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Abstract. This paper introduces the q-Bronze Leonardo-Lucas matrix ℵ(q) = (ζ̆(q)
nk )n,k∈N, defined by

ζ̆(q)
nk =


3 qk−1 ζ̆k(q)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10
, 1 ≤ k ≤ n,

0, k > n,

with {ζ̆n(q)} representing the q-Bronze Leonardo-Lucas sequence. Using ζ̆n(q) is defined by

ζ̆n(q) = (2 + qk−1)ζ̆n−1(q) + qn−1ζ̆n−2(q) − 3

for n ≥ 2, ζ̆0(q) = 3, ζ̆1(q) = 4. We introduce the matrix domains ℓp(ℵ(q)) = (ℓp)ℵ(q) for 1 ≤ p < ∞, along
with ℓ∞(ℵ(q)) = (ℓ∞)ℵ(q), c0(ℵ(q)) = (c0)ℵ(q), and c(ℵ(q)) = (c)ℵ(q), which denotes the q-Bronze Leonardo-Lucas
sequence spaces. In this context, we derive the Schauder basis for the space ℓp(ℵ(q)) for 1 ≤ p < ∞. We
establish several results regarding the operator ideals associated with these newly defined sequence spaces.
Further, we explore various geometric properties of ℓp(ℵ(q)) and ℓ∞(ℵ(q)). Finally, we analyze the solidity
property of these sequence spaces.

1. Introduction

A Banach space V is known as a BK-space when the coordinate projections πi : V → C maintain
continuity. These projections are defined by πi(v) = vi for any v = (vi) ∈ V and for each i ∈N. The sequence
spaces ℓp (1 ≤ p < ∞) and ℓ∞, equipped with their standard norms

∥v∥ℓp =

∑
i

|vi|
p


1
p

, ∥v∥ℓ∞ = sup
i∈N

|vi|
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are Banach spaces. ConsiderV andW as sequence spaces, and N = (ni j) denotes an infinite real matrix. We
denote the matrix simply as N = (ni j), with the understanding that indices run to infinity.

The matrixNdefines a linear operatorV→W if for each v = (v j) ∈ V, its matrix transformNv =
(∑

j ni jv j

)
i

belongs toW. Mathematically, the N-transform is defined as

(Nv)i =
∞∑
j=1

ni jv j, i ∈N.

The sequence space VN is defined as

Vn = {v = (vi) ∈ w : Nv ∈ V},

is known as the domain of the matrix N in the space V. The space ω represents the set of all real-valued
sequences. Within this framework, several specialized sequence spaces are defined as follows:

• c0: The set of sequences that converge to zero (null sequences).

• c: The set of all convergent sequences.

• ℓ∞: The set of all bounded sequences.

• ℓp (1 ≤ p < ∞): The set of all sequences that are absolutely p-summable.

• cs: The set of sequences whose series are convergent.

• bs: The set of sequences with bounded series.

The concept of a q-analogue extends classical mathematical ideas by incorporating a parameter q. When
q approaches 1, the q-analogue converges to the original formulation. Although Euler introduced the
concept, Jackson later applied q-analogue methods to establish q-differentiation and q-integration [6]. For
additional details on q-calculus, we refer the reader to [7]. Over time, q-analogues have been widely
utilized in various mathematical fields, including algebra, combinatorics, approximation theory, and special
functions. Moreover, several researchers have applied summability theory and sequence spaces. For
exapmles, researchers have developed q-analogues of Cesàro sequence spaces and examined q-statistical
convergence in summability methods (see [5, 8, 17]).

Recent research has increasingly focused on the q-analogues of classical sequence spaces. For example,
Demiriz and Şahin [5] and Yaying et al. [17] investigated the domain X(C(q)) = XC(q), where X represents
spaces such as ℓp, c0, c, and ℓ∞. Based on this work, Yı́lmaz and Akdemir [15] analyzed the topological and
geometric properties of the spaces (ℓp)C(q) and (ℓ∞)C(q).

In a separate contribution, Alotaibi et al. [1] introduced the spaces ℓp(∇2
q) = (ℓp)∇2

q
and ℓ∞(∇2

q) = (ℓ∞)∇2
q
,

defined via the operator ∇2
q acting on ℓp and ℓ∞. A sequence space X is termed symmetric [14] if every

sequence (yn) in X satisfies (yπ(n)) ∈ X for any permutation π of N0. Interestingly, Alotaibi et al. [1]
demonstrated that ℓ∞(∇2

q) does not exhibit symmetry. Yaying et al. [17] introduced the q-Cesàro matrix
C(q) = (cqnv)n,v∈N0 , where cq

nv is defined as

cq
nv =


qv

[n + 1]q
, 0 ≤ v ≤ n,

0, v > n,

where [n + 1]q represents the q-analogue of n + 1. Further contributions to the study of q-sequence spaces
were made by Yaying et al. [19] introduced q-Euler sequence spaces, denoted as K(E(q)) = KE(q). The q-Euler
matrix is defined as

eq
nv(a, b) =


1

(a + b)n
q

(
n
v

)
q
q

(
v

2

)
avbn−v, 0 ≤ v ≤ n,

0, v > n.
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In addition, they examined the domains c0(∇2
q) := (c0)∇2

q
and c(∇2

q) := c∇2
q
, which incorporate the q-difference

operator ∇2
q in the spaces c0 and c. The second-order q-difference operator is defined by

(∇2
qs)n = sn − (1 + q)sn−1 + qsn−2.

Further advances in q-sequence spaces were made with the introduction of the q-Catalan sequence space
λ(C(q)) = λC(q) by Yaying et al. [20], where λ ∈ {c, c0}. The q-Catalan matrix C(q) is defined as

cnv
q (q) =

qv
cv(q)cn−v(q)

cn+1(q)
, 0 ≤ v ≤ n,

0, v > n,

where c(q) = (cv(q))v∈N0 denotes the sequence of q-Catalan numbers. Moreover, Yaying et al. [21] expanded
the theory by formulating q-Pascal sequence spaces c0(P(q)) := (c0)P(q) and c(P(q)) := cP(q) within c0 and c,
respectively. These spaces are generated using the q-Pascal matrix P(q) = (pq

nv)n,v∈N0 , which is given by

pq
nv =


(
n
v

)
qv, for 0 ≤ v ≤ n,

0, for v > n.

