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Generalized quasi-Einstein Weyl manifolds

İlhan Güla
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Abstract. In this paper, we introduce the notion of generalized quasi-Einstein Weyl manifold which
extends the concept of quasi-Einstein Weyl manifold. We provide an explicit example to demonstrate its
existence. Furthermore, we present several results concerning generalized quasi-Einstein Weyl manifolds
that admit certain special vector fields. Finally, we investigate some special conformal transformation
between such manifolds.

1. Introduction

A Riemannian manifold Mn (n > 2) with metric 1 is an Einstein manifold if its Ricci tensor Ric is of the
form

Ric(X,Y) =
r
n
1(X,Y) (1)

where r is the scalar curvature of Mn [2].
A non-Einstein Riemannian manifold Mn (n > 2) is called a quasi-Einstein manifold if its Ricci tensor

Ric of type (0, 2) is not identically zero and is of the form

Ric(X,Y) = a1(X,Y) + bA(X)A(Y), (2)

where a, b are functions and A is a non-zero 1-form defined by A(X) = 1(X,U) for all vector fields X and a
unit vector field U. A is called the associated 1-form and U is called the generator of the manifold [4].

The notion of quasi-Einstein manifolds were generalized in different ways such as generalized quasi-
Einstein manifolds ([3],[5], [8]), nearly quasi-Einstein manifolds [7], generalized Einstein manifolds [1],
super quasi-Einstein manifolds [6], pseudo quasi-Einstein manifolds [21], extended quasi-Einstein mani-
folds [12], mixed quasi-Einstein manifolds [15], etc.

A non-flat Riemannian manifold Mn (n > 2) is called a generalized quasi-Einstein manifold if its Ricci
tensor Ric of type (0, 2) is not identically zero and is of the form

Ric(X,Y) = a1(X,Y) + bA(X)A(Y) + cB(X)B(Y), (3)
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where a, b, c are certain nonzero functions and A,B are two non-zero 1-forms. The unit vector fields U and
V corresponding to 1-forms A and B respectively defined by

1(X,U) = A(X), 1(X,V) = B(X)

are orthogonal, i.e., 1(U,V) = 0. The vector fields U and V are called the generators of the manifold [8].
The aim of this paper is to introduce the notion of generalized quasi-Einstein Weyl manifold which

generalizes the concept of quasi-Einstein Weyl manifolds. A Weyl manifold is a conformal manifold
equipped with a torsion free connection preserving the conformal structure. It is said to be Einstein-Weyl
if the symmetric part of the Ricci tensor of the Weyl connection is proportional with its conformal metric.
This condition is a generalization of the usual Einstein-Weyl manifolds.

Einstein-Weyl manifolds were studied by Folland [9], Tod [23], Pedersen and Tod [18] and many others.
Quasi-Einstein Weyl manifolds were defined and studied by Gül and Canfes [13].

In the present work, we define generalized quasi-Einstein Weyl manifolds and give an example for
the existence of them. Then, we examine some special vector fields on quasi-Einstein Weyl manifolds
and present results. Moreover, we obtain some results about conformal, generalized concircular, and
conharmonic transformations of quasi-Einstein Weyl manifolds.

2. Preliminaries

An n-dimensional differentiable manifold M having a torsion-free connection D and a conformal class
C[1] of metrics preserved by D is called a Weyl manifold which will be denoted by Mn(1, ω), where 1 ∈ C[1]
and ω is a 1-form satisfying the compatibility condition

D1 = 2(1 ⊗ ω). (4)

If ω is a closed form, then Mn(1, ω) is conformal to a Riemannian manifold.
Under the conformal change

1̄ = λ21, λ > 0 (5)

of the representative metric tensor 1, the 1-form ω changes by the law ω̄ = ω + d lnλ.
It is easy to see that Mn(1̄, ω̄) satisfies the compatibility condition and hence, it generates the same Weyl

manifold ([11],[17], [22]).
Assume that Mn(1, ω) is a Weyl manifold of class C∞, covered by a system of coordinate neighborhoods

(U, xh). Then, Eq. (4) can be written in local coordinates by

Dk1i j = 2ωk1i j. (6)

We note that, throughout the paper, we will use Einstein summation convention over the repeated indices.
The curvature tensor, the covariant curvature tensor, the Ricci tensor, and the scalar curvature of Mn(1, ω)

are defined, respectively, by:

v jWp
jkl = (DkDl −DlDk)vp, (7)

Whjkl = 1hpWp
jkl, (8)

Wi j = Wp
ijp = 1

hkWhijk, (9)

s = 1i jWi j. (10)

From (7) it follows that

Wp
jkl = ∂kΓ

p
jl − ∂lΓ

p
jk + Γ

p
hkΓ

h
jl − Γ

p
hlΓ

h
jk, (11)
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where ∂k =
∂

∂xk
and Γi

kl are the coefficients of the Weyl connection D given by

Γi
kl =
{ i

kl

}
− 1im(1mkωl + 1mlωk − 1klωm), (12)

in which
{ i

kl

}
are the coefficients of the Levi-Civita connection.

