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Abstract. This paper treatises the preservation of some spectra under perturbations not necessarily
commutative and generalizes several results which have been proved in the case of commuting operators.

1. Introduction and preliminaries

According to [6], for an element a of a ring A, denote by

commy(a) = {b € A : ab € comm(a) and ba € comm(b)},

by comm,(a) = {b € A : ab € comm(b) and ba € comm(a)},
and by commy,(a) = commy(a) N comm,(a),

where comm(a) is the set of all elements that commute with a. Denote also by comm?(a) = comm(comm(a))
and by Nil(A) the nilradical of A. If A is a unital complex Banach algebra, we means by o(a), acco(a), r(a)
and exp(a), the spectrum of 4, the accumulation points of o(a), the spectral radius of 2 and the exponential
of a, respectively. We say that a is quasi-nilpotent if r(a) = 0. If T € L(X) the algebra of all bounded
linear operators acting on an infinite dimensional complex Banach space X, then T*, a(T) and f(T) means
respectively, the dual of T, the dimension of the kernel N(T) and the codimension of the range R(T), and
denote by R(T*) = MNR(T") and N(T*) = U N(T"). Moreover, the ascent and the descent of T are defined
n=0 n=0

by p(T) = inf{n € N : N(T") = N(T"Y)} and ¢(T) = inf{n € N : R(T") = R(T"*!)} (withinf = co). We say that
a subspace M of X is T-invariant if T(M) C M and the restriction of T on M is denoted by Tjs, and we say that
(M, N) € Red(T) if M, N are closed T-invariant subspaces and X = M@ N. For n € N, denote by T, = Tr(r)
and by mr = inf{n € IN : min{a(T,)), f(T],)} < oo} the essential degree of T. An operator T is called upper
semi-B-Fredholm (resp., lower semi-B-Fredholm) if the essential ascent p.(T) := inf{n € IN : a(T[n)) < 0} < 00
and R(TP<D+1) is closed (resp., the essential descent q,(T) := inf{n € N : B(T)) < oo} < oo and R(T%D)
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is closed). If T is an upper or a lower (resp., upper and lower) semi-B-Fredholm, then T it is called
semi-B-Fredholm (resp., B-Fredholm) and its index is defined by ind(T) = a(Tu,1) — B(Tmg)- T is said to be
an upper semi-B-Weyl (resp., lower semi-B-Weyl, B-Weyl, left Drazin invertible, right Drazin invertible,
Drazin invertible) if T is an upper semi-B-Fredholm with ind(T) < 0 (resp., T is a lower semi-B-Fredholm
with ind(T) > 0, T is a B-Fredholm with ind(T) = 0, T is an upper semi-B-Fredholm and p(Tj,,]) < oo, T is
a lower semi-B-Fredholm and g(Tj.,1) < 0, p(Timy1) = §(Timy)) < o). If T is upper semi-B-Fredholm (resp.,
lower semi-B-Fredholm, semi-B-Fredholm, B-Fredholm, upper semi-B-Weyl, lower semi-B-Weyl, B-Weyl,
left Drazin invertible, right Drazin invertible, Drazin invertible) with essential degree mr = 0, then T is said
to be an upper semi-Fredholm (resp., lower semi-Fredholm, semi-Fredholm, Fredholm, upper semi-Weyl,
lower semi-Weyl, Weyl, upper semi-Browder, lower semi-Browder, Browder). T is said to be bounded
below if T is upper semi-Fredholm with a(T) = 0, and is said to be Riesz if T — Al is Fredholm for all
non-zero complex A or equivalently n(T) := T + K(X) is quasi-nilpotent in the Calkin algebra L(X)/K(X)
(K(X) is the ideal of compact operators). Following [21], T is said to be generalized Drazin-Riesz invertible
if there exists (M, N) € Red(T) such that Ty is invertible and Ty is Riesz. T is said to be semi-regular
(resp., essentially semi-regular) if R(T) is closed and N(T) € R(T*) (resp., R(T) is closed and there exists a
finite-dimensional subspace F such that N(T) € R(T*) + F).

In this paper, we study the stability of the spectra summarized in the next list under the algebraic
conditions considered in [6] that are weaker than the commutativity.