A significant advance in this field was presented in Yaying et al. [18]. In this work, the authors intro-
duced a novel framework for q-Fibonacci sequence spaces by defining a distinctive q-Fibonacci matrix
and investigating its structural properties. They explored fundamental aspects of matrix domains in the
spaces ℓp(F(q)) and ℓ∞(F(q)), examining key properties such as Schauder bases, dual spaces, and matrix
transformations. Additionally, the study provided a thorough analysis of essential geometric properties,
including the approximation property, the Dunford-Pettis property, the Hahn-Banach extension property,
and rotundity. These findings substantially improve the theoretical foundation of q-Fibonacci sequence
spaces and underscore their significance in modern functional analysis. Further advances in this area
have been recently explored by Yaying et al. [22]. Yı́lmaz [16] investigated the structural and geometric
properties of Schröder sequence spaces such as rotundity and uniform smoothness.

2. Bronze Leonardo-Lucas Sequence Spaces

The sequence of Bronze Leonardo-Lucas numbers is determined by the recurrence relation

ζ̆k = 3ζ̆k−1 + ζ̆k−2 − 3, [10]

with initial values ζ̆0 = 3, ζ̆1 = 4. According to this formula, the first few Bronze Leonardo-Lucas numbers
are 3, 4, 12, 37, 120, 394, 1299, 4288, 14160, 46765.
We can easily derive the relation

k∑
s=1

ζ̆s =
4ζ̆k + ζ̆k−1 + 3n − 10

3
.

For a nonnegative integer k, ζ̆k represent the k-th Bronze Leonardo-Lucas number. Consider the matrix
ℵ(q) = (ζ̆nk), defined by

ζ̆nk =


3ζ̆k

4ζ̆n + ζ̆n−1 + 3n − 10
1 ≤ k ≤ n,

0, k > n,
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where n, k = 1, 2, . . ..

B =



1 0 0 0 0 0 . . .

12
48

36
48 0 0 0 0 . . .

12
159

36
159

111
159 0 0 0 . . .

12
519

36
519

111
519

360
519 0 0 . . .

12
1701

36
1701

111
1701

360
1701

1182
1701 0 . . .

...
...

...
...

...
...
. . .


Ω′n = (Bb′)n =

3
4ζ̆n + ζ̆n−1 + 3n − 10

n∑
k=1

ζ̆kb′k.

A sequence belongs to the Bronze Leonardo-Lucas spaces ℓp(B), ℓ∞(B), c(B), or c0(B) if and only if its
B-transform lies in ℓp, ℓ∞, c, or c0, respectively.

ℓp(B) =
{
h = (hk) ∈ ω :

∞∑
n=1

∣∣∣∣∣ 3
4ζ̆n + ζ̆n−1 + 3n − 10

n∑
k=1

ζ̆khk

∣∣∣∣∣p < ∞}
(1 ≤ p < ∞).

ℓ∞(B) =
{
h = (hk) ∈ ω : sup

n∈N

∣∣∣∣∣ 3
4ζ̆n + ζ̆n−1 + 3n − 10

n∑
k=1

ζ̆khk

∣∣∣∣∣ < ∞}
.

c0(B) =
{
h = (hk) ∈ ω : lim

n→∞

∞∑
n=1

3
4ζ̆n + ζ̆n−1 + 3n − 10

n∑
k=1

ζ̆khk = 0
}
.

c(B) =
{
h = (hk) ∈ ω : lim

n→∞

∞∑
n=1

3
4ζ̆n + ζ̆n−1 + 3n − 10

n∑
k=1

ζ̆khk = l
}
.

We can express G(ℵ(q)) as G(ℵ(q)), where G denotes any of the spaces ℓp, ℓ∞, c0, or c, where p ∈ [1,∞).

3. q-Bronze Leonardo-Lucas Matrix

Define the matrix ℵ(q) =
(
ζ̆(q)

nk

)
n,k∈N

by

ℵ(q) =


3 qk−1 ζ̆k(q)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10
, if 1 ≤ k ≤ n,

0, if k > n.

Alternatively, it can be expressed as follows

ℵ(q) =



3ζ̆1(q)

4ζ̆1(q) + ζ̆0(q) − 7
0 0 . . .

3ζ̆1(q)

4ζ̆2(q) + ζ̆1(q) − 4

3 q ζ̆2(q)

4ζ̆2(q) + ζ̆1(q) − 4
0 . . .

3ζ̆1(q)

4ζ̆3(q) + ζ̆2(q) − 1

3 q ζ̆2(q)

4ζ̆3(q) + ζ̆2(q) − 1

3 q2 ζ̆3(q)

4ζ̆3(q) + ζ̆2(q) − 1
. . .

...
...

...
. . .


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The sequence s = (sk)k∈N is derived from υ = (υk)k∈N through the matrix transformation ℵ(q)

sk = (ℵ(q)υ)k =

k∑
j=1

3 q j−1 ζ̆ j(q)

4ζ̆k(q) + ζ̆k−1(q) + 3k − 10
υ j. (1)

Hence s = (sk) is obtained as the ℵ(q)-transform of υ = (υk). The sequence spaces ℓp(ℵ(q)), ℓ∞(ℵ(q)), c(ℵ(q)),
and c0(ℵ(q)) are now introduced as follows

c0(ℵ(q)) :=


υ = (υk) ∈ ω : s = ℵ(q)υ =

k∑
j=1

3 q j−1 ζ̆ j(q)

4ζ̆k(q) + ζ̆k−1(q) + 3k − 10
υ j

 ∈ c0

 ;

c(ℵ(q)) :=


υ = (υk) ∈ ω : s = ℵ(q)υ =

k∑
j=1

3 q j−1 ζ̆ j(q)

4ζ̆k(q) + ζ̆k−1(q) + 3k − 10
υ j

 ∈ c

 ;

ℓ∞(ℵ(q)) :=


υ = (υk) ∈ ω : s = ℵ(q)υ =

k∑
j=1

3 q j−1 ζ̆ j(q)

4ζ̆k(q) + ζ̆k−1(q) + 3k − 10
υ j

 ∈ ℓ∞
 ;

ℓp(ℵ(q)) :=


υ = (υk) ∈ ω : s = ℵ(q)υ =

k∑
j=1

3 q j−1 ζ̆ j(q)

4ζ̆k(q) + ζ̆k−1(q) + 3k − 10
υ j

 ∈ ℓp
 .

The spaces ℓp(ℵ(q)) , ℓ∞(ℵ(q)) , c(ℵ(q)) and c0(ℵ(q)) can also be understood as the domains of the q-Bronze
Leonardo-Lucas matrix ℵ(q) within the sequence spaces ℓp and ℓ∞, c and c0 respectively. Specifically, we
have:

ℓp(ℵ(q)) = (ℓp)ℵ(q) and ℓ∞(ℵ(q)) = (ℓ∞)ℵ(q).

c(ℵ(q)) = cℵ(q) and c0(ℵ(q)) = (c0)ℵ(q).

Clearly, when q→ 1−, the sequence spaces ℓp(ℵ(q)), ℓ∞(ℵ(q)), c(ℵ(q)), and c0(ℵ(q)) become (ℓp)B, (ℓ∞)B, (c)B,
and (c0)B, respectively.

