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Perturbations of Weyl spectra for 2 X 2 relation matrices

Xiufeng Wu?

#School of Mathematical Sciences, Inner Mongolia Normal University, Hohhot 010022, China

Abstract. This paper solves the completion problem for 2 X 2 block operator matrices whose entries are
linear relations. We provide necessary and sufficient conditions for the completed matrix Mx to be Weyl,
right Weyl, or left Weyl, whether the unknown entry X is a single- valued bounded operator or a multi-
valued bounded relation. Consequently, we characterize the perturbations of the associated Weyl spectra.
Our results generalize known theorems for operator matrices and provide tools for analyzing systems
beyond the scope of standard operator theory.

1. Introduction

A linear relation is a generalization of the concept of an operator in the multi-valued case. The linear
relation will naturally appear in considering the adjoint of non densely defined operators and the inverse
of certain operators, and it is shown to be very useful in various research fields such as nonlinear analysis,
control theory and differential equations (cf.[4, 12, 16, 18] and references therein). Partial relation matrices
are relation matrices the entries of which are specified only on a subset of its positions, while a completion
of a partial relation matrix is the conventional relation matrix resulting from filling in its unspecified entries.
Usually, one concerns the conditions under which a partial relation matrix has completions with some given
properties. The completion problem was shown to be very useful in various pure and applied mathematical

fields, e.g., in relation theory, numerical analysis, optimal theory, systems theory and engineering problems
(cf.[13] and references therein).

1.1. Basic Definitions

A linear relation T : H — K is a mapping such that T(A1x; + Ax2) = A1T(x1) + A, T(x2) for all nonzero
scalars A1,A; € C and x1,x € domT, where domT C H is the domain of T, and T(x;), T(x;) € K are
nonempty. The set LR(H,K) denotes the class of linear relations with domT = H and T(domT) € K.
The set LR(H,¥K) denotes the class of linear relations with domT = H and T(domT) C %K, and write
LR(H) := LR(H, H). If T(0) = {0}, then T is called an operator. The class of bounded linear operators from
‘H into K is denoted by B(H, K). The graph G(T) of T € LR(H, K) is

G(T) ={(u,v) e H®K : u € domT,v € T(u)}.
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For a subspace M c domT, then T |, is defined by
G(TIm) ={w,0) e HOK :ue M,v e T(u)},

and P, for the orthogonal projection onto M along M* when M is closed. The inverse of T is the relation
T-! given by

G(T™YH ={(v,u) e K®H : (u,v) € G(T)},

and the closure T of T is the linear relation defined by G(T) = G(T). If G(T) € H & K is a closed subspace,
then T is said to be closed. The class of such relations is denoted by CR(H, K). As usual, write kerT = {x €
H : (x,0) € G(T)} for the kernel of T, and ranT := T(domT) for the range of T; write n(T) := dimkerT and
d(T) := ranT*. The adjoint T* € LR(K, H) of T € LR(H,K) is defined by

G(T) ={(w,v)e KeH : ', v)y=(u)forall{u,u’y € G(T)}.
For T € LR(H,K),
kerT* = ranT*, T*(0) = domT*, kerT = ran(T*)*, T(0) = dom(T*)*.

The quotient map from K to W/W is denoted by Qr. Clearly QrT is an operator, so that we can define
[|ITx]l = ||QrTx|| for x € domT and ||T|| = ||QrT||. Notice that for u € domT, QrTu = Qrv. Indeed, since
v € Tu if and only if T(u) = v + T(0), then QrTu = Qrv. If T € LR(H,K) such that ||T|| < oo, then T is
said to be bounded. By BR(H,K) denote the subset of LR(H,K), whose elements are bounded. Write
BCR(H, K) := CR(H,K) N BR(H,K). As abbreviations, BR(H) := BR(H, H), CR(H) := CR(H,H) and
BCR(H) := BCR(H, H).

1.2. Fredholm and Weyl Relations

Let T € BCR(H, K) with closed range ranT. Then the relation T is said to be right Fredholm, if d(T) < oo;
while if n(T) < oo, we say T is left Fredholm. If T is both right and left Fredholm, then it is called Fredholm.
Write ind T := n(T) —d(T) for the index of T. Then T is called right Weyl if it is right Fredholm with indT > 0,
left Weyl if left Fredholm with ind T < 0, and Weyl if Fredholm with ind T = 0. Obviously, T is Weyl
if and only if T is both right and left Weyl. We denote the collections of right Fredholm, left Fredholm,
Fredholm, right Weyl, left Weyl, and Weyl relations as: ®_(H, K), ©..(H, K), D(H, K), D (H, K), D (H, K)
and @y(H,K). Again, we have the abbreviations O®_(H), ©..(H), D(H), P (H), P (H) and Dy(H) of the
above classes of relations like BR(H).

For T € BR(H), the sets
0(T) ={A € C: T — Ais not right Fredholm},
0(T) ={A € C: T — Ais not left Fredholm},
0.(T)={A e C: T — Aisnot Fredholm},

0(T) ={A € C: T — A is not right Weyl},
ow(T) ={A € C: T — Ais not left Weyl},
0w(T) ={A € C: T — A is not Weyl}

are called the right essential spectrum, left essential spectrum, essential spectrum, right Weyl spectrum, left
Weyl spectrum and Weyl spectrum, respectively.
Recall that an operator T* is the maximal Tseng inverse of T € B(H, K) if and only if

D(T+) =ranT & ranTl, T+T = PKerTJ-/ TT+ = thanTéBranTJ- .

It is clear that u = TT"u for any u € ranT.
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1.3. The Matrix Mx

When the relations A € BR(H), B € BR(K) and C € BR(K, H) are given, we define
A C
weeft .

with an unknown relation X € BR(H,K). Hereafter, the symbol My is reserved for the relation matrix
with the form as in (1). In particular, if C = 0, then Mx admit an upper triangular relation matrix form,
which has been studied by some authors [2, 3, 5, 10, 11, 19]. Note that if A, B, C and X are operators, then
then Fredholm-type and Weyl-type properties of the general operator matrix My have been studied by
different authors [14, 15, 21, 22]. The purpose of this paper is to extend Weyl-type properties of matrix
operators developed in [6, 7, 22] to linear relations. In [3, 5, 11], the authors studied the completion problem
of partial upper relation matrices in which the known element is multi-valued, but the unknown element
is single-valued. In fact, the multivalued part of unknown element is also worth considering. This paper
is concerned with the completion problem of partial relation matrices under the condition of single-valued
and multi-valued unknown element respectively.

