ([0, e) ∪ (e, 1]) × Ie ∪ L × {e},
x ∨ y (x, y) ∈ (e, 1] × [0, e) ∪ [0, e) × (e, 1],
S(x, y) (x, y) ∈ (e, 1]2.

(3)
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Then, U1TS
abc is a uninorm if and only if x < y for all x ∈ [0, e), y ∈ Ie and x > y for all x ∈ (e, 1], y ∈ Ie.

In particularly, if T = T∧ and S = SD in Theorem 3.11, then the following corollary can be obtained.

Corollary 3.12. Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1}, T ∈ T e, S ∈ Se and Ie = {a, b, c} such that a ∥ b ∥ c.
Define the binary operation U1T∧SD

abc : L2
→ L given, for all x, y ∈ L, as

U1T∧SD
abc (x, y) =



x ∧ y (x, y) ∈ [0, e)2,
e (x, y) ∈ {(a, a), (b, b), (c, c)},
c (x, y) ∈ {(a, b), (b, a)},
a (x, y) ∈ {(b, c), (c, b)},
b (x, y) ∈ {(a, c), (c, a)},
y (x, y) ∈ Ie × ([0, e) ∪ (e, 1]) ∪ {e} × L,
x (x, y) ∈ ([0, e) ∪ (e, 1]) × Ie ∪ L × {e},
x ∨ y (x, y) ∈ (e, 1] × [0, e) ∪ [0, e) × (e, 1],
1 (x, y) ∈ (e, 1]2.

(4)

Then, U1T∧SD
abc is a uninorm if and only if x < y for all x ∈ [0, e), y ∈ Ie and x > y for all x ∈ (e, 1], y ∈ Ie.

The following proposition presents the greatest element ofUe
abc on certain bounded lattices.

Proposition 3.13. (L,≤, 0, 1) be a bounded lattice, Ie = {a, b, c} such that a ∥ b ∥ c, x < y for all x ∈ [0, e), y ∈ Ie and
x > y for all x ∈ (e, 1], y ∈ Ie. If L\Ie is a chain, then the greatest element ofUe

abc is U1T∧SD
abc .

In the following example, we first present a lattice L1 with a t-norm T = T∧ and a t-conorm S = S∨. Next
if we take in Theorem 3.8 with a = x3, b = x4, c = x5, the uninorm UT∧S∨

x3x4x5
can be obtained as in Table 1.

Example 3.14. Consider the bounded lattice (L1 = {0, x1, x2, x3, x4, x5, e, x6, x7, x8, x9, x10, x11, 1},≤, 0, 1) character-
ized by the Hasse diagram in Figure 1.

1

x11 x10 x9

x8 x7

x6

e x5 x4 x3

x2

x1

0

Figure 1: Lattice diagram of L1.
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If we apply the formula (1) in Theorem 3.8 with a = x3, b = x4, c = x5 and take that T = T∧, S = S∨, the
corresponding uninorm UT∧S∨

x3x4x5
is given in Table 1.

UT∧S∨
x3x4x5

0 x1 x2 x3 x4 x5 e x6 x7 x8 x9 x10 x11 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x1 0 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1
x2 0 x1 x2 x2 x2 x2 x2 x2 x2 x2 x2 x2 x2 x2
x3 0 x1 x2 e x5 x4 x3 x6 x7 x8 x9 x10 x11 1
x4 0 x1 x2 x5 e x3 x4 x6 x7 x8 x9 x10 x11 1
x5 0 x1 x2 x4 x3 e x5 x6 x7 x8 x9 x10 x11 1
e 0 x1 x2 x3 x4 x5 e x6 x7 x8 x9 x10 x11 1
x6 0 x1 x2 x6 x6 x6 x6 x6 x7 x8 x9 x10 x11 1
x7 0 x1 x2 x7 x7 x7 x7 x7 x7 1 x9 x10 1 1
x8 0 x1 x2 x8 x8 x8 x8 x8 1 x8 1 1 x11 1
x9 0 x1 x2 x9 x9 x9 x9 x9 x9 1 x9 1 1 1
x10 0 x1 x2 x10 x10 x10 x10 x10 x10 1 1 x10 1 1
x11 0 x1 x2 x11 x11 x11 x11 x11 1 x11 1 1 x11 1
1 0 x1 x2 1 1 1 1 1 1 1 1 1 1 1

Table 1: The uninorm UT∧S∨
x3x4x5

on L1.

By applying the formula (3) in Theorem 3.11 with a = x3, b = x4, c = x5 and T = T∧, S = S∨ , the uninorm
U1T∧S∨

x3x4x5
can be obtained as in Table 2.

