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Available at: http://www.pmf.ni.ac.rs/filomat

Perturbations of Weyl spectra for 2 × 2 relation matrices

Xiufeng Wua

aSchool of Mathematical Sciences, Inner Mongolia Normal University, Hohhot 010022, China

Abstract. This paper solves the completion problem for 2 × 2 block operator matrices whose entries are
linear relations. We provide necessary and sufficient conditions for the completed matrix MX to be Weyl,
right Weyl, or left Weyl, whether the unknown entry X is a single- valued bounded operator or a multi-
valued bounded relation. Consequently, we characterize the perturbations of the associated Weyl spectra.
Our results generalize known theorems for operator matrices and provide tools for analyzing systems
beyond the scope of standard operator theory.

1. Introduction

A linear relation is a generalization of the concept of an operator in the multi-valued case. The linear
relation will naturally appear in considering the adjoint of non densely defined operators and the inverse
of certain operators, and it is shown to be very useful in various research fields such as nonlinear analysis,
control theory and differential equations (cf.[4, 12, 16, 18] and references therein). Partial relation matrices
are relation matrices the entries of which are specified only on a subset of its positions, while a completion
of a partial relation matrix is the conventional relation matrix resulting from filling in its unspecified entries.
Usually, one concerns the conditions under which a partial relation matrix has completions with some given
properties. The completion problem was shown to be very useful in various pure and applied mathematical
fields, e.g., in relation theory, numerical analysis, optimal theory, systems theory and engineering problems
(cf.[13] and references therein).

1.1. Basic Definitions
A linear relation T : H → K is a mapping such that T(λ1x1 + λ2x2) = λ1T(x1) + λ2T(x2) for all nonzero

scalars λ1, λ2 ∈ C and x1, x2 ∈ domT, where domT ⊆ H is the domain of T, and T(x1), T(x2) ⊆ K are
nonempty. The set LR(H ,K ) denotes the class of linear relations with domT = H and T(domT) ⊆ K .
The set LR(H ,K ) denotes the class of linear relations with domT = H and T(domT) ⊆ K , and write
LR(H) := LR(H ,H). If T(0) = {0}, then T is called an operator. The class of bounded linear operators from
H intoK is denoted by B(H ,K ). The graph G(T) of T ∈ LR(H ,K ) is

G(T) = {(u, v) ∈ H ⊕K : u ∈ domT, v ∈ T(u)}.
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For a subspaceM ⊂ domT, then T |M is defined by

G(T |M) = {(u, v) ∈ H ⊕K : u ∈ M, v ∈ T(u)},

and PM for the orthogonal projection ontoM alongM⊥ whenM is closed. The inverse of T is the relation
T−1 given by

G(T−1) = {(v,u) ∈ K ⊕H : (u, v) ∈ G(T)},

and the closure T of T is the linear relation defined by G(T) = G(T). If G(T) ⊆ H ⊕K is a closed subspace,
then T is said to be closed. The class of such relations is denoted by CR(H ,K ). As usual, write kerT = {x ∈
H : (x, 0) ∈ G(T)} for the kernel of T, and ranT := T(domT) for the range of T; write n(T) := dim kerT and
d(T) := ranT⊥. The adjoint T∗ ∈ LR(K ,H) of T ∈ LR(H ,K ) is defined by

G(T∗) = {(v, v′) ∈ K ⊕H : ⟨u′, v⟩ = ⟨u, v′⟩ for all ⟨u,u′⟩ ∈ G(T)}.

For T ∈ LR(H ,K ),

kerT∗ = ranT⊥,T∗(0) = domT⊥,kerT = ran(T∗)⊥,T(0) = dom(T∗)⊥.

The quotient map from K to K/T(0) is denoted by QT. Clearly QTT is an operator, so that we can define
||Tx|| = ||QTTx|| for x ∈ domT and ||T|| = ||QTT||. Notice that for u ∈ domT, QTTu = QTv. Indeed, since
v ∈ Tu if and only if T(u) = v + T(0), then QTTu = QTv. If T ∈ LR(H ,K ) such that ||T|| < ∞, then T is
said to be bounded. By BR(H ,K ) denote the subset of LR(H ,K ), whose elements are bounded. Write
BCR(H ,K ) := CR(H ,K ) ∩ BR(H ,K ). As abbreviations, BR(H) := BR(H ,H), CR(H) := CR(H ,H) and
BCR(H) := BCR(H ,H).

1.2. Fredholm and Weyl Relations

Let T ∈ BCR(H ,K ) with closed range ranT. Then the relation T is said to be right Fredholm, if d(T) < ∞;
while if n(T) < ∞, we say T is left Fredholm. If T is both right and left Fredholm, then it is called Fredholm.
Write indT := n(T)−d(T) for the index of T. Then T is called right Weyl if it is right Fredholm with indT ≥ 0,
left Weyl if left Fredholm with ind T ≤ 0, and Weyl if Fredholm with ind T = 0. Obviously, T is Weyl
if and only if T is both right and left Weyl. We denote the collections of right Fredholm, left Fredholm,
Fredholm, right Weyl, left Weyl, and Weyl relations as: Φ−(H ,K ),Φ+(H ,K ),Φ(H ,K ),Φ+

−
(H ,K ),Φ−+(H ,K )

and Φ0(H ,K ). Again, we have the abbreviations Φ−(H),Φ+(H),Φ(H),Φ+
−

(H),Φ−+(H) and Φ0(H) of the
above classes of relations like BR(H).

For T ∈ BR(H), the sets

σre(T) =
{
λ ∈ C : T − λ is not right Fredholm

}
,

σle(T) = {λ ∈ C : T − λ is not left Fredholm} ,
σe(T) = {λ ∈ C : T − λ is not Fredholm} ,
σrw(T) =

{
λ ∈ C : T − λ is not right Weyl

}
,

σlw(T) =
{
λ ∈ C : T − λ is not left Weyl

}
,

σw(T) =
{
λ ∈ C : T − λ is not Weyl

}
are called the right essential spectrum, left essential spectrum, essential spectrum, right Weyl spectrum, left
Weyl spectrum and Weyl spectrum, respectively.

Recall that an operator T+ is the maximal Tseng inverse of T ∈ B(H ,K ) if and only if

D(T†) = ranT ⊕ ranT⊥, T†T = PKerT⊥ , TT† = PranT |ranT⊕ranT⊥ .

It is clear that u = TT†u for any u ∈ ranT.
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1.3. The Matrix MX

When the relations A ∈ BR(H),B ∈ BR(K ) and C ∈ BR(K ,H) are given, we define

MX :=
[
A C
X B

]
(1)

with an unknown relation X ∈ BR(H ,K ). Hereafter, the symbol MX is reserved for the relation matrix
with the form as in (1). In particular, if C = 0, then MX admit an upper triangular relation matrix form,
which has been studied by some authors [2, 3, 5, 10, 11, 19]. Note that if A,B,C and X are operators, then
then Fredholm-type and Weyl-type properties of the general operator matrix MX have been studied by
different authors [14, 15, 21, 22]. The purpose of this paper is to extend Weyl-type properties of matrix
operators developed in [6, 7, 22] to linear relations. In [3, 5, 11], the authors studied the completion problem
of partial upper relation matrices in which the known element is multi-valued, but the unknown element
is single-valued. In fact, the multivalued part of unknown element is also worth considering. This paper
is concerned with the completion problem of partial relation matrices under the condition of single-valued
and multi-valued unknown element respectively.

The spectral theory of multivalued linear operators, which provides the foundation for our work, has
been comprehensively treated in [20]. This paper builds upon this foundation to address a specific and
fundamental problem: the completion problem for 2 × 2 relation matrices. To further clarify the scope and
novelty of our work, we pursue the following three objectives, which extend beyond the conventional focus
on single-valued operators: (1) Resolve the completion problem for 2×2 block matrices with linear relation
entries, focusing on Weyl, right Weyl, and left Weyl properties of MX; (2) Unify analysis by allowing X to be
either a single-valued operator or a multi-valued linear relation, thus bridging a critical gap between these
two settings; (3) Characterize perturbations of Weyl spectra induced by varying X. These objectives fill a
gap in existing theory, which typically restricts entries to single-valued operators.