The spectral theory of multivalued linear operators, which provides the foundation for our work, has
been comprehensively treated in [20]. This paper builds upon this foundation to address a specific and
fundamental problem: the completion problem for 2 X 2 relation matrices. To further clarify the scope and
novelty of our work, we pursue the following three objectives, which extend beyond the conventional focus
on single-valued operators: (1) Resolve the completion problem for 2 X 2 block matrices with linear relation
entries, focusing on Weyl, right Weyl, and left Weyl properties of Mx; (2) Unify analysis by allowing X to be
either a single-valued operator or a multi-valued linear relation, thus bridging a critical gap between these
two settings; (3) Characterize perturbations of Weyl spectra induced by varying X. These objectives fill a
gap in existing theory, which typically restricts entries to single-valued operators.

In this paper, we establish a necessary and sufficient condition under which Mx € ®y(H & K) (Mx €
DI (H & K), or Mx € OL(H @ K)) holds for some bounded entry X : H — K, which can be either a
single-valued operator or a multi-valued linear relation. Moreover, we characterize the perturbation of
0w(Mx), 0,0(Mx) and op,(Mx), when the X runs over the set B(H, K) (or BR(H,K)). As a byproduct, we
also obtain a necessary and sufficient condition is given for

A X

0 B

A X
0 B

]ecpo(w@vc), [ ]e@t(ﬂe«), or [‘8‘ ;f]eqn;((ﬂeam)

some bounded entry X : K — H, which can be either a single-valued operator or a multi-valued linear
relation.
2. Some auxiliary results

We begin with some basic lemmas, which are useful for the proofs of the main results of this paper.

Lemma 2.1 (see [17, Lemma 6]). Let C € B(K, H), then for any € > O there exist the orthogonal decompositions
K =K. ®Keand H = H. & HE such that

C(K.) € H., lICx]l < ellx|| for all x € K,
C(K€) € He, |ICx|| > ellx|l for all x € K.

Lemma 2.2 (see [1, Remark 1.54]). Let T € B(H,K) be a right (left) Fredholm operator. Then there exists € =
€(T) > O such that S € B(H,K) and ||S|| < € implies that T + S is also a right (left) Fredholm operator. Moreover,

n(T + ) < n(T), d(T +8S) <d(T), ind(T +S) = indT.
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Lemma 2.3 (see [1, Remark 1.54]). Let T € B(H,K), and let S € B(H, K) be a compact operator. Then
Q) TeOu(H, K)ifand only if T + S € O (H, K) with ind(T + S) = indT.
(i) T € O_(H,K)ifand only if T + S € ®_(H, K) with ind(T + S) = ind T.

Lemma 2.4 (see [1, Theorem 1.53]). Let T € B(H,K). Then

(i) T € O (H,K) if and only if there exist U € B(K,H) and Ky € B(H) such that UT = Iz + Ky, where
d1mK1 < 00,

(i) T € ©_(H,K) if and only if there exist V € B(K, H) and K, € B(K) such that TV = Iy + Ky, where
dlmK2 < 00,

Lemma 2.5 (see [8, Lemma 5.8]). Let T € B(H,K), then T is a compact operator if and only if ranT contains no
closed infinite dimensional subspaces.

For relations A € BR(H) and C € BR(K, H), write
N(A|C) := (G € BK, H) : ranAG + C(0) C ranC + A(0)},
and [A C] : H & K — H denotes the row relation.

Lemma 2.6 (see [4, Proposition I1.5.3]). Let T € LR(H,K), then T is closed if and only if QrT is closed, and
T(0) is a closed subspace.

Lemma 2.7 (see [4, Proposition III.1.2, Corollary II1.1.13]). Let T € LR(H,K), then T* is closed and ||T*|| <
IT1|.

Lemma 2.8 (see [2, Lemma 4.2]). Let T € BCR(H), Then
(i) T € O(H) if and only if QrT € O (H, H/T(0)). In such case, indT = ind(QrT).
(i) T € O_(H) if and only if QrT € ©_(H,H/T(0)). In such case, indT = ind(QrT).

Lemma 2.9 (see [4, Theorem IIL.1.10]). Let M C H, and let ] denote the natural injection map of M into H,
i.e., domjy = Mand Jpx = x for x € M. Then, (Qm)* = [me and (Jpm)* = Qpme.

Lemma 2.10 (see [4, Theorem II1.1.6]). Let Hy, H, and Hj be separable Hilbert spaces, and let T € B(Hy, H,)
and S € B(Hy, H3), then G(T*S*) € G((ST)*). Furthermore, if one of the following statements is fulfilled:

(i) ranT* = H; and domS C ranT;

(ii) ranS* = H; and ranT C domS,
then (ST)* = T*S*.

Lemma 2.11. Let A € LR(H), B € LR(K), C € LR(K, H) and X € LR(H,K), then

QA QucC
QM = [Q{x X QuxpB|

Proof. Let ([;] , [Z]) € G(Mx). Then there exist u; € Ax, u, € Cy, v; € Xx and v, € By such that u = uy + up
and v = v + v,. This implies that

o]
Notice that [.‘Ij] € Qumy [Z] if and only if [.‘,j] - [Z] € Mx(0), i.e.,

u’' —u € A) + C(0),
v’ — v € X(0) + B(0).
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That is equivalent to

u € Qua ciu = Qqa cy(uq + uz) = Qpa ey + Qqa cjid2,
v € Qrx B1v = Qrx 5)(v1 + v2) = Qrx 511 + Q[x 5102

This shows that

O |1 = Quam Qa2
Mclo| ™ | Qe Quxppoz ]

Since u; € Ax, uy € Cy, 1 € Xx and v, € By, it follows that
Qra ciir = Qa qAx, Qa cju2 = Qpa 1Cy,

Qix 8191 = Qrx B1Xx, Qix o2 = Qix p1By.

