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Sequence spaces and operator ideals induced by the g-Bronze
Leonardo-Lucas matrix

Shiva Shah?, Bipan Hazarika®*

?Department of Mathematics, Gauhati University, Guwahati-781014, Assam, India

Abstract. This paper introduces the g-Bronze Leonardo-Lucas matrix 8(q) = (C(qk) )nken, defined by

3 g1 4
|~ q C(q) C1<k<n
an - 4(:11(‘;]) + Cn—l (‘7) +3n-10

0/

with {C,(q)} representing the g-Bronze Leonardo-Lucas sequence. Using (,(q) is defined by
in(q) = (2 + qk_l)in—l(q) + q”_lin—Z(q) -3

forn > 2, Co(q) =3, il(q) = 4. We introduce the matrix domains £,(N(q)) = (£,)x¢ for 1 < p < oo, along

with £ (8(9)) = (€eo)sg), CoN(g)) = (co)sg), and c(R(q)) = (c)x(y), which denotes the g-Bronze Leonardo-Lucas
sequence spaces. In this context, we derive the Schauder basis for the space £,(8(g)) for 1 < p < co. We
establish several results regarding the operator ideals associated with these newly defined sequence spaces.

Further, we explore various geometric properties of £,(N(q)) and £.(X(g)). Finally, we analyze the solidity
property of these sequence spaces.

1. Introduction

A Banach space V is known as a BK-space when the coordinate projections 7; : V — C maintain

continuity. These projections are defined by m;(v) = v; for any v = (v;) € V and for each i € IN. The sequence
spaces ¢, (1 < p < o) and £, equipped with their standard norms

1
4
||n||fp:(z |ni|"] , lole. = sup o
i

ieN
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are Banach spaces. Consider 8 and 2 as sequence spaces, and 9t = (1;;) denotes an infinite real matrix. We
denote the matrix simply as 9t = (n;;), with the understanding that indices run to infinity.

The matrix 9t defines a linear operator 8 — Wif foreach v = (v;) € B, its matrix transform v = (Z j 1i0 ]-)
belongs to MW. Mathematically, the 9t-transform is defined as

i

o)

(‘Rn)i = Z‘ nijv;, ieN.
=1

The sequence space By, is defined as
B, ={o=(v) €ew:No e B},

is known as the domain of the matrix 9 in the space 8. The space w represents the set of all real-valued
sequences. Within this framework, several specialized sequence spaces are defined as follows:

o ¢o: The set of sequences that converge to zero (null sequences).
o c: The set of all convergent sequences.

o {.: The set of all bounded sequences.

{, (1 < p < o0): The set of all sequences that are absolutely p-summable.
e cs: The set of sequences whose series are convergent.
e bs: The set of sequences with bounded series.

The concept of a g-analogue extends classical mathematical ideas by incorporating a parameter 4. When
g approaches 1, the g-analogue converges to the original formulation. Although Euler introduced the
concept, Jackson later applied g-analogue methods to establish g-differentiation and g-integration [6]. For
additional details on g-calculus, we refer the reader to [7]. Over time, g-analogues have been widely
utilized in various mathematical fields, including algebra, combinatorics, approximation theory, and special
functions. Moreover, several researchers have applied summability theory and sequence spaces. For
exapmles, researchers have developed g-analogues of Cesaro sequence spaces and examined g-statistical
convergence in summability methods (see [5, 8, 17]).

Recent research has increasingly focused on the g-analogues of classical sequence spaces. For example,
Demiriz and Sahin [5] and Yaying et al. [17] investigated the domain X(C(q)) = X¢(;), where X represents
spaces such as ¢y, ¢y, ¢, and (. Based on this work, Yilmaz and Akdemir [15] analyzed the topological and
geometric properties of the spaces (£,)c(g) and (£e)c(y)-

In a separate contribution, Alotaibi et al. [1] introduced the spaces {’p(Vf]) = (fp)vg and &O(Vg) = (t’w)vg,
defined via the operator V; acting on ¢, and (. A sequence space X is termed symmetric [14] if every
sequence (y,) in X satisfies (yr(;)) € X for any permutation 7 of Ny. Interestingly, Alotaibi et al. [1]
demonstrated that foo(Vﬁ) does not exhibit symmetry. Yaying et al. [17] introduced the g-Cesaro matrix
Cg) = (CZD)n,neNoz where ¢! is defined as

qv
1 <pn<
co=dm+1], O<o=n,

no
0, D>n,

where [n + 1], represents the g-analogue of n + 1. Further contributions to the study of g-sequence spaces
were made by Yaying et al. [19] introduced g-Euler sequence spaces, denoted as K(E(q)) = Kg(;). The g-Euler

matrix is defined as
)