04(T): approximative spectrum of T

o.(T): essential spectrum of T

0uf(T): upper semi-Fredholm spectrum of T
017(T): lower semi-Fredholm spectrum of T
0u(T): Weyl spectrum of T

0uw(T): upper semi-Weyl spectrum of T
o1(T): lower semi-Weyl spectrum of T
op(T): Browder spectrum of T

opw(T): B-Weyl spectrum of T

oupw(T): upper semi-B-Weyl spectrum of T
ow(T): lower semi-B-Weyl spectrum of T
014(T): left Drazin spectrum of T

04(T): right Drazin spectrum of T

04(T): Drazin spectrum of T

0s(T): semi-regular spectrum of T

044(T): generalized Drazin spectrum of T

ouw(T): upper semi-Browder spectrum of T
op(T): lower semi-Browder spectrum of T
oupf(T): upper semi-B-Fredholm spectrum of T

04.4(T): g.-invertible spectrum of T [5]
0p¢(T): B-Fredholm spectrum of T
of(T): lower semi-B-Fredholm spectrum of T

As an extension of [10, Proposition 2.6], we prove that if a,b € A are Drazin invertible such that a €
commy,(b), then aP € comm(bP) and ab is Drazin invertible with (ab)? = aPbP. Moreover, we prove that
if T € L(X) is generalized Drazin-Riesz invertible and R is a Riesz operator such that T € [comm,(R) N
comm(RT)]U[comm,(R)Ncomm(TR)], then T+R is generalized Drazin-Riesz invertible and 0.(T) = 0.(T+R),
whereo. € {0¢, 0uf,01f, 0w, Ouw, Otw, Ob, Oup, O1p}- If in addition T is generalized Drazin invertible and R is quasi-
nilpotent, then T +R is generalized Drazin invertible and o(T) = o(T +R). This gives a generalization of some
known commutative perturbation results. Among other results, we give a new characterization of power
finite rank operators, by proving that if 0. € {o4f, 0uvf, 05, 04, 014, 014}, then F is a power finite rank operator
if and only if 0.(T) = 0.(T + F) for every generalized Drazin-Riesz invertible operator T € commy,(F).

2. Pseudo invertible elements of a ring

Definition 2.1. Let A be a ring and let a € A. We say that a is pseudo invertible if there exists ¢ € comm?(a) such
that ¢ = c®a. In this case we say that c is a pseudo inverse of a.

According to [13], an element a of a unital complex Banach algebra A, is said to be generalized Drazin
invertible if there exists b € comm (a) such that b?a = b and a —a?b is quasi-nilpotent. If so then b € comm? (a)
and is denoted by 4P and called the generalized Drazin inverse of a. It is proved also that a is generalized
Drazin invertible if and only if 0 ¢ acco(a). So every generalized Drazin invertible element a is pseudo
invertible and its Drazin inverse a” is a pseudo inverse of a.
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Proposition 2.2. Let A be a ring and let a,b € A such that a is pseudo invertible. Then for every pseudo inverse c
of a, we have

(i) If ba € comm(a), then bc € comm(c), and if in addition a € comm, (D), then ¢ € comm,(b).

(ii) If ab € comm(a), then cb € comm(c), and if in addition a € commy(b), then ¢ € commy(b).

(iii) If a € commy, (D), then ¢ € commy, (D).

Proof. By hypotheses we get ¢? = ¢?ca = acc?. Thus

(i) If ba € comm(a), then ba € comm(c) and so bc? = ((ba)c)c® = (c(ba))c® = cbe. If in addition a € comm,(b),
then beb = ((ba)c?)b = c?(bab) = cb?. So ¢ € comm,(b).

(i) If ab € comm(a), then ab € comm(c) and thus c?b = c?(c(ab)) = c*((ab)c) = cbc. If in addition a € commy(b),
then beb = b(c?(ab)) = (bab)c® = b?ac® = b?c. So ¢ € commy(b).

(iii) Follows directly from the previous points. [

From Proposition 2.2, we immedialtely deduce the next corollary.

Corollary 2.3. Let A be a unital complex Banach algebra and let a, b € A such that a is generalized Drazin invertible.
Then the following assertions hold:

(i) If ba € comm(a), then ba® € comm(aP), and if in addition a € comm,(b), then aP € comm,(b).
(ii) If ab € comm(a), then aPb € comm(aP), and if in addition a € commy(b), then aP € commy(b).
(iii) If a € commy,(b), then aP € commni,(b).

Lemma 2.4. Let A be a ring and let a,b € A pseudo invertible. If ¢ and d are respectively pseudo inverses of a and
b, we then have

(i) If a € comm,(b), then ¢ € comm,(b) and cb,ad, cd € comm(b).

(ii) If a € commy(b), then ¢ € commy(b) and cb, ad, cd € comm(a).

(iii) If a € commy, (), then ¢ € commy,(b) and cb, ad, cd € comm(a) N comm(b).

