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Abstract. This paper treatises the preservation of some spectra under perturbations not necessarily
commutative and generalizes several results which have been proved in the case of commuting operators.

1. Introduction and preliminaries

According to [6], for an element a of a ringA, denote by

comml(a) = {b ∈ A : ab ∈ comm(a) and ba ∈ comm(b)},

by commr(a) = {b ∈ A : ab ∈ comm(b) and ba ∈ comm(a)},

and by commw(a) = comml(a) ∩ commr(a),

where comm(a) is the set of all elements that commute with a. Denote also by comm2(a) = comm(comm(a))
and by Nil(A) the nilradical ofA. IfA is a unital complex Banach algebra, we means by σ(a), acc σ(a), r(a)
and exp(a), the spectrum of a, the accumulation points of σ(a), the spectral radius of a and the exponential
of a, respectively. We say that a is quasi-nilpotent if r(a) = 0. If T ∈ L(X) the algebra of all bounded
linear operators acting on an infinite dimensional complex Banach space X, then T∗, α(T) and β(T) means
respectively, the dual of T, the dimension of the kernel N(T) and the codimension of the range R(T), and
denote by R(T∞) =

⋂
n≥0
R(Tn) and N(T∞) =

⋃
n≥0
N(Tn).Moreover, the ascent and the descent of T are defined

by p(T) = inf{n ∈N : N(Tn) = N(Tn+1)} and q(T) = inf{n ∈N : R(Tn) = R(Tn+1)} (with inf∅ = ∞). We say that
a subspace M of X is T-invariant if T(M) ⊂M and the restriction of T on M is denoted by TM, and we say that
(M,N) ∈ Red(T) if M, N are closed T-invariant subspaces and X =M⊕N. For n ∈N, denote by T[n] = TR(Tn)
and by mT = inf{n ∈ N : min{α(T[n]), β(T[n])} < ∞} the essential degree of T. An operator T is called upper
semi-B-Fredholm (resp., lower semi-B-Fredholm) if the essential ascent pe(T) := inf{n ∈N : α(T[n]) < ∞} < ∞
and R(Tpe(T)+1) is closed (resp., the essential descent qe(T) := inf{n ∈ N : β(T[n]) < ∞} < ∞ and R(Tqe(T))
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is closed). If T is an upper or a lower (resp., upper and lower) semi-B-Fredholm, then T it is called
semi-B-Fredholm (resp., B-Fredholm) and its index is defined by ind(T) = α(T[mT]) − β(T[mT]). T is said to be
an upper semi-B-Weyl (resp., lower semi-B-Weyl, B-Weyl, left Drazin invertible, right Drazin invertible,
Drazin invertible) if T is an upper semi-B-Fredholm with ind(T) ≤ 0 (resp., T is a lower semi-B-Fredholm
with ind(T) ≥ 0, T is a B-Fredholm with ind(T) = 0, T is an upper semi-B-Fredholm and p(T[mT]) < ∞, T is
a lower semi-B-Fredholm and q(T[mT]) < ∞, p(T[mT]) = q(T[mT]) < ∞). If T is upper semi-B-Fredholm (resp.,
lower semi-B-Fredholm, semi-B-Fredholm, B-Fredholm, upper semi-B-Weyl, lower semi-B-Weyl, B-Weyl,
left Drazin invertible, right Drazin invertible, Drazin invertible) with essential degree mT = 0, then T is said
to be an upper semi-Fredholm (resp., lower semi-Fredholm, semi-Fredholm, Fredholm, upper semi-Weyl,
lower semi-Weyl, Weyl, upper semi-Browder, lower semi-Browder, Browder). T is said to be bounded
below if T is upper semi-Fredholm with α(T) = 0, and is said to be Riesz if T − λI is Fredholm for all
non-zero complex λ or equivalently π(T) := T + K(X) is quasi-nilpotent in the Calkin algebra L(X)/K(X)
(K(X) is the ideal of compact operators). Following [21], T is said to be generalized Drazin-Riesz invertible
if there exists (M,N) ∈ Red(T) such that TM is invertible and TN is Riesz. T is said to be semi-regular
(resp., essentially semi-regular) if R(T) is closed and N(T) ⊆ R(T∞) (resp., R(T) is closed and there exists a
finite-dimensional subspace F such thatN(T) ⊆ R(T∞) + F).

In this paper, we study the stability of the spectra summarized in the next list under the algebraic
conditions considered in [6] that are weaker than the commutativity.

