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Abstract. In this paper, we establish a novel weakly singular integral inequality of Wendroff type. Using
a combination of analytical and fractional calculus techniques, we derive sufficient conditions for the
validity of this inequality. As a key application, we investigate the existence, uniqueness, and Ulam-Hyers
stability of solutions to a class of nonlinear partial fractional differential equations. Our approach not
only generalizes previous results but also provides a unified framework for analyzing fractional-order
systems with singular kernels. An illustrative example is presented to demonstrate the applicability and
effectiveness of the proposed method.

1. Introduction

Integral inequalities are fundamental to the qualitative analysis of differential and integral equations, es-
pecially in determining bounds, uniqueness, stability, and solution existence. Among classical inequalities,
Wendroff-type inequalities have proven particularly powerful in solving problems with weakly singular
integral operators [1-5]. Over time, these inequalities have been generalized and refined to meet the
demands of diverse areas in mathematical analysis and applied sciences [6H8]. These extensions include
the development of nonlinear versions to handle more complex nonlinearities, the incorporation of mul-
tiple integrals and delays for systems with memory effects, and the derivation of inequalities specifically
tailored for the weakly singular kernels inherent to fractional calculus. A canonical form for a function
u(x, y) is given by u(x,y) < a(x,y) + fox foy(x - 8)* Yy — £F~1b(s, t)u(s, t)dtds, which leads to a bound via a
Mittag-Leffler function [4]. A significant recent generalization is the powered Wendroff-type inequality [7],

bi(x) fci(y)
C,

pi
ux,y) <alx,y) + Y, [ b (x0) i) filx, y, t, s)wi(u(t, s))dsdt] , which introduces powers p; > 1 on the integral
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terms. This work contributes to this lineage by establishing, via a new technique, an inequality that handles
two distinct singular kernels simultaneously. Specifically, we bound a function % (&, w) satisfying

U ) < A(E w) + BE o) f ) f (& = 0w = 0 1% (1, ded
0 0

& w
+C(Ew) f f (& = 00w - P 1% (x, i,
0 0

a structure essential for analyzing the complex multi-term fractional equations considered in this paper.

Recent years have witnessed increasing interest in fractional differential equations (FDEs) due to their
unique ability to model complex systems with memory and hereditary effects [9, [10]. Unlike classical
calculus, fractional-order derivatives and integrals provide a more accurate framework for describing phe-
nomena in physics, engineering, biology, and finance [11-114]. However, a key challenge in analyzing these
systems arises from the inherent nonlocality and singular kernels of fractional operators, which often hinder
the direct application of traditional analytical methods [[16H18].

We present a new Wendroff-type integral inequality designed for weakly singular kernels, extending
and generalizing known results. Derived using techniques from fractional calculus and functional analysis,
this inequality serves as a robust tool for probing the qualitative behavior of solutions to partial fractional
differential equations (PFDEs).

The central application of our work is the analysis of the following nonlinear PFDE system:

CDg+ (% (5/ CL)) - I§+.{}—2 (5/ w, w (5/ Cl)))) =Hh (5/ w, w (é/ a))) ’ (5/ CL)) € ] = [0/ Tl] X [O/ TZ] ’ (1)

U (&,0)=¢(&),&€[0,T],
% 0,w)=¢(w), wel0,T,], ()
)=y,
where u = (1, u2),0 = (01,0) € (0,1)2, CD& is the partial Caputo fractional derivative of order u and
FA, P2 JXxR—>R,¢:[0,T1] » Rand ¢ : [0, T2] — R are given continuous functions.
Within this framework, we establish rigorous results on the existence, uniqueness, and Ulam-Hyers stability
of solutions. To demonstrate the practical applicability of our theory, we conclude with a detailed example.