Proof. (i) Assume that a € comm,(b). Since ba € comm(a) then cb? = c?ab® = c*bab = (c*(ba))b = bcb. Thus
cb € comm(b). On the other hand, we have adb = abd = ab*d?> = babd?* = bad and bed = ((ba)c?)d = c2(b(ad)) =
c?adb = cdb. Then ad, cd € comm(b). The point (ii) goes similarly with the first point and the third point is
clear. (O

Let A be aring. An element a € A is said to be Drazin invertible of degree # if there exists c € comm(a)
such that ¢ = c?a and a"*!c = a". In this case ¢ = aP, c € comm? (a) and if a is of degree 1 and is not of degree
n — 1, then n is called the index of a and is denoted by i(a) = n. For more details about this definition, we
refer the reader to [1]. Our next proposition gives an extension of [10, Proposition 2.6].

Proposition 2.5. Let a,b two Drazin invertible elements of a ring A. The following assertions hold:
(i) If a € comm,(b) and ab € comm(a), then ab is Drazin invertible and (ab)P = bPaP.

(ii) If a € commy(b), then ab is Drazin invertible and (ab)® = aPbP.

(iii) If a € commy,(b), then ab is Drazin invertible, (ab)P = aPbP and aP € comm(bP).

Proof. (i) Assume that a € comm,(b) and let n = max{i(a),i(b)}. From [6, Lemma 3.1] we deduce that
BPal(aby™*! = bPalam1p+! = PP+t = (bD (b)) = a"bbPb" = a"b" = (ab)". On the other hand, since ab €
comm(a) then ((ab)bP)aP) = bP((ab)aP) = (bPaP)ab. It follows from Lemma 2.4 that bPaP € comm(a). Hence
(bPaP)(ab)(bPaP) = (a(®PaP))bbPaP = abP((aPbP)b)a® = abPb(aP(bPaP)) = abPbbP@P)? = abP(aP)?> = bPaP.
This implies that ab is Drazin invertible, (ab)? = bPaP and i(ab) < max{i(a), i(b)}. Also note that (again from
Lemma 2.4) that (b”aP)ab = b(bP)?*aPab = bbP((bPaP)a)b = b(bP(abP))aPb = ba((bP)*(aPbh)) = baaPb(bP)? =
ba(aPbP). The point (ii) is done in [20, Theorem 3.1] and the point (iii) is clear. [J

Proposition 2.6. Let A bearing and let a € A. If there exists b € Aand n € N such that a € comm(ab) N comm(ba),
bab = b and ba™*' = a", then a is Drazin invertible and aP = b.

Proof. As a € comm(ab) N comm(ba) then by [6, Lemma 3.1, Remark 3.3], we deduce that ba = (ba)"*? =
b"+2a"+2 = q"*2p"*2 = (ab)"*? = ab. Thus b € comm(a). [J
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3. Perturbations of pseudo invertible operators

According to [18], the analytic core K(T) and the quasi-nilpotent part Hy(T) of T € L(X) are defined by

K(T) = {x € X : A(xy), C X such that Vn € N x = x¢, Txy41 = x,, and sup ||x,,||% < o0}
n

and Ho(T) = {x € X : limsup ||T"x||* = O}.
Lemma 3.1. Let S, T € L(X). The following assertions hold:
(i) If ST € comm(T), then R(T*) and K(T) are S-invariant.
(ii) If TS € comm(T), then N (T*) and Hy(T) are S-invariant.

Proof. (i) Let n > 1 and let x € S(R(T"*1)). Then there exists z such that x = ST"*!z, and since TST = ST?
then x = T"STz € R(T"). So S(R(T™*1)) c R(T"). Hence R(T*) is S-invariant. If x € K(T), then there exists

(x4) € X such that x = xg, x, = Tx4+1 for every n € IN and sup ||x,,||% < oo. We put y, = Sx,, for every n € IN.
n

We then have y,, = Sx,, = TSTx,1» = Ty,4+1 and sup ||y,,||rl7 < max {[|S||, 1}sup ||xn||% < o0. Therefore Sx € K(T)
n n

and then K(T) is S-invariant.

(ii) Since S(N(T™)) € N(T"*1) for every n > 0 then N(T) is S-invariant. Let x € Ho(T), then ||T"*1(Sx)||71 =
ITST x||w1 < ||TS||#||T x| = ||TS||#1 (|| T"x||%)#1 for every integer n > 0. Thus Sx € Ho(T) and then Hy(T)
is S-invariant. [

The next corollary is a consequence of the previous lemma and Proposition 2.2.

Corollary 3.2. Let T € L(X) be a pseudo invertible operator and if L is a pseudo inverse of T, then the following
assertions hold:

(i) If ST € comm(T), then R(L*) and K (L) are S-invariant.