Lemma 3.1. The inverse of the q-Bronze Leonardo-Lucas matrix ℵ(q) is denoted by G(q) = (g(q)
nk )n,k∈N0 = {ℵ(q)}−1 is

given by

(g(q)
nk ) =

(−1)n−k 4ζ̆k(q) + ζ̆k−1(q) + 3k − 10

3 qn−1ζ̆n(q)
, if 1 ≤ k ≤ n,

0, if k > n.

The inverse ℵ(q)-transform or {ℵ(q)}−1-transform of the sequence s = (sk) is defined as

υn =

k∑
n=1

(−1)n−k 4ζ̆k(q) + ζ̆k−1(q) + 3k − 10

3 qn−1ζ̆n(q)
sk. (2)

Therefore, equations (1) and (2) are equivalent.

Theorem 3.2. (i) If 0 < p ≤ 1, then ℓp(ℵ(q)) is a complete p-normed space with the p-norm defined by

∥υ∥ℓp(ℵ(q)) = ∥s∥ℓp =
∞∑

n=1

∣∣∣∣∣∣∣∣
k∑

j=1

3q j−1 ζ̆ j(q)

4ζ̆k(q) + ζ̆k−1(q) + 3k − 10
υ j

∣∣∣∣∣∣∣∣
p

.
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(ii) If 1 < p < ∞, then ℓp(ℵ(q)) is a BK-space with the norm

∥υ∥ℓp(ℵ(q)) = ∥s∥ℓp =

 ∞∑
n=1

∣∣∣∣∣∣∣∣
k∑

j=1

3q j−1ζ̆ j(q)

4ζ̆k(q) + ζ̆k−1(q) + 3k − 10
υ j

∣∣∣∣∣∣∣∣
p

1/p

.

(iii) The space ℓ∞(ℵ(q)) is a BK-space with the norm

∥υ∥ℓ∞(ℵ(q)) = ∥s∥ℓ∞ = sup
k∈N

∣∣∣∣∣∣∣∣
k∑

j=1

3q j−1ζ̆ j(q)

4ζ̆k(q) + ζ̆k−1(q) + 3k − 10
υ j

∣∣∣∣∣∣∣∣ .
Proof. This result can be confirmed through a straightforward verification.

Theorem 3.3. ℓp(ℵ(q)) and ℓ∞(ℵ(q)) are linearly isomorphic to the space ℓp and ℓ∞, respectively.

Proof. Here we proof the result only for the space ℓp(ℵ(q)) � ℓp as the other one can be done in a similar way.
Consider a mapping

H : ℓp(ℵ(q))→ ℓp s.t.H(υ) = ℵ(q)υ.

From the resultH(υ) = 0 =⇒ υ = 0, it implies the injection property ofH .
Let s = (sk) ∈ ℓp for 1 ≤ p ≤ ∞, and define the sequence υ = (υk) as follows

υk =

k∑
l=1

(−1)k−l 4ζ̆l(q) + ζ̆l−1(q) + 3l − 10

3 qk−1ζ̆k(q)
sl, (k ∈N). (3)

Then, for 1 ≤ p ≤ ∞we have

∥υ∥ℓp(ℵ(q)) =

 ∞∑
k=1

∣∣∣ℵ(q)υ
∣∣∣p

1
p

=

 ∞∑
k=1

 k∑
l=1

3ql−1ζ̆l(q)

4ζ̆k(q) + ζ̆k−1(q) + 3k − 10
υl


p

1
p

=

 ∞∑
k=1

 k∑
l=1

3ql−1ζ̆l(q)

4ζ̆k(q) + ζ̆k−1(q) + 3k − 10

l∑
j=l−1

(−1)l− j 4ζ̆k(q) + ζ̆k−1(q) + 3k − 10

3ql−1ζ̆l(q)
s j


p

1
p

=

 ∞∑
k=1

|sk|
p


1
p

= ∥s∥ℓp < ∞.

Now,
∥υ∥ℓ∞(ℵ(q)) = sup

k∈N
|ℵ(q)kυ| = sup

k∈N
|sk| = ∥s∥∞ < ∞.

This implies that υ ∈ ℓp(ℵ(q)) (for 1 ≤ p ≤ ∞). Therefore, H is both surjective and norm-preserving.
Consequently, ℓp(ℵ(q)) � ℓp for 1 ≤ p ≤ ∞.

Theorem 3.4. c0(ℵ(q)) � c0 and c(ℵ(q)) � c .

Proof. We define the mapping
T : c0(ℵ(q))→ c0 s.t. T (υ) = ℵ(q)υ.

From the result T (υ) = 0 =⇒ υ = 0, it implies the injection property of T .
Furthermore, let s = (sk) ∈ ℓ∞ and define the sequence υ = (υk) by

υk =

k∑
l=1

(−1)k−l 4ζ̆l(q) + ζ̆l−1(q) + 3l − 10

3qk−1ζ̆k(q)
sl, (k ∈N). (4)
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Then

lim
k→∞

(ℵ(q)υ)k = lim
k→∞

 k∑
l=1

3ql−1ζ̆l(q)

4ζ̆k(q) + ζ̆k−1(q) + 3k − 10
υl


= lim

k→∞

 k∑
l=1

2 ql−1ζ̆l(q)

4ζ̆k(q) + ζ̆k−1(q) + 3k − 10

l∑
j=l−1

(−1)l− j 4ζ̆k(q) + ζ̆k−1(q) + 3k − 10

2 ql−1ζ̆l(q)
sl


= lim

k→∞
sk

= 0.

Therefore, υ ∈ c0(ℵ(q)). Thus, T is surjective and preserves the norm. Consequently, c0(ℵ(q)) � c0. Other
can be done in a similar way.

Theorem 3.5. ℓp ⊂ ℓp(ℵ(q)) holds.

Proof. Let υ = (υk) ∈ ℓp, for 1 ≤ p < ∞. Applying Hölder’s inequality, for n ∈N, we get

∞∑
n=1

|ℵ(q)nυ|
p
≤

∞∑
n=1

 n∑
k=1

3qk−1ζ̆k(q)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10
|υk|


p

≤

∞∑
n=1

 n∑
k=1

2qk−1pk(q)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10
|υk|

p


 n∑

k=1

3qk−1ζ̆k(q)

ζ̆n+1(q) + pn(q) − 1


p−1

=

∞∑
n=1

3
4ζ̆n(q) + ζ̆n−1(q) + 3n − 10

n∑
k=1

qk−1ζ̆k(q)|υk|
p

=

∞∑
k=1

|υk|
pqk−1ζ̆k(q)

∞∑
n=k

2
4ζ̆n(q) + ζ̆n−1(q) + 3n − 10

.