This paper is organized as follows: Section 2 presents fundamental concepts and preliminary results
from fractional calculus essential for our analysis. In Section 3, we introduce and rigorously prove our novel
Wendroff-type inequality. Building on these foundations, Section 4 develops the theoretical framework for
applying this inequality to PFDEs, establishing key results on solution existence, uniqueness, and stability
characteristics. Finally, Section 5 provides a demonstrative example that both validates and illustrates the
practical implementation of our theoretical developments.

2. Preliminarily

Definition 1. [15] The left-sided mixed Riemann-Liouville fractional integral of order o of % (&, w) € L(]) is
defined by

1 * %(1,0)
0 ) (& W) = m——— dedr,
(% yéw) Fwonm)l:J:}g—Tfﬂww—gfﬂzCT

where 0 = (01, 02) with 01, 0, are positive real numbers.
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Definition 2. [15] The mixed fractional Riemann Liouville derivative of order o = (01,02) € (0,1) of % (&, w) is
defined by

(D7) (@) = D3, (Ié: U (&, w)

B (1)
T oTa- al)ra—oz f f €= -

2 _ P
where, ng = 350

Definition 3. [15] The mixed fractional Caputo derivative of order ¢ = (01, 02) € (0, 1)2 of % (&, w) is defined as

Co _ éa) “’%(Tg - U (t,0)—%(0,c) +%(0,0)
( D0+%) (5/ CU) - r(l _ Gl)r l 0_2) (E _ T)tﬁ (CL) _ C)02

dcdr.

Lemma 1. [4] Let 01,02 > 0, and let % and ¥ be two non-negative integrable functions on J. Consider a function
G : ] = R that is continuous, non-negative, and non-decreasing with respect to its variables. If

v s e sEw [ [e-0w-omw @, ®)
then,
A LT (07T (02))F
UEw) < V(Ew)+ fo fo ) et .
X (& =0 w - )7 (1, 0)ded.
Moreover, if ¥ is non-decreasing with respect to its variables, then
U (&w) <V (&) E((01,1), (02,1); G @) (@) (02)(& = 1) (= 22) ) 5)
where
E((a1,$2) (a2, $2)  (2)) = KZ:S T + ﬁjr(Kaz )
forall a1, B1, a2, B2,z € C, with R(a;), R(B;) >0, j=1,2.
3. Integral inequalities
Lemma 2. Let pq, o € (0,1), and let 2 be a positive real constant with ® > 1 and
P(min{uy, y2}) =P +1>0. Then,
[ fo é fo ' (& - 0" (@ - )"V exp (2(T + <)) dchr < Mg 2) €XP(E + W), (6)

where Ay, ) =

I(Pur—?2+ DI (Pup — P+ 1)
fPT(lulerZ) 2P+2
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Proof. We have

fg f (& =)™ (w - )" Vexp (2(t + ¢)) dedt
0 0

& ) (7)
:f (& — 7)? D exp (P1) d”cf (w = ¢)Tw27D exp (P¢) dc.
0 0
Now, we proceed to calculate the following integral
&
f (& — )t =D exp (1) dr.
0
For x = £ — 1, we get
3 3
[ -0t epwode = [ et tep (e - o)
0 0
3
= exp (Té)f x(Bua=2+1)-1 exp (—Px) dx.
0
For r = Px, we obtain
£ pE) [
f & -0 Vexp (Pr)dt = —:;Eﬁji A2m=2 )T s (=) dr
' exp (P¢&) (8)
< WF(T[“_T-FI)'

From (7) and [§]and after some simplifications, we arrive at (6). [

Theorem 1. Let (['ll/ HZ)/ (Ql/ QZ) € (0/ 1)2/ and let %(5/ w)/ /q(é/ w)/ B(é/ a))/ C(é/ a)) eC ([0/ Tl] X [0/ TZ] 7 11{+)
with A(&, w), B(&, w) and (&, w) are nondecreasing in each of its variables. Assume that,