σa(T): approximative spectrum of T σbw(T): B-Weyl spectrum of T
σe(T): essential spectrum of T σubw(T): upper semi-B-Weyl spectrum of T
σu f (T): upper semi-Fredholm spectrum of T σlbw(T): lower semi-B-Weyl spectrum of T
σl f (T): lower semi-Fredholm spectrum of T σld(T): left Drazin spectrum of T
σw(T): Weyl spectrum of T σrd(T): right Drazin spectrum of T
σuw(T): upper semi-Weyl spectrum of T σd(T): Drazin spectrum of T
σlw(T): lower semi-Weyl spectrum of T σse(T): semi-regular spectrum of T
σb(T): Browder spectrum of T σ1d(T): generalized Drazin spectrum of T
σub(T): upper semi-Browder spectrum of T σ1zd(T): 1z-invertible spectrum of T [5]
σlb(T): lower semi-Browder spectrum of T σb f (T): B-Fredholm spectrum of T
σub f (T): upper semi-B-Fredholm spectrum of T σlb f (T): lower semi-B-Fredholm spectrum of T

As an extension of [10, Proposition 2.6], we prove that if a, b ∈ A are Drazin invertible such that a ∈
commw(b), then aD

∈ comm(bD) and ab is Drazin invertible with (ab)D = aDbD. Moreover, we prove that
if T ∈ L(X) is generalized Drazin-Riesz invertible and R is a Riesz operator such that T ∈ [comml(R) ∩
comm(RT)]∪[commr(R)∩comm(TR)], then T+R is generalized Drazin-Riesz invertible and σ∗(T) = σ∗(T+R),
where σ∗ ∈ {σe, σu f , σl f , σw, σuw, σlw, σb, σub, σlb}. If in addition T is generalized Drazin invertible and R is quasi-
nilpotent, then T+R is generalized Drazin invertible and σ(T) = σ(T+R). This gives a generalization of some
known commutative perturbation results. Among other results, we give a new characterization of power
finite rank operators, by proving that if σ∗ ∈ {σb f , σub f , σlb f , σd, σld, σrd}, then F is a power finite rank operator
if and only if σ∗(T) = σ∗(T + F) for every generalized Drazin-Riesz invertible operator T ∈ commw(F).

2. Pseudo invertible elements of a ring

Definition 2.1. LetA be a ring and let a ∈ A.We say that a is pseudo invertible if there exists c ∈ comm2(a) such
that c = c2a. In this case we say that c is a pseudo inverse of a.

According to [13], an element a of a unital complex Banach algebra A, is said to be generalized Drazin
invertible if there exists b ∈ comm (a) such that b2a = b and a−a2b is quasi-nilpotent. If so then b ∈ comm2 (a)
and is denoted by aD and called the generalized Drazin inverse of a. It is proved also that a is generalized
Drazin invertible if and only if 0 < acc σ(a). So every generalized Drazin invertible element a is pseudo
invertible and its Drazin inverse aD is a pseudo inverse of a.
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Proposition 2.2. LetA be a ring and let a, b ∈ A such that a is pseudo invertible. Then for every pseudo inverse c
of a, we have
(i) If ba ∈ comm(a), then bc ∈ comm(c), and if in addition a ∈ commr(b), then c ∈ commr(b).
(ii) If ab ∈ comm(a), then cb ∈ comm(c), and if in addition a ∈ comml(b), then c ∈ comml(b).
(iii) If a ∈ commw(b), then c ∈ commw(b).

Proof. By hypotheses we get c2 = c2ca = acc2. Thus
(i) If ba ∈ comm(a), then ba ∈ comm(c) and so bc2 = ((ba)c)c2 = (c(ba))c2 = cbc. If in addition a ∈ commr(b),
then bcb = ((ba)c2)b = c2(bab) = cb2. So c ∈ commr(b).
(ii) If ab ∈ comm(a), then ab ∈ comm(c) and thus c2b = c2(c(ab)) = c2((ab)c) = cbc. If in addition a ∈ comml(b),
then bcb = b(c2(ab)) = (bab)c2 = b2ac2 = b2c. So c ∈ comml(b).
(iii) Follows directly from the previous points.

From Proposition 2.2, we immedialtely deduce the next corollary.

Corollary 2.3. LetA be a unital complex Banach algebra and let a, b ∈ A such that a is generalized Drazin invertible.
Then the following assertions hold:

(i) If ba ∈ comm(a), then baD
∈ comm(aD), and if in addition a ∈ commr(b), then aD

∈ commr(b).
(ii) If ab ∈ comm(a), then aDb ∈ comm(aD), and if in addition a ∈ comml(b), then aD

∈ comml(b).
(iii) If a ∈ commw(b), then aD

∈ commw(b).

Lemma 2.4. LetA be a ring and let a, b ∈ A pseudo invertible. If c and d are respectively pseudo inverses of a and
b, we then have
(i) If a ∈ commr(b), then c ∈ commr(b) and cb, ad, cd ∈ comm(b).
(ii) If a ∈ comml(b), then c ∈ comml(b) and cb, ad, cd ∈ comm(a).
(iii) If a ∈ commw(b), then c ∈ commw(b) and cb, ad, cd ∈ comm(a) ∩ comm(b).

Proof. (i) Assume that a ∈ commr(b). Since ba ∈ comm(a) then cb2 = c2ab2 = c2bab = (c2(ba))b = bcb. Thus
cb ∈ comm(b). On the other hand, we have adb = abd = ab2d2 = babd2 = bad and bcd = ((ba)c2)d = c2(b(ad)) =
c2adb = cdb. Then ad, cd ∈ comm(b). The point (ii) goes similarly with the first point and the third point is
clear.