Therefore,

O My |¥| = QuaAx QucCy|_|QuaAd QuaC||x
P ] T | QuemXx QuemBy| T [QuemX QuemB |y

This completed the proof.
|

Lemma 2.12. Let A € BR(H), B € BR(K), C € BR(K, H) and X € BR(H,K). Then Mx is closed if and only if
A(0) + C(0) and X(0) + B(0) are closed.

Proof. Let A(0) + C(0) and X(0) + B(0) are closed, then Mx(0) is closed. By Lemma 2.6, we need only show
that Qum,Mx is closed in order to prove the desired result. Since A € BR(H) and [|Qa cjAx|| < [|QaAx|| <
lAllllx]l, x € H, it follows that Qa ;A € B(H, H/(A(0) + C(0)). Similarly, we have

Qu 1€ € B(K, H/(A(0) + C(0)), Qux sX € B(H,K/(X(0) + B(0))
and Qpx B € B(K, K/(X(0) + B(0)). Therefore,
QMXMX € B(ﬂ (&) 7(, Ho W/Mx(())),

and hence Qu, Mx is closed.
Conversely, if My is closed, then Mx(0) is closed, and hence A(0) + C(0) and X(0) + B(0) are closed.
O

Lemma 2.13. Let A € BCR(H),B € BCR(K), C € BCR(K,H) and X € BCR(H,K) with A(0) + C(0) and
X(0) + B(0) are closed. Then the following statements are hold:

(i) The adjoint M, is an operator;

(ii) The explicit form of M is given by

M = A X |[(A(0) + C(0))* H
xT e Bl |[(x0) +BO)-| T | x|

Proof. By Lemma 2.11, [|Qu,Mxl|| < oo and hence |[Mx]|| < oo. It follows from the closedness of M} that
domMj is closed according to Lemma 2.7. Lemma 2.12 ensures that My is closed, which together with the
closedness of relations A, C, X and B, we obtain that

domMy, = Mx(0)* = (A(0) + C(0))* & (X(0) + B(0))*
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and
dom [é: }ng ] = (domA* N domC*) & (domX* N domB*)
= (A0)* N C(0)*) & (X(0)* N B(0)").
This together with

A(0)" N C(0)" = (A(0) + C(0)), X(0)~ N B(0)" = (X(0) + B(0))~

implies that

domM;, = dom [C* i;]

Let [;] € Ho¥K and [;] € domM;, = dom[é: ;5:]. Then

LX) x| |x] [Ax+Cy
o - M5
= (x", Ax + Cy) + (y*, Xx + By)
=(A*x", x) +(Cx", y) + (XY, x) + (B*y", )

=(Ax" + X'y, x) + (C'x* + B'y", y)

-(¢ FIlLL)

and hence

. A X
[t %)

Finally, we emphasize the key conclusion that M is is an operator. Since A € BCR(H), domA is dense
in H, so A*(0) = domA* = {0}. Similarly, we have that C*(0) = {0}, X*(0) = {0} and B*(0) = {0}, which means
that M (0) = {0}, i.e. M} is an operator. []

Theorem 2.14. Let A € B(H), C € B(K,H) and m € Z*. If [A C] € O_(H & K,K), C is non-compact
and N(A | C) contains a non-compact operator, then there exists X € B(H,K) such that A + CX € O(H) and
ind(A + CX) = m.

Proof. The core idea is to transform the problem of finding X € B(H, K) such that A + CX is Fredholm with
ind(A + CX) = m into an equivalent problem involving the block operator matrix

My = [‘3 (1:] € BH oK)

where Y = —X. Using the matrix identity (2), we show this equivalence preserves Fredholmness and index.
We then employ a decomposition technique (Lemma 2.1) to separate C into components with different
norm properties. The proof proceeds by constructing suitable operators Z and Y in two cases (depending
on whether a certain component C, is compact or not) to make My Fredholm with ind(A + CX) = m, which
yields the desired X = Y.

Since

[(I) _IC] [_AX ﬂ [;I( (1)]=[A o ?] @
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it follows that A + CX € ®(H) with ind(A + CX) = m if and only if [ 4 ¢] € ®(H ® K) with ind [ 4 ¢ ] = m.
Write

My := [ﬁ (I::| € B(H & K).

By Lemma 2.1, for any € > 0, there exist the orthogonal decompositions K = K. & K¢ and H = H. & H°
such that

C(Ke) € He, ||ICx|| < €llx]| for all x € K,
C(K¢) c H¢, ||Cx|| = €llx]| for all x € Ke.

Actually, we have

— C|7(c 0 . (KE 7_{6
[T el ][]
It is clear that Clx- is left invertible for 0 < € < ||C|| and [A C], as an operator from H @& K¢ & K. to

ran(Clg-) @ (ran(Clg:)* @ He), has the block representation

_|Ai(e) C° O
ma=[ae 5 c

where
_[ce] g | ran(Clye) ol [ran(Clgce)*
C|7<e—[0]-7( _)[ran(Cl(Ke)L , Ce= Clac K — _ H.
with C¢ : K¢ — ran(Clg-) invertible and [|C,|| < €. Then My admits the following new representation
Ai(e) C¢ 0 H ran(Clgce)
My =|A6€) O Ce |:|K¢| = |ran(Clgce)* & H, |,
Y L) L] |Ke K

and hence the invertible operators U € B(ran(Cly:) ® (ran(Clyx<)* @ He) @ K) and V € B(H & K* @ Ke) given
by

I 0 0 I 00
u:= 0 I 0|, V:=[-(C)1A1e) T O
~Li(e)(C)T 0 I 0 0 I

are such that

0 c 0
UMYV = Aj(€) 0 Ce. 3)
Y - L(e)(C) M A(e) 0 Le)
Since

Aie) C¢ 0
“ A2(€) 0 Ce

Aie) C¢ 0],
B [A;(e) 0 o] I =1lICell <€,

by Lemma 2.2, the right Fredholmness of [A C] implies that

_|Aie) C¢| |H ran(Clyc)
A Chie1 = [A;(e) 0 ] [«] - [ran(Clq(e)iK ® We]
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is right Fredholm for sufficiently small € > 0. For such € > 0, Az(¢) is then a right Fredholm operator. Let
KerAj(e) = My & M,, where M; and M, are closed subspaces of KerA,(e), dimM; = co and dimM, =
m + d(Axz(€)).