In this paper, we establish a necessary and sufficient condition under which MX ∈ Φ0(H ⊕ K ) (MX ∈

Φ+
−

(H ⊕ K ), or MX ∈ Φ
−
+(H ⊕ K )) holds for some bounded entry X : H → K , which can be either a

single-valued operator or a multi-valued linear relation. Moreover, we characterize the perturbation of
σw(MX), σrw(MX) and σlw(MX), when the X runs over the set B(H ,K ) (or BR(H ,K )). As a byproduct, we
also obtain a necessary and sufficient condition is given for[

A X
0 B

]
∈ Φ0(H ⊕K ),

[
A X
0 B

]
∈ Φ+−(H ⊕K ), or

[
A X
0 B

]
∈ Φ−+(H ⊕K ))

some bounded entry X : K → H , which can be either a single-valued operator or a multi-valued linear
relation.

2. Some auxiliary results

We begin with some basic lemmas, which are useful for the proofs of the main results of this paper.

Lemma 2.1 (see [17, Lemma 6]). Let C ∈ B(K ,H), then for any ϵ > 0 there exist the orthogonal decompositions
K = Kϵ ⊕K

ϵ andH = Hϵ ⊕Hϵ such that

C(Kϵ) ⊂ Hϵ, ∥Cx∥ ≤ ϵ∥x∥ for all x ∈ Kϵ,
C(K ϵ) ⊂ Hϵ, ∥Cx∥ ≥ ϵ∥x∥ for all x ∈ K ϵ.

Lemma 2.2 (see [1, Remark 1.54]). Let T ∈ B(H ,K ) be a right (left) Fredholm operator. Then there exists ϵ :=
ϵ(T) > 0 such that S ∈ B(H ,K ) and ∥S∥ < ϵ implies that T + S is also a right (left) Fredholm operator. Moreover,

n(T + S) ≤ n(T), d(T + S) ≤ d(T), ind(T + S) = indT.
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Lemma 2.3 (see [1, Remark 1.54]). Let T ∈ B(H ,K ), and let S ∈ B(H ,K ) be a compact operator. Then
(i) T ∈ Φ+(H ,K ) if and only if T + S ∈ Φ+(H ,K ) with ind(T + S) = indT.
(ii) T ∈ Φ−(H ,K ) if and only if T + S ∈ Φ−(H ,K ) with ind(T + S) = indT.

Lemma 2.4 (see [1, Theorem 1.53]). Let T ∈ B(H ,K ). Then
(i) T ∈ Φ+(H ,K ) if and only if there exist U ∈ B(K ,H) and K1 ∈ B(H) such that UT = IH + K1, where

dimK1 < ∞.
(ii) T ∈ Φ−(H ,K ) if and only if there exist V ∈ B(K ,H) and K2 ∈ B(K ) such that TV = IK + K2, where

dimK2 < ∞.

Lemma 2.5 (see [8, Lemma 5.8]). Let T ∈ B(H ,K ), then T is a compact operator if and only if ranT contains no
closed infinite dimensional subspaces.

For relations A ∈ BR(H) and C ∈ BR(K ,H),write

N(A | C) := {G ∈ B(K ,H) : ranAG + C(0) ⊆ ranC + A(0)},

and [A C] : H ⊕K → H denotes the row relation.

Lemma 2.6 (see [4, Proposition II.5.3]). Let T ∈ LR(H ,K ), then T is closed if and only if QTT is closed, and
T(0) is a closed subspace.

Lemma 2.7 (see [4, Proposition III.1.2, Corollary III.1.13]). Let T ∈ LR(H ,K ), then T∗ is closed and ∥T∗∥ ≤
∥T∥.

Lemma 2.8 (see [2, Lemma 4.2]). Let T ∈ BCR(H), Then
(i) T ∈ Φ+(H) if and only if QTT ∈ Φ+(H ,H/T(0)). In such case, indT = ind(QTT).
(ii) T ∈ Φ−(H) if and only if QTT ∈ Φ−(H ,H/T(0)). In such case, indT = ind(QTT).

Lemma 2.9 (see [4, Theorem III.1.10]). LetM ⊆ H , and let JM denote the natural injection map ofM into H ,
i.e., domJM =M and JMx = x for x ∈ M. Then, (QM)∗ = JM⊥ and (JM)∗ = QM⊥ .

Lemma 2.10 (see [4, Theorem III.1.6]). Let H1,H2 and H3 be separable Hilbert spaces, and let T ∈ B(H1,H2)
and S ∈ B(H2,H3), then G(T∗S∗) ⊆ G((ST)∗). Furthermore, if one of the following statements is fulfilled:

(i) ranT∗ = H1 and domS ⊆ ranT;
(ii) ranS∗ = H3 and ranT ⊆ domS,

then (ST)∗ = T∗S∗.

Lemma 2.11. Let A ∈ LR(H),B ∈ LR(K ), C ∈ LR(K ,H) and X ∈ LR(H ,K ), then

QMX MX =

[
Q[A C]A Q[A C]C
Q[X B]X Q[X B]B

]
.

Proof. Let (
[

x
y
]
,
[

u
v

]
) ∈ G(MX). Then there exist u1 ∈ Ax, u2 ∈ Cy, v1 ∈ Xx and v2 ∈ By such that u = u1 + u2

and v = v1 + v2. This implies that

QMX MX

[
x
y

]
=MX

[
u
v

]
.

Notice that
[

u′
v′
]
∈ QMX

[
u
v

]
if and only if

[
u′
v′
]
−

[
u
v

]
∈MX(0), i.e.,{

u′ − u ∈ A(0) + C(0),
v′ − v ∈ X(0) + B(0).
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That is equivalent to{
u′ ∈ Q[A C]u = Q[A C](u1 + u2) = Q[A C]u1 +Q[A C]u2,
v′ ∈ Q[X B]v = Q[X B](v1 + v2) = Q[X B]v1 +Q[X B]v2.

This shows that

QMX

[
u
v

]
=

[
Q[A C]u1 Q[A C]u2
Q[X B]v1 Q[X B]v2

]
.

Since u1 ∈ Ax, u2 ∈ Cy, v1 ∈ Xx and v2 ∈ By, it follows that

Q[A C]u1 = Q[A C]Ax,Q[A C]u2 = Q[A C]Cy,

Q[X B]v1 = Q[X B]Xx,Q[X B]v2 = Q[X B]By.

Therefore,

QMX MX

[
x
y

]
=

[
Q[A C]Ax Q[A C]Cy
Q[X B]Xx Q[X B]By

]
=

[
Q[A C]A Q[A C]C
Q[X B]X Q[X B]B

] [
x
y

]
.

This completed the proof.

Lemma 2.12. Let A ∈ BR(H),B ∈ BR(K ), C ∈ BR(K ,H) and X ∈ BR(H ,K ). Then MX is closed if and only if
A(0) + C(0) and X(0) + B(0) are closed.

Proof. Let A(0) + C(0) and X(0) + B(0) are closed, then MX(0) is closed. By Lemma 2.6, we need only show
that QMX MX is closed in order to prove the desired result. Since A ∈ BR(H) and ∥Q[A C]Ax∥ ≤ ∥QAAx∥ ≤
∥A∥∥x∥, x ∈ H , it follows that Q[A C]A ∈ B(H ,H/(A(0) + C(0)). Similarly, we have

Q[A C]C ∈ B(K ,H/(A(0) + C(0)), Q[X B]X ∈ B(H ,K/(X(0) + B(0))

and Q[X B]B ∈ B(K ,K/(X(0) + B(0)). Therefore,

QMX MX ∈ B(H ⊕K ,H ⊕K/MX(0)),

and hence QMX MX is closed.
Conversely, if MX is closed, then MX(0) is closed, and hence A(0) + C(0) and X(0) + B(0) are closed.