Definition 2.1. A tensor field A is called a satellite of 1 with weight p if it admits a transformation of the form

Ā = µpA,

under the change (5) of the metric tensor g ([11],[17], [22]).

From (9), (10), (11) and (12), it is easy to see that the Ricci tensor, the curvature tensor and Weyl connection
coefficients are satellites of 1with weight 0, and the scalar curvature s is a satellite of 1with weight −2.

Definition 2.2. The prolonged derivative of a satellite A of 1 with weight p is defined by ([11],[17], [22])

∂̇kA = ∂kA − pωkA.

Definition 2.3. The prolonged covariant derivative of a satellite A of 1 with weight p is defined by ([11],[17], [22])

ḊkA = DkA − pωkA. (13)

We note that the prolonged covariant derivative and the prolonged derivative preserve the weights of
the tensors.

From (5), (6) and (13) it follows that

Ḋk1i j = 0.

Moreover, since ∂̇k1i j = ∂k1i j − 2ωk1i j, it follows from (12) that

Γi
kl =

1
2
1im
(
∂̇k1lm + ∂̇l1km − ∂̇m1kl

)
.

Definition 2.4. A satellite of 1 is called prolonged covariantly constant if its prolonged covariant derivative is zero.

3. Generalized Quasi-Einstein Weyl Manifolds

In this section, we define generalized quasi-Einstein Weyl manifolds and give an example for the
existence. Also, we give a result about the associated scalars of the manifold.

A Weyl manifold Mn(1, ω) is called a generalized quasi-Einstein Weyl manifold if

Si j = a1i j + bAiA j + cBiB j, (14)

where a, b, c are functions of weight −2, Si j denotes the symmetric part of the Ricci tensor Wi j of weight 0,
and Ai,Bi are non-zero 1-forms of weight 1 satisfying

1i jAiA j = 1, 1i jBiB j = 1, 1i jAiB j = 0. (15)

In this case, Ai and Bi are called associated 1-forms, and a, b, c are called associated functions. If c = 0, then
Mn(1, ω) is called quasi-Einstein Weyl manifold [13].

Multiplying (14) by 1i j, we get

s = an + b + c, (16)

which is the scalar curvature of a generalized quasi-Einstein Weyl manifold.
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Theorem 3.1. If the associated scalar functions of a generalized quasi-Einstein Weyl manifold Mn(1, ω) are prolonged
covariantly constant, then Mn(1, ω) is conformal to a generalized quasi-Einstein manifold.

Proof. Assume that Mn(1, ω) is a generalized quasi-Einstein Weyl manifold. The prolonged covariant
derivative of (16) is

Ḋks = Ḋk(an + b + c) = nḊka + Ḋkb + Ḋkc. (17)

If the associated scalar functions a, b, c are prolonged covariantly constant, and since the weight of s is −2,
then from (17) we find

Ḋks = Dks + 2ωks = 0.

Hence, we have ωk = −
Dks
2s
, from which it follows that ωk is locally a gradient. Thus, Mn(1, ω) is conformal

to generalized a quasi-Einstein manifold.

Furthermore, contracting Eq. (14) with AiA j and then with BiB j, we obtain

AiA jSi j = a + b, BiB jSi j = a + c. (18)

From these, it follows that

s = (n − 2)a + (AiA j + BiB j)Si j.

Similarly, multiplying Eq. (14) by Ai and then by Bi, respectively, yields

AiSi j = (a + b)A j, BiSi j = (a + c)B j,

from which we conclude that the dual of the associated 1-forms are eigenvectors of symmetric part of the
Ricci tensor of the generalized quasi-Einstein Weyl manifold.