U1T∧S∨
x3x4x5

0 x1 x2 x3 x4 x5 e x6 x7 x8 x9 x10 x11 1
0 0 0 0 0 0 0 0 x6 x7 x8 x9 x10 x11 1
x1 0 x1 x1 x1 x1 x1 x1 x6 x7 x8 x9 x10 x11 1
x2 0 x1 x2 x2 x2 x2 x2 x6 x7 x8 x9 x10 x11 1
x3 0 x1 x2 e x5 x4 x3 x6 x7 x8 x9 x10 x11 1
x4 0 x1 x2 x5 e x3 x4 x6 x7 x8 x9 x10 x11 1
x5 0 x1 x2 x4 x3 e x5 x6 x7 x8 x9 x10 x11 1
e 0 x1 x2 x3 x4 x5 e x6 x7 x8 x9 x10 x11 1
x6 x6 x6 x6 x6 x6 x6 x6 x6 x7 x8 x9 x10 x11 1
x7 x7 x7 x7 x7 x7 x7 x7 x7 x7 1 x9 x10 1 1
x8 x8 x8 x8 x8 x8 x8 x8 x8 1 x8 1 1 x11 1
x9 x9 x9 x9 x9 x9 x9 x9 x9 x9 1 x9 1 1 1
x10 x10 x10 x10 x10 x10 x10 x10 x10 x10 1 1 x10 1 1
x11 x11 x11 x11 x11 x11 x11 x11 x11 1 x11 1 1 x11 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 2: The uninorm U1T∧S∨
x3x4x5

on L1.

.

Remark 3.15. It is easy to check that uninorms UTS
abc and U1TS

abc given in Tables 1 and 2 are different from each other.

Definition 3.16. Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1} and Ie = {a, b} such that a ∥ b. Denote the class of
all uninorms U on L with the neutral element e satisfying the condition U(a, b) = e byUe

ab.

The following proposition characterizes some properties of U, where U ∈ Ue
ab. Also, it will be used in

the proof of Proposition 3.22.
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Proposition 3.17. Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1} and Ie = {a, b} such that a ∥ b. If U ∈ Ue
ab, then

the following statements holds:
i) U(a, a) = b,
ii) U(b, b) = a.

Proof. i) First, we prove that U(a, a) ∥ e. Let us suppose that U(a, a) ∦ e. Then, either U(a, a) ≤ e or U(a, a) > e.
If U(a, a) ≤ e, then U(U(a, a), b) ≤ U(e, b) = b from the monotonicity of U. Also, it is easy to obtain that
U(U(a, a), b) = a by the associativity of U. Hence, a ≤ b, contradicting a ∥ b. Then, U(a, a) ≰ e. Similarly,
verify U(a, a) ≯ e. Then, U(a, a) ∥ e. Suppose that U(a, a) = a. It follows that a = U(e, a) = U(U(b, a), a) =
U(b,U(a, a)) = U(b, a) = e by the properties of U. Consequently, we obtain a = e, which is a contradiction.
Then, this implies that U(a, a) = b.

ii) It can be proven easily in a smilar way to (i).

In the following, by Theorem 3.18 and Theorem 3.23, we investigate the existence of uninorms with
non-trivial unit element under which some conditions when | Ie |= 2.

Theorem 3.18. Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1}, T ∈ T e, S ∈ Se and Ie = {a, b} such that a ∥ b.
Define the binary operation UTS

ab : L2
→ L given, for all x, y ∈ L, as

UTS
ab (x, y) =



T(x, y) (x, y) ∈ [0, e)2,
e (x, y) = (a, b) or (x, y) = (b, a),
b (x, y) = (a, a),
a (x, y) = (b, b),
y (x, y) ∈ Ie × ([0, e) ∪ (e, 1]) ∪ (e, 1] × [0, e) ∪ {e} × L,
x (x, y) ∈ ([0, e) ∪ (e, 1]) × Ie ∪ [0, e) × (e, 1] ∪ L × {e},
S(x, y) (x, y) ∈ (e, 1]2.

(5)

Then, UTS
ab is a uninorm if and only if x < y for all x ∈ [0, e), y ∈ Ie and x > y for all x ∈ (e, 1], y ∈ Ie.

Proof. Necessity. Let x ∈ [0, e), y ∈ Ie. By the monotonicity of UTS
ab , we have that x = UTS

ab (x, y) ≤ UTS
ab (e, y) = y.

It is trivial that x , y from x ∈ (e, 1], y ∈ Ie. Hence, x < y holds. Dually it can be easily obtained other case.
Sufficiency. We can see that UTS

ab is commutative and e is a neutral element of UTS
ab . Hence, we show only

the monotonicity and the associativity of UTS
ab .

• Monotonicity: We prove that if y ≤ z for y, z ∈ L, then UTS
ab (x, y) ≤ UTS

ab (x, z) for all x ∈ L. If x = e or
(y, z) = (e, e) or (y, z) ∈ [0, e)2

∪ (e, 1]2 or (y, z) ∈ Ie × Ie with y = z, then the proof is immediate. Hence, we
consider only remain the following cases.

1. Suppose that (x, y) ∈ [0, e)2 and z ∈ [e, 1] ∪ Ie.

UTS
ab (x, y) = T(x, y) ≤ x = UTS

ab (x, z).

2. Suppose that (x, y) = (a, b) or (x, y) = (b, a), and z ∈ (e, 1].

UTS
ab (x, y) = e < z = UTS

ab (x, z).