1 _(n (z) .
eho(a,b) = (a+ b);’ (D)qq a’h"*, 0<vo<n,

0, D> .
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In addition, they examined the domains co(Vfi) = (CO)V%7 and C(Vg) = oy, which incorporate the g-difference
operator V% in the spaces ¢y and c. The second-order g-difference operator is defined by

(V;S)n =s,—(1+ ‘7)511—1 + qSp-2-

Further advances in g-sequence spaces were made with the introduction of the g-Catalan sequence space
AC(q)) = Ac(g) by Yaying et al. [20], where A € {c, co}. The g-Catalan matrix C(g) is defined as

o Co(7)Cn—s(q)

A OE Cns1(9)
0, D>,

where c(q) = (co(9))ven, denotes the sequence of g-Catalan numbers. Moreover, Yaying et al. [21] expanded
the theory by formulating g-Pascal sequence spaces co(P(q)) := (co)p() and c(P(q)) := cp(y) within ¢y and c,
respectively. These spaces are generated using the g-Pascal matrix P(q) = (p!,)nven,, Which is given by

n
g°, for0<vo<n,
P = (D)

0, forv > n.

A significant advance in this field was presented in Yaying et al. [18]. In this work, the authors intro-
duced a novel framework for g-Fibonacci sequence spaces by defining a distinctive g-Fibonacci matrix
and investigating its structural properties. They explored fundamental aspects of matrix domains in the
spaces {,(F(q)) and (- (F(g)), examining key properties such as Schauder bases, dual spaces, and matrix
transformations. Additionally, the study provided a thorough analysis of essential geometric properties,
including the approximation property, the Dunford-Pettis property, the Hahn-Banach extension property,
and rotundity. These findings substantially improve the theoretical foundation of g-Fibonacci sequence
spaces and underscore their significance in modern functional analysis. Further advances in this area
have been recently explored by Yaying et al. [22]. Yi{lmaz [16] investigated the structural and geometric
properties of Schréder sequence spaces such as rotundity and uniform smoothness.

2. Bronze Leonardo-Lucas Sequence Spaces

The sequence of Bronze Leonardo-Lucas numbers is determined by the recurrence relation
G =3C1 + G2 =3, [10]

with initial values { = 3,(; = 4. According to this formula, the first few Bronze Leonardo-Lucas numbers
are 3,4, 12,37, 120, 394, 1299, 4288, 14160, 46765.
We can easily derive the relation

L 4G+ G +3n-10
ZCS: 3 .

s=1

For a nonnegative integer k, {; represent the k-th Bronze Leonardo-Lucas number. Consider the matrix
N(q) = (Cux), defined by
3k
Cik = 4y + Cpq + 31— 10
0, k>n,

1<k<n,
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wheren, k=1,2,....

1 0 0 0
2 3%
48 48 0 0
12 3% 1
159 159 159

V=12 36 W 360
519 519 519 519

12 36 111 360

1701 1701 1701 1701

o O o o o

Q) =(8V), =

e 1+3n—1OZCkk

978

A sequence belongs to the Bronze Leonardo-Lucas spaces £,(B), {w(B), ¢(B), or co(B) if and only if its

B-transform lies in ¢, {w, ¢, OF co, respectively.

3 n
5%:{;1: _ L
/) 14Cn+Cn_1+3n—10; .
3 "
oo (B { h) € su
(@) == cw:sup 48, + 50 +3n—-10 &
00 n
(B { I € @ lim
o(®) = {h = () € w: lim 2 1+3n_10 )

o) n

Ckhk

p<cx>}(1$p<00).

<.

Cehy = o}.

3 .
o(B) = { = (i) € w: lim T T T Z Ciy = 1}.

We can express G(X(7)) as Gx)), where G denotes any of the spaces €, £, co, Or ¢, where p € [1, ).

3. g-Bronze Leonardo-Lucas Matrix

Define the matrix N(q) = ( (q)) eN by

k-1 ¢
37 Gl , ifl<k<n,
N(q) = 4Cn(q) + Cn—l(q) +3n-10
0, if k> n.
Alternatively, it can be expressed as follows
3G1(9) 0
4G () + Co(g) -
3Gi(g) 34 Ga(q)
46(q) + Gi(g) -4 4G@) + G -
N(g) =
36 349 G(9) 34° G(9)

4G(q) + Gg) - 1 4Gs(g) + &ao(g) -

1 453(‘7) + Cz(q) -
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The sequence s = (si)ken is derived from v = (Vi )ren through the matrix transformation N(q)

. 347 &ig)
= (@ _]24 @) + G +3k—10 @

Hence s = (s;) is obtained as the K(g)-transform of v = (vx). The sequence spaces £,(NX(q)), o (R(q)), c(R(7)),
and cy(N(g)) are now introduced as follows

l\/‘]»

c®(@) ={v=(n) €w:s =R = 397 5@ ccob;
4Ci(q) + Cea(q) + 3k — 10

1l
—_

j

: 397" Ci(@)
N(@g)) = = :s=N = - u 4 ;
o) {{v W) € w:s =Rl ; 4Ck(q) + Ce-1(q) + 3k — 107 c°
5@ = o= cws=ngu=y 2000 L L
= 4G(9) + Cea(g) + 3k - 10

k 3 gi-1 i
6, (N(q) = {{v =) ew:s=N(gv = Z e gkl(q;(j')3k - 101;]} € fp}.