Lemma 2.13. Let A ∈ BCR(H),B ∈ BCR(K ), C ∈ BCR(K ,H) and X ∈ BCR(H ,K ) with A(0) + C(0) and
X(0) + B(0) are closed. Then the following statements are hold:

(i) The adjoint M∗

X is an operator;
(ii) The explicit form of M∗

X is given by

M∗

X =

[
A∗ X∗

C∗ B∗

]
:
[
(A(0) + C(0))⊥

(X(0) + B(0))⊥

]
→

[
H

K

]
.

Proof. By Lemma 2.11, ∥QMX MX∥ < ∞ and hence ∥MX∥ < ∞. It follows from the closedness of M∗

X that
domM∗

X is closed according to Lemma 2.7. Lemma 2.12 ensures that MX is closed, which together with the
closedness of relations A, C, X and B, we obtain that

domM∗

X =MX(0)⊥ = (A(0) + C(0))⊥ ⊕ (X(0) + B(0))⊥
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and

dom
[
A∗ X∗

C∗ B∗

]
= (domA∗ ∩ domC∗) ⊕ (domX∗ ∩ domB∗)

= (A(0)⊥ ∩ C(0)⊥) ⊕ (X(0)⊥ ∩ B(0)⊥).

This together with

A(0)⊥ ∩ C(0)⊥ = (A(0) + C(0))⊥,X(0)⊥ ∩ B(0)⊥ = (X(0) + B(0))⊥

implies that

domM∗

X = dom
[
A∗ X∗

C∗ B∗

]
.

Let
[

x
y
]
∈ H ⊕K and

[
x∗
y∗
]
∈ domM∗

X = dom
[

A∗ X∗
C∗ B∗
]
. Then

⟨M∗

X

[
x∗

y∗

]
,

[
x
y

]
⟩ = ⟨

[
x∗

y∗

]
,

[
Ax + Cy
Xx + By

]
⟩

= ⟨x∗,Ax + Cy⟩ + ⟨y∗,Xx + By⟩
= ⟨A∗x∗, x⟩ + ⟨C∗x∗, y⟩ + ⟨X∗y∗, x⟩ + ⟨B∗y∗, y⟩
= ⟨A∗x∗ + X∗y∗, x⟩ + ⟨C∗x∗ + B∗y∗, y⟩

= ⟨

[
A∗ X∗

C∗ B∗

] [
x∗

y∗

]
,

[
x
y

]
⟩,

and hence

M∗

X =

[
A∗ X∗

C∗ B∗

]
.

Finally, we emphasize the key conclusion that M∗

X is is an operator. Since A ∈ BCR(H), domA is dense
inH , so A∗(0) = domA⊥ = {0}. Similarly, we have that C∗(0) = {0}, X∗(0) = {0} and B∗(0) = {0}, which means
that M∗

X(0) = {0}, i.e. M∗

X is an operator.

Theorem 2.14. Let A ∈ B(H), C ∈ B(K ,H) and m ∈ Z+. If [A C] ∈ Φ−(H ⊕ K ,K ), C is non-compact
and N(A | C) contains a non-compact operator, then there exists X ∈ B(H ,K ) such that A + CX ∈ Φ(H) and
ind(A + CX) = m.

Proof. The core idea is to transform the problem of finding X ∈ B(H ,K ) such that A+CX is Fredholm with
ind(A + CX) = m into an equivalent problem involving the block operator matrix

MY :=
[
A C
Y I

]
∈ B(H ⊕K )

where Y = −X. Using the matrix identity (2), we show this equivalence preserves Fredholmness and index.
We then employ a decomposition technique (Lemma 2.1) to separate C into components with different
norm properties. The proof proceeds by constructing suitable operators Z and Y in two cases (depending
on whether a certain component Cϵ is compact or not) to make MY Fredholm with ind(A+CX) = m, which
yields the desired X = −Y.

Since[
I −C
0 I

] [
A C
−X I

] [
I 0
X I

]
=

[
A + CX 0

0 I

]
, (2)
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it follows that A + CX ∈ Φ(H) with ind(A + CX) = m if and only if
[

A C
−X I

]
∈ Φ(H ⊕K ) with ind

[
A C
−X I

]
= m.

Write

MY :=
[
A C
Y I

]
∈ B(H ⊕K ).

By Lemma 2.1, for any ϵ > 0, there exist the orthogonal decompositions K = Kϵ ⊕ K ϵ and H = Hϵ ⊕ Hϵ

such that

C(Kϵ) ⊂ Hϵ, ∥Cx∥ ≤ ϵ∥x∥ for all x ∈ Kϵ,
C(K ϵ) ⊂ Hϵ, ∥Cx∥ ≥ ϵ∥x∥ for all x ∈ K ϵ.

Actually, we have

C =
[
C|Kϵ 0

0 C|K ϵ

]
:
[
Kϵ

K
ϵ

]
→

[
Hϵ

H
ϵ

]
.

It is clear that C|K ϵ is left invertible for 0 < ϵ < ∥C∥ and [A C], as an operator from H ⊕ K ϵ ⊕ Kϵ to
ran(C|K ϵ ) ⊕ (ran(C|K ϵ )⊥ ⊕Hϵ), has the block representation

[A C] =
[
A1(ϵ) Cϵ 0
A2(ϵ) 0 Cϵ

]
,

where

C|K ϵ =
[
Cϵ

0

]
: K ϵ →

[
ran(C|K ϵ )

ran(C|K ϵ )⊥

]
, Cϵ =

[
0

C|Kϵ

]
: Kϵ →

[
ran(C|K ϵ )⊥

Hϵ

]
with Cϵ : K ϵ → ran(C|K ϵ ) invertible and ∥Cϵ∥ ≤ ϵ. Then MY admits the following new representation

MY =

A1(ϵ) Cϵ 0
A2(ϵ) 0 Cϵ

Y I1(ϵ) I2(ϵ)

 :

HK ϵ
Kϵ

→
 ran(C|K ϵ )
ran(C|K ϵ )⊥ ⊕Hϵ

K

 ,
and hence the invertible operators U ∈ B(ran(C|K ϵ )⊕ (ran(C|K ϵ )⊥ ⊕Hϵ)⊕K ) and V ∈ B(H ⊕K ϵ ⊕Kϵ) given
by

U :=

 I 0 0
0 I 0

−I1(ϵ)(Cϵ)−1 0 I

 , V :=

 I 0 0
−(Cϵ)−1A1(ϵ) I 0

0 0 I


are such that

UMYV =

 0 Cϵ 0
A2(ϵ) 0 Cϵ

Y − I1(ϵ)(Cϵ)−1A1(ϵ) 0 I2(ϵ)

 . (3)

Since

∥

[
A1(ϵ) Cϵ 0
A2(ϵ) 0 Cϵ

]
−

[
A1(ϵ) Cϵ 0
A2(ϵ) 0 0

]
∥ = ∥Cϵ∥ ≤ ϵ,

by Lemma 2.2, the right Fredholmness of [A C] implies that

[A C|K ϵ ] =
[
A1(ϵ) Cϵ

A2(ϵ) 0

]
:
[
H

K
ϵ

]
→

[
ran(C|K ϵ )

ran(C|K ϵ )⊥ ⊕Hϵ

]



X. Wu / Filomat 40:2 (2026), 495–513 502

is right Fredholm for sufficiently small ϵ > 0. For such ϵ > 0, A2(ϵ) is then a right Fredholm operator. Let
KerA2(ϵ) = M1 ⊕ M2, where M1 and M2 are closed subspaces of KerA2(ϵ), dimM1 = ∞ and dimM2 =
m + d(A2(ϵ)).