Hence, ∥υ∥p
ℓp(ℵ(q)) ≤ D∥υ∥pℓp ≤ ∞,where D = sup

k

(
qk−1ζ̆k(q)

∞∑
n=k

3
4ζ̆n(q) + ζ̆n−1(q) + 3n − 10

)
. This indicates that

υ ∈ ℓp(ℵ(q)). Therefore, ℓp ⊂ ℓp(ℵ(q)).
Similarly, it can be demonstrated that ℓ1 ⊂ ℓ1(ℵ(q)), so we will omit the details.

Theorem 3.6. The inclusion ℓ∞ ⊂ ℓ∞(ℵ(q)) holds.

Proof. Consider the sequence υ = (υk) ∈ ℓ∞. Then ∃ a constant M > 0 such that |υk| ≤M, ∀ k ∈N. Therefore,
for n ∈N, we get

|ℵ(q)nυ| ≤
3

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10

n∑
k=1

qk−1ζ̆k(q)|υ′k|

≤
3M

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10

n∑
k=1

qk−1ζ̆k(q)

=M.

Thus, (ℵ(q)nυ) ∈ ℓ∞ for n ∈N, which means υ ∈ ℓ∞(ℵ(q)). Consequently, we have ℓ∞ ⊂ ℓ∞(ℵ(q)).

Theorem 3.7. The inclusions c0 ⊂ c0(ℵ(q)) and c ⊂ c(ℵ(q)) are strict.
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Proof. Since the matrix ℵ(q) is regular, the inclusions are automatically valid. To demonstrate the strictness
of this inclusion, consider the sequence υ = (1, 0, 1, 0, . . . ). We now calculate

(ℵ(q)υ)n =

n∑
k=1

3qk−1ζ̆k(q)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10

=
3

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10

(
ζ̆1(q) + q2ζ̆1(q) + · · · + qn−1ζ̆n(q)

)
,

where n ∈ N. This is a convergent sequence, which implies υ ∈ c(ℵ(q)) \ c. In a similar approach, it can be
applied to prove the other case.

Theorem 3.8. The inclusion c0(ℵ(q)) ⊂ c(ℵ(q)) is strict.

Proof. To demonstrate the inclusion c0(ℵ(q)) ⊂ c(ℵ(q)), consider the sequence υ = (υk), where υk = 1 for all
k ≥ 1. In this case, we have the following

(ℵ(q)υ)n =

n∑
k=1

3qk−1ζ̆k(q)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10
= 1, ∀n

Since (ℵ(q)υ) ∈ c but it is not in c0. So, υ ∈ c(ℵ(q)) \ c0(ℵ(q)), this proves the result.

Theorem 3.9. The space ℓp(ℵ(q)) is not a Hilbert space, except when p = 2.

Proof. Consider the sequences a = (ak) and b = (bk) defined as

a =
(
1, 1,−

ζ̆1(q) + q ζ̆1(q)

q2ζ̆1(q)
, 0, 0, . . .

)
and

b =
(
1,

4 − 4ζ̆1(q) − 4ζ̆2(q)

3 qζ̆2(q)
,
ζ̆1(q) + 4ζ̆2(q) − 4

3 q2 ζ̆3(q)
, 0, 0, . . .

)
.

Therefore ℵ(q)a = (1, 1, 0, 0, . . . ) and ℵ(q)b = (1,−1, 0, 0, . . . ). However, we find that

∥a + b∥2ℓp(ℵ(q)) = 8 , 4 · 22/p = ∥a∥2ℓp(ℵ(q)) + ∥b∥
2
ℓp(F(q)).

which clearly violates the parallelogram identity, unless p = 2. This completes the proof.

Theorem 3.10. For 1 ≤ p ≤ ∞, the sequence space ℓp(ℵ(q)) is not of absolute type.

Proof. Take a = (1,−1, 0, 0, . . . ). Then

ℵ(q)a =
(
1,
ζ̆1(q) − qζ̆2(q)

ζ̆2(q) + ζ̆1(q) − 4
,
ζ̆1(q) − qζ̆2(q)

ζ̆3(q) + ζ̆2(q) − 1
, . . .

)
,

while

ℵ(q)|a| =
(
1,
ζ̆1(q) + qζ̆2(q)

ζ̆2(q) + ζ̆1(q) − 4
,
ζ̆1(q) + qζ̆2(q)

ζ̆3(q) + ζ̆2(q) − 1
, . . .

)
.

Since ∥a∥ℓpℵ(q) , ∥|a|∥ℓpℵ(q) for 0 < q < 1, ℓp(ℵ(q)) is non-absolute.

Definition 3.11. A normed linear space K, with norm ∥ · ∥, is defined to have a Schauder basis u = (u j) if for every
element w = (wk) ∈ K, there is a unique sequence of scalars a = (a j) such that

lim
k→∞

∥∥∥∥∥∥∥w −
k∑

k=0

akuk

∥∥∥∥∥∥∥ = 0.
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Theorem 3.12. Define the sequence b(k)(q) = {b(k)
n (q)}k∈N, consisting of elements of the space ℓp(ℵ(q)), as follows

b(k)
n (q) =

(−1)n−k 4ζ̆n + ζ̆n−1 + 3n − 10
2 qn−1ζ̆n(q)

, if 1 ≤ k ≤ n,

0, if k > n.

Then, the following statements hold

(a) The set
{
b(0)(q), b(1)(q), b(2)(q), . . .

}
forms a basis for ℓp(ℵ(q)). Moreover, each s ∈ ℓp(ℵ(q)) can be uniquely

represented as

υ =
∞∑

k=0

skb(k)(q),

where sn = (ℵ(q)υ)n for each n ∈N.
(b) The space ℓ∞(ℵ(q)) does not admit a Schauder basis.
(c) The set {b(0)(q), b(1)(q), b(2)(q), . . . } forms a basis for the space c0(ℵ(q)), and every υ ∈ c0(ℵ(q)) can be uniquely

written as

υ =
∞∑

k=0

skb(s)(q).

(d) The set {e, b(0)(q), b(1)(q), b(2)(q), . . . } forms a basis for the space c(ℵ(q)). Every υ ∈ c(ℵ(q)) can be uniquely
expressed as

υ = ze +
∞∑

k=0

(sk − z)b(k)(q),

where z = lim
k→∞

sk = lim
k→∞

(ℵ(q)υ)k.

4. Operator ideals

This section explores key properties of the s-type ℓp(ℵ(q)) operators in the context of the q-Bronze
Leonardo-Lucas sequence space. Let L(A,B) denote the space of bounded linear operators from A to B,
and let L be the class of all such operators between Banach spaces. The dual of A, written A′, consists of
continuous linear functionals a′. For a′ ∈ A′ and b ∈ B, the tensor product a′ ⊗ b is the operator defined by
(a′ ⊗ b)(a) = a′(a)b for all a ∈ A.