=1

The spaces £,(R(7)) , £(N(q)) , c(N(g)) and co(N(q)) can also be understood as the domains of the g-Bronze
Leonardo-Lucas matrix N(g) within the sequence spaces ¢, and {w, ¢ and ¢y respectively. Specifically, we
have:

5p(N(Q)) = (fp)N(q) and Zw(x(q» = (foo)N(q)'

c(N(@) =cxg and  co(R(q)) = (co)xg)-

Clearly, when q — 17, the sequence spaces £,(X(q)), {o(N(9)), c(R(7)), and co(R(g)) become (£;)%, (€)s, (€)%,
and (cp)s, respectively.

Lemma 3.1. The inverse of the q-Bronze Leonardo-Lucas matrix 8(q) is denoted by G(q) = (gizc))mkeNo = {N(g)}™
given by
e 2Ck(@) + Ce-a(g) + 3k — 10
@ _ J1 —
(8) = 3q"1C(q)
0, ifk > n.

, fl1<k<n,

The inverse N(q)-transform or {N(q)}~'-transform of the sequence s = (sx) is defined as

& 4G (q) + Cr1(q) + 3k — 10
_ n—k
o= Z‘( Y 3418,(q)

Therefore, equations (1) and (2) are equivalent.

Theorem 3.2. (i) If0 <p <1, then £,(X(q)) is a complete p-normed space with the p-norm defined by

s k i1 ¥
397" Ciq)

olle, ey = llslle, = j

f( (q)) 4 Zl ] 4 +Ck 1(q)+3k 10 ]
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p\1/p
1)]' ] .
3q/ 15](‘7)

— 48(q) + Cia(q) + 3k — 10 vil

(i1) If 1 < p < oo, then €,(N(q)) is a BK-space with the norm

lolle, @) = lIslle, = i Zk: q97'Ci(q)
o B =l = 4Ci(q) + Ceoa(g) + 3k - 10

=1 j=

(iii) The space £-(8(q)) is a BK-space with the norm

llle ey = lIslle, = SUP
keIN

Proof. This result can be confirmed through a straightforward verification. [J
Theorem 3.3. £,(N(q)) and {«(8(q)) are linearly isomorphic to the space €, and €, respectively.

Proof. Here we proof the result only for the space £,(8X(q)) = ¢, as the other one can be done in a similar way.
Consider a mapping

H : 6,(N(q)) = €, s.t. H(v) = K(g)v.

From the result H(v) =0 = v =0, it implies the injection property of H.
Lets = (s) € {, for 1 < p < o0, and define the sequence v = (vy) as follows

k
Z —1)H! 4G(q) + Ciag) +31 - 1051, (k € N). ?
=1

3 qc13k(q)

Then, for 1 < p < co we have

vlle, ) = {Z |x(‘7)v)p] = [Z[
k=1

k=1

==

Zk“ 3971 Ci(g) ; ’
4G(q) + Cn(q) + 3k — 10

=1

Zk4 3¢-1(q) Z’: - 480) + i (g) + 3k = 10 ’
4G (@) + Cea(g) + 3k — 10 3¢-1(q) )

(o)
k=1 \ I=1 j=1-1
[e9]

1
!
=( mﬂ = lsllg, < co.
k=1

vl xq) = sup [N(@)xv| = sup [sk| = [Islleo < 0.
keN

Now,

This implies that v € £,(N(g)) (for 1 < p < o0). Therefore, H is both surjective and norm-preserving.
Consequently, £,(R(q)) = ¢, for1<p<oco. [J

Theorem 3.4. ¢o(N(q)) = co and c(N(q)) = c.

Proof. We define the mapping
T :co(N(g)) — co s.t. T (v) = R(g)v.

From the result 7 (v) =0 = v =0, it implies the injection property of 7.
Furthermore, let s = (s) € (- and define the sequence v = (v) by

Vg = i(_l)k 1 4C1(‘7) + Cl l(ﬂ) + 3] -

2 ) 0., (k € N). (4)
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Then

k

377 18(g)
Lim (N(g)v) = lim (; 45@) + @) +3k— 10

k 1-1 I
2 ; 3k - 10
= lim [} 7G() Y - oA + Ga@ + .
koo | £ 4 (q) + Croa (q) + 3k — 10 &4 24-18()
= s
=0,

Therefore, v € ¢g(N(g)). Thus, 7 is surjective and preserves the norm. Consequently, cp(N(g)) = co. Other
can be done in a similar way. [

Theorem 3.5. £, C £,(N(q)) holds.