3. Suppose that (x, y) = (a, a) or (x, y) = (b, b), and z ∈ (e, 1]. Take (x, y) = (a, a) without losing generality.

UTS
ab (x, y) = b < z = UTS

ab (x, z).

4. Suppose that (x, y) ∈ {a} × [0, e) or (x, y) ∈ {b} × [0, e). Take (x, y) ∈ {a} × [0, e) without losing generality.

4.1. If z = e, then

UTS
ab (x, y) = y < x = UTS

ab (x, z).
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4.2. If z ∈ (e, 1], then

UTS
ab (x, y) = y < z = UTS

ab (x, z).

4.3. If z = a, then

UTS
ab (x, y) = y < b = UTS

ab (x, z).

4.4. If z = b, then

UTS
ab (x, y) = y < e = UTS

ab (x, z).

5. Suppose that (x, y) ∈ (e, 1] × [0, e).

5.1. If z ∈ (e, 1], then

UTS
ab (x, y) = y < x ≤ S(x, z) = UTS

ab (x, z).

5.2. If z ∈ Ie ∪ {e}, then

UTS
ab (x, y) = y < x = UTS

ab (x, z).

6. Suppose that (x, y) ∈ [0, e) × (Ie ∪ {e}) and z ∈ (e, 1].

UTS
ab (x, y) = x = UTS

ab (x, z).

7. Suppose that (x, y) ∈ (e, 1] × (Ie ∪ {e}) and z ∈ (e, 1].

UTS
ab (x, y) = x ≤ S(x, z) = UTS

ab (x, z).

8. Suppose that (x, y) ∈ Ie × {e} and z ∈ (e, 1].

UTS
ab (x, y) = x < z = UTS

ab (x, z).

• Associativity: We prove that UTS
ab (UTS

ab (x, y), z) = UTS
ab (x,UTS

ab (y, z)) for all x, y, z ∈ L. The proof is clear
when e ∈ {x, y, z} since e is the neutral element of UTS

ab . Let us consider Theorems 2.2 and 2.3 and L\{e} =
{a} ∪ {b} ∪ [0, e) ∪ (e, 1]. If x = y = z = a or x = y = z = b or x, y, z ∈ [0, e)2 or x, y, z ∈ (e, 1]2, then the proof is
clear. Hence, we only check the remain following cases:

1. Let x = a, y = b and z ∈ [0, e) ∪ (e, 1].

UTS
ab (UTS

ab (x, y), z) = UTS
ab (UTS

ab (a, b), z) = UTS
ab (e, z) = z,

UTS
ab (x,UTS

ab (y, z)) = UTS
ab (a,UTS

ab (b, z)) = UTS
ab (a, z) = z,

UTS
ab (UTS

ab (x, z), y) = UTS
ab (UTS

ab (a, z), b) = UTS
ab (z, b) = z.

2. Let x ∈ Ie, y ∈ (e, 1] and z ∈ [0, e).

UTS
ab (UTS

ab (x, y), z) = UTS
ab (y, z) = z,

UTS
ab (x,UTS

ab (y, z)) = UTS
ab (x, z) = z,

UTS
ab (UTS

ab (x, z), y) = UTS
ab (z, y) = z.
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3. Let x = y = a and z = b, or x = y = b and z = a. Take x = y = a and z = b without losing generality.

UTS
ab (UTS

ab (x, y), z) = UTS
ab (UTS

ab (a, a), b) = UTS
ab (b, b) = a,

UTS
ab (x,UTS

ab (y, z)) = UTS
ab (a,UTS

ab (a, b)) = UTS
ab (a, e) = a.

4. Let x = y = a or x = y = b, and z ∈ [0, e) ∪ (e, 1]. Take x = y = a without losing generality.

UTS
ab (UTS

ab (x, y), z) = UTS
ab (UTS

ab (a, a), z) = UTS
ab (b, z) = z,

UTS
ab (x,UTS

ab (y, z))UTS
ab (a,UTS

ab (a, z)) = UTS
ab (a, z) = z.

5. Let x, y ∈ [0, e) and z ∈ Ie ∪ (e, 1].

UTS
ab (UTS

ab (x, y), z) = UTS
ab (T(x, y), z) = T(x, y),

UTS
ab (x,UTS

ab (y, z)) = UTS
ab (x, y) = T(x, y).

6. Let x, y ∈ (e, 1] and z ∈ Ie.

UTS
ab (UTS

ab (x, y), z) = UTS
ab (S(x, y), z) = S(x, y),

UTS
ab (x,UTS

ab (y, z)) = UTS
ab (x, y) = S(x, y).

7. Let x, y ∈ (e, 1] and z ∈ [0, e).

UTS
ab (UTS

ab (x, y), z) = UTS
ab (S(x, y), z) = z,

UTS
ab (x,UTS

ab (y, z)) = UTS
ab (x, z) = z.

Remark 3.19. In Theorem 3.18, in general, the constraint x < y for all x ∈ [0, e), y ∈ Ie and x > y for all x ∈ (e, 1],
y ∈ Ie cannot be omitted. In the following, we provide an example of a lattice that does not satisfy this condition on
which the function UTS

ab defined in Theorem 3.18 is not a uninorm. Further we demonstrate thatUe
ab = ∅.