(ii) If TS € comm(T), then N(L®) and Hy(L) are S-invariant.

Theorem 3.3. Let T € L(X) and N € Nil(L(X)) such that T € [comm;(N) N comm(NT)]U [comm,(N) Ncomm(TN)].
If T is Drazin invertible, then T + N is Drazin invertible. The converse is true if T € comm,(N).

Proof. Suppose that T is Drazin invertible, that is, p := p(T) = q(T) < oo. Then (A, B) := (R(T7), N(I?)) €
Red(T), T4 is invertible and Tp is nilpotent. From Lemma 3.1 we deduce that (A, B) € Red(N), and so
T=To®Tgand N = Ny & Np. Therefore T + N = (T + N)a @ (T + N)p. By hypotheses and the fact that T4
is invertible and N4 is nilpotent, we conclude that N4 € comm(T4). Thus (T + N)4 is invertible and by [6,
Lemma 3.8], it follows that T+N is Drazin invertible. If in addition T € comm,(N), then T+N € comm,,(—N),
and thus T is Drazin invertible iff T + N is Drazin invertible. [

For T € L(X), denote by IRed(T) = {(M,N) € Red(T) : Ty is invertible and (M, N) € Red(U) for all U €
comm(T)}. If T is pseudo invertible, denote by PI(T) the set of its pseudo inverses. Note that the class of
pseudo invertible operators is much broader, it contains in particular the class of g.-invertible operators,
see [5, Remark 4.19].

Proposition 3.4. T € L(X) is pseudo invertible if and only if there exists (M, N) € Red(U) such that Ty is invertible
for every U € comm(T). If this is the case, the map @ : IRed(T) —> PI(T) defined by ®(M, N) = (Tp)~! @ Oy is onto.

Proof. Assume that T is pseudo invertible and let S € PI(T). Then TS is a projection and (M,N) :=
(R(TS), N(TS)) € Red(T). Let U € comm(T), then UM) = RUTS) = R(TSU) c M and U(N) c N. Thus
(M,N) € Red(U). Moreover, if x € N(Ty), then x = TSy and Tx = 0. Therefore x = (TS)*y = STx = 0. If
x = TSy € M, then x = T(TS(Sy)) € T(M). Thus Ty is invertible. Let us show that S = (Tp)™ & Oy. We
have Sy = Oy, since S = STS. Let x = TSy € M. As Sy = STSy € M then Sx = Sy = (Tm) TSy = (T;) .
Hence S = (Tm) ™! @ On. Conversely, if (M, N) € IRed(T), then the operator S = (Ty)~! ® Oy gives the desired
result. Indeed, it is clear that S = S?T, and if A € comm(T), then (M, N) € Red(A). So Ay € comm((Ty)™?).
Therefore A € comm(S) and consequently S € comm?*(T). [J
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It follows from Proposition 3.4 that every pseudo inverse S of a pseudo invertible operator T is Drazin
invertible with p(S) = q(S) < 1. Hence IRed(T) C {(R(S), N(S)) : S € PI(T)}. Moreover, if T is generalized
Drazin invertible, then (K (T), Ho(T)) € IRed(T).

Corollary 3.5. Let T € L(X). Then IRed(T) = {(M, N) € Red(T) : Ty is invertible and (M, N) € Red(U) for all U €
L(X) such that T € comm(TU) N comm(UT)}.

Proof. Let Cr = {(M, N) € Red(T) : Ty is invertible and (M, N) € Red(U) for all U € L(X) such

that T € comm(TU) N comm(UT)}. It is clear that C; C IRed(T). For the opposite inclusion, assume that
T is pseudo invertible (in the other case IRed(T) = 0). Let (M,N) € IRed(T) and let U € L(X) such that
T € comm(TU) N comm(UT) and we consider the pseudo inverse operator S = ®(M, N) of T associated
to (M, N). It is clear that S is Drazin invertible, and hence (M, N) = (R(S), N(S)) = (R(5®), N(5)). As T €
comm(TU) N comm(UT), S € comm?(T) and S = S*T, it follows from Corollary 3.2 that (M, N) € Red(U). O

Proposition 3.6. Let S, T € L(X). The following assertions hold:
(i) If T or S is Riesz and TS € comm(T) U comm(S), then TS is Riesz.
(ii) If T and S are Riesz and S € comm,(T) U commy(T), then T + S is Riesz.

Proof. As mentioned above, R € L(X) is Riesz if and only if 77(R) is quasi-nilpotent in the Calkin algebra
L(X)/K(X). The proof is then a consequence of [6, Corollary 3.10]. [J

Our next theorem generalizes some known commutative perturbation results.