If C. is compact, then n(Ax(€)) = d(I2(€)) = oo from N(A | C) contains a non-compact operator and Cis a
non-compact operator. Define

M, N
o R B
Ker(Az(e))* ?

whereZ; : My — R(I>(€))* is a unitary operator. Then [AZZ(F') IZ?E) is a Fredholm operator with ind [AZZ(E) 12(()5) ] =

m and so is

[Az(e) Ce ] ) ['H] . [ran(Cl:Ke)l 697{5]

Z  Ie) K (4)

€
Define Y := Z+ B1(€)(C°) "' A1 (¢) and we have from (3) that My € ®(H &K) with indMy = m. Define X = -Y.
Then we get the desired result from (2).

In the following, we suppose that C. is a non-compact operator. Since K. = Ker(I»(e))* and ran(Clg-)* &
H. = ran(Az(€)) @ ran(Az(¢€))*, the operator matrix defined as in (4) can be written as the following new
representation

An(e)  C; (e H ran(Az(e€))
0 C3 Cc: |: Ml} — |ran(A(€))* |, (5)
Z  In(e) In(e)] |[M K

where Az (€) is right invertible and I (€) is left invertible. Obviously, C! is non-compact, and C2,C3, C*

and I (€) are of finite rank. Since Ay;(€) is right invertible and I»;(€) : M; — K is left invertible and Clis
non-compact, N (A (€) | Cl) and N (L, (e) | CY) clearly contain non-compact operators. Using [21, Theorem
1], we can choose a suitable Z € B(H, K) such that

An() CL | [H ran(Azx(€))
Z Li(e)| " | M - K

is invertible. This together with d(A,(€)) = 0 and dimM, = m + d(A»(e)) deduces that

An() CI 0] [H ran(Ax(€))
0 0 0}: Ml} — |ran(Ax(e))*
Z 121(6) 0 M2 K

is a Fredholm operator and

Azl(é’) Cg 0
ind| O 0 0| =m.
Z 121(6) 0

From (5), Lemma 2.3 and (3), it follows that My € ®(H & K) with indMy = m for Y = Z + I;(€)(C¢) "' A1 (e).
Define X = —Y. Then we immediately have the desired result from (2). O

3. Main Results

In this section, we present proofs of the main results of this paper, i.e., Theorems 3.1, 3.3, 3.5, 3.8, 3.10
and 3.12. As their corollaries, some related properties are also mentioned.
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Theorem 3.1. Let A € BCR(H), B € BCR(K)and C € BCR(K, H) with A(0)+C(0) is closed. Then Mx € ©o(H&
K) for some X € B(H, K) ifand only if [A C] € P_(HOK, H), [B* C* |(a©)+coy: 1 € P-(B(0)*&(A(0)+C(0))*, K),
and one of the following statements is fulfilled:
(1) N(A | C)and N(B* | (C* |(a(0)+c(0))*)) contain non-compact operators;
(i) My = [ 4§ € @o(H & %).

Proof. The sufficiency proof is constructive. The core idea is to use the assumptions on [A C] to build an
invertible operator L that block-diagonalizes the quotient map MxQy,-This reduces the problem to finding
an X such that a specific compression becomes Fredholm with a prescribed index.

Sufficiency. Let H’ = ranA + ranC. If assertion (ii) holds, then the result is trival. Now assume that

assertion (i) holds. It is clear that n([A C]) = co. Then there exists a left invertible operator [E] K->HoK
such that ran [,’f:] = ker[A C]. Since Qqa ¢[A C] =[Qa cjA Qpa c1C] and A(0) + C(0) is closed, it follows that

ker[A C] =kerQa ¢[A C] = ker[Qa A Qua ciCl,
and hence
(Qua aA)E + (Qra aOF = 0. (6)
In view of [A C] € O_(H & K, H), we obtain that
[Qu A Qua ciCl € D_(H & K, H/(A(0) + C(0))).

Then there exists an invertible operator
Y ’ L
7|+ H'/(AQ0) + C(0)) = ker[Qa A Qia ciC]
such that

Y
[Qua A Qpa €l [Z} = Qa aAY + Qa a1CZ = Ipp ja)+co))- ()

Put

- [Y E] , [W’ /(A0) + C(O))] . [w]
“|z F| K K|

Then, L : H'/(A(0) + C(0)) @ K — H & K is an invertible operator. Indeed, since [E] K-> HeKisaleft

invertible operator, then there exists a right invertible operator [Q R]: H®K — K such that QE + RF = Ix.
From the relation

QuaA QuaC|lY E|_|lxjao+coy O
Q R ||z F QY +RZ Iyl

we derive that L is left invertible. By (7), we have that

Y
+ker[Qu A QuaCl=HaeK,

ran
zZ

and hence

ranL = ran [;] + ran [IE:] =HoK.
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This proves the invertibility of L. It is clear that

_ | Irpao+coy 0
QuMel=(QuX)Y + (QsB)Z  (QeX)E + (QuB)F ?

from Lemma 2.11. Since N(A | C) contains a non-compact operator, it follows that there exists a closed
infinite dimensional subspace M C H such that

ranA | +C(0) C ranC + A(0),
which means that M C ranE, and hence E is a non-compact operator from Lemma 2.5. By Lemmas 2.9 and
2.10, we obtain that (Q[A C]C)* = C*](A(O)+C(0))i/ which together with [B* c |(A(0)+C(0))l] € CD_(B(O)J' 57 (A(O) +
C(0))*, K) and ranB* = ran(QpB)* implies that
[(Qu c1O)" (QB)] € D_((A(0) + C(0))" ® B(0)", K).

Then

[Q[(SBCB]C] € ©.(K, H/(A0) + C(0) © K/B(0)),

it follows that there exists [G; L] : H & K — K such that
G1Qu aC+L1QpB =Ix + K, )

where K € B(K) is a finite rank operator. Also since [E] : K — H & K is left invertible, then there exists
[Gy> Lp]: H/(A(0) + C(0)) ® K/B(0) — K such that

GyE + L,F = 17( (10)
By (9), we have G1(Qa ¢]C)F + L1(QpB)F = (I¢ + K)F = F + FK, which together with (10) and (6) implies that
(G2 = L2G1(Qua aA)E + LoLi(QB)F = Iy + FK.