Definition 4.1 ([3, 4]). A mapping s : L → R+, where R+ denotes the class of positive reals, is called an s-number
sequence if it satisfies the following conditions

(a) Monotonicity: ∥s∥ = s1(K) ≥ s2(K) ≥ · · · ≥ 0, for K ∈ L(A,B).
(b) Additivity: sn+k(K +R) ≤ sn(K) + sk(R) for K,R ∈ L(A,B) and n, k ∈N.
(c) Ideal property: sn(KHR) ≤ ∥K∥|sn(H)|∥R∥ for K ∈ L(A0,A),H ∈ L(A,B),R ∈ L(B,B0), and n ∈N.
(d) Rank property: If rank (K) < n, then sn(K) = 0.
(e) Norming property: sn

(
I2 : ℓ(n)

2 → ℓ
(n)
2

)
= 1, where I2 denotes the identity operator on the n-dimensional Hilbert

space.

Definition 4.2 ([12]). For Banach spaces A and B, let P(A,B) = P ∩ L(A,B), where P ⊆ L. The collection P is
termed an “operator ideal” if the following hold

(i) For every a′ ∈ A′ and b ∈ B, the operator a′ ⊙ b belongs to P(A,B).
(ii) If K,R ∈ P(A,B), then K +R ∈ P(A,B).

(iii) For any H ∈ P(A,B), R ∈ L(A0,A), and K ∈ L(B,B0), the composition KHR in P(A0,B0).

Each P(A,B) is referred to as a “component” of the ideal P.
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Definition 4.3 ([12, 13]). The ideal quasi-norm is a real-valued function X : A → R+ that satisfy the following
conditions

(i) If a′ ∈ A′, b ∈ B, then X(a′ ⊙ b) = ∥a′∥∥b∥.

(ii) There exists a constant M ≥ 1 such that

X(K +R) ≤M[X(K) + X(R)] for K,R ∈ P(A,B).

(iii) If H ∈ P(A,B), R ∈ L(A0,A), and K ∈ L(B,B0), then KHR ∈ P(A0,B0).

Lemma 4.4 ([11]). For operators K,R ∈ L(A,B), then

|sn(K) − sn(R)| ≤ ∥K −R∥,∀n ∈N.

An operator K ∈ L(A,B) is called an s-type ℓp(ℵ(q)) operator if its singular values satisfy

∞∑
n=1

∣∣∣∣∣∣ 3
∑n

k=1 qk−1ζ̆k(q)sk(K)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10

∣∣∣∣∣∣
p

< ∞( 1 < p < ∞).

The class of all such operators is denoted by ℓ(s)
p (ℵ(q)).

Theorem 4.5. Let 1 < p < ∞. Then the class ℓ(s)
p (ℵ(q)) is an operator ideal.

Proof. Let A and B be any two Banach spaces. Let a′ ∈ A′ and b ∈ B. Then a′ ⊙ b is a rank-one operator, and
so sn(a′ ⊙ b) = 0 for all n ≥ 1. Thus, we have

∞∑
n=1

∣∣∣∣∣∣∣∣∣∣∣
3

n∑
k=1

qk−1ζ̆k(q)sk(a′ ⊙ b)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10

∣∣∣∣∣∣∣∣∣∣∣
p

=

∞∑
n=1

∣∣∣∣∣∣ 3s1(a′ ⊙ b)
4ζ̆n(q) + ζ̆n−1(q) + 3n − 10

∣∣∣∣∣∣p

=
[
s1(a′ ⊙ b)

]p ∞∑
n=1

∣∣∣∣∣ 3
4ζ̆n(q) + ζ̆n−1(q) + 3n − 10

∣∣∣∣∣p
= ∥a′ ⊙ b∥p

∞∑
n=1

∣∣∣∣∣ 3
4ζ̆n(q) + ζ̆n−1(q) + 3n − 10

∣∣∣∣∣p.
< ∞.

Thus a′ ⊙ b ∈ ℓ(s)
p (ℵ(q)).

Let K,R ∈ ℓ(s)
p (ℵ(q)) and due to the non-negativity and non-increasing properties of s-numbers, apply
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Minkowski’s inequality, we get
∞∑

n=1


3

n∑
k=1

qk−1ζ̆k(q)sk(K +R)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10


p

1/p

≤


∞∑

n=1


3

n∑
k=1

q2k−2ζ̆k−1(q) s2k−1(K +R) +
n∑

k=1
2 q2k−1ζ̆2k s2k(K +R)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10


p

1/p

≤


∞∑

n=1


3

n∑
k=1

(q2k−2 + q2k−1)ζ̆2k−1(q)s2k−1(K +R)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10


p

1/p

≤M


∞∑

n=1


3

n∑
k=1

qk−1ζ̆k(q)sk(K)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10
+

3
n∑

k=1
qk−1ζ̆k(q)sk(R)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10


p

1/p

≤M



∞∑

n=1


3

n∑
k=1

qk−1ζ̆k(q)sk(K)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10


p

1/p

+


∞∑

n=1


3

n∑
k=1

qk−1ζ̆k(q)sk(R)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10


p

1/p
< ∞.

Thus, K +R ∈ ℓ(s)
p (ℵ(q)).

Let K ∈ L(A0,A), R ∈ L(B,B0) and H ∈ ℓ(s)
p (ℵ(q)). Using the property (3) in Definition 4.1, we get


∞∑

n=1


2

n∑
k=1

qk−1ζ̆k(q)sk(RHK)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10


p

1
p

≤ ∥R∥∥K∥


∞∑

n=1


2

n∑
k=1

qk−1ζ̆k(q)sk(H)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10


p

1
p

≤ ∞.

Thus, RHK ∈ ℓ(s)
p (ℵ(q)). Hence ℓ(s)

p (ℵ(q)) is an operator ideal.

Theorem 4.6. Let 1 < p ≤ r < ∞. Then ℓ(s)
p (ℵ(q)) ⊆ ℓ(s)

r (ℵ(q)).

Proof. This result is directly derived from the fact that ℓp(ℵ(q)) ⊆ ℓr(ℵ(q)) for 1 < p ≤ r < ∞.

For the operator ideal ℓ(s)
p (ℵ(q)) with 1 < p < ∞, we define the mapping Q(s) : ℓ(s)

p (ℵ(q))→ R+ as follows

Q(s)(K) =


∞∑

n=1


3

n∑
k=1

qk−1ζ̆k(q)sk(K)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10


p

1
p

,

where K ∈ ℓ(s)
p (ℵ(q)).
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Theorem 4.7. For 1 < p < ∞, the mapping Q̃(s) is a quasi-norm on the operator ideal ℓ(s)
p (ℵ(q)), where

Q̃(s)(K) =
Q(s)(K)((

∞∑
n=1

3 qk−1 ζ̆k(q)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10

)p)1
p

.