LetA be a ring. An element a ∈ A is said to be Drazin invertible of degree n if there exists c ∈ comm(a)
such that c = c2a and an+1c = an. In this case c = aD, c ∈ comm2 (a) and if a is of degree n and is not of degree
n − 1, then n is called the index of a and is denoted by i(a) = n. For more details about this definition, we
refer the reader to [1]. Our next proposition gives an extension of [10, Proposition 2.6].

Proposition 2.5. Let a, b two Drazin invertible elements of a ringA. The following assertions hold:
(i) If a ∈ commr(b) and ab ∈ comm(a), then ab is Drazin invertible and (ab)D = bDaD.
(ii) If a ∈ comml(b), then ab is Drazin invertible and (ab)D = aDbD.
(iii) If a ∈ commw(b), then ab is Drazin invertible, (ab)D = aDbD and aD

∈ comm(bD).

Proof. (i) Assume that a ∈ commr(b) and let n = max{i(a), i(b)}. From [6, Lemma 3.1] we deduce that
bDaD(ab)n+1 = bDaDan+1bn+1 = bDanbn+1 = (bD(anb))bn = anbbDbn = anbn = (ab)n. On the other hand, since ab ∈
comm(a) then ((ab)bD)aD) = bD((ab)aD) = (bDaD)ab. It follows from Lemma 2.4 that bDaD

∈ comm(a). Hence
(bDaD)(ab)(bDaD) = (a(bDaD))bbDaD = abD((aDbD)b)aD = abDb(aD(bDaD)) = abDbbD(aD)2 = abD(aD)2 = bDaD.
This implies that ab is Drazin invertible, (ab)D = bDaD and i(ab) ≤ max{i(a), i(b)}. Also note that (again from
Lemma 2.4) that (bDaD)ab = b(bD)2aDab = bbD((bDaD)a)b = b(bD(abD))aDb = ba((bD)2(aDb)) = baaDb(bD)2 =
ba(aDbD). The point (ii) is done in [20, Theorem 3.1] and the point (iii) is clear.

Proposition 2.6. LetA be a ring and let a ∈ A. If there exists b ∈ A and n ∈N such that a ∈ comm(ab)∩comm(ba),
bab = b and ban+1 = an, then a is Drazin invertible and aD = b.

Proof. As a ∈ comm(ab) ∩ comm(ba) then by [6, Lemma 3.1, Remark 3.3], we deduce that ba = (ba)n+2 =
bn+2an+2 = an+2bn+2 = (ab)n+2 = ab. Thus b ∈ comm(a).
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3. Perturbations of pseudo invertible operators

According to [18], the analytic coreK (T) and the quasi-nilpotent partH0(T) of T ∈ L(X) are defined by

K (T) = {x ∈ X : ∃(xn)n ⊂ X such that ∀n ∈N x = x0,Txn+1 = xn and sup
n
∥xn∥

1
n < ∞}

andH0(T) = {x ∈ X : lim sup
n→∞

∥Tnx∥
1
n = 0}.

Lemma 3.1. Let S,T ∈ L(X). The following assertions hold:
(i) If ST ∈ comm(T), then R(T∞) andK (T) are S-invariant.
(ii) If TS ∈ comm(T), thenN(T∞) andH0(T) are S-invariant.

Proof. (i) Let n ≥ 1 and let x ∈ S(R(Tn+1)). Then there exists z such that x = STn+1z, and since TST = ST2

then x = TnSTz ∈ R(Tn). So S(R(Tn+1)) ⊂ R(Tn). Hence R(T∞) is S-invariant. If x ∈ K (T), then there exists
(xn) ⊂ X such that x = x0, xn = Txn+1 for every n ∈ N and sup

n
∥xn∥

1
n < ∞.We put yn = Sxn for every n ∈ N.

We then have yn = Sxn = TSTxn+2 = Tyn+1 and sup
n
∥yn∥

1
n ≤ max {∥S∥, 1}sup

n
∥xn∥

1
n < ∞. Therefore Sx ∈ K (T)

and thenK (T) is S-invariant.
(ii) Since S(N(Tn)) ⊂ N(Tn+1) for every n > 0 thenN(T∞) is S-invariant. Let x ∈ H0(T), then ∥Tn+1(Sx)∥

1
n+1 =

∥TSTnx∥
1

n+1 ≤ ∥TS∥
1

n+1 ∥Tnx∥
1

n+1 = ∥TS∥
1

n+1 (∥Tnx∥
1
n )

n
n+1 for every integer n > 0. Thus Sx ∈ H0(T) and thenH0(T)

is S-invariant.

The next corollary is a consequence of the previous lemma and Proposition 2.2.

Corollary 3.2. Let T ∈ L(X) be a pseudo invertible operator and if L is a pseudo inverse of T, then the following
assertions hold:
(i) If ST ∈ comm(T), then R(L∞) andK (L) are S-invariant.
(ii) If TS ∈ comm(T), thenN(L∞) andH0(L) are S-invariant.