Theorem 3.7. Let R, T € L(X) such that R is Riesz and T € [comm;(R) N comm(RT)] U [comm,(R) N comm(TR)].

If T is generalized Drazin-Riesz invertible, then T + R is generalized Drazin-Riesz invertible and

(i) 0.(T) = 0.(T + R), where 6. € {0,, 0uf, 1f, Ow, Ouw, Otws Ob, Oub, Olp}-

(i1) IfR € Nil(L(X)), then 0. (T)\{0} = 0+(T+R)\{0} and 0,+(T) = 0++(T+R), where o+ € {Ovf, Ounf, Otvf, Obws Oubw, Otbw, Od, Old, Ord}
and 014 € {Opf, Ovw, 0a}. If in addition X is a Hilbert space, then 04(T) = 0+(T + R).

(iii) If R is quasi-nilpotent, then acc 0_(T) \ {0} = acc o_(T + R) \ {0}, where o_ € {0, 0,,0,}. If in addition T is gener-

alized Drazin invertible, then T + R is generalized Drazin invertible, o(T) = o(T + R), 0x(T) \ {0} = ox(T + R) \ {0}

and acc ox(T) = acc ox(T + R), where o« € {0,, 05}

Proof. Assume that T is generalized Drazin-Riesz invertible and let (M, N) € IRed(T) such that Ty is Riesz.
(i) From Corollary 3.5 we have (M, N) € Red(R). Thus TyRy = RyTm and Ty € commy(Ry) N comm(TyRy).
Hence (T + R)p is Browder, and by Proposition 3.6, (T + R)y is Riesz. From [21, Theorem 2.3], we deduce
that T + R is generalized Drazin-Riesz invertible. On the other hand, as 0.(Tn) C 0y(Tn) C {0} then
o (T)\ {0} = (0.(Tan) U 0.(Tn) \ {0} = 0.(T) \ {0} = 0.((T + R)m) \ {0} = 0u(T + R) \ {0}. If O ¢ 0.(T), then T'is
semi-Fredholm. From [4, Corollary 3.7], there exists (M ,N') € Red(T) such that T, is semi-regular, Ty is
nilpotent and dim N' < oco. This entails by [5, Proposition 2.10] that T,y is invertible. Hence T is Browder,
(M',N') = (R(T*), N(T*)) and 0 ¢ 6.(T +R). Thus 0.(T) = 0.(T +R). Assume now that 0 ¢ ¢.(T+R). As T+R
is generalized Drazin-Riesz invertible then T + R is Browder. Since T + R € comm,(—R) U comm,(—R), by
Proposition [6, Proposition 4.18], we deduce that 0 ¢ ¢,.(T), and hence 0.(T) = 0.(T+R).If0 ¢ 0.(T)Uo.(T+R),
then 0.(T) = 0.(T) \ {0} = 0.(T + R) \ {0} = 0.(T + R).

(ii) Assume that R € Nil(L(X)). Wehave 6, (T)\{0} = (04+(Tp) U0+ (Tn))\{0} = 04 (Tp)\{0} = 0. ((T+R)p) \ {0} =
0+(T + R) \ {0}, since 0,+(Tn) C 05(Tn) C {0} and o, is stable under commuting nilpotent perturbations. If
0 ¢ 0.4(T), then T is B-Fredholm, which implies from [3, Theorem 2.21] and [5, Proposition 2.10] that T is
Drazin invertible. We conclude from Theorem 3.3 that ¢+ (T) = 01+(T +R). Assume now that0 ¢ o.,(T +R),
then T + R is B-Fredholm, and thus T + R is Drazin invertible. Hence o((T + R)y) is a finite set. We have from
Proposition [6, Proposition 4.14], o(Tn) \ {0} C o((T + R)n) \ {0}. Thus O ¢ acc o(T), and then T is generalized
Drazin invertible. So (M',N') := (K(T), Ho(T)) € IRed(T) and T, is quasi-nilpotent. As T + R is Drazin
invertible then (T + R), is nilpotent. Since T+ R € comm,(—R) U comm,(—R), by [6, Lemma 3.8], we deduce
that Ty is nilpotent. Thus T is Drazin invertible and 0.+ (T) = 0.+(T + R). If in addition X is a Hilbert space,
using [9, Theorem 2.6] and the same argument as above, we deduce that 0, (T) = 0..(T + R). The point (iii)
goes similarly and is left to the reader. [J
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Let T € L(X) and let Q € L(X) be a quasi-nilpotent operator which commutes with T. It is well known
that o(T) = o(T + Q). The proof of Theorem 3.7 suggests the following question.
Question: This equality o(T) = o(T + Q) remains true if we only have Q € comm,(T) and T € comm(TQ)
[or Q € comm,(T) and T € comm(QT)]? Note that Theorem 3.7 gives a partial answer to this question.