< @
VEw) < A& w) +BE o) fo fo (& -0 (@ - O % (1, )dedn

£ o ©9)
+C(&, w) f f E -1 w - )” " % (x,c)dcdr.
0o Jo
Then,
%(gr CL)) < N(él Cl))ﬂ(é, (l)) eXp (5 + CL)) ’ N (‘SI CL)) € [0/ Tl] X [Or TZ] ’ (10)
where
D e 32-1 @ BAU(E, w)éw
N(E w) = 2Q2T3L%1 exp{ [m,yz,ﬂ;}l
-1 3a-114 o BAU (&,w)éw
2271327 A{(Z,gz,’l’z}C@(él w)exp|Q ‘“1/‘2’51’ Ew
X exp ,

Q

with the expressions of Ay, u, e} and Ay, g, 2 are given as in Lemma |Zl
Moreover if 4 = 0, then

U, w) =0, V(& w) €0, T1] X [0, T2].
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Proof. Applying Holder’s inequality, we obtain

1

& rw Y
UE ) < ﬂl(é,w)+@(r’§,a))[ f f (& -0 (@ — )1 Vexp (7 <r+g>>dgdf]
0 0

& @ é
— Q
x[‘f; f; exp(-Qi (T +¢) % “ (7, g)dng]

& P
+C(£,w)[ f f <a—r>“’z<@1‘1>(w—c)"’2<<’2‘1>exp<fz<r+c>)dcdr]
0 0

1

X

3 W )
f f exp(—@(wg))%@(r,g)dgm] ,
0 0

1 1

where P}, %, Q, @ are real numbers strictly greater than one, and satisfy - + a =1and - + @ =1.1t
il )

follows from Lamma 2] that

& ) Qil
Y@ w0 < ﬂ(E,w)+A{y1,;¢2,arl}i’3(5,w)exp(5+w)[ f f eXp(—Ql(T+c))“2/Q1(T,c)dch]
0 0

3 3
+A{g1,00,2) C(&, ) exp(& + w) lf fw exp (—Q (T + ) % %(x, g)dng]
0 Jo

It implies that,

U (E w) < 397a%E w)
+3@-1)Q }Q;Ql(g,a))exp(Ql(5+w))fgf exp(—Ql(T+g))%Q1(T,g)dng
o Jo

{1, 12,#1

& ) >
+3Q1‘1/\§1,02,1,2,CQ‘(€,60)€XP(Q1(<§+w))[ [ [ evcacrpzeman|
b 0 0

and consequently,

exp (—Q (& + ) 7 (&, w)
<37 2%(E, w) exp (-Q (€ + )

& )
et w0 [ [ ep e v ot
0 0

1,2,

3 W Q@
+3471A2 Y @) exp (—Q (T + ¢)) % ®(t, ¢)dcdt
01,02, } o Jo
<3%712%(¢, w)

et Lm0 [ [ epcaer ) v et
0 0

{1, 12,#1
]

& ) Q
+3(21_1A{%1,92,T2]CQ] (& w) [f f exp (—Q (t +¢) % %(z, g)dng] .
0o Jo



A. R. A. Alanzi et al. / Filomat 40:2 (2026), 483-494

Using Lemma for 01 = 03 = 1, we obtain

exp(-Q(E+w) %Y (E w)
<E((L,1,0,1,32722 |, 52 o)o) [3@—1z<21 (& w)

{1, 12,2

{01,02,P2}

B '3 W 12
+32° 1)@ CU(E, w) f f exp (-Q (T + <)) % ®(t, ¢)dcdr :
LJO 0 }

<ep(3R7E 50 W) [3%-%% (& w)

e e &
+3971A2 U, w) f f exp (—Q (T + <)) % %(t, ¢)dcdt
V0 0 |

{01,02,P2}

Hence,

exp (~Q (E+w) %% (&, w)

<3272 w)exp (307N, B2 w)Ew)

-1y & Q-1 @ Q
+3A7IAL € (é,w)exp(?) Moty ® (é,a))écu)

& @ %
_ Q
X [fo fo exp (- (1 +¢)) % “(z, g)dng] .