By Lemma 2.4, we obtain that

[ © fB)F] € 0, (K, H & K/B(0)),

and hence [((QgB)F)* E*] € ®_(B(0)* @ H,K). Since
G e N(B" | (C" la©)+c))

then there exists L3 € B(H) such that B'G = C* |a0)+c0))+ Ls, which together with domB* = B(0)* implies
that B*]B(O)LG = C*](A(0)+C(O))LL3/ and therefore (QBB)*G = (Q[A C]C)*Lg. From

((QBB)F)'G = F/(QBB)'G = F(Qua c1O)'Ls = =E*(Qa qjA)’Ls,

we have G € N(((QgB)F)* | E*). Notice that, G is a non-compact operator. Then, by Lemma 2.14, there exists
Xy € B(H, ¥, /B(0)) such that (QgB)F + X;E is Fredholm and

ind((QsB)F + X,E) = dimH"*. (11)
Define X € B(H, K) by

Xx = PB(O)l]/r X € 7'{,
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where [y] = Xjx. Itis clear that X; = QpX. By (8), we have ranQu, MxL is closed, n(Qum,MxL) = n((QpB)F +
XlE) and

d(QMXMxL) = d((QBB)F + XlE) + dimH’+.

This together with (11) demonstrates that Qu, MxL is Weyl. By Lemma 2.8, we have Mx € @ (H o K).
Necessity. Assume that My € @y(H @ K) for some X € B(H,K). Since B is a closed relation, it follows
that B(0) is closed. Notice that A(0) + C(0) is closed. Then Mx admits the following representation

A G (A0) + C(O)*
A C | [H A(0) + C(0)
Mx=Ix g '[7( 21 B>t (12)
X, B-B B(0)
Clearly, we have
, A1 G| |H (A(0) + C(0))*
=[S [ o

is a Weyl operator, it follows that there exist

E S
H T

] € B((A(0) + C(0))* @ B(0)*, H & K)

and finite rank operators F1; € B((A(0) + C(0))*, H), Fi2 € B(B(0)*, H) Fx1 € B((A(0) + C(0)*+,K), Fz €
B(B(0)*, K) such that

A GI|E S| _ Haoxcor 0 | [Fu Fo
X; Bi||H T 0 Igoy| [Fun Fof’
Therefore

A1E+CH = I(A(O)+C(O))i + F11, X3S+ BT = IB(O)i + Fy,A15 + C1T = Fpp.

It follows from A1E + C1H = I(a)+c)> + Fu1 that [A; C1] € D_(H & K, (A(0) + C(0))*). This together with
the closedness of A(0) + C(0) implies that [A C] € ®_(H & K, H). By the Weylness of Mx and Lemma 2.13
implies that

M = [A* X] _ [(A(t» + cm»l] . [ﬂ]
X~ B B(0)* K

is Weyl Therefore, [B* C* |(A(0)+C(O))*] € (D_(B(O)J‘ ® (A(O) + C(O))J',W)
Assume that N(A | C) contains only compact operators. Let [E] : K1 — H & K is a left invertible

operator and ran [E] = ker[A C], where % is a Hilbert space with dim%; = dimker[A C]. Similar to the
proof of the sufficiency, there exists an invertible operator

3]s a0+ o) - ket aa Quacr

such that

- [Y E] ' [W' /(A0) + C(O))] . [ﬂ]
“|z F| % K
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is an invertible operator. Then we still have (8). If dim%/B(0) = oo, then the Weylness of Mx and (8) implies
that dim%%; = co. From

E
ran |F] = ker[Qpa A Qpa o1C] = ker[A C],

we get that there exists a unitary operator V : K — K such that EV € N(A | C). Since N(A | C) contains
only compact operators, then E is a compact operator. If dim%/B(0) < oo, then dim%; < oo, which implies
that E : K — H is a compact operator. From (8), the Weylness of Mx implies that (QzB)F + XE is Fredholm
and ind((QgB)F + XE) = dimH’+. Notice that E : K; — H is a compact operator, it follows from Lemma 2.3
that (QgB)F is Fredholm and

ind((QpB)F) = dimH"*. (14)

Take X = 0 in (8). Then it follows from (8), the Fredholmness of (QzB)F and (14) that Qu,MoL is Weyl. By
Lemma 2.8, we obtain that My € ®y(H & K).

Now assume that N(B* | (C* |(a(0)+c())+)) contains only compact operators. Since M} is Weyl, then we
get M is Weyl in the similar way as the proof of the above, and hence My is Weyl. [

Corollary 3.2. Let A € BCR(H), B € BCR(K) and C € BCR(K, H) with A(0) + C(0) is closed. Then

N owMx)={AeC: [A-AI C]¢ D_(HeK,H))
XeB(H,K)

UA € C: [B' = AT C' lu@yrcoy:] & (K & H, K)}
UiA € aw([g g]); either N(A — AI| C) or
N(B* - AL | (C" lia0)+c(oy+)) contains only compact operators}.

Theorem 3.3. Let A € BR(H), B € BCR(K)and C € BR(K, H) with A(0)+C(0) is closed. Then My € ®* (HaK)
for some X € B(H,K) if and only if [A C] € P_(H & K, H), and one of the following statements is fulfilled:
(i) N(A | C) contains a non-compact operator;

(i) Mo = [4 §] € D*(H & %).

Proof. Sufficiency. If assertion (ii) holds, then sufficiency is clear. Now assume that N(A | C) contains
a non-compact operator. By Lemma 2.5, we have that there exists a closed a closed infinite dimensional
subspace M C H such that

ranA | +C(0) C ranC + A(0),

and hence
I‘anP(A(o)+C(0))J.APM c ranP(A(0)+C(O))¢C - dom(P(A(0)+C(O))L C)+.

Let M = M; @ M,, where M; and M; are closed infinite-dimensional subspaces of M. We take a right
invertible operator S € B(H, K) with KerS*+ = M;. Since ranPo)+co): AP, € ranPa0)+c():C, it follows
that

(Pa©+c©): C) Pay+cy AP, € B(H, K).