We give in the next result an extension of [1, Lemma 3.81]. Recall that T € L(X) is said to be algebraic if
there exists a non-null polynomial P such that P(T) = 0.

Corollary 3.8. If T € L(X) is algebraic and N € Nil(L(X)) such that T € [comm;(N) N comm(NT)] U [comm,(N) N
comm(TN)], then T + N is algebraic.

Proof. The proof follows from Theorem 3.7 and the fact that T is algebraic if and only if it has empty Drazin
spectrum. [J

Theorem 3.9. Let R € L(X) and T € comm(TR) N comm(RT). The following assertions hold:
(i) If T is essentially semi-reqular and R is Riesz, then T + R is essentially semi-regular.
(ii) If T is semi-regular and R = Q is quasi-nilpotent, then T + Q is semi-regular.

Proof. Let M = R(T*).

(i) Assume that T is essentially semi-regular. From [16, Proposition 13] and Lemma 3.1, we conclude that M
is closed R-invariant. Consider the operators T, R € L(X/M) induced by T and R, respectively. As R is Riesz
then [16, Lemma 15] implies that Ry and R are Riesz, and since Ty is onto, it follows from [6, Corollary
4.2] that Tyy € comm(Ry). Hence (T + R)y is lower semi-Browder. Since T is upper semi-Browder, from

[6, Proposition 4.18] we conclude that T + R = T + R is upper semi-Fredholm. We deduce then from [16,
Theorem 14] that T + R is essentially semi-regular.

(ii) If T is semi-regular then M is closed Q-invariant and Ty, is onto. Consider the operators T,é € L(X/M)
induced by T and Q, respectively. As Q is quasi-nilpotent then Qu and Q are quasi-nilpotent. Moreover,
by Lemma [14, Lemma 1] we have Ty is onto and T is bounded below. As T € comm(TQ) N comm(QT)

then Q € comm(T) and Qu € comm(Ty). Hence (T + Q)u is onto and T + Q is bounded below. Again by
[14, Lemma 1], we deduce that T + Q is semi-regular. [

4. Perturbations by finite rank operators

We begain this part by the next lemma which gives an extension of [12, Lemma 2.1] proved in the case
of commuting operators.

Lemma 4.1. Let S, T € L(X) such that S € commy,(T). Then for every integers m > 1 and n > 3, we have

, , N(T™) : NIT +5)"] - m
(i) max {dsz[(T+ Sy A N T lmN(T”“”—l) ANIT+ S)”]} < dimR(S™).

3 ] R(T"+"l_1) ] R[(T + S)n+m—l] ) "
(ii) max {dsz[(T TS AR lmR(T”) ARIT + S)”+m—1]} < dimR(S™).

Proof. (i) Since S € comm,,(T), from [6, Corollary 3.6], we have for every x € N(T") (T + S)"*"1x = S" Ax,

n-1

where A = Z C;i",;_lsiT”_i_l. Thus (T + S)""1(N(T")) C R(S™). Let M be a subspace such that N(T") =
i=0

(N[(T + Symm-11n N(T”)) ® M. As T"(T + S)**"=1 = (T + S)™=T" then (T + S)"*" 1 (N(T")) c N(T"). And

since M N N[(T + S)**~1] = {0} it then follows that dim M < dim R(S™). Since S € commy,(T) if and only if

(=5) € commy(T + S), the proof is complete.
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(ii) Let M be a subspace such that R(T + §)"*"1] = (R(T") N R((T + $)"*"']) & M and let (¢; := (T +

S)y""=1v.);-1,. x be a linearly independent family of M. From [6, Corollary 3.6], we deduce that

.....

n+m— o
(T+ S)n+m—1 Z C;:+m 1T‘rz+m—1—1sz
i=0
m—1 n+m-1
— Cn+m 1Tn+m 1- zsz Z C;+m 1Tn+m—1—zsl
i=0 i=m
= +S"B,
n+m-1 o
where A = ch+m N 1-igiand B = Z Cn+m 1T”er_l‘lS’_m. If k > dim R(S™), then there exist Ay, ..., Ak
i=0 i=m

not all zero such thatz A;S"Bou; = 0. Hence Z Ai(T+S) 1y, = Z AiT" Av; and thus Z Aie; € R(THNM =
i=1
{0}. But this is a contradiction. Therefore k dim R(5™) and then dimM < dlm R(S’”) The proof is

complete. [

Denote by #(X) the class of power finite rank operators acting on X. The next theorem extends [12,
Theorem 2.2], [8, Proposition 3.1] and a special case of the direct implication of [7, Theorem 3.1].