Since @ > 1, we obtain

exp(—(E+ )% (&, w)

Q-11Q @
3 /\{Hl,‘l-lz,fl;'l}ﬂ (éla))éw

Q
3O BYE w)ng

< 3%1}4(5, ) exp[

{1,122,

Q
& a é
_ Q
x[fofoexp( Q(T+)% (T,g)dng] .

Q-1
+3°% Mgy, 00,m) C(E, ) eXp[

It implies that

exp (—Q (& + W) % % (&, w)
3Q-1)Q BUE, w)éw

Q-1
<22713%7a 2% (E, w) exp (Qz {M'mz}l
B} 3a-1 @ BU(E, w)éw
P Q {p1,u2,%1} ’
+2%73% A!@l/Qz/fz}CQZ(E, @) exp(@ Q ]

& )
X f f exp (—Q (t +¢)) % (1, ¢)dcdr.
0o Jo

488
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Using Lemma for 01 = 03 = 1, we obtain
exp (~Q (€ + ) % (&, w)

4 3a-1pR B2 (&, w)éw
<2%713%%a 2%(E, w)exp| @

{1, 12,21}

Q

B} 3a-1)Q BU(E, w)éw
et (wp2)” &
xE ((1,1), (1,1), [2‘22 13Q 7% A%/QZ,TZ}CQZ(S, w)exp| @ s yzl;l ]Ew]]

Q-11a Q
3 /\‘thz/ﬂ}fB (&, w)éw

Q&

< 2@_13(22%154‘22(5, w) exp [Qz

{1, 12,#1
Q

{01,02,P,

ot 397D B w)Ew
xexp|2@713% @ A2 ]CQZ(E,a))exp Q Ew].

Consequently,

32-1)Q | BY(E, w)éw

%l 112,71
Ue(E,w) < 29713% 0 22(E, w)exp| @ o 1;21
B} 3a-1pQ BU(E, w)éw
Q-1 ¥ @ Q {2, 21} ’
Xexp|2=37 @ A{Ql/QZ/TZ}C (& w)exp [QZ Q tw
xexp (@ (& +w)).
Thus,
e 3a-1 @ BU(E, w)éw
Q-1 -1 7
U w)< 2@ 3o exp[ [m,yz,%’é}l
a1 3aiA L BAEw)Ew
2271327 )\{le/gzﬂ,z}cﬁb(é,a))exp Q ‘M”'Q]l’ )
X exp

Q

XA(E, w)exp (& + w),
which is equivalent to:
U (& w) < N(E, @) A(E, w) exp(E + w).
0

4. Applications

4.1. Existence and uniqueness
We shall consider the following assumptions:
(H1) There exist Ry, R, 71, 1 € C(], ]R+) such that, for all (§,w) € J,and forall € R :

|,¢1 (é/w/%)l < Kl (é/a))l%l + ‘271 (5/(‘))/
12 0, %) < R (& 0) |+ T (& w).

(H») There exist #, # € C (J,IR,) such that, for all (§,w) € J,and forall %, ¥ € R :

|:rl (‘Erw/%) - H (élwlly)| < }ﬁ(é/w)l% - 7/|/
P2 (& 0, ) = F2 (&, 0, V) < H (&, 0)|% = V.
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Theorem 2. Suppose that (H1)is satisfied. Then there exists at least one solution to (I)—(2). Furthermore, if (H2)
is satisfied, then ([T)~(@2) has a unique solution on J.