If Cϵ is compact, then n(A2(ϵ)) = d(I2(ϵ)) = ∞ fromN(A | C) contains a non-compact operator and C is a
non-compact operator. Define

Z =
[
Z1 0 0
0 0 0

]
:

 M1
M2

Ker(A2(ϵ))⊥

→
[
ran(I2(ϵ))⊥

ran(I2(ϵ))

]
,

where Z1 :M1 → R(I2(ϵ))⊥ is a unitary operator. Then
[

A2(ϵ) 0
Z I2(ϵ)

]
is a Fredholm operator with ind

[
A2(ϵ) 0

Z I2(ϵ)

]
=

m and so is[
A2(ϵ) Cϵ

Z I2(ϵ)

]
:
[
H

Kϵ

]
→

[
ran(C|K ϵ )⊥ ⊕Hϵ

K

]
. (4)

Define Y := Z+B1(ϵ)(Cϵ)−1A1(ϵ) and we have from (3) that MY ∈ Φ(H⊕K ) with indMY = m. Define X = −Y.
Then we get the desired result from (2).

In the following, we suppose that Cϵ is a non-compact operator. SinceKϵ = Ker(I2(ϵ))⊥ and ran(C|K ϵ )⊥ ⊕
Hϵ = ran(A2(ϵ)) ⊕ ran(A2(ϵ))⊥, the operator matrix defined as in (4) can be written as the following new
representationA21(ϵ) C1

ϵ C2
ϵ

0 C3
ϵ C4

ϵ
Z I21(ϵ) I22(ϵ)

 :

HM1
M2

→
 ran(A2(ϵ))
ran(A2(ϵ))⊥

K

 , (5)

where A21(ϵ) is right invertible and I21(ϵ) is left invertible. Obviously, C1
ϵ is non-compact, and C2

ϵ,C3
ϵ, C4

ϵ
and I22(ϵ) are of finite rank. Since A21(ϵ) is right invertible and I21(ϵ) : M1 → K is left invertible and C1

ϵ is
non-compact,N(A21(ϵ) | C1

ϵ) andN(I∗21(ϵ) | C1∗
ϵ ) clearly contain non-compact operators. Using [21, Theorem

1], we can choose a suitable Z ∈ B(H ,K ) such that[
A21(ϵ) C1

ϵ
Z I21(ϵ)

]
:
[
H

M1

]
→

[
ran(A2(ϵ))
K

]
is invertible. This together with d(A2(ϵ)) = 0 and dimM2 = m + d(A2(ϵ)) deduces thatA21(ϵ) C1

ϵ 0
0 0 0
Z I21(ϵ) 0

 :

HM1
M2

→
 ran(A2(ϵ))
ran(A2(ϵ))⊥

K


is a Fredholm operator and

ind

A21(ϵ) C1
ϵ 0

0 0 0
Z I21(ϵ) 0

 = m.

From (5), Lemma 2.3 and (3), it follows that MY ∈ Φ(H ⊕K ) with indMY = m for Y = Z + I1(ϵ)(Cϵ)−1A1(ϵ).
Define X = −Y. Then we immediately have the desired result from (2).

3. Main Results

In this section, we present proofs of the main results of this paper, i.e., Theorems 3.1, 3.3, 3.5, 3.8, 3.10
and 3.12. As their corollaries, some related properties are also mentioned.
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Theorem 3.1. Let A ∈ BCR(H),B ∈ BCR(K ) and C ∈ BCR(K ,H) with A(0)+C(0) is closed. Then MX ∈ Φ0(H⊕
K ) for some X ∈ B(H ,K ) if and only if [A C] ∈ Φ−(H⊕K ,H), [B∗ C∗ |(A(0)+C(0))⊥ ] ∈ Φ−(B(0)⊥⊕(A(0)+C(0))⊥,K ),
and one of the following statements is fulfilled:

(i)N(A | C) andN(B∗ | (C∗ |(A(0)+C(0))⊥ )) contain non-compact operators;
(ii) M0 =

[
A C
0 B

]
∈ Φ0(H ⊕K ).

Proof. The sufficiency proof is constructive. The core idea is to use the assumptions on [A C] to build an
invertible operator L that block-diagonalizes the quotient map MXQMX .This reduces the problem to finding
an X such that a specific compression becomes Fredholm with a prescribed index.

Sufficiency. Let H ′ = ranA + ranC. If assertion (ii) holds, then the result is trival. Now assume that
assertion (i) holds. It is clear that n([A C]) = ∞. Then there exists a left invertible operator

[
E
F

]
: K → H⊕K

such that ran
[

E
F

]
= ker[A C]. Since Q[A C][A C] = [Q[A C]A Q[A C]C] and A(0)+C(0) is closed, it follows that

ker[A C] = kerQ[A C][A C] = ker[Q[A C]A Q[A C]C],

and hence

(Q[A C]A)E + (Q[A C]C)F = 0. (6)

In view of [A C] ∈ Φ−(H ⊕K ,H), we obtain that

[Q[A C]A Q[A C]C] ∈ Φ−(H ⊕K ,H/(A(0) + C(0))).

Then there exists an invertible operator[
Y
Z

]
: H ′/(A(0) + C(0))→ ker[Q[A C]A Q[A C]C]⊥

such that

[Q[A C]A Q[A C]C]
[
Y
Z

]
= Q[A C]AY +Q[A C]CZ = IH ′/(A(0)+C(0)). (7)

Put

L =
[
Y E
Z F

]
:
[
H
′/(A(0) + C(0))

K

]
→

[
H

K

]
.

Then, L : H ′/(A(0) + C(0)) ⊕K → H ⊕K is an invertible operator. Indeed, since
[

E
F

]
: K → H ⊕K is a left

invertible operator, then there exists a right invertible operator [Q R] : H ⊕K → K such that QE+RF = IK .
From the relation[

Q[A C]A Q[A C]C
Q R

] [
Y E
Z F

]
=

[
IH ′/(A(0)+C(0)) 0

QY + RZ IK

]
,

we derive that L is left invertible. By (7), we have that

ran
[
Y
Z

]
+ ker[Q[A C]A Q[A C]C] = H ⊕K ,

and hence

ranL = ran
[
Y
Z

]
+ ran

[
E
F

]
= H ⊕K .
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This proves the invertibility of L. It is clear that

QMX MXL =
[

IH ′/(A(0)+C(0)) 0
(QBX)Y + (QBB)Z (QBX)E + (QBB)F

]
(8)

from Lemma 2.11. Since N(A | C) contains a non-compact operator, it follows that there exists a closed
infinite dimensional subspaceM ⊆ H such that

ranA |M +C(0) ⊆ ranC + A(0),

which means thatM ⊆ ranE, and hence E is a non-compact operator from Lemma 2.5. By Lemmas 2.9 and
2.10, we obtain that (Q[A C]C)∗ = C∗ J(A(0)+C(0))⊥ , which together with [B∗ C∗ |(A(0)+C(0))⊥ ] ∈ Φ−(B(0)⊥ ⊕ (A(0) +
C(0))⊥,K ) and ranB∗ = ran(QBB)∗ implies that

[(Q[A C]C)∗ (QBB)∗] ∈ Φ−((A(0) + C(0))⊥ ⊕ B(0)⊥,K ).

Then [
Q[A C]C

QBB

]
∈ Φ+(K ,H/(A(0) + C(0)) ⊕K/B(0)),

it follows that there exists [G1 L1] : H ⊕K → K such that

G1Q[A C]C + L1QBB = IK + K, (9)

where K ∈ B(K ) is a finite rank operator. Also since
[

E
F

]
: K → H ⊕K is left invertible, then there exists

[G2 L2] : H/(A(0) + C(0)) ⊕K/B(0)→ K such that

G2E + L2F = IK . (10)

By (9), we have G1(Q[A C]C)F+L1(QBB)F = (IK +K)F = F+FK,which together with (10) and (6) implies that

(G2 − L2G1(Q[A C]A))E + L2L1(QBB)F = IK + FK.