Theorem 4.2. Let T € L(X) and F € Fo(X) such that F € commy,(T). The following equivalences hold:
(i) g(T) < oo if and only if (T + F) < oo.

(ii) p(T) < oo if and only if p(T + F) < o0.

(iii) g.(T) < oo if and only if q.(T + F) < co.

(iv) pe(T) < o0 if and only if p.(T + F) < oo.

(v) mr < oo if and only if mryp < oo.

Proof. Let m > 1 be an integer such that dim R(F") < co.
(i) Assume that g := g(T) < oo and let n > max{3, g}. Then

3 d R(Tn+m—1) - di R(TW)
= A R T By ARy~ M RIT + By A R(TT)
o i RUTHEP L RIT By
T NRE ARIT + Fyn 1]~ RN ARIT + Byl

From Lemma 4.1 we have max{c,,,c;l} < oo for all n > max({3,q}. As (c,), is increasing then there exists
an integer k > max{3,q} such that R[(T + F)"] N R(T7) = R[(T + F)*] N R(T), for every n > k. Thus c, =
o R[(T+F)n+m—1]

R(T7) N R[(T + F)¥]
that for every n > r we have ¢, = c,. Hence q(T + F) < r + m — 1 and the converse is obvious. The point (ii)
goes similarly.

for every n > k. Therefore (c,,),>x is a decreasing sequence. So there exists r > k such

(iii) Assume that e := g,(T) < co. By Lemma 4.1 we obtain dim R(T) _ gim 2T,
= e - by . RI(T + F)"] N R(Tn+m—1) - R(Tn+m—1)
R(T”+m_1) ~ . R(TC)
mR[(T T E A R(T ) < oo for every n > | = max {3, e}. Thus dlmR[(T TP AR < oo for every

n > 1. On the other hand, from the proof of Lemma 4.1, we have R[(T + F)"*"~1] c R(T¢) + R(F") for every
n > I. Hence

R(T) + R(F™) . R(T?) + R(E™) ) RI(T + F)n+m—1]

BT+ By - CRIT B ART | RIT + B AR
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R[(T + F)mm—l]
RI(T + Fyrm]
and the converse is obvious. The point (iv) goes similarly. For the proof of the point (v), the reader is referred

to [4] in which we mentioned that mr = min {p.(T), q.(T)}. O

and consequently dim < oo forevery n > I. Therefore g.(T+F) < max {m+2,4.(T)+m—1} < o0

The following theorem extends [19, Lemma 2.1, Lemma 2.2].

Theorem 4.3. Let T € L(X) and F € Fo(X) N commy,(T). Then T is upper semi-B-Fredholm (resp., lower semi-
B-Fredholm, B-Fredholm, left Drazin invertible, right Drazin invertible, Drazin invertible) if and only if T + F
is.

Proof. Suppose that T is upper semi-B-Fredholm. Theorem 4.2 implies that R(T”‘(T *1)is closed and p(T+F) <
o0. Since for every n > 2, FT" = T"F then F(N(T")) ¢ N(T"). Consider T and F the operators induced by T
and F on X = X/N(T%3), where d = dis(T). It is easily seen that T is upper semi-Fredholm and F € F(X).
From [6, Propositon 4.18], we deduce that T + F is upper semi-Fredholm. Hence R[(T + F)'] + N(T%*3) is

N(T™)

closed for every | € IN. Furthermore, Lemma 4.1 implies that dimN[(T TR AN < 00, where

n > 3 and m > 1 such that dim R(F") < co. Hence

RI(T + F)"*™11n N(T")

RI(T + Fy=m=-11n N[(T + Fy"+m=11n N(T™)

As a((T + F)f’ni”;‘_ll]) < oo then dim (R[(T +F)yrm=ln N(T")) < oo for every integer n > max({3,p.(T + F)}.
From the Neubauer Lemma [17, Proposition 2.1.1], we conclude that R[(T + F)"*" '] is closed. Hence T+F is
upper semi-B-Fredholm. If T is lower semi-B-Fredholm, then from [15], T* is upper semi-B-Fredholm, and
consequently T* + F* is upper semi-B-Fredholm. Thus T + F is lower semi-B-Fredholm (see again [15]). If T
is left Drazin invertible, then T is upper semi-B-Fredholm and p(T) < co. So T +F is upper semi-B-Fredholm,
and from Theorem 4.2 we have p(T +F) < oo. Thus T +F is left Drazin invertible. The other cases go similarly.
Since F € comm,,(T) if and only if (—F) € commy,(T + F), the proof is complete. [