Proof. Letv = (vg) € £, for 1 < p < co. Applying Holder’s inequality, for n € IN, we get

o)

(v 3¢ Ci(q) ’
Y IN@)l < 21 [21 AT 0|vk|]

=
L i[ d 4 24 'pi(q) ) |p][ 2 3¢ 18(q) J”’l
" Cu() + Cama(q) +3n =10 =i C1(q) + pa(q) —
) ;‘ 4 (q) + an’(q) +3n-10 ;;‘ 7 Gl
sz b0 Z‘ 4 4C,(g) + C“n_lz(q) +3n-10
Hence, [[vlfy ) < DIIvll; < oo, where D = sup( 18(g) nZk AT 13(07) o 10) This indicates that

v € £,(N(q)). Therefore, £, C £,(R(q)).
Similarly, it can be demonstrated that £1 € £1(8(g)), so we will omit the details. [

Theorem 3.6. The inclusion (s C £s(N(q)) holds.

Proof. Consider the sequence v = (vx) € {w. Then 4 a constant M > 0 such that |vx| < M, V¥ k € IN. Therefore,
forn € N, we get

3 ! o
N ; < — _ k-1 ’
Nl @ O
3M S s
< — ~ C
25,() + Crt(q) + 31— 10 ,; 70

=M.
Thus, (R(g),v) € €« for n € IN, which means v € £,(8(g)). Consequently, we have {o, C {o(R(g)). O

Theorem 3.7. The inclusions ¢y C co(N(q)) and ¢ C c(N(q)) are strict.
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Proof. Since the matrix 8(g) is regular, the inclusions are automatically valid. To demonstrate the strictness
of this inclusion, consider the sequence v = (1,0,1,0,...). We now calculate

= 37 1C(q)
N n = = )
S@w) ,; 42,(9) + Cor(g) + 31— 10

_ 3 % 27 R
= B @ s =10 G@+Pa@+-+7'0@),

where n € IN. This is a convergent sequence, which implies v € ¢(N8(g)) \ c¢. In a similar approach, it can be
applied to prove the other case. [

Theorem 3.8. The inclusion co(N(q)) C c(N(q)) is strict.

Proof. To demonstrate the inclusion cy(R(g)) C c¢(N(g)), consider the sequence v = (vx), where v, = 1 for all
k > 1. In this case, we have the following

- 3¢ 1Ck(q)
N n = - - =1,V
(@) ; 25,() + Cos(q) + 31— 10 "

Since (R(q)v) € cbutitis notin cg. So, v € c(R(g)) \ co(N(g)), this proves the result. [
Theorem 3.9. The space £,(N(q)) is not a Hilbert space, except when p = 2.

Proof. Consider the sequences a = (ax) and b = (by) defined as

0= (1,1,—M,o,o,...)
7*Ci(q)

and

- (1 4-40(g) - 4C(g) Ci(g) +4Ca(g) — 4 0.0 )
3qla() T 3RGE@
Therefore X(g)a = (1,1,0,0,...) and 8(q)b = (1,-1,0,0,...). However, we find that

2 _ 92/p — |12 2
lla + b”fp( =8#4-270 = Ha”"p(“(i])) + ”b”fn(F(ﬂ))'

N(@)
which clearly violates the parallelogram identity, unless p = 2. This completes the proof. O
Theorem 3.10. For 1 < p < oo, the sequence space £,(N(q)) is not of absolute type.

Proof. Takea = (1,-1,0,0,...). Then

G@-9G@ G -95%@) )

N(q)az(l,v . ,3 S seee s
C(g) +Gi(g) —4 G(g) + Ca(g) -1

while

G@) +9G@) G +9G(9) )
"G + G -4 G + G -1
Since |lallg,xg) # llallle,xg for 0 < g <1, £,(N(g)) is non-absolute. [

N(@)lal = (1

Definition 3.11. A normed linear space K, with norm || - ||, is defined to have a Schauder basis u = (u;) if for every
element w = (wy) € K, there is a unique sequence of scalars a = (a;) such that

k
w — Z aiUy
k=

0

i =0.

k— o0
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Theorem 3.12. Define the sequence b®(q) = {bqu)(q)}keN, consisting of elements of the space £,(N(q)), as follows

4%, + G +3n—10

24" 1Cu(q)
0/ sz > 1.

(-1

bfik)(q): , fl1<k<n,

Then, the following statements hold
(@) The set {b<0)(q), bD(g), b(z)(q),...} forms a basis for £,(8(q)). Moreover, each s € £,(8(q)) can be uniquely

represented as
v=Y" sb¥),
k=0

where s, = (R(q)v),, for each n € N.
(b) The space £-(N(q)) does not admit a Schauder basis.
(c) The set {b©(q),bV(q),b@(q), ...} forms a basis for the space co(N(q)), and every v € co(R(q)) can be uniquely

written as .
v= Z skb®(q).
k=0

(d) The set {e,b(q),bV(q),b(q), ...} forms a basis for the space c(X(q)). Every v € c(N(q)) can be uniquely
expressed as

v=zet+) (s -2,
k=0

where z = ]}im Sk = %im(N(q)v)k.