Example 3.2. We consider a 3−dimensional Weyl manifold M3(1, ω) endowed with a metric by ds2 = 1i jdxidx j =

(dx1)2 + (dx2)2 + ex1
(dx3)2 and a 1-form ω = ωidxi = ex1 dx3. The nonzero Weyl connection coefficients are

Γ1
13 = Γ1

31 = −ex1
, Γ1

33 = −
ex1

2
, Γ2

23 = Γ
2
32 = −ex1

, Γ3
11 = 1,

Γ3
13 = Γ3

31 =
1
2
, Γ3

22 = 1, Γ3
33 = −ex1

A direct computation yields the following nonzero components of the Ricci tensor.

W11 =
1
4
+ ex1

, W13 = −W31 =
3
2

ex1
, W22 = ex1

, W33 =
1
4

ex1
.

Moreover, the nonzero components of symmetric parts of the Ricci tensor Si j and the scalar curvature s are

S11 =
1
4
+ ex1

, S22 = ex1
, S33 =

1
4

ex1
, s =

1
2
+ 2ex1

.

If the associated scalar functions are given by

a =
1
4
, b = ex1

, c = ex1
−

1
4
,

and the associated 1− forms are A = Aidxi = dx1,B = Bidxi = dx2 then, the Eqs. (14) and (15) are satisfied.
Therefore, M3(1, ω) is a generalized quasi-Einstein Weyl manifold.
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4. Some Special Vector Fields On Generalized Quasi-Einstein Weyl Manifolds

In this section, we define some special vector fields on a Weyl manifold and then present the results
related to a generalized quasi-Einstein Weyl manifolds.

A vector field ϕ in a Riemannian manifold M is called torse-forming if it satisfies the condition

∇iϕ
h = αδh

i + ϕ
hγi,

where α is a smooth function, ϕh and γi are the components of the vector field ϕ and 1-form γ, respectively,
and δh

i is the Kronecker symbol [27]. For details, see [16, p. 168].
If α = 0, then the torse-forming vector field is called recurrent vector field, that is, the vector field ϕ

satisfies

∇iϕ
h = ϕhγi.

If γ = 0, then the torse-forming vector field is called concircular vector field, that is, the vector field ϕ
satisfies

∇iϕ
h = αδh

i .

A φ(Ric)-vector field is a vector field φ on a Riemannian manifold M satisfying

∇iφ
h = βRh

i , (19)

where φh and Rh
i are the components of the vector field φ and the Ricci tensor of the Riemannian manifold

M, respectively, and β is a constant [10]. Equation (19) can also be expressed in index-lowered for as

∇iφ j = βRi j,

where Ri j is the Ricci tensor of the Riemannian manifold. We note that generalized φ(Ric)-vector fields are
also defined by taking β as a function [20]. A detailed analysis of these equations for (pseudo)-Riemannian
spaces is carried out in [19]. We follow the methodology of that paper in our present work.

Now, we define these vector fields by using prolonged covariant derivative on a Weyl manifold.
A vector field ϕ of weight p in a Weyl manifold Mn(1, ω) is called generalized torse-forming vector field

if it satisfies the condition

Ḋiϕ
h = αδh

i + ϕ
hγi, (20)

where α is a smooth function of weight p, ϕh and γi are the components of the vector field ϕ and 1-form γ
of weights p and 0, respectively.

If α = 0, then the generalized torse-forming vector field is called generalized recurrent vector field, that
is, the vector field ϕ satisfies

Ḋiϕ
h = ϕhγi. (21)

If γ = 0, then the generalized torse-forming vector field is called generalized concircular vector field,
that is, the vector field ϕ satisfies

Ḋiϕ
h = αδh

i . (22)

Since, the Ricci tensor Wi j of a Weyl manifold Mn(1, ω) is not symmetric, we define generalized φ(Ric)-
vector fields by taking symmetric part of the Ricci tensor Si j.
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Definition 4.1. A generalized φ(Ric)-vector field of weight p is a vector field φ on a Weyl manifold Mn(1, ω)
satisfying

Ḋiφ
h = βSh

i , (23)

where φh are the components of the vector field φ, Sh
i is defined Sh

i = 1
hjSi j with weight −2, and β is a function of

weight p + 2.

Equation (23) can also be written index-lowered form as

Ḋiφ j = βSi j, (24)

where φ j = φh1hj, which is of weight p + 2.

Theorem 4.2. If Mn(1, ω) is a generalized quasi-Einstein Weyl manifold, then both of the vector fields dual to the
associated 1-forms cannot be generalized torse-forming vector fields.