Define X € B(H, K) by

Then My € ®X(H & K). Indeed, let H’ = ranA + ranC. We clearly have ranMyx € H' @ K. Let [ Z;] eH oK.
Since ranA |y +C(0) € ranC + A(0), there exist xp € M* and yy € K such that u; € Axp + Cyo. From
the definition of S, it follows that u, € Sy + Byo for some £y € M;. If we choose x; := xp + £ and
y1:= Yo = (Pa+co)- C) Pa)+c)+Afo, then we get
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AJC() + Cyo + AJ?()—

Xl] (Pa@+c0)+C + Pa©)+co) O)Pap+con: C) Pao+coyAfo

3

S%o + Byo + Py B(Pa©)+c0): C) " Pea@)+c) - AP m, Xo—
(Pp): B + B = B)(Pa)+c)): C) " Pia)+coy: AP pm, Fo

_ VA.X() + Cyo + AJ?O - P(A(0)+C(0))*A560

i SXo + B:l/o
[Axo + Cyo + A%y — Pia)+co)-Afo — Pay+coyAfo
| SJ?O + Byo
PAXQ + Cyo
thaO + Byo

7

which means that

ui X1
eM ,
HEEH
and hence H’ @ K C ranMy. This together with [A C] € O_(H &K, H) demonstrates that Mx € P_(H & K).
It remains to prove n(My) > d(Mx). Indeed, there exists y; € K such that0 € Axjy+ Cyj forall xj € Mo, since

ranA |y +C(0) € ranC + A(0). The right invertibility of S further implies 0 € S + By, for some % € M.
Define x; := xj + £ and y» := y; — C{ A1 %, then

bl e
ie., [;’2] € kerMy. The arbitrariness of x;, € M, results in n(Mx) = oo > d(Mx).

Necessity. Assume that Mx € ®*(H @ K) for some X € B(H, K). Since B is a closed relation, it follows
that B(0) is closed. Notice that A(0) + C(0) is closed. Then Mx has the representation (12). Clearly, we
have M}, defined as in (13) is a right Weyl operator, it follows that [A; C1] is right Fredholm. This together
with the closedness of A(0) + C(0) implies that [A C] € ®_(H & K, H). Assume that N(A | C) contains only
compact operators. Let [E] : K1 — H @ K is a left invertible operator and ran [ E] = ker[A C], where K is
a Hilbert space with dim%; = dimker[A C]. Similar to the proof of the necessity of Theorem 3.1, we obtain
that My = [4 §] € DH(H & K).

O

Corollary 3.4. Let A € BR(H), B € BR(K) and C € BR(K, H) with A(0) + C(0) is closed. Then

N orMx)={AeC: [A-AI C]¢ O_(HaK,H)}
XeB(H,K)

U{A € a0 ‘8 g]) :N(A — AI'| C) contains only compact operators}.

Theorem 3.5. Let A € BCR(H),B € BCR(K) and C € BCR(K, H) with A(0) + C(0) is closed. Then My €
@I(?‘( ® 7() fOT’ some X € B(?‘(, 7() if&l?ld OTlly lf [B* C* |(A(0)+C(O))l] € CD,(B(O)J' (&) (A(O) + C(O))J‘, 7(), and one Of
the following statements is fulfilled:

(1) N(B* | (C la©)+cy)) contains a non-compact operator;

(i) My = [ 4 §| € @3 (H @ K).

Proof. Since B is a closed relation, it follows that B(0) is closed, which together with the closedness of
A(0) + C(0) implies that My is a closed relation follows from Lemma 2.12. Notice that My is left Weyl if and
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only if

e |BCl] BO* K
XTIx AT [A©) + CO)*| T | H

is right Weyl. According to Theorem 3.3, we immediately obtain the desired result. [
Corollary 3.6. Let A € BCR(H), B € BCR(K) and C € BCR(K, H) with A(0) + C(0) is closed. Then

N owMx)={AeC:[B" = AL C |a0coy] € O-(K &H,K))
XeB(H,K)

Uid € alw([‘g g]):N(B* — AI| (C* |a)+coy+)) contains }
only compact operators}.

Remark 3.7. Theorems 3.1, 3.3 and 3.5 extended the Theorems 3.9, 3.2 and 3.5 of [22] to the general case of
linear relations.

The Weylness and right (left) Weylness of relation matrices Mx = [3‘} g] with X € B(H, K) is presented

above. In the sequel, we turn our attention to the analogues for which the unknown element X : H — K is
taken as a bounded linear relation.

Theorem 3.8. Let A € BCR(H), B € BCR(K)and C € BCR(K, H). If A(0)+C(0) is closed, then Mx € Po(H®K)
for some X € BR(H, K) with X(0) + B(0) is closed, if and only if there exists a constant relation S € BR(K) such
that B(0) + S(0) is closed,

[B* lBoy+sop: C* la@y+coy:1 € D-((B(0) + S(0))* & (A(0) + C(0))*, K),

[A C] € O_(H &K, H), and one of the following statements is fulfilled:
@) N(A | C) and N((B* |oy+s©):) | (C* la©)+coy+)) contain non-compact operators;
(if) M5 = [§ 555 | € Po(H @ K).

Proof. Sufficiency. Write M5, = [3‘} BES] € BR(H&K). Assume that there exists a constant relation S € BR(K)
such that [B* |(B(0)+S(O))L C |(A(0)+C(0))*] € @_((B(0) + S(0))* & (A(0) + C(0)+,K),[A Cle O_(H K, H) and
one of the assertions (i) or (ii) hold. Notice that

(B + 5) lBo)+s©y)+= B" lBo)+s))* (15)
and
. _|B" C| | (BO)+ 5(0))* K
(M) = [o A*] ' [(A(O) " C(O))i] - [7—(] (16

By Theorem 3.1, we obtain that

A C

My, = [Xl B+ 5| € PHSK) (17)

for some X; € B(H, K). Define X € BR(H, K) by
X=X1+X-X

where (X — X)x = S(0) for x € H. It is clear that Mx € @y(H & K).
Necessity. Let Mx € @y(H & K) for some X € BR(H, K) with X(0) + B(0) is closed. Define S € BR(K)
by Sx = X(0) for x € K, then B(0) + S(0) is closed. This together with Mx € ®o(H @ K) implies that

A C

M = [X 15| € P(HK),
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and hence

(MEY = [B* C*] . [(Bm) + sm»l] R [«]
X X' A" |(A(0) + C(0))* H

is Weyl. From Theorem 3.1, the desired result follows right away. [
Corollary 3.9. Let A € BCR(H), B € BCR(K) and C € BCR(K, H) with A(0) + C(0) is closed. Then,

Ow (MX)

XeBR(H,K)
X(0)+B(0)=X(0)+B(0)

={AeC: [A-Al Cl¢ D_(H oK, H)}
UfA € C: [B" = Al |goy+s0)+  C* lia@)+coy-]
¢ D_((B(0) + 5(0)* @ (A(0) + C(0)*, K)
for any constant relation S € BR(K) with S(0) + B(0) = S(0) + B(0)}
UIA € 0([ 4 5Ss |):either N(A = AT C)or
N((B* = AL lBoy+soy) | (C* lao+coyr))
contains only compact operators for any constant relation
S € BR(K) with S(0) + B(0) = S(0) + B(0)}.