4. Operator ideals

This section explores key properties of the s-type £,(N(q)) operators in the context of the g-Bronze
Leonardo-Lucas sequence space. Let L(A, B) denote the space of bounded linear operators from A to B,
and let L be the class of all such operators between Banach spaces. The dual of A, written A’, consists of
continuous linear functionals a’. For a’ € A’ and b € B, the tensor product '’ ® b is the operator defined by
(@’ ® b)(a) = a’(a)b for alla € A.

Definition 4.1 ([3, 4]). A mapping s: L — R*, where R™ denotes the class of positive reals, is called an s-number
sequence if it satisfies the following conditions

(a) Momnotonicity: ||s|| = 51(]) > s5(]) >--- >0, for ] € L(A,B).

(b) Additivity: s, (] + R) < 5,(K) + 5, (R) for ], R € L(A,B) and n, k € N.

(c) Ideal property: s,(RHR) < |IK|ls, (D)IRI| for & € L(Ag, A), H € L(A,B), R € L(B,By), and n € N.

(d) Rank property: If rank (]) < n, then s,(K) = 0.

(e) Norming property: sn(Iz : {’(2”) - fg”)) =1, where I, denotes the identity operator on the n-dimensional Hilbert
space.

Definition 4.2 ([12]). For Banach spaces A and B, let P(A,B) = P N L(A,B), where P € L. The collection P is
termed an “operator ideal” if the following hold

(i) Foreverya’ € A’ and b € B, the operator a’ © b belongs to P(A, B).
(ii) If }, R € P(A, B), then & + R € P(A, B).
(iii) For any $ € P(A, B), R € L(Ao, A), and K € L(B, By), the composition KHR in P(Ao, Bo).

Each P(A, B) is referred to as a “component” of the ideal P.
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Definition 4.3 ([12, 13]). The ideal quasi-norm is a real-valued function X : A — IR* that satisfy the following
conditions

(i) Ifa’ € A’,b € B, then X(a’ © b) = ||a’||||b]l-

(ii) There exists a constant M > 1 such that

X(R+RN) < M[XR) + XR)] for ], R € P(A, B).
(iii) If $ € P(A,B), R € L(Ap, A), and ] € L(B, By), then KHR € P(Ao, Bo).
Lemma 4.4 ([11]). For operators 8, R € L(A, B), then

54 (8) = su(R) < IR = RI|, ¥n € N.

An operator ] € L(A, B) is called an s-type €,(N(q)) operator if its singular values satisfy

3Y 1 G@s(R) [
4C,(q) + Cuma(g) +3n — 10

>

n=1

<oo(l<p<oo).

The class of all such operators is denoted by K;S)(N(q)).

Theorem 4.5. Let 1 < p < co. Then the class é’;,s)(N(q)) is an operator ideal.

Proof. Let A and B be any two Banach spaces. Leta’ € A’ and b € B. Then a’ © b is a rank-one operator, and
so s,(@ ©b) =0 forall n > 1. Thus, we have

o | 3 i 7 C@)si@ ©b) -
k=1 _ Z
= |4Cn(9) + Cu-1(q) +3n - 10

n=1

3s1(a’ ©b)
4611(‘7) + Cn—l(q) +3n—-10

e8]

o 4Cn(q + G 1(q) +3n-10
3 p
48,(q) + Cua(g) +3n =101

P

= |l @anZ

n=1

< 00,

Thus @’ © b € €5 (N(9))-
Let 8, R € K;S)(N(q)) and due to the non-negativity and non-increasing properties of s-numbers, apply
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Minkowski’s inequality, we get
p\1/p
3 Z 771 C@sk(8 + )

Z 4C4(q) + Cue1(g) +3n - 10

n=1

n o n . 14 1/P
3 kzl 7*2C-1() s (R + R) + kzl 2 % o sk(8 + R)

4611(‘7) + Cn—l(q) +3n-10

gk

n . p\1/p
3 kZ T2 + g% N1 (9)526-1 (] + R)
=]

= 48,(q) + Cuoa(g) + 31— 10

gk

n . p\UP
3 Z 7 C(@)s(R) 3 Z 71 Ck(@)sk(R)

<MY’ N
4z, q)+Cn 1(q) +3n-10 4Cn(q)+Cn 1(q) +3n-10

n=1

PP n . pyL/p
3 Z g C@)s(R) o Bk);1 97 Ce(@)sk(R)

<M - -
= 2 4C,(q) + Cua(g) + 31— 10 * Z{ 4Ca(q) + Cu-1(q) +3n =10

n=1

< 00,

Thus, & + % € (Y (R()).
Let & € L(Ag,A), R € L(B,By)and $ € f;,s)(N(q)). Using the property (3) in Definition 4.1, we get

1 1
PN, n g PN,
- 2zqk Ce@si@o) | | o 2X 4 G@s® | |
Z <IRS| Y |
= [ 4C:(@) + G (q) + 31 = 10 S 48@) + Cia(@) +3n-10
< oo.