Theorem 3.3. Let T ∈ L(X) and N ∈ Nil(L(X)) such that T ∈ [comml(N)∩comm(NT)]∪ [commr(N)∩comm(TN)].
If T is Drazin invertible, then T +N is Drazin invertible. The converse is true if T ∈ commw(N).

Proof. Suppose that T is Drazin invertible, that is, p := p(T) = q(T) < ∞. Then (A,B) := (R(Tp),N(Tp)) ∈
Red(T), TA is invertible and TB is nilpotent. From Lemma 3.1 we deduce that (A,B) ∈ Red(N), and so
T = TA ⊕ TB and N = NA ⊕ NB. Therefore T + N = (T + N)A ⊕ (T +N)B. By hypotheses and the fact that TA
is invertible and NA is nilpotent, we conclude that NA ∈ comm(TA). Thus (T + N)A is invertible and by [6,
Lemma 3.8], it follows that T+N is Drazin invertible. If in addition T ∈ commw(N), then T+N ∈ commw(−N),
and thus T is Drazin invertible iff T +N is Drazin invertible.

For T ∈ L(X), denote by IRed(T) = {(M,N) ∈ Red(T) : TM is invertible and (M,N) ∈ Red(U) for all U ∈
comm(T)}. If T is pseudo invertible, denote by PI(T) the set of its pseudo inverses. Note that the class of
pseudo invertible operators is much broader, it contains in particular the class of 1z-invertible operators,
see [5, Remark 4.19].

Proposition 3.4. T ∈ L(X) is pseudo invertible if and only if there exists (M,N) ∈ Red(U) such that TM is invertible
for every U ∈ comm(T). If this is the case, the map Φ : IRed(T) −→ PI(T) defined by Φ(M,N) = (TM)−1

⊕ 0N is onto.

Proof. Assume that T is pseudo invertible and let S ∈ PI(T). Then TS is a projection and (M,N) :=
(R(TS),N(TS)) ∈ Red(T). Let U ∈ comm(T), then U(M) = R(UTS) = R(TSU) ⊂ M and U(N) ⊂ N. Thus
(M,N) ∈ Red(U). Moreover, if x ∈ N(TM), then x = TSy and Tx = 0. Therefore x = (TS)2y = STx = 0. If
x = TSy ∈ M, then x = T(TS(Sy)) ∈ T(M). Thus TM is invertible. Let us show that S = (TM)−1

⊕ 0N. We
have SN = 0N, since S = STS. Let x = TSy ∈ M. As Sy = STSy ∈ M then Sx = Sy = (TM)−1TMSy = (TM)−1x.
Hence S = (TM)−1

⊕ 0N. Conversely, if (M,N) ∈ IRed(T), then the operator S = (TM)−1
⊕ 0N gives the desired

result. Indeed, it is clear that S = S2T, and if A ∈ comm(T), then (M,N) ∈ Red(A). So AM ∈ comm((TM)−1).
Therefore A ∈ comm(S) and consequently S ∈ comm2(T).
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It follows from Proposition 3.4 that every pseudo inverse S of a pseudo invertible operator T is Drazin
invertible with p(S) = q(S) ≤ 1. Hence IRed(T) ⊂ {(R(S),N(S)) : S ∈ PI(T)}. Moreover, if T is generalized
Drazin invertible, then (K (T),H0(T)) ∈ IRed(T).

Corollary 3.5. Let T ∈ L(X). Then IRed(T) = {(M,N) ∈ Red(T) : TM is invertible and (M,N) ∈ Red(U) for all U ∈
L(X) such that T ∈ comm(TU) ∩ comm(UT)}.

Proof. Let CT = {(M,N) ∈ Red(T) : TM is invertible and (M,N) ∈ Red(U) for all U ∈ L(X) such
that T ∈ comm(TU) ∩ comm(UT)}. It is clear that CT ⊂ IRed(T). For the opposite inclusion, assume that
T is pseudo invertible (in the other case IRed(T) = ∅). Let (M,N) ∈ IRed(T) and let U ∈ L(X) such that
T ∈ comm(TU) ∩ comm(UT) and we consider the pseudo inverse operator S = Φ(M,N) of T associated
to (M,N). It is clear that S is Drazin invertible, and hence (M,N) = (R(S),N(S)) = (R(S∞),N(S∞)). As T ∈
comm(TU)∩ comm(UT), S ∈ comm2(T) and S = S2T, it follows from Corollary 3.2 that (M,N) ∈ Red(U).

Proposition 3.6. Let S,T ∈ L(X). The following assertions hold:
(i) If T or S is Riesz and TS ∈ comm(T) ∪ comm(S), then TS is Riesz.
(ii) If T and S are Riesz and S ∈ commr(T) ∪ comml(T), then T + S is Riesz.

Proof. As mentioned above, R ∈ L(X) is Riesz if and only if π(R) is quasi-nilpotent in the Calkin algebra
L(X)/K(X). The proof is then a consequence of [6, Corollary 3.10].

Our next theorem generalizes some known commutative perturbation results.