Theorem 3.10. Let A € BR(H), B € BR(K) and C € BR(K, H). If A(0) + C(0) is closed, then Mx € O (H & K)
for some X € BR(H, K) with X(0) + B(0) is closed, if and only if [A C] € D (H & K, H).

Proof. Let[AC] € DI (H@XK, H). Define X € BR(H, K) by Xx = K, for x € H.Itis clear that X(0)+B(0) = K
is closed, which together with the closedness of A(0) + C(0) implies that Mx is a closed relation follows
from Lemma 2.12. On the other hand, since ranMyx = ran[A C] & K and kerMx = ker[A C], it follows that
n(Mx) = n([A C]) and d(Mx) = d([A C]). This proves that Mx € ®*(H & K).

Conversely, Let A(0) + C(0) is closed. Assume that Mx € ®*(H & K) for some X € BR(H,K) with
X(0) + B(0) is closed. Then My has the following relation matrix representation:

A G (A(0) + C(0))*

e - |2 G| [#1] | A©)+CO)
TIx B [(K] (X(0) +BO)* |

X, B X(0) + B(0)

Clearly, we have

, A G| |H (A(0) + C(0))*
Xi Bi|'|%| 7 |(X(0) + BO)*

X1 °
is right Weyl. Similar to the proof of Theorem 3.3, we obtain that [A C] € ®_(H & K, H). Since d([A C]) <
d(Mx) and n(Mx) < n([A C]), which together with d(Mx) < n(Mx) implies that d([A C]) < n([A C]). This
prove that [A C] € O (H & K, H).

O

Corollary 3.11. Let A € BR(H), B € BR(K) and C € BR(K, H) with A(0) + C(0) is closed. Then

ow(Mx) ={A e C: [A=AI C] ¢ OX(H &K, H)}.

XeBREH,K)
X(0)+B(0)=X(0)+B(0)
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Theorem 3.12. Let A € BCR(H),B € BCR(K) and C € BCR(K, H). If A(0) + C(0) is closed, then Mx €
DL (H & K) for some X € BR(H,K) with X(0) + B(0) is closed, if and only if there exists a constant relation
S € BR(K) such that B(0) + S(0) is closed,

[B" loy+so): C la+coy-] € P-((B(0) + S(0))* & (A(0) + C(0))*, K),

and one of the following statements is fulfilled:
(1) N((B* lBoy+soyr) | (C* la©)+cy:)) contains a non-compact operator;
(i) M3 = [ § 55 | € PLH @ K).

Proof. Sufficiency. Write M5, = [3‘} BES] € BR(H&K). Assume that there exists a constant relation S € BR(K)
such that [B* |o)+s0): C* lay+coy:] € P-((B(0) + S(0))* @ (A(0) + C(0))*,K), and one of the assertions (i)
or (ii) hold. Notice that (15) and (16). By Theorem 3.5, we obtain that M;l defined as in (17) is a left Weyl
relation for some X; € B(H, K). Define X € BR(H, K) by

X=X1+X-X

where (X — X)x = S(0) for x € H. It is clear that My € @ (H & K).

Necessity. Let Mx € @7 (H & K) for some X € BR(H, K) with X(0) + B(0) is closed. Define S € BR(K)
by Sx = X(0) for x € K, then B(0) + S(0) is closed. This together with Mx € ®L(H & K), implies that
M5, € &7 (H & K), and hence

sy _ [B° C| | (B(O)+5(0)* K
(Mﬂ‘{x A @A) + cont| 7 |#H

is right Weyl. From Theorem 3.3, the desired result follows right away. [
Corollary 3.13. Let A € BCR(H), B € BCR(K) and C € BCR(K, H) with A(0) + C(0) is closed. Then,

ﬂ 01(Mx)

XeBR(H,K)
X(0)+B(0)=X(0)+B(0)

={1eC:[B" - Al lpo+s0): C lao+coy)]
¢ O_((B(0) + S(0)) @ (A(0) + C(0))*, K)
for any constant relation S € BR(K) with 5(0) + B(0) = 5(0) + B(0)}
UiA € Uzw([é BES]):N ((B* = AT lsoysop) | (€ laocop))
contains only compact operators for any constant relation
S € BR(K) with 5(0) + B(0) = S(0) + B(0)}.

Now, we see the Weylness and right (left) Weylness of upper triangular relation matrix
[A X

) B] € BRIH & K).

The following three Corollaries are direct consequences of Theorems 3.1, 3.3 and 3.5.

Corollary 3.14 (see [11, Corollary 3.2]). Let A € BCR(H) and B € BCR(K). Then |4 )B(] € Oy(H oK) for some
X e B(K,H) ifand only if A € D (H), B € D_(K), and one of the following statements is fulfilled:

(i) d(A) = n(B) = eo;

(ii) [ 4 3] € @o(H & %).

Corollary 3.15. Let A € BR(H) and B € BR(K) with A(0) is closed. Then [‘8 %5] € O (H @ K) for some
X € B(K, H) if and only if B € ®_(K), and one of the following statements is fulfilled:

(i) n(B) = oo;

(i) [ 4 §] € @*(H @ K).
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Remark 3.16. Corollary 3.15 is an extension of Corollary 3.1 of [11], since A is a closed relation, it follows
that A(0) is closed.

Corollary 3.17. Let A € BR(H) and B € BR(K) with B(0) is closed. Then [g {g] € O (H @ K) for some
X € B(K, H) if and only if A € O(H), and one of the following statements is fulfilled:

(i) d(A) = oo;

(i) [ 4 3] € DHH @ K).
Remark 3.18. Theorem 3.1 of [11] follows from Corollary 3.17 immediately, since B is a closed relation, it
follows that B(0) is closed.