By Lemma 2.4, we obtain that[
E

(QBB)F

]
∈ Φ+(K ,H ⊕K/B(0)),

and hence [((QBB)F)∗ E∗] ∈ Φ−(B(0)⊥ ⊕H ,K ). Since

G ∈ N(B∗ | (C∗ |(A(0)+C(0))⊥ )),

then there exists L3 ∈ B(H) such that B∗G = C∗ |(A(0)+C(0))⊥ L3, which together with domB∗ = B(0)⊥ implies
that B∗ JB(0)⊥G = C∗ J(A(0)+C(0))⊥L3, and therefore (QBB)∗G = (Q[A C]C)∗L3. From

((QBB)F)∗G = F∗(QBB)∗G = F∗(Q[A C]C)∗L3 = −E∗(Q[A C]A)∗L3,

we have G ∈ N(((QBB)F)∗ | E∗). Notice that, G is a non-compact operator. Then, by Lemma 2.14, there exists
X1 ∈ B(H ,K/B(0)) such that (QBB)F + X1E is Fredholm and

ind((QBB)F + X1E) = dimH ′⊥. (11)

Define X ∈ B(H ,K ) by

Xx = PB(0)⊥y, x ∈ H ,
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where [y] = X1x. It is clear that X1 = QBX. By (8), we have ranQMX MXL is closed, n(QMX MXL) = n((QBB)F +
X1E) and

d(QMX MXL) = d((QBB)F + X1E) + dimH ′⊥.

This together with (11) demonstrates that QMX MXL is Weyl. By Lemma 2.8, we have MX ∈ Φ0(H ⊕K ).
Necessity. Assume that MX ∈ Φ0(H ⊕K ) for some X ∈ B(H ,K ). Since B is a closed relation, it follows

that B(0) is closed. Notice that A(0) + C(0) is closed. Then MX admits the following representation

MX =


A1 C1
A2 C2
X1 B1
X2 B − B

 :
[
H

K

]
→


(A(0) + C(0))⊥

A(0) + C(0)
B(0)⊥

B(0)

 . (12)

Clearly, we have

M′

X1
=

[
A1 C1
X1 B1

]
:
[
H

K

]
→

[
(A(0) + C(0))⊥

B(0)⊥

]
(13)

is a Weyl operator, it follows that there exist[
E S
H T

]
∈ B((A(0) + C(0))⊥ ⊕ B(0)⊥,H ⊕K )

and finite rank operators F11 ∈ B((A(0) + C(0))⊥,H), F12 ∈ B(B(0)⊥,H) F21 ∈ B((A(0) + C(0))⊥,K ), F22 ∈

B(B(0)⊥,K ) such that[
A1 C1
X1 B1

] [
E S
H T

]
=

[
I(A(0)+C(0))⊥ 0

0 IB(0)⊥

]
+

[
F11 F12
F21 F22

]
.

Therefore

A1E + C1H = I(A(0)+C(0))⊥ + F11,X1S + B1T = IB(0)⊥ + F22,A1S + C1T = F12.

It follows from A1E + C1H = I(A(0)+C(0))⊥ + F11 that [A1 C1] ∈ Φ−(H ⊕K , (A(0) + C(0))⊥). This together with
the closedness of A(0) + C(0) implies that [A C] ∈ Φ−(H ⊕K ,H). By the Weylness of MX and Lemma 2.13
implies that

M∗

X =

[
A∗ X∗

C∗ B∗

]
:
[
(A(0) + C(0))⊥

B(0)⊥

]
→

[
H

K

]
is Weyl. Therefore, [B∗ C∗ |(A(0)+C(0))⊥ ] ∈ Φ−(B(0)⊥ ⊕ (A(0) + C(0))⊥,K ).

Assume that N(A | C) contains only compact operators. Let
[

E
F

]
: K1 → H ⊕ K is a left invertible

operator and ran
[

E
F

]
= ker[A C], where K1 is a Hilbert space with dimK1 = dimker[A C]. Similar to the

proof of the sufficiency, there exists an invertible operator[
Y
Z

]
: H ′/(A(0) + C(0))→ ker[Q[A C]A Q[A C]C]⊥

such that

L =
[
Y E
Z F

]
:
[
H
′/(A(0) + C(0))

K1

]
→

[
H

K

]
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is an invertible operator. Then we still have (8). If dimK/B(0) = ∞, then the Weylness of MX and (8) implies
that dimK1 = ∞. From

ran
[
E
F

]
= ker[Q[A C]A Q[A C]C] = ker[A C],

we get that there exists a unitary operator V : K → K1 such that EV ∈ N(A | C). Since N(A | C) contains
only compact operators, then E is a compact operator. If dimK/B(0) < ∞, then dimK1 < ∞, which implies
that E : K1 →H is a compact operator. From (8), the Weylness of MX implies that (QBB)F+XE is Fredholm
and ind((QBB)F+XE) = dimH ′⊥.Notice that E : K1 →H is a compact operator, it follows from Lemma 2.3
that (QBB)F is Fredholm and

ind((QBB)F) = dimH ′⊥. (14)

Take X = 0 in (8). Then it follows from (8), the Fredholmness of (QBB)F and (14) that QM0 M0L is Weyl. By
Lemma 2.8, we obtain that M0 ∈ Φ0(H ⊕K ).

Now assume that N(B∗ | (C∗ |(A(0)+C(0))⊥ )) contains only compact operators. Since M∗

X is Weyl, then we
get M∗

0 is Weyl in the similar way as the proof of the above, and hence M0 is Weyl.

Corollary 3.2. Let A ∈ BCR(H),B ∈ BCR(K ) and C ∈ BCR(K ,H) with A(0) + C(0) is closed. Then⋂
X∈B(H ,K )

σw(MX) = {λ ∈ C : [A − λI C] < Φ−(H ⊕K ,H)}

∪{λ ∈ C : [B∗ − λI C∗ |(A(0)+C(0))⊥ ] < Φ−(K ⊕H ,K )}
∪{λ ∈ σw(

[
A C
0 B

]
) : eitherN(A − λI | C) or

N(B∗ − λI | (C∗ |(A(0)+C(0))⊥ )) contains only compact operators}.

Theorem 3.3. Let A ∈ BR(H),B ∈ BCR(K ) and C ∈ BR(K ,H) with A(0)+C(0) is closed. Then MX ∈ Φ
+
−

(H⊕K )
for some X ∈ B(H ,K ) if and only if [A C] ∈ Φ−(H ⊕K ,H), and one of the following statements is fulfilled:

(i)N(A | C) contains a non-compact operator;
(ii) M0 =

[
A C
0 B

]
∈ Φ+

−
(H ⊕K ).

Proof. Sufficiency. If assertion (ii) holds, then sufficiency is clear. Now assume that N(A | C) contains
a non-compact operator. By Lemma 2.5, we have that there exists a closed a closed infinite dimensional
subspaceM ⊆ H such that

ranA |M +C(0) ⊆ ranC + A(0),

and hence
ranP(A(0)+C(0))⊥APM ⊆ ranP(A(0)+C(0))⊥C ⊆ dom(P(A(0)+C(0))⊥C)+.

Let M = M1 ⊕M2, where M1 and M2 are closed infinite-dimensional subspaces of M. We take a right
invertible operator S ∈ B(H ,K ) with KerS⊥ =M1. Since ranP(A(0)+C(0))⊥APM1 ⊆ ranP(A(0)+C(0))⊥C, it follows
that

(P(A(0)+C(0))⊥C)†P(A(0)+C(0))⊥APM1 ∈ B(H ,K ).

Define X ∈ B(H ,K ) by

X := S + PB(0)⊥B(P(A(0)+C(0))⊥C)†P(A(0)+C(0))⊥APM1 .

Then MX ∈ Φ
+
−

(H⊕K ). Indeed, letH ′ = ranA+ ranC. We clearly have ranMX ⊆ H
′
⊕K . Let

[
u1
u2

]
∈ H

′
⊕K .