Thus, RHK € £ (N(q)). Hence € (8(q)) is an operator ideal. []

Theorem 4.6. Let 1 < p < r < co. Then £(N(q)) C € (N(q)).
Proof. This result is directly derived from the fact that £,(X(q)) C £,(N(g)) for 1 <p <r <oco. [

For the operator ideal f;,s)(N(q)) with 1 < p < o0, we define the mapping Q®: fl(,s)(N(q)) — R* as follows

1
.-
- 3Zq" L(@)sk(R) P

(s)
Ty = Z‘4 Q)+ Cia(@+3n-10] | ~

n=

where & € £ (N(9)).
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Theorem 4.7. For 1 < p < oo, the mapping Q¥ isa quasi-norm on the operator ideal t’;f)(N(q)), where

QU(R)

T
= N AY”
(( n§1 4C,4(q) j gn_1<q§ z 3n— 10) )p

Q) =

Proof. For arbitrary Banach spaces A and B, the rank-one operator ' © b: A — B satisfies 5,(a’ ©b) = 0
whenever n > 2. This leads to the following

=
= | =

| 3 Z 71 Ck(@)sk(@’ © b)
Z 4, q)+Cn 1(q) +3n-10

n=1

QY@ o b)

gk

( 3 Ci(g)s1(@ ©b) )” p
4C,(q) + Cuoa(g) + 31— 10

1l
—_

n

) / 0 3 d ;;
- Gb“[; (4@@ +Guma(9) +3n - 10) ] |

Since ||a’ © b|| = ||&’||||bl|, we have

Q9@ @ b) = [l lllibll.

Let &, % € £ (R(9)). Then

<
= | =

3 Z 71 C@sk(K + )

QYR +R) = i e

n=1 ”

)+ Co 1(q) +3n-10

1 1
PN\ N
o[ 3 Z g Cu@sk(R) A 2 18 (q)5e(R) p
SMHZ=1‘ 4"q)+Cn 1(ﬂ)+31’l 10 i nzzf 4nq)+Cn 1(ﬂ)+31’1 10
< M(QV) + QU

Thus,

QUK +R) < M(QU(R) + QU(R)).
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Finally, let $ € €)(N(7))(A — B), & € L(B, By), and % € L(Ao, A). Then
1

0 n P
() _ 3 k=1 P
QU(RGR) [Z( TR 3n—10;q ck<q)sk<ﬁm)]]

n=1

1
(o) 3 n p E

KRUNR k=17
< IS ||[Z T Pramr— 10;‘q Ce@)s(9) ]

n=1

1
S 3 n p E

_ k-1¥
—”R“”‘R“(Z TR m;" Ce@sk(®) ] :

n=1

Thus _ _
QURHR) < [IRNQ(H)IIRII.

Consequently, the operator ideal é’f,s)(N(q)) admits QO as its quasi-norm. [J

Theorem 4.8. For 1 < p < oo, the operator ideal f;s)(N(q)) forms a complete space under the quasi-norm Q(s).

Proof. For 1 < p < oo, we obtain

1
o 3L e @) Ip
. -\
QO an 4Cq(q) + Cua(q) +3n-10
: 1
_ Z"’: 301 ()1(R) "|p
[\ =1 4Zn(q) + zn—l(q) +3n-10
sl p
3 p
< I8 _ _ .
- [; 4C,(q) + Cyo1(g) +3n — 10] l

From this we can conclude that

IR < Q(s)(]) forall & € f;,s)(x(q))(A — B). )
Let (8,) be a Cauchy sequence in fl(,s)(x(q))(A — B). For every € > 0, there exists x € IN such that

QB)(R, — K) < eforall n,k > «. (6)

From (5), we deduce that
”Rn - Rm” < Q(S)(Rn - Rm)-
Applying (6), we obtain
IR, — ]l < QB)(K, — K, for all n,m > «.

Therefore, the sequence (R,) is Cauchy in the space L(A,B). Since L(A,B) is a Banach space, we can
conclude that 8, —» & asn — oo in L(A, B).
Utilizing Lemma 4.4, we have

|Sn(Rn - Rm) - Sn(R - Rm)l < ”Rn - R”
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Taking the limit as n — oo gives us
$n(8n — Ki) = 5u(R = Ky). )

Now from (6), we get

1
3 Y sy — S ) )P !
0 a S n = ‘m o > -
=1 45;1(’1) + Cn—l(q) +3n—-10 =1 4511(@) + Cn—l(q) +3n-10
For a fix m > x and taking limit as n — oo (for n > «x), from (7) we derive the inequality
1
n g PN 1
o [ 3E4TG@® -8 | | 3 oy
= e Z( Ck(q) ) p
n=1 4Cn(Q) + Cn—l(Q) +3n-10 n=1 4Cn(q) + Cn 1(L7) +3n-10

which leads to
Q)] = K&,,) < e forall m > «.