Proof. Let us consider the operator % : C(J,R) — C (J,R) defined by

BU)(Ew) = TEw)+ ) f E =" (@=0* ' 5 (1, % (1, ) dedr
0

1
PTG
_ 1 el el
TlonT (@z)fo fo E-0" (@=9)"" R(tc, % (1) dcdr,

where 71(&, w) = @ (&) + P (w) — @ (0). It follows from (H1) and the continuity of #, %, ¢ and ¢ that the
operator & is continuous and completely continuous. It remains to establish that the set

={% eC(R), % =(0B) (%), for 6 € (0,1)}

is bounded, Let € ., then for 6 € (0,1) and (&, w) € ], we have
1 ¢ ! =1 -1
% (& w) = 9(71(5,0)) + f f E-D" (W= At % (1,¢)dcdr
I'(p)T (p2) Jo Jo

; * N _ a-1 -1
T fo fo (=007 w9 3 (1.6, % (1,0) dee).

So,

% Ew) = Il + W f f (€~ (- o) (1, 0) dede

_ )l p2=1
T f (-0 @ & 5, 0) 1 (1, dede

el _ -l
r(@l)r(é?z)ff 0" (0= B(rc)dedt

m f f (€ =00 (-0 R (1,0) 1 (1, 0)\ ded
0 0
(il T llo TOTE
Il + ¥
F(y1+1gf(y2+1) T+l (gn+1)

_ Rl el el
+T(y1)r(y2) f(é 7) (w=¢) |% (7, ¢)ldcdr

(1Rl oo - -
r(Ql)r(Qz)ff 0 (@ =)? 7 (x,0)ldedr.

Now, applying Theorem 1} we get, for all (£, w) € ] :

|% (&, w) < AN (& w)exp (& +w),
< an(Ty, To)exp (Ty + Ta),

where A is defined as in Theoremwith g= A _ang o= MRls ang g = llc1lleo + AT T2
T(u)r(p2) M)l (e2)” oo T T +1)r ()
91 02
%. From the Schaefer Fixed Point Theorem, it follows that the operator # has at least one fixed
@1 ¢
point in C(J, R), which corresponds to a solution of @)—

Now, we suppose that (H,) is satisfied, and let us assume that % (¢, w) , % (&, w) are two solutions of -.
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Then,

|% (&, w) — U (&, )|
mf f £- D" w =) 2 (7,0) ‘%(T ¢) = U(r, C)'d(;d’[

rl(lgl)”r(@) f f (=0 (=97 7 (¢, 9)|#(1,0) - Ul 0)|dedr
Il

e Y A e e e DY A e
St | [ -0 - 0 it - s e
17|

3 @
1—1 _ n—1 _
T o) fo fo (=0 @=-97 |(r,) - 2, o |dedr.

Using Theorem [T} we obtain 7% = %. O

4.2. Ulam stability

We consider the following inequality for all (£, w) € J and for alle > 0:
D% (¥ (€ 0) - L (& 0, ¥ (€ @) - A (E w, ¥ (& w))| <€ (11)

Definition 4. Equation (1) is said to be Ulam—Hyers stable if there exist K > 0, such that for every € > 0, and for
every solution ¥ (&, ) of (T1) there exists a solution % (&, w) of equation (I) such that

% (&, w) -V (&, w)| < eX.

Remark 1. If ¥ (&, w) is a solution of (T1) then ¥ (&, w) is a solution of

V(& 0) - BE @) - m f f €~ - 7 (06, ¥ (1,0) dedr

- - 0-1 -1
F(Q1)F(Qz) f f E-1)"" (w=-9)* FR(t,c, ¥ (1,0)dcdt

1 2
ST+ DI +1)

where B(E, @) = 5(E,0) + #5(0, ) — %(0, 0).

Theorem 3. Suppose that (H,) is satisfied. Therefore, Equation (1) is Ulam-Hyers stable.

Proof. Let ¥ (&, w) be a solution of and % (&, w) the unique solution of the following problem
D% (&0) - LR (& w, X (Ew) = hEw% Ew),Ew) €],

w (£,0)=7(&,0),¢€[0,Th], (12)
% 0,w) =7 0,w),w € [0,T,].