Since ranA |M +C(0) ⊆ ranC + A(0), there exist x0 ∈ M
⊥ and y0 ∈ K such that u1 ∈ Ax0 + Cy0. From

the definition of S, it follows that u2 ∈ Sx̂0 + By0 for some x̂0 ∈ M1. If we choose x1 := x0 + x̂0 and
y1 := y0 − (P(A(0)+C(0))⊥C)+P(A(0)+C(0))⊥Ax̂0, then we get
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MX

[
x1
y1

]
=


Ax0 + Cy0 + Ax̂0−

(P(A(0)+C(0))⊥C + PA(0)+C(0)C)(P(A(0)+C(0))⊥C)+P(A(0)+C(0))⊥Ax̂0

Sx̂0 + By0 + PB(0)⊥B(P(A(0)+C(0))⊥C)+P(A(0)+C(0))⊥APM1 x̂0−

(PB(0)⊥B + B − B)(P(A(0)+C(0))⊥C)+P(A(0)+C(0))⊥APM1 x̂0


=

[
Ax0 + Cy0 + Ax̂0 − P(A(0)+C(0))⊥Ax̂0

Sx̂0 + By0

]
=

[
Ax0 + Cy0 + Ax̂0 − P(A(0)+C(0))⊥Ax̂0 − P(A(0)+C(0))Ax̂0

Sx̂0 + By0

]
=

[
Ax0 + Cy0
Sx̂0 + By0

]
,

which means that[
u1
u2

]
∈MX

[
x1
y1

]
,

and henceH ′ ⊕K ⊆ ranMX. This together with [A C] ∈ Φ−(H ⊕K ,H) demonstrates that MX ∈ Φ−(H ⊕K ).
It remains to prove n(MX) ≥ d(MX). Indeed, there exists y′0 ∈ K such that 0 ∈ Ax′0+Cy′0 for all x′0 ∈ M2, since
ranA |M +C(0) ⊆ ranC + A(0). The right invertibility of S further implies 0 ∈ Sx̂′0 + By′0 for some x̂′0 ∈ M1.
Define x1 := x′0 + x̂′0 and y2 := y′0 − C+1 A1x̂′0, then[

0
0

]
∈MX

[
x1
y2

]
,

i.e.,
[

x1
y2

]
∈ kerMX. The arbitrariness of x′0 ∈ M2 results in n(MX) = ∞ > d(MX).

Necessity. Assume that MX ∈ Φ
+
−

(H ⊕K ) for some X ∈ B(H ,K ). Since B is a closed relation, it follows
that B(0) is closed. Notice that A(0) + C(0) is closed. Then MX has the representation (12). Clearly, we
have M′

X1
defined as in (13) is a right Weyl operator, it follows that [A1 C1] is right Fredholm. This together

with the closedness of A(0) + C(0) implies that [A C] ∈ Φ−(H ⊕K ,H). Assume thatN(A | C) contains only
compact operators. Let

[
E
F

]
: K1 → H ⊕K is a left invertible operator and ran

[
E
F

]
= ker[A C], where K1 is

a Hilbert space with dimK1 = dimker[A C]. Similar to the proof of the necessity of Theorem 3.1, we obtain
that M0 =

[
A C
0 B

]
∈ Φ+

−
(H ⊕K ).

Corollary 3.4. Let A ∈ BR(H),B ∈ BR(K ) and C ∈ BR(K ,H) with A(0) + C(0) is closed. Then⋂
X∈B(H ,K )

σrw(MX) = {λ ∈ C : [A − λI C] < Φ−(H ⊕K ,H)}

∪{λ ∈ σrw(
[

A C
0 B

]
) :N(A − λI | C) contains only compact operators}.

Theorem 3.5. Let A ∈ BCR(H),B ∈ BCR(K ) and C ∈ BCR(K ,H) with A(0) + C(0) is closed. Then MX ∈

Φ−+(H ⊕K ) for some X ∈ B(H ,K ) if and only if [B∗ C∗ |(A(0)+C(0))⊥ ] ∈ Φ−(B(0)⊥ ⊕ (A(0) + C(0))⊥,K ), and one of
the following statements is fulfilled:

(i)N(B∗ | (C∗ |(A(0)+C(0))⊥ )) contains a non-compact operator;
(ii) M0 =

[
A C
0 B

]
∈ Φ−+(H ⊕K ).

Proof. Since B is a closed relation, it follows that B(0) is closed, which together with the closedness of
A(0)+C(0) implies that MX is a closed relation follows from Lemma 2.12. Notice that MX is left Weyl if and
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only if

M∗

X =

[
B∗ C∗

X∗ A∗

]
:
[

B(0)⊥

(A(0) + C(0))⊥

]
→

[
K

H

]
is right Weyl. According to Theorem 3.3, we immediately obtain the desired result.

Corollary 3.6. Let A ∈ BCR(H),B ∈ BCR(K ) and C ∈ BCR(K ,H) with A(0) + C(0) is closed. Then⋂
X∈B(H ,K )

σlw(MX) = {λ ∈ C : [B∗ − λI C∗ |(A(0)+C(0))⊥ ] < Φ−(K ⊕H ,K )}

∪{λ ∈ σlw(
[

A C
0 B

]
) :N(B∗ − λI | (C∗ |(A(0)+C(0))⊥ )) contains }

only compact operators}.

Remark 3.7. Theorems 3.1, 3.3 and 3.5 extended the Theorems 3.9, 3.2 and 3.5 of [22] to the general case of
linear relations.

The Weylness and right (left) Weylness of relation matrices MX =
[

A C
X B

]
with X ∈ B(H ,K ) is presented

above. In the sequel, we turn our attention to the analogues for which the unknown element X : H → K is
taken as a bounded linear relation.

Theorem 3.8. Let A ∈ BCR(H),B ∈ BCR(K ) and C ∈ BCR(K ,H). If A(0)+C(0) is closed, then MX ∈ Φ0(H⊕K )
for some X ∈ BR(H ,K ) with X(0) + B(0) is closed, if and only if there exists a constant relation S ∈ BR(K ) such
that B(0) + S(0) is closed,

[B∗ |(B(0)+S(0))⊥ C∗ |(A(0)+C(0))⊥ ] ∈ Φ−((B(0) + S(0))⊥ ⊕ (A(0) + C(0))⊥,K ),

[A C] ∈ Φ−(H ⊕K ,H), and one of the following statements is fulfilled:
(i)N(A | C) andN((B∗ |(B(0)+S(0))⊥ ) | (C∗ |(A(0)+C(0))⊥ )) contain non-compact operators;
(ii) MS

0 =
[

A C
0 B+S

]
∈ Φ0(H ⊕K ).

Proof. Sufficiency. Write MS
X =
[

A C
X B+S

]
∈ BR(H⊕K ).Assume that there exists a constant relation S ∈ BR(K )

such that [B∗ |(B(0)+S(0))⊥ C∗ |(A(0)+C(0))⊥ ] ∈ Φ−((B(0) + S(0))⊥ ⊕ (A(0) + C(0))⊥,K ), [A C] ∈ Φ−(H ⊕K ,H) and
one of the assertions (i) or (ii) hold. Notice that

(B + S)∗ |(B(0)+S(0))⊥= B∗ |(B(0)+S(0))⊥ (15)

and

(MS
0)∗ =

[
B∗ C∗

0 A∗

]
:
[
(B(0) + S(0))⊥

(A(0) + C(0))⊥

]
→

[
K

H

]
. (16)

By Theorem 3.1, we obtain that

MS
X1
=

[
A C
X1 B + S

]
∈ Φ0(H ⊕K ) (17)

for some X1 ∈ B(H ,K ). Define X ∈ BR(H ,K ) by

X = X1 + X − X,

where (X − X)x = S(0) for x ∈ H . It is clear that MX ∈ Φ0(H ⊕K ).
Necessity. Let MX ∈ Φ0(H ⊕K ) for some X ∈ BR(H ,K ) with X(0) + B(0) is closed. Define S ∈ BR(K )

by Sx = X(0) for x ∈ K , then B(0) + S(0) is closed. This together with MX ∈ Φ0(H ⊕K ) implies that

MS
X =

[
A C
X B + S

]
∈ Φ0(H ⊕K ),
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and hence

(MS
X)∗ =

[
B∗ C∗

X∗ A∗

]
:
[
(B(0) + S(0))⊥

(A(0) + C(0))⊥

]
→

[
K

H

]
is Weyl. From Theorem 3.1, the desired result follows right away.