Proof. For arbitrary Banach spaces A and B, the rank-one operator a′ ⊙ b : A → B satisfies sn(a′ ⊙ b) = 0
whenever n ≥ 2. This leads to the following

Q(s)(a′ ⊙ b) =


∞∑

n=1


3

n∑
k=1

qk−1ζ̆k(q)sk(a′ ⊙ b)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10


p

1
p

=

 ∞∑
n=1

(
3 ζ̆1(q)s1(a′ ⊙ b)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10

)p
1
p

= ∥a′ ⊙ b∥

 ∞∑
n=1

(
3

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10

)p


1
p
.

Since ∥a′ ⊙ b∥ = ∥a′∥∥b∥, we have

Q̃(s)(a′ ⊙ b) = ∥a′∥∥b∥.

Let K,R ∈ ℓ(s)
p (ℵ(q)). Then

Q(s)(K +R) =


∞∑

n=1


3

n∑
k=1

qk−1ζ̆k(q)sk(K +R)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10


p

1
p

≤M


∞∑

n=1


3

n∑
k=1

qk−1ζ̆k(q)sk(K)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10


p

1
p

+


∞∑

n=1


3

n∑
k=1

qk−1ζ̆k(q)sk(R)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10


p

1
p

≤M
(
Q(s)(K) +Q(s)(R)

)
.

Thus,

Q̃(s)(K +R) ≤M
(
Q̃(s)(K) + Q̃(s)(R)

)
.
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Finally, let H ∈ ℓ(s)
p (ℵ(q))(A→ B), K ∈ L(B,B0), and R ∈ L(A0,A). Then

Q(s)(KHR) =

 ∞∑
n=1

 3
4ζ̆n(q) + ζ̆n−1(q) + 3n − 10

n∑
k=1

qk−1ζ̆k(q)sk(KHR)


p

1
p

≤ ∥K∥∥R∥

 ∞∑
n=1

 3
4ζ̆n(q) + ζ̆n−1(q) + 3n − 10

n∑
k=1

qk−1ζ̆k(q)sk(H)


p

1
p

= ∥K∥∥R∥

 ∞∑
n=1

 3
4ζ̆n(q) + ζ̆n−1(q) + 3n − 10

n∑
k=1

qk−1ζ̆k(q)sk(H)


p

1
p
.

Thus
Q̃(s)(KHR) ≤ ∥K∥Q̃(s)(H)∥R∥.

Consequently, the operator ideal ℓ(s)
p (ℵ(q)) admits Q̃(s) as its quasi-norm.

Theorem 4.8. For 1 < p < ∞, the operator ideal ℓ(s)
p (ℵ(q)) forms a complete space under the quasi-norm Q̃(s).

Proof. For 1 < p < ∞, we obtain

Q̃(s)(K) =


∞∑

n=1


3

n∑
k=1

qk−1ζ̆k(q)sk(K)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10


p

1
p

=


 ∞∑

n=1

3ζ̆1(q)s1(K)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10


p

1
p

≤ ∥K∥


 ∞∑

n=1

3
4ζ̆n(q) + ζ̆n−1(q) + 3n − 10


p

1
p
.

From this we can conclude that

∥K∥ ≤ Q̃(s)(K) for all K ∈ ℓ(s)
p (ℵ(q))(A→ B). (5)

Let (Kn) be a Cauchy sequence in ℓ(s)
p (ℵ(q))(A→ B). For every ϵ > 0, there exists κ ∈N such that

Q̃(s)(Kn − Kk) < ϵ for all n, k ≥ κ. (6)

From (5), we deduce that
∥Kn − Km∥ ≤ Q(s)(Kn − Km).

Applying (6), we obtain
∥Kn − Km∥ ≤ Q(s)(Kn − Km) for all n,m ≥ κ.

Therefore, the sequence (Kn) is Cauchy in the space L(A,B). Since L(A,B) is a Banach space, we can
conclude that Kn → K as n→∞ in L(A,B).
Utilizing Lemma 4.4, we have

|sn(Kn − Km) − sn(K − Km)| ≤ ∥Kn − K∥.



S. Shah, B. Hazarika / Filomat 40:3 (2026), 975–993 988

Taking the limit as n→∞ gives us

sn(Kn − Km)→ sn(K − Km). (7)

Now from (6), we get


∞∑

n=1


3

n∑
k=1

qk−1ζ̆k(q)sk(Kn − Km)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10


p

1
p

< ϵ

 ∞∑
n=1

(
3ζ̆k(q)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10

)p
1
p
.

For a fix m ≥ κ and taking limit as n→∞ (for n ≥ κ), from (7) we derive the inequality


∞∑

n=1


3

n∑
k=1

qk−1ζ̆k(q)sk(K − Km)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10


p

1
p

< ϵ

 ∞∑
n=1

(
3ζ̆k(q)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10

)p
1
p
,

which leads to
Q̃(s)(K − Km) < ϵ for all m ≥ κ.

Consequently, the sequence (Km) converges to Kwith respect to the quasi-norm Q̃(s).
We must establish the inclusion K ∈ ℓ(s)

p (ℵ(q))(A→ B). We have

n∑
k=1

sk(K) ≤
n∑

k=1

q2k−2ζ̆k−1(q)s2k−1(K) +
n∑

k=1

q2k−1ζ̆2ks2k(K)

≤

n∑
k=1

(q2k−2 + q2k−1)ζ̆2k−1(q)s2k−1(K).

≤M

 n∑
k=1

qk−1ζ̆k(q)sk(K − Km) +
n∑

k=1

qk−1ζ̆k(q)sk(Km)

 .
Consequently


∞∑

n=1


3

n∑
k=1

qk−1ζ̆k(q)sk(K)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10


p

1
p

≤M




∞∑

n=1


3

n∑
k=1

qk−1ζ̆k(q)sk(K − Km)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10


p

1
p

+


∞∑

n=1


3

n∑
k=1

qk−1ζ̆k(q)sk(Km)

4ζ̆n(q) + ζ̆n−1(q) + 3n − 10


p

1
p


which is finite. since Q̃(s)(K − Km) → 0 as m → ∞ and Km ∈ ℓ

(s)
p (ℵ(q))(A → B). Hence, we conclude that

K ∈ ℓ(s)
p (ℵ(q))(A→ B).
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5. Geometric Properties

In this section, we explore various geometric properties of spaces ℓp(ℵ(q)) (1 ≤ p < ∞) and ℓ∞(ℵ(q)).
A linear operator L : X → Y between Banach spaces is called compact if it maps bounded subsets of X to
relatively compact subsets of Y (see [9, Definition 3.4.1]).