Theorem 3.7. Let R,T ∈ L(X) such that R is Riesz and T ∈ [comml(R) ∩ comm(RT)] ∪ [commr(R) ∩ comm(TR)].
If T is generalized Drazin-Riesz invertible, then T + R is generalized Drazin-Riesz invertible and
(i) σ∗(T) = σ∗(T + R), where σ∗ ∈ {σe, σu f , σl f , σw, σuw, σlw, σb, σub, σlb}.
(ii) If R ∈ Nil(L(X)), thenσ+(T)\{0} = σ+(T+R)\{0} andσ++(T) = σ++(T+R),whereσ+ ∈ {σb f , σub f , σlb f , σbw, σubw, σlbw, σd, σld, σrd}

and σ++ ∈ {σb f , σbw, σd}. If in addition X is a Hilbert space, then σ+(T) = σ+(T + R).
(iii) If R is quasi-nilpotent, then acc σ−(T) \ {0} = acc σ−(T +R) \ {0}, where σ− ∈ {σ, σa, σs}. If in addition T is gener-
alized Drazin invertible, then T + R is generalized Drazin invertible, σ(T) = σ(T + R), σ×(T) \ {0} = σ×(T + R) \ {0}
and acc σ×(T) = acc σ×(T + R), where σ× ∈ {σa, σs}.

Proof. Assume that T is generalized Drazin-Riesz invertible and let (M,N) ∈ IRed(T) such that TN is Riesz.
(i) From Corollary 3.5 we have (M,N) ∈ Red(R). Thus TMRM = RMTM and TN ∈ comml(RN)∩ comm(TNRN).
Hence (T + R)M is Browder, and by Proposition 3.6, (T + R)N is Riesz. From [21, Theorem 2.3], we deduce
that T + R is generalized Drazin-Riesz invertible. On the other hand, as σ∗(TN) ⊂ σb(TN) ⊂ {0} then
σ∗(T) \ {0} = (σ∗(TM) ∪ σ∗(TN)) \ {0} = σ∗(TM) \ {0} = σ∗((T + R)M) \ {0} = σ∗(T + R) \ {0}. If 0 < σ∗(T), then T is
semi-Fredholm. From [4, Corollary 3.7], there exists (M′

,N′

) ∈ Red(T) such that TM′ is semi-regular, TN′ is
nilpotent and dim N′

< ∞. This entails by [5, Proposition 2.10] that TM′ is invertible. Hence T is Browder,
(M′

,N′

) = (R(T∞),N(T∞)) and 0 < σ∗(T+R). Thus σ∗(T) = σ∗(T+R).Assume now that 0 < σ∗(T+R).As T+R
is generalized Drazin-Riesz invertible then T + R is Browder. Since T + R ∈ comml(−R) ∪ commr(−R), by
Proposition [6, Proposition 4.18], we deduce that 0 < σe(T), and hence σ∗(T) = σ∗(T+R). If 0 < σ∗(T)∪σ∗(T+R),
then σ∗(T) = σ∗(T) \ {0} = σ∗(T + R) \ {0} = σ∗(T + R).
(ii) Assume that R ∈ Nil(L(X)).We have σ+(T)\{0} = (σ+(TM)∪σ+(TN))\{0} = σ+(TM)\{0} = σ+((T+R)M)\{0} =
σ+(T + R) \ {0}, since σ+(TN) ⊂ σb(TN) ⊂ {0} and σ+ is stable under commuting nilpotent perturbations. If
0 < σ++(T), then T is B-Fredholm, which implies from [3, Theorem 2.21] and [5, Proposition 2.10] that T is
Drazin invertible. We conclude from Theorem 3.3 that σ++(T) = σ++(T+R).Assume now that 0 < σ++(T+R),
then T+R is B-Fredholm, and thus T+R is Drazin invertible. Hence σ((T+R)N) is a finite set. We have from
Proposition [6, Proposition 4.14], σ(TN) \ {0} ⊂ σ((T +R)N) \ {0}. Thus 0 < acc σ(T), and then T is generalized
Drazin invertible. So (M′

,N′

) := (K (T),H0(T)) ∈ IRed(T) and TN′ is quasi-nilpotent. As T + R is Drazin
invertible then (T+R)N′ is nilpotent. Since T+R ∈ comml(−R)∪ commr(−R), by [6, Lemma 3.8], we deduce
that TN′ is nilpotent. Thus T is Drazin invertible and σ++(T) = σ++(T+R). If in addition X is a Hilbert space,
using [9, Theorem 2.6] and the same argument as above, we deduce that σ+(T) = σ+(T + R). The point (iii)
goes similarly and is left to the reader.
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Let T ∈ L(X) and let Q ∈ L(X) be a quasi-nilpotent operator which commutes with T. It is well known
that σ(T) = σ(T +Q). The proof of Theorem 3.7 suggests the following question.
Question: This equality σ(T) = σ(T + Q) remains true if we only have Q ∈ comml(T) and T ∈ comm(TQ)
[or Q ∈ commr(T) and T ∈ comm(QT)]? Note that Theorem 3.7 gives a partial answer to this question.

We give in the next result an extension of [1, Lemma 3.81]. Recall that T ∈ L(X) is said to be algebraic if
there exists a non-null polynomial P such that P(T) = 0.