Corollary 3.19. Let A € BCR(H) and B € BCR(K). Then [4 X | € Do(H & K) for some X € BR(K, H) with
A(0) + X(0) is closed, if and only if there exists a constant relation S € BR(H) such that A(0) + S(0) is closed,
A" A+ € P_((A(0) + 5(0))*, H), B € P_(K), and one of the following statements is fulfilled:

(i) n(A* la)+s()-) = n(B) = oo;

(i) M3 = [ 455 9] € Do(H & %),

Proof. By Theorem 3.8 and Lemma 2.5, we easily obtain the desired result. [J

Corollary 3.20. Let A € BR(H) and B € BR(K). Then ’{}{é] € O (H @ K) for some X € BR(K, H) with
A(0) + X(0) is closed, if and only if B € ®_(K).

Proof. Notice that [B 0] € ®(K @ H,K) if and only if B € ®_(K). From Theorem 3.10, we have the
result. [

Corollary 3.21. Let A € BCR(H) and B € BCR(K). Then |4 )B(] € OL(H & K) for some X € BR(K, H) with
A(0) + X(0) is closed, if and only if there exists a constant relation S € BR(H) such that A(0) + S(0) is closed,

A" a0)+s0)- € P-((A(0) + S(0))*+, H), and one of the following statements is fulfilled:
(i) n(A" la©+s)) = ©;
(i) M = [ 455 9] € @n(H @ K).
Proof. By Theorem 3.8 and Lemma 2.5, we easily obtain the desired result. [
We conclude this section with two illustrating examples of the previous results.

Example 3.22. Let H = K = €2, and let A, B, C € BR({?) be defined by

Ax =(0,0,x1,0,x5,0,%9,0,x13, ), Bx = (x1,%2, 5, X4, 5, X6, %, ),
Cx =1(0,0,x1,0,x3,0,x5,0,x7,---) + C(0)

for x = (x1,%2,%3, -+ ) € €2, where
C(O) = {(01 0/ 0/ X2, 0/ X4, 0/ X6, 0/ Xg, - ) : (xlr X2,X3, " ) € fz}
Then we claim that M = [ 4 §] € @o(€2 @ ) for some X € B((?).

Direct calculations show that [A C] € ®_(€2 & ¢2,£?), [B* C* |a0)+c0)-] € P-(B(0)* & (A(0) + C(0))*, K),
both N(A | C) and N(B* | (C* |ia@)+c(o)+)) contain non-compact operators. By Theorem 3.1, there exists
X € B(£?) such that My € Oy(€? @ ¢?). Indeed, define X € B({?) by

X5 X9 X13
(X3 +X1,0,X4 + E,O,X5 + g,O,x6 + 7,

for x = (x1,x2,x3,---) € £2. Then we can check that ranMy is closed and n(Mx) = d(Mx) = 2, and hence
Myx € Oy(? & (7).

0,---)
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Example 3.23. Let H = K = {*, and let A, B, C € BR(*) be defined by

Ax =(0,0,x3,0,x4,0,x5,0,%6,- ), Bx = (0,0, x2, x3, x4, X5, *),
Cx =(0,0,0,x2,0,x3,0,x4,0,x5,---)

for x = (x1,x2,x3,++) € €2. Then we claim that My = [3‘} %] ¢ Oy (% @ (?) for any X € B({?), but Mx = [3‘} %] €
@ (? & €2) for some X € BR(L?).

Direct calculations verify that [A C] € ®_(£2 @ €2, (%), but M, = [‘3 g] g Oy(? ® £%) and N(A | C) contains
only compact operators. By Theorem 3.1, there does not exist any X € B(¢?) such that Mx € ®y({* ® (2).
Define a constant relation S € BR({?) by

Sx=M

for x = (x1,x2,x3,++) € {2, where M = {(x1,0,0,0,--+) : (x1,x2,x3,--+) € {*}. It is easy to see that B(0) + S(0)
and ranM; = ran [‘3 BES] are closed and n(M3) = d(M3) = 3, then M3 € ®y(¢2 & (). By Theorem 3.8, there
exists X € BR({?) such that Mx € @y({* ® ¢2). In fact, define a relation X € BR(¢?) by X := S. Therefore,
Mx =[4§] € @o( & £2).

4. Applications

In this section, we illustrate how Corollary 3.2 can be applied to address problems in the stabilization of
singular systems in control theory. A typical problem in this area involves stabilizing a singular plant via
state feedback. Consider a system described by the state equation:

x=Ax+Cu,

(Note: The output equation y = Bx is not required for the state feedback stabilization problem.) the goal is
to find a state feedback operator X such that the control law u = Xx stabilizes the system. This problem can
be reformulated using the relation matrix:
A C

el
A key stabilization objective is to ensure that My is is a Weyl relation, which corresponds to a well-posed
closed-loop system with desirable spectral properties, particularly stability. A practical goal is to place the
Weyl spectrum o,(Mx) in the left half of the complex plane, ensuring exponential stability. In this context,

Corollary 3.2 plays a fundamental role. It characterizes the spectral points that are unavoidable-those lying
in the intersection
m Ow (MX )/

XeB(H,K)

regardless of the choice of feedback operator X. This characterization leads to a systematic two-step
procedure for assessing stabilizability:

Assess Intrinsic Stabilizability: The first step is to verify that all unavoidable spectral points (i.e., those
in the intersection described above) lie in the left half-plane. If any unavoidable point lies in the closed
right half-plane, the system cannot be stabilized by any feedback law X.

Design a Stabilizing Feedback: If the system is intrinsically stabilizable (all unavoidable points are
stable), Corollary 3.2 provides a complete characterization of the feedback operators X that achieve stabi-
lization. The corollary explicitly identifies the A-dependent conditions that must be satisfied to exclude the
remaining, avoidable spectral points from the closed right half-plane.

In summary, Corollary 3.2 transforms the stabilization problem for a broad class of singular systems
into a concrete spectral analysis task. It clearly separates the fundamental limitations (unavoidable spectra)
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from the design freedom (tunable spectra), thereby providing control theorists with a powerful and precise
tool for analyzing stabilizability and synthesizing stabilizing controllers. This application underscores the
practical value of the abstract results presented in this work.
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