Example 3.20. Consider the bounded lattice (L2 = {0, e, x, a, b, 1},≤, 0, 1) characterized by the Hasse diagram in
Figure 2. There is no uninorm U : L2

→ L with the neutral element e such that U(a, b) = e. Suppose that there is
such a uninorm U . Then, it is obtained U(0, b) ≤ U(e, b) = b by the monotonicity of U. Observe that in this case
then either U(0, b) = 0 or U(0, b) = b. Also, it follows U(x, a) = 0 or U(x, a) = a from U(x, a) ≤ U(e, a) = a. Let
U(x, a) = 0. We have U(x,U(a, b)) = U(x, e) = x and U(U(x, a), b) = U(0, b). It is obtained x = U(0, b), which is a
contradiction. Similarly, when U(x, a) = a, we obtain a contradiction. Hence,Ue

ab = ∅.

1

e a b

x

0

Figure 2: Lattice diagram of L2.
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In particularly, if T = TW and S = S∨ in Theorem 3.18, then the following corollary can be obtained.

Corollary 3.21. Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1} and Ie = {a, b} such that a ∥ b. Define the binary
operation UTWS∨

ab : L2
→ L given, for all x, y ∈ L, as

UTWS∨
ab (x, y) =



0 (x, y) ∈ [0, e)2,
e (x, y) = (a, b) or (x, y) = (b, a),
b (x, y) = (a, a),
a (x, y) = (b, b),
y (x, y) ∈ Ie × ([0, e) ∪ (e, 1]) ∪ (e, 1] × [0, e) ∪ {e} × L,
x (x, y) ∈ ([0, e) ∪ (e, 1]) × Ie ∪ [0, e) × (e, 1] ∪ L × {e},
x ∨ y (x, y) ∈ (e, 1]2.

(6)

Then, UTWS∨
ab is a uninorm if and only if x < y for all x ∈ [0, e), y ∈ Ie and x > y for all x ∈ (e, 1], y ∈ Ie.

The following proposition presents the smallest element ofUe
ab on certain bounded lattices.

Proposition 3.22. (L,≤, 0, 1) be a bounded lattice, Ie = {a, b} such that a ∥ b, x < y for all x ∈ [0, e), y ∈ Ie and x > y
for all x ∈ (e, 1], y ∈ Ie. If L\Ie is a chain, then the smallest element ofUe

ab is UTWS∨
ab .

Proof. Let U ∈ Ue
ab be an arbitrary uninorm on L. We show that UTWS∨

ab (x, y) ≤ U(x, y) for all (x, y) ∈ L × L.
When y = e, the proof is clear. Also, it is proved in a manner similar to Proposition (3.8) when (x, y) ∈
[0, e)2

∪ (e, 1]2
∪ [0, e)× (e, 1]. Then, considering the commutative property of U and UTWS∨

ab , we only examine
the following cases.
• Let (x, y) ∈ Ie × Ie. Due to the definition of UTWS∨

ab and Proposition 3.17, it follows that UTWS∨
ab (x, y) = U(x, y).

• Let (x, y) ∈ Ie × ([0, e) × (e, 1]). Take x = a without losing generality and y < e. We obtain that U(a, y) ≤
U(a, e) = a from the monotonocity of U. If U(a, y) = a, then y = e, which is a contradiction. So, it must be
that U(a, y) < a. Hence, we have U(a, y) ∦ y from the fact that L\Ie is a chain.

• When U(a, y) ≤ y. From the monotonocity and the associativity of U, it follows U(b, y) = U(U(a, a), y) =
U(a,U(a, y)) ≤ U(a, y). Then, U(b, y) ≤ U(a, y). Furthermore, we know that U(b, y) ≤ U(b, e) = b from the
monotonocity of U. If U(b, y) = b, then y = e, which is a contradiction. Then, it must be that U(b, y) < b.
Hence, we have U(b, y) ∦ y from the fact that L\Ie is a chain.

− Suppose that U(b, y) ≥ y. It follows U(b, y) ≥ U(a, y) that from U(a, y) ≤ y. We have that U(a, y) = U(b, y)
by U(a, y) ≤ U(b, y) and U(b, y) ≤ U(a, y).

− Suppose that U(b, y) < y. It is obtained that U(a, y) = U(U(b, b), y) = U(b,U(b, y)) ≤ U(b, y) by
the monotonocity and associativity of U. We again have that U(a, y) = U(b, y) by U(a, y) ≤ U(b, y) and
U(b, y) ≤ U(a, y). In summary, we obtain U(a, y) = U(b, y) when U(b, y) ∦ y. Finally, it follows the following
equations:

U(a,U(a, y)) = U(a,U(b, y))
U(U(a, a), y) = U(U(a, b), y)

U(b, y) = U(e, y) = y.

Verify that U(b, y) = y implies U(a, y) = y. UTWS∨
ab (a, y) = y = U(a, y).

• When U(a, y) > y. UTWS∨
ab (a, y) = y < U(a, y).