Proof. Assume that the vector fields dual to the associated 1-forms are both generalized torse-forming
vector fields on a generalized quasi-Einstein Weyl manifold. Then, from (20) we have:

ḊiAh = αδh
i + Ahγi, ḊiBh = ᾰδh

i + Bhγ̆i. (25)

Multiplying (25) by 1hj, we obtain:

ḊiA j = α1i j + A jγi, ḊiB j = ᾰ1i j + B jγ̆i, (26)

where A j and B j are the components of the associated 1-forms of weight 1, α and ᾰ are nonzero scalar
functions of weight −1, γi and γ̆i are 1-forms of weight 0. Contracting Eq. (26) with A j and B j, respectively,
we get

0 = αAi + γi, 0 = ᾰBi + γ̆i,

since A jḊiA j = B jḊiB j = 0 and A jA j = B jB j = 1. Hence we obtain

γi = −αAi, γ̆i = −ᾰBi. (27)

Using Eq. (27) in (26), we get

ḊiA j = α
(
1i j − AiA j

)
, ḊiB j = ᾰ

(
1i j − BiB j

)
. (28)

From (15), we have AiBi = 0. Taking prolonged covariant derivative of this equation and using (28), we
obtain

0 = Ḋk

(
AiBi

)
= AiḊkBi + BiḊkAi = AiḊkBi + BiḊkAi = ᾰAk + αBk. (29)

Contracting (29) with Ak and Bk, respectively, we get α = ᾰ = 0, which contradicts the assumption that
α and ᾰ are nonzero scalar functions. Therefore, both of the vector fields dual to the associated 1-forms
cannot be generalized torse-forming vector fields in a generalized quasi-Einstein Weyl manifold.

Theorem 4.3. If the vector fields dual to the associated 1-forms are generalized concircular vector fields on a gener-
alized quasi-Einstein Weyl manifold, then the associated 1-forms are prolonged covariantly constant.
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Proof. Assume that the vector fields dual to the associated 1-forms are generalized concircular vector fields
on a generalized quasi-Einstein Weyl manifold. Then, by Eq. (22), we have

ḊiAh = αδh
i , ḊiBh = ᾰδh

i ,

from which it follows that

ḊiA j = α1i j, ḊiB j = ᾰ1i j, (30)

where A j and B j are the components of the associated 1-forms of weight 1, α and ᾰ are scalar functions of
weight −1. Multiplying Eq. (30) by A j and B j, respectively, we get

0 = αAi, 0 = ᾰBi, (31)

since A jḊiA j = 0 and B jḊiB j = 0. Multiplying Eq. (31) by A j and B j, respectively, we obtain α = ᾰ = 0.
Therefore, by Eq. (30), the result follows.

Theorem 4.4. If the vector fields dual to the associated 1-forms are generalized recurrent vector fields on a generalized
quasi-Einstein Weyl manifold, then the associated 1-forms are prolonged covariantly constant.

Proof. Assume that the vector fields dual to the associated 1-forms are generalized recurrent vector fields
on a generalized quasi-Einstein Weyl manifold. Then, by Eq. (21), we have

ḊiAh = Ahγi, ḊiBh = Bhγ̆i,

from which it follows that

ḊiA j = A jγi, ḊiB j = B jγ̆i, (32)

where A j and B j are the components of the associated 1-forms of weight 1, γi and γ̆i are components of the
1-forms γ and γ̆ of weight 0.

Multiplying Eq. (32) by A j and B j, respectively, we get γi = γ̆i = 0, since A jḊiA j = 0 and B jḊiB j = 0.
Hence, the theorem is proved.

Definition 4.5. A Weyl manifold Mn(1, ω) is said to be a nearly quasi-Einstein Weyl manifold if Si j, the symmetric
part of the Ricci tensor Wi j of the Weyl manifold, satisfies the condition

Si j = a1i j + bEi j,

where a is a scalar function of weight −2, b is a scalar function and Ei j are components of the symmetric (0,2)-tensor
E, such that sum of weight of b and Ei j is zero [14].

Theorem 4.6. If the vector fields dual to the associated 1-forms are generalized A(Ric) and B(Ric) vector fields on a
generalized quasi-Einstein Weyl manifold, then the manifold is nearly quasi-Einstein Weyl manifold.

Proof. Suppose that the vector fields dual to the associated 1-forms are generalized A(Ric) and B(Ric) vector
fields on a generalized quasi-Einstein Weyl manifold. Then, by (24), we have

ḊiA j = βSi j, ḊiB j = β̆Si j, (33)

where A j and B j are the components of the associated 1-forms of weight 1, β and β̆ are nonzero scalar
functions of weight 1, and Si j denotes the components of the symmetric part of the Ricci tensor of the Weyl
manifold, which has weight 0.