Consequently, the sequence (&,,) converges to & with respect to the quasi-norm Q(s).
We must establish the inclusion & € é’;s)(N(q))(A — B). We have

Zsk(R) < Z 21 (@)su-1 (R) + Z 7 so(R)

k=1
< Z(»f"‘z + P ot (@21 (R).
k=1
<M| Y F LR - ) + Y 47 @)k |-
k=1 k=1
Consequently

~
= |-

o 3L @

nz; 4571(‘1) + zn—l(Q) +3n-10

~
==

1
n . PN n .
o [ BLATG@s® =) | 17 [ o [ 3L 4 G@s(R)

< < + = <
=1 4C,(q) + Cuma(g) +3n =10 = 43, (q) + Cua(q) +3n =10

which is finite. since Q(s)(} — &,,) — 0 asm — oo and &,, € é”(f)(N(q))(A — B). Hence, we conclude that
KR e dR@)A-B). O
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5. Geometric Properties

In this section, we explore various geometric properties of spaces £,(8(q)) (1 < p < c0) and e (R(9)).
A linear operator L : X — Y between Banach spaces is called compact if it maps bounded subsets of X to
relatively compact subsets of Y (see [9, Definition 3.4.1]).

Definition 5.1 ([9]). Let A be a normed space. We define a function pa : (0, 00) — [0, 00) as follows:
(@) If A is not the zero space (i.e., A # {0}), then
1
pa(®) = sup {3 (Ip + tall+Ip ~ tal) = 1: p,g < Sa )

(b) If A is the zero space (i.e., A = {0}), then

0 if0<t<l1
p =
palt) {t—l ift>1

In this context, pa(t) represents the modulus of smoothness of the space A. The space A is uniformly smooth if:

lmpA—(t)

t—0* t

=0.

Theorem 5.2. The space £,(N(q)) is uniformly smooth for 1 < p < co.
Proof. Letu,v € £,(8(q)), and suppose that
lu+to]] 21 and |ju—to|| =1 forallt>0.

Recall that
Il + tolle, gy = IN(@)(u + tO)lle,,

palt) (t

Our aim is to compute the limit 11%1 p

By using L'Hospital’s rule, we have

ot d
tim P29 _ i m = pa()

t—0+ f t—

d
Let us now compute —pa(t). By the definition of the modulus of smoothness, we get

dt
d 1(d d
EpA(t) = sup {E (Ellu + tU” + E”M - tZJ”) X,y € St’p(&(q))} .

Now,

&l&

e+ roll = & (NG + ) =

0 1/p
(Z NG + tv),,v’] :

Differentiating, we have

1

1-—

d 1w p
_ —— 4
dtllu + to| ; [;_l [N(q)(u + to),| ]

Y di IN(q) (1t + to), .
n=1
Similarly,
1
Py 4,

d (¢ i
il = tol = E@:mww—wmﬂ

n=1

Z;dx@w—wMH
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In particular,
LI+ ) = pING+ P NG+ o),
But

NR(@)v),, NG (u+tv), 20,
SN+ o) = {

—(N(@)v)n, if N(g)(u+tv), <0,

because 8(q) is a linear operator. Eventually

R(@v)y, iEN@G)(u+tv), 20,

D@ + o)l = pIN@) @ + o)™
dt —(R@)0), if N(@)(u + to), < 0.

Similarly,
p L [@), i@ - ), 20,
SIN@ = )P = pIN@ - o),
t R@0), i N(q)(u = t0), <0,
Taking limit t — 0%, we get

00 1_;% 00
HEmowr) Lol seo, @, >0

lim d [|lu+ to|| =
t—-0* dt B

00 -~
_;17(2;‘1 |N(q)(u)n|p) P ZZ‘,1P|?'<(Q)(M);4|”_1 R(@V)n,  R(Pu)u < 0.

and )
d -2 (fl |x(q><u>nv’) £ @) N, g, >0,
iy = - 5
%(fl |x<q><uw) L NG K@, K@, <0
We see that

. d Cod
tli%r} %Ilu + to|| + }L%} Ellu —to]| = 0.
Hence, we conclude that
.od
fim g5pa( =0,

this completes the proof. [

990

Theorem 5.3 ([91). A normed space A is rotund, strictly convex, or strictly normed if for any two distinct points p;

and p, on the unit sphere Sy and for any value t € (0, 1) the following condition holds

lltpy + (1 = t)pall < 1.