Hence, it is obtained that UTWS∨
ab (a, y) = y ≤ U(a, y) when x = a and y < e. In an analogous way, we can show

that UTWS∨
ab (a, y) ≤ U(a, y) for y > e. Consequently, UTWS∨

ab (x, y) ≤ U(x, y) if (x, y) ∈ Ie × ([0, e) ∪ (e, 1]).

In the following, we will introduce another uninorm construction method on the bounded lattices
satisfying the constrains as in Theorem 3.18.
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Theorem 3.23. Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1}, T ∈ T e, S ∈ Se and Ie = {a, b} such that a ∥ b.
Define the binary operation U1TS

ab : L2
→ L given, for all x, y ∈ L, as

U1TS
ab (x, y) =



T(x, y) (x, y) ∈ [0, e)2,
e (x, y) = (a, b) or (x, y) = (b, a),
b (x, y) = (a, a),
a (x, y) = (b, b),
y (x, y) ∈ Ie × ([0, e) ∪ (e, 1]) ∪ {e} × L,
x (x, y) ∈ ([0, e) ∪ (e, 1]) × Ie ∪ L × {e},
x ∨ y (x, y) ∈ [0, e) × (e, 1] ∪ (e, 1] × [0, e),
S(x, y) (x, y) ∈ (e, 1]2.

(7)

Then, U1TS
ab is a uninorm if and only if x < y for all x ∈ [0, e), y ∈ Ie and x > y for all x ∈ (e, 1], y ∈ Ie.

Proof. The proof is similar to the proof of Theorem 3.18.

In particularly, if T = T∧ and S = SD in Theorem 3.23, then the following corollary can be obtained.

Corollary 3.24. Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1} and Ie = {a, b} such that a ∥ b. Define the binary
operation U1T∧SD

ab : L2
→ L given, for all x, y ∈ L, as

U1T∧SD
ab (x, y) =



x ∧ y (x, y) ∈ [0, e)2,
e (x, y) = (a, b) or (x, y) = (b, a),
b (x, y) = (a, a),
a (x, y) = (b, b),
y (x, y) ∈ Ie × ([0, e) ∪ (e, 1]) ∪ {e} × L,
x (x, y) ∈ ([0, e) ∪ (e, 1]) × Ie ∪ L × {e},
x ∨ y (x, y) ∈ [0, e) × (e, 1] ∪ (e, 1] × [0, e),
1 (x, y) ∈ (e, 1]2.

(8)

Then, U1T∧SD
ab is a uninorm if and only if x < y for all x ∈ [0, e), y ∈ Ie and x > y for all x ∈ (e, 1], y ∈ Ie.

The following proposition is proved in a way dual to Proposition 3.22.

Proposition 3.25. (L,≤, 0, 1) be a bounded lattice, Ie = {a, b} such that a ∥ b, x < y for all x ∈ [0, e), y ∈ Ie and x > y
for all x ∈ (e, 1], y ∈ Ie. If L\Ie is a chain, then the greatest element ofUe

ab is U1T∧SD
ab .

The following example demonstrates that the methods described in Theorems 3 and 4 are different on
the same bounded lattice.

Example 3.26. Consider the bounded lattice (L3 = {0, x1, x2, x3, x4, x5, x6, x7, x8, e, x9, x10, x11, 1},≤, 0, 1) character-
ized by the Hasse diagram in Figure 3, T = T∧ and S = S∨. Besides, the lattice L3 can be seen to easily satisfy the
constraints of Theorem 3.18 and Theorem 3.23.
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1
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x10

x9

e x7 x8

x6

x3 x4 x5

x1 x2

0

Figure 3: Lattice diagram of L3.

Take a = x7, b = x8. From the construction method in Theorem 3.18, we obtain the uninorm defined in Table 3.

UT∧S∨
x7x8

0 x1 x2 x3 x4 x5 x6 e x7 x8 x9 x10 x11 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x1 0 x1 0 x1 x1 0 x1 x1 x1 x1 x1 x1 x1 x1
x2 0 0 x2 0 x2 x2 x2 x2 x2 x2 x2 x2 x2 x2
x3 0 x1 0 x3 x1 0 x3 x3 x3 x3 x3 x3 x3 x3
x4 0 x1 x2 x1 x4 x2 x4 x4 x4 x4 x4 x4 x4 x4
x5 0 0 x2 0 x2 x5 x5 x5 x5 x5 x5 x5 x5 x5
x6 0 x1 x2 x3 x4 x5 x6 x6 x6 x6 x6 x6 x6 x6
e 0 x1 x2 x3 x4 x5 x6 e x7 x8 x9 x10 x11 1
x7 0 x1 x2 x3 x4 x5 x6 x7 x8 e x9 x10 x11 1
x8 0 x1 x2 x3 x4 x5 x6 x8 e x7 x9 x10 x11 1
x9 0 x1 x2 x3 x4 x5 x6 x9 x9 x9 x9 x10 x11 1
x10 0 x1 x2 x3 x4 x5 x6 x10 x10 x10 x10 x10 x11 1
x11 0 x1 x2 x3 x4 x5 x6 x11 x11 x11 x11 x11 x11 1
1 0 x1 x2 x3 x4 x5 x6 1 1 1 1 1 1 1

Table 3: The uninormUT∧S∨
x7x8

on L3.