Corollary 3.8. If T ∈ L(X) is algebraic and N ∈ Nil(L(X)) such that T ∈ [comml(N) ∩ comm(NT)] ∪ [commr(N) ∩
comm(TN)], then T +N is algebraic.

Proof. The proof follows from Theorem 3.7 and the fact that T is algebraic if and only if it has empty Drazin
spectrum.

Theorem 3.9. Let R ∈ L(X) and T ∈ comm(TR) ∩ comm(RT). The following assertions hold:
(i) If T is essentially semi-regular and R is Riesz, then T + R is essentially semi-regular.
(ii) If T is semi-regular and R = Q is quasi-nilpotent, then T +Q is semi-regular.

Proof. Let M = R(T∞).
(i) Assume that T is essentially semi-regular. From [16, Proposition 13] and Lemma 3.1, we conclude that M
is closed R-invariant. Consider the operators T,R ∈ L(X/M) induced by T and R, respectively. As R is Riesz
then [16, Lemma 15] implies that RM and R are Riesz, and since TM is onto, it follows from [6, Corollary
4.2] that TM ∈ comm(RM). Hence (T + R)M is lower semi-Browder. Since T is upper semi-Browder, from
[6, Proposition 4.18] we conclude that T + R = T + R is upper semi-Fredholm. We deduce then from [16,
Theorem 14] that T + R is essentially semi-regular.
(ii) If T is semi-regular then M is closed Q-invariant and TM is onto. Consider the operators T,Q ∈ L(X/M)
induced by T and Q, respectively. As Q is quasi-nilpotent then QM and Q are quasi-nilpotent. Moreover,
by Lemma [14, Lemma 1] we have TM is onto and T is bounded below. As T ∈ comm(TQ) ∩ comm(QT)
then Q ∈ comm(T) and QM ∈ comm(TM). Hence (T + Q)M is onto and T + Q is bounded below. Again by
[14, Lemma 1], we deduce that T +Q is semi-regular.

4. Perturbations by finite rank operators

We begain this part by the next lemma which gives an extension of [12, Lemma 2.1] proved in the case
of commuting operators.

Lemma 4.1. Let S,T ∈ L(X) such that S ∈ commw(T). Then for every integers m ≥ 1 and n ≥ 3, we have

(i) max
{

dim
N(Tn)

N[(T + S)n+m−1] ∩N(Tn)
, dim

N[(T + S)n]
N(Tn+m−1) ∩N[(T + S)n]

}
≤ dimR(Sm).

(ii) max
{

dim
R(Tn+m−1)

R[(T + S)n] ∩ R(Tn+m−1)
, dim

R[(T + S)n+m−1]
R(Tn) ∩ R[(T + S)n+m−1]

}
≤ dimR(Sm).

Proof. (i) Since S ∈ commw(T), from [6, Corollary 3.6], we have for every x ∈ N(Tn) (T + S)n+m−1x = SmAx,

where A =
n−1∑
i=0

Ci+m
n+m−1SiTn−i−1. Thus (T + S)n+m−1(N(Tn)) ⊂ R(Sm). Let M be a subspace such that N(Tn) =(

N[(T + S)n+m−1] ∩N(Tn)
)
⊕M. As Tn(T + S)n+m−1 = (T + S)n+m−1Tn then (T + S)n+m−1(N(Tn)) ⊂ N(Tn). And

since M ∩N[(T + S)n+m−1] = {0} it then follows that dim M ≤ dimR(Sm). Since S ∈ commw(T) if and only if
(−S) ∈ commw(T + S), the proof is complete.
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(ii) Let M be a subspace such that R[(T + S)n+m−1] =
(
R(Tn) ∩ R[(T + S)n+m−1]

)
⊕ M and let (ei := (T +

S)n+m−1vi)i=1,...,k be a linearly independent family of M. From [6, Corollary 3.6], we deduce that

(T + S)n+m−1 =

n+m−1∑
i=0

Ci
n+m−1Tn+m−1−iSi

=

m−1∑
i=0

Ci
n+m−1Tn+m−1−iSi +

n+m−1∑
i=m

Ci
n+m−1Tn+m−1−iSi

= TnA + SmB,

where A =
m−1∑
i=0

Ci
n+m−1Tm−1−iSi and B =

n+m−1∑
i=m

Ci
n+m−1Tn+m−1−iSi−m. If k > dimR(Sm), then there exist λ1, . . . , λk

not all zero such that
k∑

i=1

λiSmBvi = 0.Hence
k∑

i=1

λi(T+S)n+m−1vi =

k∑
i=1

λiTnAvi and thus
k∑

i=1

λiei ∈ R(Tn)∩M =

{0}. But this is a contradiction. Therefore k ≤ dimR(Sm) and then dim M ≤ dimR(Sm). The proof is
complete.

Denote by F0(X) the class of power finite rank operators acting on X. The next theorem extends [12,
Theorem 2.2], [8, Proposition 3.1] and a special case of the direct implication of [7, Theorem 3.1].