Corollary 3.9. Let A ∈ BCR(H),B ∈ BCR(K ) and C ∈ BCR(K ,H) with A(0) + C(0) is closed. Then,⋂
X∈BR(H ,K )

X(0)+B(0)=X(0)+B(0)

σw(MX)

= {λ ∈ C : [A − λI C] < Φ−(H ⊕K ,H)}
∪{λ ∈ C : [B∗ − λI |(B(0)+S(0))⊥ C∗ |(A(0)+C(0))⊥ ]
< Φ−((B(0) + S(0))⊥ ⊕ (A(0) + C(0))⊥,K )
for any constant relation S ∈ BR(K ) with S(0) + B(0) = S(0) + B(0)}
∪{λ ∈ σw(

[
A C
0 B+S

]
) :eitherN(A − λI | C) or

N((B∗ − λI |(B(0)+S(0))⊥ ) | (C∗ |(A(0)+C(0))⊥ ))
contains only compact operators for any constant relation
S ∈ BR(K ) with S(0) + B(0) = S(0) + B(0)}.

Theorem 3.10. Let A ∈ BR(H),B ∈ BR(K ) and C ∈ BR(K ,H). If A(0) + C(0) is closed, then MX ∈ Φ
+
−

(H ⊕K )
for some X ∈ BR(H ,K ) with X(0) + B(0) is closed, if and only if [A C] ∈ Φ+

−
(H ⊕K ,H).

Proof. Let [A C] ∈ Φ+
−

(H⊕K ,H). Define X ∈ BR(H ,K ) by Xx = K , for x ∈ H . It is clear that X(0)+B(0) = K
is closed, which together with the closedness of A(0) + C(0) implies that MX is a closed relation follows
from Lemma 2.12. On the other hand, since ranMX = ran[A C] ⊕ K and kerMX = ker[A C], it follows that
n(MX) = n([A C]) and d(MX) = d([A C]). This proves that MX ∈ Φ

+
−

(H ⊕K ).
Conversely, Let A(0) + C(0) is closed. Assume that MX ∈ Φ

+
−

(H ⊕ K ) for some X ∈ BR(H ,K ) with
X(0) + B(0) is closed. Then MX has the following relation matrix representation:

MX =


A1 C1
A2 C2
X1 B1
X2 B2

 :
[
H

K

]
→


(A(0) + C(0))⊥

A(0) + C(0)
(X(0) + B(0))⊥

X(0) + B(0)

 .
Clearly, we have

M′

X1
=

[
A1 C1
X1 B1

]
:
[
H

K

]
→

[
(A(0) + C(0))⊥

(X(0) + B(0))⊥

]
is right Weyl. Similar to the proof of Theorem 3.3, we obtain that [A C] ∈ Φ−(H ⊕K ,H). Since d([A C]) ≤
d(MX) and n(MX) ≤ n([A C]), which together with d(MX) ≤ n(MX) implies that d([A C]) ≤ n([A C]). This
prove that [A C] ∈ Φ+

−
(H ⊕K ,H).

Corollary 3.11. Let A ∈ BR(H),B ∈ BR(K ) and C ∈ BR(K ,H) with A(0) + C(0) is closed. Then⋂
X∈BR(H ,K )

X(0)+B(0)=X(0)+B(0)

σrw(MX) = {λ ∈ C : [A − λI C] < Φ+−(H ⊕K ,H)}.
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Theorem 3.12. Let A ∈ BCR(H),B ∈ BCR(K ) and C ∈ BCR(K ,H). If A(0) + C(0) is closed, then MX ∈

Φ−+(H ⊕ K ) for some X ∈ BR(H ,K ) with X(0) + B(0) is closed, if and only if there exists a constant relation
S ∈ BR(K ) such that B(0) + S(0) is closed,

[B∗ |(B(0)+S(0))⊥ C∗ |(A(0)+C(0))⊥ ] ∈ Φ−((B(0) + S(0))⊥ ⊕ (A(0) + C(0))⊥,K ),

and one of the following statements is fulfilled:
(i)N((B∗ |(B(0)+S(0))⊥ ) | (C∗ |(A(0)+C(0))⊥ )) contains a non-compact operator;
(ii) MS

0 =
[

A C
0 B+S

]
∈ Φ−+(H ⊕K ).

Proof. Sufficiency. Write MS
X =
[

A C
X B+S

]
∈ BR(H⊕K ).Assume that there exists a constant relation S ∈ BR(K )

such that [B∗ |(B(0)+S(0))⊥ C∗ |(A(0)+C(0))⊥ ] ∈ Φ−((B(0) + S(0))⊥ ⊕ (A(0) + C(0))⊥,K ), and one of the assertions (i)
or (ii) hold. Notice that (15) and (16). By Theorem 3.5, we obtain that MS

X1
defined as in (17) is a left Weyl

relation for some X1 ∈ B(H ,K ). Define X ∈ BR(H ,K ) by

X = X1 + X − X,

where (X − X)x = S(0) for x ∈ H . It is clear that MX ∈ Φ
−
+(H ⊕K ).

Necessity. Let MX ∈ Φ
−
+(H ⊕K ) for some X ∈ BR(H ,K ) with X(0) + B(0) is closed. Define S ∈ BR(K )

by Sx = X(0) for x ∈ K , then B(0) + S(0) is closed. This together with MX ∈ Φ
−
+(H ⊕ K ), implies that

MS
X ∈ Φ

−
+(H ⊕K ), and hence

(MS
X)∗ =

[
B∗ C∗

X∗ A∗

]
:
[
(B(0) + S(0))⊥

(A(0) + C(0))⊥

]
→

[
K

H

]
is right Weyl. From Theorem 3.3, the desired result follows right away.

Corollary 3.13. Let A ∈ BCR(H),B ∈ BCR(K ) and C ∈ BCR(K ,H) with A(0) + C(0) is closed. Then,⋂
X∈BR(H ,K )

X(0)+B(0)=X(0)+B(0)

σlw(MX)

= {λ ∈ C : [B∗ − λI |(B(0)+S(0))⊥ C∗ |(A(0)+C(0))⊥ ]
< Φ−((B(0) + S(0))⊥ ⊕ (A(0) + C(0))⊥,K )
for any constant relation S ∈ BR(K ) with S(0) + B(0) = S(0) + B(0)}
∪{λ ∈ σlw(

[
A C
0 B+S

]
) :N((B∗ − λI |(B(0)+S(0))⊥ ) | (C∗ |(A(0)+C(0))⊥ ))

contains only compact operators for any constant relation
S ∈ BR(K ) with S(0) + B(0) = S(0) + B(0)}.

Now, we see the Weylness and right (left) Weylness of upper triangular relation matrix[
A X
0 B

]
∈ BR(H ⊕K ).

The following three Corollaries are direct consequences of Theorems 3.1, 3.3 and 3.5.

Corollary 3.14 (see [11, Corollary 3.2]). Let A ∈ BCR(H) and B ∈ BCR(K ). Then
[

A X
0 B

]
∈ Φ0(H⊕K ) for some

X ∈ B(K ,H) if and only if A ∈ Φ+(H), B ∈ Φ−(K ), and one of the following statements is fulfilled:
(i) d(A) = n(B) = ∞;
(ii)
[

A 0
0 B

]
∈ Φ0(H ⊕K ).

Corollary 3.15. Let A ∈ BR(H) and B ∈ BR(K ) with A(0) is closed. Then
[

A X
0 B

]
∈ Φ+

−
(H ⊕ K ) for some

X ∈ B(K ,H) if and only if B ∈ Φ−(K ), and one of the following statements is fulfilled:
(i) n(B) = ∞;
(ii)
[

A 0
0 B

]
∈ Φ+

−
(H ⊕K ).
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Remark 3.16. Corollary 3.15 is an extension of Corollary 3.1 of [11], since A is a closed relation, it follows
that A(0) is closed.

Corollary 3.17. Let A ∈ BR(H) and B ∈ BR(K ) with B(0) is closed. Then
[

A X
0 B

]
∈ Φ−+(H ⊕ K ) for some

X ∈ B(K ,H) if and only if A ∈ Φ+(H), and one of the following statements is fulfilled:
(i) d(A) = ∞;
(ii)
[

A 0
0 B

]
∈ Φ−+(H ⊕K ).