By applying the formula (7) in Theorem 3.23, where a = x7, b = x8, the uninorm U1T∧S∨
x7x8

can be obtained as in
Table 4.
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U1T∧S∨
x7x8

0 x1 x2 x3 x4 x5 x6 e x7 x8 x9 x10 x11 1
0 0 0 0 0 0 0 0 0 0 0 x9 x10 x11 1
x1 0 x1 0 x1 x1 0 x1 x1 x1 x1 x9 x10 x11 1
x2 0 0 x2 0 x2 x2 x2 x2 x2 x2 x9 x10 x11 1
x3 0 x1 0 x3 x1 0 x3 x3 x3 x3 x9 x10 x11 1
x4 0 x1 x2 x1 x4 x2 x4 x4 x4 x4 x9 x10 x11 1
x5 0 0 x2 0 x2 x5 x5 x5 x5 x5 x9 x10 x11 1
x6 0 x1 x2 x3 x4 x5 x6 x6 x6 x6 x9 x10 x11 1
e 0 x1 x2 x3 x4 x5 x6 e x7 x8 x9 x10 x11 1
x7 0 x1 x2 x3 x4 x5 x6 x7 x8 e x9 x10 x11 1
x8 0 x1 x2 x3 x4 x5 x6 x8 e x7 x9 x10 x11 1
x9 x9 x9 x9 x9 x9 x9 x9 x9 x9 x9 x9 x10 x11 1
x10 x10 x10 x10 x10 x10 x10 x10 x10 x10 x10 x10 x10 x11 1
x11 x11 x11 x11 x11 x11 x11 x11 x11 x11 x11 x11 x11 x11 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 4: The uninorm U1T∧S∨
x7x8

on L3.

Therefore, it is worth nothing that the uninorms UTS
ab and U1TS

ab may not be same in general.

Proposition 3.27. Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1} and Ie = {a, b} such that a ∥ b. Then, there is no
uninorm U : L2

→ L with the neutral element e such that U(a, a) = U(b, b) = e.

Proof. Suppose that U : L2
→ L with the neutral element e such that U(a, a) = U(b, b) = e. We claim

that U(a, b) ∥ e. Suppose that U(a, b) ≤ e. From the monotonicity, associativity and commutativity of U,
it follows that b = U(b, e) = U(b,U(a, a)) = U(a,U(a, b)) ≤ U(a, e) = a, which contradicts a ∥ b. Then, it
holds that U(a, b) ≰ e. Analogously, we can observe that U(a, b) ≯ e. Hence, it must hold that U(a, b) ∈ Ie.
We obtain U(a, b) = a or U(a, b) = b from U(a, b) ∈ Ie. Let us suppose that U(a, b) = a. It follows that
U(a,U(a, b)) = U(a, a) = e and b = U(e, b) = U(U(a, a), b). By the associativity of U we have that b = e, which
contradicts b ∈ Ie. Thus, we obtain that U(a, b) , a. It is similarly observed that U(a, b) , b. Hence, there is
no uninorm U : L2

→ L with the neutral element e such that U(a, a) = U(b, b) = e.

Definition 3.28. Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1} and Ie = {a}. Denote the class of all uninorms U
on L with the neutral element e satisfying the condition U(a, a) = e byUe

a.

Next, we introduce four new methods to produce uninorms on bounded lattices, where | Ie |= 1 and
x < y for all x ∈ [0, e), y ∈ Ie and x > y for all x ∈ (e, 1], y ∈ Ie. We omit their proofs since they can be proven
in similar fashion as done in Theorem 3.18.

Theorem 3.29. Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1}, T ∈ T e, S ∈ Se and Ie = {a}. Define the binary
operation UTS

a : L2
→ L given, for all x, y ∈ L, as

UTS
a (x, y) =


T(x, y) (x, y) ∈ [0, e)2,
e (x, y) ∈ Ie × Ie,
y (x, y) ∈ Ie × ([0, e) ∪ (e, 1]) ∪ (e, 1] × [0, e) ∪ {e} × L,
x (x, y) ∈ ([0, e) ∪ (e, 1]) × Ie ∪ [0, e) × (e, 1] ∪ L × {e},
S(x, y) (x, y) ∈ (e, 1]2.

(9)

Then, UTS
a is a uninorm if and only if x < y for all x ∈ [0, e), y ∈ Ie and x > y for all x ∈ (e, 1], y ∈ Ie.

Example 3.30. Consider the bounded lattice (L4 = {0, x1, x2, e, x3, x4, 1},≤, 0, 1) characterized by the Hasse diagram
in Figure 4, T = T∧ and S = S∨.
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Figure 4: Lattice diagram of L4.

By applying the formula (9) in Theorem 3.29 with a = x3, the uninorm UT∧S∨
x3

can be obtained as in Table 5.