Theorem 4.2. Let T ∈ L(X) and F ∈ F0(X) such that F ∈ commw(T). The following equivalences hold:
(i) q(T) < ∞ if and only if q(T + F) < ∞.
(ii) p(T) < ∞ if and only if p(T + F) < ∞.
(iii) qe(T) < ∞ if and only if qe(T + F) < ∞.
(iv) pe(T) < ∞ if and only if pe(T + F) < ∞.
(v) mT < ∞ if and only if mT+F < ∞.

Proof. Let m ≥ 1 be an integer such that dimR(Fm) < ∞.
(i) Assume that q := q(T) < ∞ and let n ≥ max{3, q}. Then

cn := dim
R(Tn+m−1)

R[(T + F)n] ∩ R(Tn+m−1)
= dim

R(Tq)
R[(T + F)n] ∩ R(Tq)

,

c
′

n := dim
R[(T + F)n+m−1]

R(Tn) ∩ R[(T + F)n+m−1]
= dim

R[(T + F)n+m−1]
R(Tq) ∩ R[(T + F)n+m−1]

.

From Lemma 4.1 we have max{cn, c
′

n} < ∞ for all n ≥ max{3, q}. As (cn)n is increasing then there exists
an integer k ≥ max{3, q} such that R[(T + F)n] ∩ R(Tq) = R[(T + F)k] ∩ R(Tq), for every n ≥ k. Thus c′n =

dim
R[(T + F)n+m−1]
R(Tq) ∩ R[(T + F)k]

for every n ≥ k. Therefore (c′n)n≥k is a decreasing sequence. So there exists r ≥ k such

that for every n ≥ r we have c′n = c′r. Hence q(T + F) ≤ r +m − 1 and the converse is obvious. The point (ii)
goes similarly.

(iii) Assume that e := qe(T) < ∞. By Lemma 4.1 we obtain dim
R(Te)

R[(T + F)n] ∩ R(Tn+m−1)
= dim

R(Te)
R(Tn+m−1)

+

dim
R(Tn+m−1)

R[(T + F)n] ∩ R(Tn+m−1)
< ∞ for every n ≥ l = max {3, e}. Thus dim

R(Te)
R[(T + F)n] ∩ R(Te)

< ∞ for every

n ≥ l. On the other hand, from the proof of Lemma 4.1, we have R[(T + F)n+m−1] ⊂ R(Te) + R(Fm) for every
n ≥ l. Hence

dim
R(Te) + R(Fm)
R[(T + F)n+m−1]

= dim
R(Te) + R(Fm)

R[(T + F)n+m−1] ∩ R(Te)
− dim

R[(T + F)n+m−1]
R[(T + F)n+m−1] ∩ R(Te)

< ∞,
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and consequently dim
R[(T + F)n+m−1]
R[(T + F)n+m]

< ∞ for every n ≥ l.Therefore qe(T+F) ≤ max {m+2, qe(T)+m−1} < ∞

and the converse is obvious. The point (iv) goes similarly. For the proof of the point (v), the reader is referred
to [4] in which we mentioned that mT = min {pe(T), qe(T)}.

The following theorem extends [19, Lemma 2.1, Lemma 2.2].

Theorem 4.3. Let T ∈ L(X) and F ∈ F0(X) ∩ commw(T). Then T is upper semi-B-Fredholm (resp., lower semi-
B-Fredholm, B-Fredholm, left Drazin invertible, right Drazin invertible, Drazin invertible) if and only if T + F
is.

Proof. Suppose that T is upper semi-B-Fredholm. Theorem 4.2 implies thatR(Tpe(T)+1) is closed and pe(T+F) <
∞. Since for every n ≥ 2, FTn = TnF then F(N(Tn)) ⊂ N(Tn). Consider T̃ and F̃ the operators induced by T
and F on X̃ = X/N(Td+3), where d = dis(T). It is easily seen that T̃ is upper semi-Fredholm and F̃ ∈ F0(X̃).
From [6, Propositon 4.18], we deduce that T̃ + F̃ is upper semi-Fredholm. Hence R[(T + F)l] +N(Td+3) is

closed for every l ∈ N. Furthermore, Lemma 4.1 implies that dim
N(Tn)

N[(T + F)n+m−1] ∩N(Tn)
< ∞, where

n ≥ 3 and m ≥ 1 such that dimR(Fm) < ∞. Hence

dim
R[(T + F)n+m−1] ∩N(Tn)

R[(T + F)n+m−1] ∩N[(T + F)n+m−1] ∩N(Tn)
< ∞.

As α((T + F)n+m−1
[n+m−1]) < ∞ then dim

(
R[(T + F)n+m−1] ∩N(Tn)

)
< ∞ for every integer n ≥ max{3, pe(T + F)}.

From the Neubauer Lemma [17, Proposition 2.1.1], we conclude thatR[(T+F)n+m−1] is closed. Hence T+F is
upper semi-B-Fredholm. If T is lower semi-B-Fredholm, then from [15], T∗ is upper semi-B-Fredholm, and
consequently T∗ + F∗ is upper semi-B-Fredholm. Thus T + F is lower semi-B-Fredholm (see again [15]). If T
is left Drazin invertible, then T is upper semi-B-Fredholm and p(T) < ∞. So T+F is upper semi-B-Fredholm,
and from Theorem 4.2 we have p(T+F) < ∞. Thus T+F is left Drazin invertible. The other cases go similarly.
Since F ∈ commw(T) if and only if (−F) ∈ commw(T + F), the proof is complete.