Definition 5.1 ([9]). Let A be a normed space. We define a function ρA : (0,∞)→ [0,∞) as follows:

(a) If A is not the zero space (i.e., A , {0}), then

ρA(t) = sup
{1

2
(
∥p + tq∥ + ∥p − tq∥

)
− 1 : p, q ∈ SA

}
(b) If A is the zero space (i.e., A = {0}), then

ρA(t) =

0 if 0 < t < 1
t − 1 if t ≥ 1

In this context, ρA(t) represents the modulus of smoothness of the space A. The space A is uniformly smooth if:

lim
t→0+

ρA(t)
t
= 0.

Theorem 5.2. The space ℓp(ℵ(q)) is uniformly smooth for 1 < p < ∞.

Proof. Let u, v ∈ ℓp(ℵ(q)), and suppose that

∥u + tv∥ ≥ 1 and ∥u − tv∥ ≥ 1 for all t > 0.

Recall that
∥u + tv∥ℓp(ℵ(q)) = ∥ℵ(q)(u + tv)∥ℓp ,

Our aim is to compute the limit lim
t→0+

ρA(t)
t .

By using L’Hospital’s rule, we have

lim
t→0+

ρA(t)
t
= lim

t→0+

d
dt
ρA(t).

Let us now compute
d
dt
ρA(t). By the definition of the modulus of smoothness, we get

d
dt
ρA(t) = sup

{
1
2

(
d
dt
∥u + tv∥ +

d
dt
∥u − tv∥

)
: x, y ∈ Sℓp(ℵ(q))

}
.

Now,

d
dt
∥u + tv∥ =

d
dt

(
∥ℵ(q)(u + tv)∥ℓp

)
=

d
dt

 ∞∑
n=1

|ℵ(q)(u + tv)n|
p


1/p

.

Differentiating, we have

d
dt
∥u + tv∥ =

1
p

 ∞∑
n=1

|ℵ(q)(u + tv)n|
p


1−

1
p ∞∑

n=1

d
dt
|ℵ(q)(u + tv)n|

p.

Similarly,

d
dt
∥u − tv∥ =

1
p

 ∞∑
n=1

|ℵ(q)(u − tv)n|
p


1−

1
p ∞∑

n=1

d
dt
|ℵ(q)(u − tv)n|

p.
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In particular,
d
dt
|ℵ(q)(u + tv)n|

p = p |ℵ(q)(u + tv)n|
p−1 d

dt
|ℵ(q)(u + tv)n|.

But

d
dt
|ℵ(q)(u + tv)n| =

(ℵ(q)v)n, if ℵ(q)(u + tv)n ≥ 0,

−(ℵ(q)v)n, if ℵ(q)(u + tv)n < 0,

because ℵ(q) is a linear operator. Eventually

d
dt
|ℵ(q)(u + tv)n|

p = p |ℵ(q)(u + tv)n|
p−1

(ℵ(q)v)n, if ℵ(q)(u + tv)n ≥ 0,

−(ℵ(q)v)n, if ℵ(q)(u + tv)n < 0.

Similarly,

d
dt
|ℵ(q)(u − tv)n|

p = p |ℵ(q)(u − tv)n|
p−1

−(ℵ(q)v)n, if ℵ(q)(u − tv)n ≥ 0,

(ℵ(q)v)n, if ℵ(q)(u − tv)n < 0.

Taking limit t→ 0+, we get

lim
t→0+

d
dt
∥u + tv∥ =


1
p

(
∞∑

n=1
|ℵ(q)(u)n|

p

)1− 1
p ∞∑

n=1
p(ℵ(q)(u))p−1

n (ℵ(q)v)n, (ℵ(q)u)n ≥ 0,

−
1
p

(
∞∑

n=1
|ℵ(q)(u)n|

p

)1−
1
p ∞∑

n=1
p|ℵ(q)(u)n|

p−1 (ℵ(q)v)n, (ℵ(q)u)n < 0.

and

lim
t→0+

d
dt
∥u − tv∥ =


−

1
p

(
∞∑

n=1
|ℵ(q)(u)n|

p

)1− 1
p ∞∑

n=1
p(ℵ(q)(u))p−1

n (ℵ(q)v)n, (ℵ(q)u)n ≥ 0,

1
p

(
∞∑

n=1
|ℵ(q)(u)n|

p

)1− 1
p ∞∑

n=1
p|ℵ(q)(u)n|

p−1(ℵ(q)v)n, (ℵ(q)u)n < 0.

We see that

lim
t→0+

d
dt
∥u + tv∥ + lim

t→0+

d
dt
∥u − tv∥ = 0.

Hence, we conclude that

lim
t→0+

d
dt
ρA(t) = 0,

this completes the proof.

Theorem 5.3 ([9]). A normed space A is rotund, strictly convex, or strictly normed if for any two distinct points p1
and p2 on the unit sphere SA and for any value t ∈ (0, 1) the following condition holds

∥tp1 + (1 − t)p2∥ ≤ 1.

Theorem 5.4 ([9]). Let A be a normed space. Then, A is rotund (or strictly convex) if and only if the following
condition holds ∥∥∥∥∥1

2
(p1 + p2)

∥∥∥∥∥ < 1,

for any two distinct points p1 and p2 in the unit sphere SA.
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Theorem 5.5 ([9], Proposition 5.1.21). A normed space is rotund if and only if every two-dimensional subspace
within it is also rotund.

Proposition 5.6 ([15]). A linear operator H from a Banach space A to another Banach space B is considered weakly
compact if for any bounded sequence (an) in A, there exists a subsequence (an j ) such that (Han j ) converges weakly.

Theorem 5.7. For 1 < p < ∞, the space ℓp(ℵ(q)) is rotund.

Proof. Now it is sufficient to show that by Theorem 5.5, the space ℓp(D) is spanned by {e, r} = D, where e
and r are elements of the unit vector basis of ℓp. Therefore, we construct a two dimensional subspace

D =
{
(a0, a1, 0, 0, . . . ) : (a0, a1, 0, 0, . . . ) ∈ ℓp(ℵ(q))

}
.

Let u and v be arbitrary elements of SD, and e + r = (a0 + b0, a1 + b1, 0, 0, . . . ). Then

∥∥∥∥∥1
2

(u + v)
∥∥∥∥∥
ℓp(ℵ(q))

=

∥∥∥∥∥∥1
2

(
3ζ̆1(q)(a0 + b0)

4ζ̆1(q) + ζ̆0(q) − 7
,

3ζ̆1(q)(a0 + b0)

4ζ̆2(q) + ζ̆1(q) − 4
+

3 q ζ̆2(q)(a1 + b1)

4ζ̆2(q) + ζ̆1(q) − 4
, . . .