Then

_ 1 Y 11 =1
V(@) = e+ s fo fo E -0 @=) 5 (1,0, % (1, ) dedr

TS fo -0 -0 B % (e dede
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where T (&, w) is defined as in Remark
Using Remark[T|and (H2), we get

|qf/(‘£/ C()) - %(é/ a))l .
- ‘%(5, ©) = BE ) m fo fo (& =0 (@ = A (¢, % (1, ) dedr
& )

_; ‘ _ o—-1 _ 0-1
F(@1)F(@z)fo j; E-0" (@ é g)w R (1,6, % (1,0)) dedr
< ‘m ©) - BE @) - m f f (- o (e (o) ded

—_— _ )= 0—
r(@l)r(Qz)f f -1 (@=-9"" R(re ¥ (r,0)dadr
- = =1 B
F(#l)r(ﬂz)f f €= @=-0"" | (06, ¥ (1,0) - i (1,6, % (5,9) |dedr

+Wf° fo E-12 N w-c)?! |Tz (1,6, 7 (1,0) - R (1,¢,% (1,0)) |dCd’f
eT T, [1#4 ]| o

STGu+ DI (m+ D T ()T ()

1#5]l0o — )0 (- )2t -
F(e)T (@) Jo fo =0 =77 (0.0~ (5.0 fdede.

Now, applying Theorem I} we get, for all (§,w) € ] :

e =0 P o - # o
0 0

|7/(Er C()) - %(é/ (L))l < €ﬂﬂ\[ (é/ CL)) exp (é + CU),
< ean (Ty, Tr)exp (T1 + T2),

Tfl T§2 74l lI74ll

where 4 = T+ )T (1) and 9 is defined as in Theorem [1|with B = T 1){#2) and C = r(gl)rz"gz)
Thus, Equation (T) is Ulam-Hyers stable. O

5. Example

Let’s consider the following problem
1
p _e L
D} (% (€ @) - L (£ + 0+ g sin(@ (£, @)
= exp(& + w) +arctan (% (&, w)), (&, w) € [0,1] x[0,1], (13)

% (&,0)=sin(&), £€[0,1],
% (0,w) =1-cos(w), we]0,1],

where u = (u1, 112), 0 = (01, 02) € (0,1)°.
We have

1
{ FEwU) =E+w+ msm(%)/

P (& w,U) = exp(& + w) + arctan (%) .
Moreover, for all (§,w) € [0,1] X [0,1] and forall Z,7 € R :

{ |f1(5,w,%)|ﬁé+w+m|%|,

P&, w, %) < exp(&+w)+ %],
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and

1
|Tl(é/w/%)_7l(5/w/7/)|sé |%_7/|/

+w+1
|_‘7'—2(£,((),02/)_9‘—2(5,(1),4//)| < |% _7/|

Hence, the assumptions (H;) and (H;) are satisfied. It follows from Theorem [2| and Theorem [3| that the
system has a unique solution on [0, 1] X [0, 1], and this solution is Ulam-Hyers stable.

6. Conclusion

This paper presents a novel Wendroff-type integral inequality for weakly singular kernels, developed

through an innovative combination of analytical methods and fractional calculus techniques. As a sig-
nificant application, we establish a complete theoretical framework for investigating nonlinear partial
fractional differential equations, deriving verifiable conditions that ensure solution existence, uniqueness,
and Ulam-Hyers stability. The developed inequality not only advances theoretical understanding but also
offers practical utility for analyzing complex systems with singular behaviors, as demonstrated through
our rigorous analysis.
Our findings significantly advance the theoretical foundations for analyzing fractional-order systems with
singular kernels while opening new research directions in their qualitative analysis. The illustrative exam-
ple provided confirms the practical relevance and effectiveness of our approach. Looking ahead, this work
naturally extends to several promising directions, including generalization to inequalities with variable-
order fractional operators, applications to systems with time-varying delays, and extension to impulsive
fractional dynamical systems.