Corollary 4.4. If T € L(X) is generalized Drazin-Riesz invertible and F € Fy(X) such that T € [commy(F) N
comm(TF)]U[comm,(F)Ncomm(FT)], then 6.(T)\{0} = o.(T+F)\{0}, whereo. € {ovf, 0uns, Otwf, O, O1d, Ora, O ga, Og.al-
If in addition F € commy(T), then 0.(T) = 0.(T + F).

dim

Proof. We will leave these routine arguments as exercise for the reader. [

Remark 4.5. In [11, Proposition 3.3], the authors proved that if X is an infinite dimensional complex Banach space
and T € L(X), then there exists a non-algebraic operator S € comm(T). From the proof of this result and the one of
[1, Lemma 3.83], it is easy to see that if in addition T is an algebraic operator, then we can consider S as a compact
operator.

The next proposition gives a new characterization of power finite rank operators.

Proposition 4.6. Let F € L(X) and 0. € {0vf, 0uvf, 05, 04,014, 01a}- The following statements are equivalent:
(i) F € Fo(X);

(ii) 0.(T) = 0.(T + F) for every generalized Drazin-Riesz invertible operator T € commy,(F);

(iii) 0.(T) = 0.(T + F) for every T € comm(F).

Proof. (i) = (ii) Is a consequence of Corollary 4.4.

(i) = (i) We have 0.(F) = 0. So F is algebraic and o(F) = {Ay,...,A,}. Thus X = X; & --- & X,;, where
Xi = N((F — AiD)™) for some m;. If F ¢ Fo(X), then there exists 1 < i < n such that A; # 0 and dim X; = co.
As F; — Al is nilpotent, from Remark 4.5, there exists a non-algebraic compact operator S; € comm(F)),
where F; = Fx,. The operator S = 01 & ---® S; & --- ® 0,, where 0; = 0x;, is non-algebraic, compact and
commutes with F. By hypothesis we have 0.(S) = 0.(S + F), this entails, from [19, Corollary 2.10] that
0.(S) = 0.(5i)) = 0.(Si + Fi) = 0.(S; + Ail) = 0.(S + F), since F; — A is nilpotent. Hence A; = 0 and this is a
contradiction. Thus F € Fy(X).

(i) = (iii) Is a consequence of Theorem 4.3, and (iii) = (i) is proved in [19, Theorem 2.11]. O
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The next proposition extends the second assertion of [10, Corollary 3.5]. ¥ (X) denotes the ideal of finite
rank operator in L(X).

Proposition 4.7. Let S, T € L(X) be B-Fredholm operators, if S € comm,(T) U commy(T), then TS is B-Fredholm.

Proof. Assume that S € comm,(T), then S* € commy(T*). As T and S are B-Fredholm then T* and S* are
B-Fredholm. From [10, Theorem 3.4], 1¢(S*) := §* + ¥(X) and 74(T") := T* + ¥ (X) are Drazin invertible.
Since 11¢(S*) € commy(rt(T")), from Proposition 2.5 we get 71¢(S'T*) := ST + ¥ (X) is Drazin invertible.
We conclude again by [10, Theorem 3.4] that TS is a B-Fredholm operator. The case S € commy(T) is
analogous. [

As a continuation to what has been done in the paper [5], we end this part by the following theorem
which improves [2, Theorem 2.1].

Theorem 4.8. Let T € L(X). Then
04(T) = ap(T) U acc(acc o(T)),

op(T) = 0.(T) U acc(acc o(T)).

Proof. Let us prove that 04(T) = 0p¢(T) U acc(acco(T)). Let A ¢ 04¢(T) U acc(acco(T)) and without loss
of generality we can assume that A = 0. Then T is B-Fredholm and 0 ¢ acc (acco(T)). This entails from
[3, Theorem 2.21] and [5, Theorem 4.11] that T is a g.-invertible operator and T = Ty ® Ty for some
(M, N) € Red(T) such that Ty is semi-regular and T is nilpotent. This implies again by [5, Theorem 4.7]
that p(Ty) = g(Tm) = (T) = §(T) = 0, and so Ty is invertible. Hence T is Drazin invertible. The converse
is clear, since acc o(T) C 04(T). The second equality goes similarly. For the definition of #(T) and §(T) of a
g.-invertible operator T, see [5]. [J
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