UT∧S∨
x3

0 x1 x2 e x3 x4 1
0 0 0 0 0 0 0 0
x1 0 x1 x1 x1 x1 x1 x1
x2 0 x1 x2 x2 x2 x2 x2
e 0 x1 x2 e x3 x4 1
x3 0 x1 x2 x3 e x4 1
x4 0 x1 x2 x4 x4 x4 1
1 0 x1 x2 1 1 1 1

Table 5: The uninorm UT∧S∨
x3

on L4.

In particularly, if T = TW and S = S∨ in Theorem 3.29, then the following corollary can be obtained.

Corollary 3.31. Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1}, T ∈ T e, S ∈ Se and Ie = {a}. Define the binary
operation UTWS∨

a : L2
→ L given, for all x, y ∈ L, as

UTWS∨
a (x, y) =


0 (x, y) ∈ [0, e)2,
e (x, y) ∈ Ie × Ie,
y (x, y) ∈ Ie × ([0, e) ∪ (e, 1]) ∪ (e, 1] × [0, e) ∪ {e} × L,
x (x, y) ∈ ([0, e) ∪ (e, 1]) × Ie ∪ [0, e) × (e, 1] ∪ L × {e},
x ∨ y (x, y) ∈ (e, 1]2.

(10)

Then, UTWS∨
a is a uninorm if and only if x < y for all x ∈ [0, e), y ∈ Ie and x > y for all x ∈ (e, 1], y ∈ Ie.

Proposition 3.32. (L,≤, 0, 1) be a bounded lattice, Ie = {a}, x < y for all x ∈ [0, e), y ∈ Ie and x > y for all x ∈ (e, 1],
y ∈ Ie. If L\Ie is a chain, then the smallest element ofUe

a is UTWS∨
a .

Proof. The proof can be shown in a manner similar to that of Proposition 3.22.
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Theorem 3.33. Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1}, T ∈ T e, S ∈ Se and Ie = {a}. Define the binary
operation U1TS

a : L2
→ L given, for all x, y ∈ L, as

U1TS
a (x, y) =



T(x, y) (x, y) ∈ [0, e)2,
e (x, y) ∈ Ie × Ie,
y (x, y) ∈ Ie × ([0, e) ∪ (e, 1]) ∪ {e} × L,
x (x, y) ∈ ([0, e) ∪ (e, 1]) × Ie ∪ L × {e},
x ∨ y (x, y) ∈ (e, 1] × [0, e) ∪ [0, e) × (e, 1],
S(x, y) (x, y) ∈ (e, 1]2.

(11)

Then, U1TS
a is a uninorm if and only if x < y for all x ∈ [0, e), y ∈ Ie and x > y for all x ∈ (e, 1], y ∈ Ie.

In particularly, if T = T∧ and S = SD in Theorem 3.33, then the following corollary can be obtained.

Corollary 3.34. Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1}, T ∈ T e, S ∈ Se and Ie = {a}. Define the binary
operation U1T∧SD

a : L2
→ L given, for all x, y ∈ L, as

U1T∧SD
a (x, y) =



x ∧ y (x, y) ∈ [0, e)2,
e (x, y) ∈ Ie × Ie,
y (x, y) ∈ Ie × ([0, e) ∪ (e, 1]) ∪ {e} × L,
x (x, y) ∈ ([0, e) ∪ (e, 1]) × Ie ∪ L × {e},
x ∨ y (x, y) ∈ (e, 1] × [0, e) ∪ [0, e) × (e, 1],
1 (x, y) ∈ (e, 1]2.

(12)

Then, U1T∧SD
a is a uninorm if and only if x < y for all x ∈ [0, e), y ∈ Ie and x > y for all x ∈ (e, 1], y ∈ Ie.

Proposition 3.35. (L,≤, 0, 1) be a bounded lattice, Ie = {a}, x < y for all x ∈ [0, e), y ∈ Ie and x > y for all x ∈ (e, 1],
y ∈ Ie. If L\Ie is a chain, then the greatest element ofUe

a is U1T∧SD
a .

Proof. The proof can be shown in a manner similar to that of Proposition 3.22.

Example 3.36. Consider the bounded lattice (L4 = {0, x1, x2, e, x3, x4, 1},≤, 0, 1) characterized by the Hasse diagram
in Figure 4. By applying the formula (11) in Theorem 3.33 with a = x3, the uninorm U1T∧S∨

x3
can be obtained as in

Table 6.

U1T∧S∨
x3

0 x1 x2 e x3 x4 1
0 0 0 0 0 0 x4 1
x1 0 x1 x1 x1 x1 x4 1
x2 0 x1 x2 x2 x2 x4 1
e 0 x1 x2 e x3 x4 1
x3 0 x1 x2 x3 e x4 1
x4 x4 x4 x4 x4 x4 x4 1
1 1 1 1 1 1 1 1

Table 6: The uninorm U1T∧S∨
x3

on L4.

Definition 3.37. Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1} and Ie = {a}. Denote the class of all uninorms U
on L with the neutral element e satisfying the condition U(a, a) = a byUa

a .