Funding: This work was funded by the Deanship of Graduate Studies and Scientific Research at Jouf
University under grant No. (DGSSR-2025-02-01165).

References

[1] M. Medved, Nonlinear singular integral inequalities for functions in two and independent variables, Journal of Inequalities and
Applications, vol. 2000, pp. 974513, 2000.

[2] W. S. Cheung, Q. H. Ma and S. Tseng, Some New Nonlinear Weakly Singular Integral Inequalities of Wendroff Type with
Applications, Journal of Inequalities and Applications, vol. 2008, pp. 1-13, 2008.

[3] E Lakhal, A new nonlinear integral inequality of Wendroff type with continuous and weakly singular kernel and its application,
Journal of Mathematical Inequalities, vol. 6, no. 3, pp. 367-379, 2012.

[4] F. Hongling, B. Zheng, Some new generalized Gronwall-Bellman type inequalities arising in the theory of fractional differential-
integro equations, WSEAS Transactions on Mathematics, 2014, vol. 13, p. 820-829.

[5] H. Wang, K. Zheng, Some Nonlinear Weakly Singular Integral Inequalities with Two Variables and Applications , Journal of
Inequalities and Applications. 2010 (2010) 1-12.

[6] M. E. Omaba, Growth estimates of solutions to fractional hybrid partial differential equations, Partial Differential Equations in
Applied Mathematics, vol. 13, pp. 101141, 2025.

[7] Y. Yang, B. Wang and J. Zhou, Powered Wendroff-type integral inequality and application to fractional PDEs, Chaos, Solitons &
Fractals , vol. 193, pp. 116129, 2025.

[8] K. Hattaf, Useful Results for the Qualitative Analysis of Generalized Hattaf Mixed Fractional Differential Equations with
Applications to Medicine , Computation. 13 (2025) 167.

[9] A. A.Kilbas, H. M. Srivastava , J. J. Trujillo. Theory and applications of fractional differential equations. Amsterdam: Elsevier;
(2006).

[10] I Podlubny, Fractional Differential Equations, Academic Press. 1999.

[11] O. Naifar, A. Ben Makhlouf. Fractional Order Systems: Control Theory and Applications, Book Subtitle : Fundamentals and
Applications, Editors : Omar Naifar and Abdellatif Ben Makhlouf, Series Title : Studies in Systems, Decision and Control:
Springer, DOI: 10.1007/978-3-030-71446-8, 2022.

[12] N. Laskin, Fractional market dynamics, Physica A 287 (2000) 482—-492.

[13] R.Koeller: Applications of fractional calculus to the theory of viscoelasticity. ASME J. Appl. Mech. 51(2) (1984), pp. 299-307.

[14] I Petras, R.L. Magin, Simulation of drug uptake in a two compartmental fractional model for a biological system, Commun.
Nonlinear Sci. Numer. Simul. 16 (2011) 4588-4595.

[15] A.N. Vityuk and A. V. Golushkov, Existence of solutions of systems of partial differential equations of fractional order, Nonlinear
Oscillations, vol. 7, no. 3, pp. 318-325, 2004.



A. R. A. Alanzi et al. / Filomat 40:2 (2026), 483-494 494

[16] H. Rguigui, M. Elghribi, Practical stabilization for a class of tempered fractional-order nonlinear fuzzy systems , Asian Journal
of Control. DOI: 10.1002/asjc.3703 (2025) 1-6.

[17] H. Rguigui, M. Elghribi, Separation principle for Caputo-Hadamard fractional-order fuzzy systems , Asian Journal of Control.
DOI: 10.1002/asjc.3650 (2025) 1-8.

[18] H. Rguigui, M. Elghribi, Finite-time stability for fractional-order systems with respect to another function , Asian Journal of
Control. DOI: 10.1002/asjc.3657 (2025) 1-6.



	Introduction
	Preliminarily
	Integral inequalities
	Applications
	Existence and uniqueness
	Ulam stability

	Example
	Conclusion