Corollary 4.4. If T ∈ L(X) is generalized Drazin-Riesz invertible and F ∈ F0(X) such that T ∈ [comml(F) ∩
comm(TF)]∪[commr(F)∩comm(FT)], thenσ∗(T)\{0} = σ∗(T+F)\{0},whereσ∗ ∈ {σb f , σub f , σlb f , σd, σld, σrd, σ1d, σ1zd}.
If in addition F ∈ commw(T), then σ∗(T) = σ∗(T + F).

Proof. We will leave these routine arguments as exercise for the reader.

Remark 4.5. In [11, Proposition 3.3], the authors proved that if X is an infinite dimensional complex Banach space
and T ∈ L(X), then there exists a non-algebraic operator S ∈ comm(T). From the proof of this result and the one of
[1, Lemma 3.83], it is easy to see that if in addition T is an algebraic operator, then we can consider S as a compact
operator.

The next proposition gives a new characterization of power finite rank operators.

Proposition 4.6. Let F ∈ L(X) and σ∗ ∈ {σb f , σub f , σlb f , σd, σld, σrd}. The following statements are equivalent:
(i) F ∈ F0(X);
(ii) σ∗(T) = σ∗(T + F) for every generalized Drazin-Riesz invertible operator T ∈ commw(F);
(iii) σ∗(T) = σ∗(T + F) for every T ∈ comm(F).

Proof. (i) =⇒ (ii) Is a consequence of Corollary 4.4.
(ii) =⇒ (i) We have σ∗(F) = ∅. So F is algebraic and σ(F) = {λ1, . . . , λn}. Thus X = X1 ⊕ · · · ⊕ Xn, where
Xi = N((F − λiI)mi ) for some mi. If F < F0(X), then there exists 1 ≤ i ≤ n such that λi , 0 and dim Xi = ∞.
As Fi − λiI is nilpotent, from Remark 4.5, there exists a non-algebraic compact operator Si ∈ comm(Fi),
where Fi = FXi . The operator S = 01 ⊕ · · · ⊕ Si ⊕ · · · ⊕ 0n, where 0 j = 0X j , is non-algebraic, compact and
commutes with F. By hypothesis we have σ∗(S) = σ∗(S + F), this entails, from [19, Corollary 2.10] that
σ∗(S) = σ∗(Si) = σ∗(Si + Fi) = σ∗(Si + λiI) = σ∗(S + F), since Fi − λiI is nilpotent. Hence λi = 0 and this is a
contradiction. Thus F ∈ F0(X).
(i) =⇒ (iii) Is a consequence of Theorem 4.3, and (iii) =⇒ (i) is proved in [19, Theorem 2.11].
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The next proposition extends the second assertion of [10, Corollary 3.5]. F (X) denotes the ideal of finite
rank operator in L(X).

Proposition 4.7. Let S,T ∈ L(X) be B-Fredholm operators, if S ∈ commr(T) ∪ comml(T), then TS is B-Fredholm.

Proof. Assume that S ∈ commr(T), then S∗ ∈ comml(T∗). As T and S are B-Fredholm then T∗ and S∗ are
B-Fredholm. From [10, Theorem 3.4], π f (S∗) := S∗ + F (X) and π f (T∗) := T∗ + F (X) are Drazin invertible.
Since π f (S∗) ∈ comml(π f (T∗)), from Proposition 2.5 we get π f (S∗T∗) := S∗T∗ + F (X) is Drazin invertible.
We conclude again by [10, Theorem 3.4] that TS is a B-Fredholm operator. The case S ∈ comml(T) is
analogous.

As a continuation to what has been done in the paper [5], we end this part by the following theorem
which improves [2, Theorem 2.1].

Theorem 4.8. Let T ∈ L(X). Then
σd(T) = σb f (T) ∪ acc(acc σ(T)),

σb(T) = σe(T) ∪ acc(acc σ(T)).

Proof. Let us prove that σd(T) = σb f (T) ∪ acc(acc σ(T)). Let λ < σb f (T) ∪ acc(acc σ(T)) and without loss
of generality we can assume that λ = 0. Then T is B-Fredholm and 0 < acc (acc σ(T)). This entails from
[3, Theorem 2.21] and [5, Theorem 4.11] that T is a 1z-invertible operator and T = TM ⊕ TN for some
(M,N) ∈ Red(T) such that TM is semi-regular and TN is nilpotent. This implies again by [5, Theorem 4.7]
that p(TM) = q(TM) = p̃(T) = q̃(T) = 0, and so TM is invertible. Hence T is Drazin invertible. The converse
is clear, since acc σ(T) ⊂ σd(T). The second equality goes similarly. For the definition of p̃(T) and q̃(T) of a
1z-invertible operator T, see [5].
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