In the following, we get the following Theorems 3.38 and 3.41 satisfying this condition.
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Theorem 3.38. Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1}, T ∈ T e, S ∈ Se and Ie = {a}. Define the binary
operation U2TS

a : L2
→ L given, for all x, y ∈ L, as

U2TS
a (x, y) =


T(x, y) (x, y) ∈ [0, e)2,
a (x, y) ∈ Ie × Ie,
y (x, y) ∈ Ie × ([0, e) ∪ (e, 1]) ∪ (e, 1] × [0, e) ∪ {e} × L,
x (x, y) ∈ ([0, e) ∪ (e, 1]) × Ie ∪ [0, e) × (e, 1] ∪ L × {e},
S(x, y) (x, y) ∈ (e, 1]2.

(13)

Then, U2TS
a is a uninorm if and only if x < y for all x ∈ [0, e), y ∈ Ie and x > y for all x ∈ (e, 1], y ∈ Ie .

Example 3.39. Consider the bounded lattice (L4 = {0, x1, x2, e, x3, x4, 1},≤, 0, 1) characterized by the Hasse diagram
in Figure 4, T = T∧ and S = S∨. By using the construction approach in Theorem 3.38 with a = x3, we find the
uninorm U2T∧S∨

x3
defined in Table 7.

U2T∧S∨
x3

0 x1 x2 e x3 x4 1
0 0 0 0 0 0 0 0
x1 0 x1 x1 x1 x1 x1 x1
x2 0 x1 x2 x2 x2 x2 x2
e 0 x1 x2 e x3 x4 1
x3 0 x1 x2 x3 x3 x4 1
x4 0 x1 x2 x4 x4 x4 1
1 0 x1 x2 1 1 1 1

Table 7: The uninorm U2T∧S∨
x3

on L4.

Remark 3.40. Due to the Tables 5, 6 and 7, it is easy to check that the uninorms UTS
a , U1TS

a and U2TS
a are different

from each other.

Theorem 3.41. Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1}, T ∈ T e, S ∈ Se and Ie = {a}. Define the binary
operation U3TS

a : L2
→ L given, for all x, y ∈ L, as

U3TS
a (x, y) =



T(x, y) (x, y) ∈ [0, e)2,
a (x, y) ∈ Ie × Ie,
y (x, y) ∈ Ie × ([0, e) ∪ (e, 1]) ∪ {e} × L,
x (x, y) ∈ ([0, e) ∪ (e, 1]) × Ie ∪ L × {e},
x ∨ y (x, y) ∈ (e, 1] × [0, e) ∪ [0, e) × (e, 1],
S(x, y) (x, y) ∈ (e, 1]2.

(14)

Then, U3TS
a is a uninorm if and only if x < y for all x ∈ [0, e), y ∈ Ie and x > y for all x ∈ (e, 1], y ∈ Ie.

Example 3.42. Consider the bounded lattice (L4 = {0, x1, x2, e, x3, x4, 1},≤, 0, 1) characterized by the Hasse diagram
in Figure 4. We exploit the construction method in Theorem 3.41 with a = x3 to construct a uninorm such that
U(a, a) = a and we choose T = T∧ and S = S∨. The uninorm U3T∧S∨

x3
is listed in Table 8.
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U3T∧S∨
x3

0 x1 x2 e x3 x4 1
0 0 0 0 0 0 x4 1
x1 0 x1 x1 x1 x1 x4 1
x2 0 x1 x2 x2 x2 x4 1
e 0 x1 x2 e x3 x4 1
x3 0 x1 x2 x3 x3 x4 1
x4 x4 x4 x4 x4 x4 x4 1
1 1 1 1 1 1 1 1

Table 8: The uninorm U3T∧S∨
x3

on L4.

Remark 3.43. Two uninorms U2TS
a and U3TS

a given by the Examples 3.39 and 3.42 differ from each other on the
bounded lattice L4.

Remark 3.44. (i) It is easy to see that the uninorms derived from Theorems 3.8, 3.11, 3.18, 3.23, 3.29 and 3.33 are
not idempotent. Therefore, we conclude that these uninorms are not locally internal.
(ii) If we take T = T∧ and S = S∨ in Theorems 3.38 and 3.41, then the uninorms derived from them are locally
internal.

4. Conclusions

In Proposition 3.2, it has been demonstrated that if U is a uninorm on L with neutral element e and
satisfies U(x, y) = e for all (x, y) ∈ (Ie)2, then |Ie| = 1. Additionally, we have proposed construction methods
that reveal the existence of the uninorms discussed in Proposition 3.2. Motivated by this proposition
3.2, we have revealed some construction methods for uninorms that satisfy the condition U(x, y) = e for
some (x, y) ∈ Ie × Ie, particularly when |Ie| , 1. We have also discussed the relationships among the
presented methods. Furthermore, these methods have been introduced within the new uninorm classes:
UTS

abc,U
1TS
abc ∈ U

e
abc, UTS

ab ,U
1TS
ab ∈ U

e
ab, UTS

a ,U1TS
a ∈ U

e
a, U2TS

a ,U3TS
a ∈ U

a
a . Moreover, we have found that the

greatest and smallest elements of these classes on some special lattices.
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