Theorem 5.4 ([9]). Let A be a normed space. Then, A is rotund (or strictly convex) if and only if the following

condition holds
<1,

1
HE(Pl +p2)

for any two distinct points p1 and p, in the unit sphere Sx.
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Theorem 5.5 ([9], Proposition 5.1.21). A normed space is rotund if and only if every two-dimensional subspace
within it is also rotund.

Proposition 5.6 ([15]). A linear operator H from a Banach space A to another Banach space B is considered weakly
compact if for any bounded sequence (a,) in A, there exists a subsequence (ay,;) such that (Hay,) converges weakly.

Theorem 5.7. For 1 < p < oo, the space {,(N(q)) is rotund.

Proof. Now it is sufficient to show that by Theorem 5.5, the space £,(?) is spanned by {¢,r} = D, where e
and r are elements of the unit vector basis of £,. Therefore, we construct a two dimensional subspace

D ={(a0,1,0,0,...) : (a9,81,0,0,...) € L,(N(@)}.

Let u and v be arbitrary elements of S, and e + 7 = (a9 + by, a1 + b1,0,0,...). Then

H; o) :H; ( 3@ +bo)  3Li(@)ao+bo) 39 Ca(g)ar +by) )”
2 ooy 112\4G () + Go() -7 4L@) + Tig) -4 4L + G -4 ‘
_1 [ 3G +bo) [ | 3Cu(@)(ao + bo) +3q52(q)(a1+b1)p+ ]
2 ||4Ci(g) + Colg) - 7 WG@+G -4 4G +G@ -4
Recall,
. » . . .
lalle sy = | — 3C1§q) P 361@ o+ — 3%{(@ o
4C(q) + Ci() =7 4Ci(9) + Colg) — 4 4Cx(q) + Ci(g) — 4
and § , ) ] )
Mose | —20@ f | %@ o sbe
40 (q) + Cilg) =7 4C1(g) + Colg) — 4 40y (q) + Ci(g) — 4
Take
_ 3Gi(q)
T T
3%1(q)

TR +h@-7 "
Let us consider 5 5
e 0@ . %e@
4Ci(9) +Co(p) -4 4G(g) + Gl — 4

nd 341(q) 3q0a(q)
1 2
TaAn CZ@ i 452@)1 élq(m —4
Hence
lall] oy = LoP + FaP =1, I ) = ol + Iyl = 1.

By the rotundity of the two-dimensional Banach space 2, where ( fo,x1) and (do, y1) are elements of 2 we

get
d P p
(f() O) (xl "]/1) <1
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Again, recall that

(x1+y1)f’_l C0+d0+ﬂ1+b1 4
2 oo 2 2 '

Thus, we get
P
<1.

1
H—(a +b)
(@)

2
This proves that the space £,(X(q)) is rotund. [
Theorem 5.8. (. (N(q)) and £1(NR(q)) are not rotund.

Proof. Now, let us consider two special elements a, b € {,(N(g)).
a=e+e=(1,1,0,0,...)

and
b=e -e=(1,-1,0,0,...)

Verify thata, b € S¢_x()- In fact,
blleo gy = 11, =1,0,0, .. e, g
H 3C1(q) 3C1(q) —39Ca(q)  3Ci(g) - 39Ca(q) )
4C1(q) +Co(q) = 7" 48a(q) + Ca(g) — 4" 483(q) + Cag) -

loo
and
llalle. gy = 1I(1,1,0,0, .. lle. )
'l 3%i(q) 3Ci(q) +3902(q)  3Ci(q) + 39C2(q) )
4C1(q)+Co ) =7 48(q) + Ci(g) - 4" 48(q) + &o(g) - 0
Now
1 1
~(@+b =12(2,0,0,...
Hz(a ) (o (N() 2 ) 8@
=1(1,0,0,.. e
_ ( 3Ci(q) 3Ci(q) 3Ci(q) )
48i(q) + Co(q) = 7" 4L (q) + Co(q) — 4" 481 (q) + So(g) - ‘e

=1.
In this case, {o(N(g)) is not rotund. Similarly, the claim for £ (N(g)) can be shown. [
Definition 5.9 ([2]). Let & be a sequence space. Then R is called solid if
{(b) € w: Aa) € ], Vk e N : |by| < |ag])} € &

Theorem 5.10. ¢o(N(q)) is a solid space.
Proof. The solidity of cy(N(q)) directly follows from Definition 5.9. [
Lemma 5.11 ([2]). Let X be a linear subspace of w. The space X is solid if and only if €. X C X, where

X = {(axby) : (ax) € l, (bx) € X}
Theorem 5.12. ¢(N(q)) is not a solid space.

992

Proof. Consider the sequence v = (-1} € b and u = {1,1,1,1,1,1,..} € c(R(g)). Clearly, uv ¢ c(R(q)).

Thus, by Lemma 5.11, ¢(8(g)) is not a solid space. [
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