Remark 3.18. Theorem 3.1 of [11] follows from Corollary 3.17 immediately, since B is a closed relation, it
follows that B(0) is closed.

Corollary 3.19. Let A ∈ BCR(H) and B ∈ BCR(K ). Then
[

A X
0 B

]
∈ Φ0(H ⊕ K ) for some X ∈ BR(K ,H) with

A(0) + X(0) is closed, if and only if there exists a constant relation S ∈ BR(H) such that A(0) + S(0) is closed,
A∗ |(A(0)+S(0))⊥∈ Φ−((A(0) + S(0))⊥,H), B ∈ Φ−(K ), and one of the following statements is fulfilled:

(i) n(A∗ |(A(0)+S(0))⊥ ) = n(B) = ∞;
(ii) MS

0 =
[

A+S 0
0 B

]
∈ Φ0(H ⊕K ).

Proof. By Theorem 3.8 and Lemma 2.5, we easily obtain the desired result.

Corollary 3.20. Let A ∈ BR(H) and B ∈ BR(K ). Then
[

A X
0 B

]
∈ Φ+

−
(H ⊕ K ) for some X ∈ BR(K ,H) with

A(0) + X(0) is closed, if and only if B ∈ Φ−(K ).

Proof. Notice that [B 0] ∈ Φ+
−

(K ⊕ H ,K ) if and only if B ∈ Φ−(K ). From Theorem 3.10, we have the
result.

Corollary 3.21. Let A ∈ BCR(H) and B ∈ BCR(K ). Then
[

A X
0 B

]
∈ Φ−+(H ⊕ K ) for some X ∈ BR(K ,H) with

A(0) + X(0) is closed, if and only if there exists a constant relation S ∈ BR(H) such that A(0) + S(0) is closed,
A∗ |(A(0)+S(0))⊥∈ Φ−((A(0) + S(0))⊥,H), and one of the following statements is fulfilled:

(i) n(A∗ |(A(0)+S(0))⊥ ) = ∞;
(ii) MS

0 =
[

A+S 0
0 B

]
∈ Φ−+(H ⊕K ).

Proof. By Theorem 3.8 and Lemma 2.5, we easily obtain the desired result.

We conclude this section with two illustrating examples of the previous results.

Example 3.22. LetH = K = ℓ2, and let A,B,C ∈ BR(ℓ2) be defined by

Ax = (0, 0, x1, 0, x5, 0, x9, 0, x13, · · · ), Bx = (x1, x2,
x3
3 , x4,

x5
5 , x6,

x7
7 , · · · ),

Cx = (0, 0, x1, 0, x3, 0, x5, 0, x7, · · · ) + C(0)

for x = (x1, x2, x3, · · · ) ∈ ℓ2, where

C(0) = {(0, 0, 0, x2, 0, x4, 0, x6, 0, x8, · · · ) : (x1, x2, x3, · · · ) ∈ ℓ2}.

Then we claim that MX =
[

A C
X B

]
∈ Φ0(ℓ2 ⊕ ℓ2) for some X ∈ B(ℓ2).

Direct calculations show that [A C] ∈ Φ−(ℓ2 ⊕ ℓ2, ℓ2), [B∗ C∗ |(A(0)+C(0))⊥ ] ∈ Φ−(B(0)⊥ ⊕ (A(0) + C(0))⊥,K ),
both N(A | C) and N(B∗ | (C∗ |(A(0)+C(0))⊥ )) contain non-compact operators. By Theorem 3.1, there exists
X ∈ B(ℓ2) such that MX ∈ Φ0(ℓ2 ⊕ ℓ2). Indeed, define X ∈ B(ℓ2) by

(x3 + x1, 0, x4 +
x5

3
, 0, x5 +

x9

5
, 0, x6 +

x13

7
, 0, · · · )

for x = (x1, x2, x3, · · · ) ∈ ℓ2. Then we can check that ranMX is closed and n(MX) = d(MX) = 2, and hence
MX ∈ Φ0(ℓ2 ⊕ ℓ2).
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Example 3.23. LetH = K = ℓ2, and let A,B,C ∈ BR(ℓ2) be defined by

Ax = (0, 0, x3, 0, x4, 0, x5, 0, x6, · · · ), Bx = (0, 0, x2, x3, x4, x5, · · · ),
Cx = (0, 0, 0, x2, 0, x3, 0, x4, 0, x5, · · · )

for x = (x1, x2, x3, · · · ) ∈ ℓ2. Then we claim that MX =
[

A C
X B

]
< Φ0(ℓ2 ⊕ ℓ2) for any X ∈ B(ℓ2), but MX =

[
A C
X B

]
∈

Φ0(ℓ2 ⊕ ℓ2) for some X ∈ BR(ℓ2).

Direct calculations verify that [A C] ∈ Φ−(ℓ2 ⊕ ℓ2, ℓ2), but M0 =
[

A C
0 B

]
< Φ0(ℓ2 ⊕ ℓ2) andN(A | C) contains

only compact operators. By Theorem 3.1, there does not exist any X ∈ B(ℓ2) such that MX ∈ Φ0(ℓ2 ⊕ ℓ2).
Define a constant relation S ∈ BR(ℓ2) by

Sx =M

for x = (x1, x2, x3, · · · ) ∈ ℓ2, whereM = {(x1, 0, 0, 0, · · · ) : (x1, x2, x3, · · · ) ∈ ℓ2}. It is easy to see that B(0) + S(0)
and ranMS

0 = ran
[

A C
0 B+S

]
are closed and n(MS

0) = d(MS
0) = 3, then MS

0 ∈ Φ0(ℓ2 ⊕ ℓ2). By Theorem 3.8, there
exists X ∈ BR(ℓ2) such that MX ∈ Φ0(ℓ2 ⊕ ℓ2). In fact, define a relation X ∈ BR(ℓ2) by X := S. Therefore,
MX =

[
A C
X B

]
∈ Φ0(ℓ2 ⊕ ℓ2).

4. Applications

In this section, we illustrate how Corollary 3.2 can be applied to address problems in the stabilization of
singular systems in control theory. A typical problem in this area involves stabilizing a singular plant via
state feedback. Consider a system described by the state equation:

ẋ = Ax + Cu,

(Note: The output equation y = Bx is not required for the state feedback stabilization problem.) the goal is
to find a state feedback operator X such that the control law u = Xx stabilizes the system. This problem can
be reformulated using the relation matrix:

MX =

[
A C
X I

]
.

A key stabilization objective is to ensure that MX is is a Weyl relation, which corresponds to a well-posed
closed-loop system with desirable spectral properties, particularly stability. A practical goal is to place the
Weyl spectrum σw(MX) in the left half of the complex plane, ensuring exponential stability. In this context,
Corollary 3.2 plays a fundamental role. It characterizes the spectral points that are unavoidable-those lying
in the intersection ⋂

X∈B(H ,K )
σw(MX),

regardless of the choice of feedback operator X. This characterization leads to a systematic two-step
procedure for assessing stabilizability:

Assess Intrinsic Stabilizability: The first step is to verify that all unavoidable spectral points (i.e., those
in the intersection described above) lie in the left half-plane. If any unavoidable point lies in the closed
right half-plane, the system cannot be stabilized by any feedback law X.

Design a Stabilizing Feedback: If the system is intrinsically stabilizable (all unavoidable points are
stable), Corollary 3.2 provides a complete characterization of the feedback operators X that achieve stabi-
lization. The corollary explicitly identifies the λ-dependent conditions that must be satisfied to exclude the
remaining, avoidable spectral points from the closed right half-plane.

In summary, Corollary 3.2 transforms the stabilization problem for a broad class of singular systems
into a concrete spectral analysis task. It clearly separates the fundamental limitations (unavoidable spectra)
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from the design freedom (tunable spectra), thereby providing control theorists with a powerful and precise
tool for analyzing stabilizability and synthesizing stabilizing controllers. This application underscores the
practical value of the abstract results presented in this work.
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