)∥∥∥∥∥∥
p

ℓp

=
1
2p

∣∣∣∣∣∣ 3ζ̆1(q)(a0 + b0)

4ζ̆1(q) + ζ̆0(q) − 7

∣∣∣∣∣∣
p

+

∣∣∣∣∣∣ 3ζ̆1(q)(a0 + b0)

4ζ̆2(q) + ζ̆1(q) − 4
+

3 q ζ̆2(q)(a1 + b1)

4ζ̆2(q) + ζ̆1(q) − 4

∣∣∣∣∣∣
p

+ . . .


Recall,

∥a∥ℓp(ℵ(q)) =

∣∣∣∣∣∣ 3ζ̆1(q)

4ζ̆2(q) + ζ̆1(q) − 7
a0

∣∣∣∣∣∣
p

+

∣∣∣∣∣∣ 3ζ̆1(q)

4ζ̆1(q) + ζ̆0(q) − 4
a0 +

3qζ̆2(q)

4ζ̆2(q) + ζ̆1(q) − 4
a1

∣∣∣∣∣∣
p

+ · · · = 1,

and

∥b∥ℓp(ℵ(q)) =

∣∣∣∣∣∣ 3ζ̆1(q)

4ζ̆2(q) + ζ̆1(q) − 7
b0

∣∣∣∣∣∣
p

+

∣∣∣∣∣∣ 3ζ̆1(q)

4ζ̆1(q) + ζ̆0(q) − 4
b0 +

3qζ̆2(q)

4ζ̆2(q) + ζ̆1(q) − 4
b1

∣∣∣∣∣∣
p

+ · · · = 1.

Take

f0 =
3ζ̆1(q)

4ζ̆2(q) + ζ̆1(q) − 7
a0,

d0 =
3ζ̆1(q)

4ζ̆2(q) + ζ̆1(q) − 7
b0.

Let us consider

x1 =
3ζ̆1(q)

4ζ̆1(q) + ζ̆0(q) − 4
a0 +

3qζ̆2(q)

4ζ̆2(q) + ζ̆1(q) − 4
a1 + . . . ,

and

y1 =
3ζ̆1(q)

4ζ̆1(q) + ζ̆0(q) − 4
b0 +

3qζ̆2(q)

4ζ̆2(q) + ζ̆1(q) − 4
b1 + . . . .

Hence
∥a∥p
ℓp(ℵ(q)) = | f0|

p + |x1|
p = 1, ∥b∥p

ℓp(ℵ(q)) = |d0|
p + |y1|

p = 1.

By the rotundity of the two-dimensional Banach space ℓ2p, where ( f0, x1) and (d0, y1) are elements of ℓ2p, we
get (

f0 + d0

2

)p

+
(x1 + y1

2

)p
< 1.
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Again, recall that (x1 + y1

2

)p
=

1
2p

(
c0 + d0

2
+

a1 + b1

2

)p

.

Thus, we get ∥∥∥∥∥1
2

(a + b)
∥∥∥∥∥p

ℓp(ℵ(q))
< 1.

This proves that the space ℓp(ℵ(q)) is rotund.

Theorem 5.8. ℓ∞(ℵ(q)) and ℓ1(ℵ(q)) are not rotund.

Proof. Now, let us consider two special elements a, b ∈ ℓ∞(ℵ(q)).

a = e1 + e2 = (1, 1, 0, 0, . . . )

and
b = e1 − e2 = (1,−1, 0, 0, . . . )

Verify that a, b ∈ Sℓ∞(ℵ(q)). In fact,

∥b∥ℓ∞(ℵ(q)) = ∥(1,−1, 0, 0, . . . )∥ℓ∞(ℵ(q))

=

∥∥∥∥∥∥( 3ζ̆1(q)

4ζ̆1(q) + ζ̆0(q) − 7
,

3ζ̆1(q) − 3qζ̆2(q)

4ζ̆2(q) + ζ̆1(q) − 4
,

3ζ̆1(q) − 3qζ̆2(q)

4ζ̆3(q) + ζ̆2(q) − 1
, . . .

)∥∥∥∥∥∥
ℓ∞

= 1

and

∥a∥ℓ∞(ℵ(q)) = ∥(1, 1, 0, 0, . . . )∥ℓ∞(ℵ(q))

=

∥∥∥∥∥∥( 3ζ̆1(q)

4ζ̆1(q) + ζ̆0(q) − 7
,

3ζ̆1(q) + 3qζ̆2(q)

4ζ̆2(q) + ζ̆1(q) − 4
,

3ζ̆1(q) + 3qζ̆2(q)

4ζ̆3(q) + ζ̆2(q) − 1
, . . .

)∥∥∥∥∥∥
ℓ∞

= 1

Now ∥∥∥∥∥1
2

(a + b)
∥∥∥∥∥
ℓ∞(ℵ(q))

=

∥∥∥∥∥1
2

(2, 0, 0, . . . )
∥∥∥∥∥
ℓ∞(ℵ(q))

= ∥(1, 0, 0, . . . )∥ℓ∞(ℵ(q))

=

∥∥∥∥∥∥( 3ζ̆1(q)

4ζ̆1(q) + ζ̆0(q) − 7
,

3ζ̆1(q)

4ζ̆1(q) + ζ̆0(q) − 4
,

3ζ̆1(q)

4ζ̆1(q) + ζ̆0(q) − 1
, . . .

)∥∥∥∥∥∥
ℓ∞

= 1.

In this case, ℓ∞(ℵ(q)) is not rotund. Similarly, the claim for ℓ1(ℵ(q)) can be shown.

Definition 5.9 ([2]). Let K be a sequence space. Then K is called solid if

{(bk) ∈ ω : ∃(ak) ∈ K,∀k ∈N : |bk| < |ak|)} ⊂ K.

Theorem 5.10. c0(ℵ(q)) is a solid space.

Proof. The solidity of c0(ℵ(q)) directly follows from Definition 5.9.

Lemma 5.11 ([2]). Let X be a linear subspace of ω. The space X is solid if and only if ℓ∞X ⊆ X, where

ℓ∞X = {(akbk) : (ak) ∈ ℓ∞, (bk) ∈ X}

Theorem 5.12. c(ℵ(q)) is not a solid space.

Proof. Consider the sequence v = {(−1)k
} ∈ ℓ∞ and u = {1, 1, 1, 1, 1, 1, ...} ∈ c(ℵ(q)). Clearly, uv < c(ℵ(q)).

Thus, by Lemma 5.11, c(ℵ(q)) is not a solid space.
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