Multiplying (33) by A j and B j, respectively, we get

0 = βA jSi j, 0 = β̆B jSi j, (34)
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where we used the facts A jḊiA j = 0 and B jḊiB j = 0.
Multiplying (34) again by A j and B j, respectively, and using Eq. (18), we get

0 = (a + b)β, 0 = (a + c)β̆. (35)

From (35), since β and β̆ are nonzero functions, we obtain b = c = −a from which, by (14), we get

Si j = a1i j + bEi j,

where Ei j = AiA j + BiB j are the components of the symmetric (0,2)-tensor E of weight 2. Therefore,
generalized quasi-Einstein Weyl manifold is a nearly quasi-Einstein Weyl manifold.

5. Some Special Conformal Transformations On Generalized Quasi-Einstein Weyl Manifolds

In this section, we examine generalized concircular transformations and conharmonic transformations
of generalized quasi-Einstein Weyl manifolds.

Let τ : Mn(1, ω) −→ M̃n(1̃, ω̃) be a conformal transformations of the Weyl manifold Mn(1, ω) onto another
Weyl manifold M̃n(1̃, ω̃). Then, at the corresponding points of Mn(1, ω) and M̃n(1̃, ω̃) one can choose [24]

1i j = 1̃i j.

Let D, D̃ be the connections of Mn(1, ω), M̃n(1̃, ω̃), respectively, with connection coefficients Γi
jk and Γ̃i

jk.

Then, the relation between the curvature tensors of Mn(1, ω) and M̃n(1̃, ω̃) is given by

W̃p
jkl =Wp

jkl + δ
p
l P jk − δ

p
kP jl + 1 jk1

pmPml − 1 jl1
pmPmk + 2δp

j Ḋ[kPl], (36)

where Ḋ[kPl] denotes the antisymmetric part of ḊkPl, P = ω − ω̃ is a covector field of weight 0 and

Pkl = ḊlPk − PkPl +
1
2
1klPsPs. (37)

Contraction on the indices p and l in (36) gives us

W̃ jk =W jk + (n − 2)P jk + 1 jk1
lmPml + 2Ḋ[kP j], n > 2. (38)

Using (38), we obtain

S̃ jk = S jk + (n − 2)P( jk) + 1 jk1
lmPml, (39)

where P( jk) is symmetric part of P jk.
In [25] and [13], the following theorems are proved.

Theorem 5.1. The conformal transformation ψ : Mn(1, ω) −→ M̃n(1̃, ω̃) which preserves circles is called generalized
concircular if and only if

Pkl = ϕ1kl,

where ϕ is a smooth scalar function of weight −2, Pkl = ∇lPk − PkPl +
1
21kl1

rsPrPs, and P = ω − ω̃ is the covector
field of the conformal transformations of weight zero.

Theorem 5.2. The tensor Z of type (1, 3) whose components are given by

Zp
jkl =Wp

jkl −
s

n(n − 1)
(δp

l 1 jk − δ
p
k1 jl) (40)

is invariant under a generalized concircular mapping of Mn(1, ω). Such a tensor is called the generalized concircular
curvature tensor of Mn(1, ω).
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Contraction on the indices p and l in (40) gives the generalized concircularly invariant tensor

Zp
jkp = Z jk =W jk −

s
n
1 jk. (41)

Theorem 5.3. If the symmetric part P(kl) of the tensor Pkl is zero, then the symmetric part of the Ricci tensor for a
Weyl manifold Mn(1, ω) (n > 2) is preserved by the conformal mapping

τ : Mn(1, ω) −→ M̃n(1̃, ω̃).

So, we have,

Theorem 5.4. Let Mn(1, ω) and M̃n(1̃, ω̃) be two Weyl manifolds and let τ be a conformal mapping of Mn(1, ω) into
M̃n(1̃, ω̃). If Mn(1, ω) is a generalized quasi-Einstein (or Einstein) Weyl manifold and the symmetric part P(kl) of the
tensor Pkl is zero, then M̃n(1̃, ω̃) is a generalized quasi-Einstein (or Einstein) Weyl manifold.

Proof. The result follows directly from Theorem 5.3.

Theorem 5.5. A generalized quasi-Einstein Weyl manifold is transformed into a generalized quasi-Einstein Weyl
manifold by a generalized concircular mapping.

Proof. Let ψ : Mn(1, ω) −→ M̃n(1̃, ω̃), be a generalized concircular mapping between two Weyl manifolds.
Assume that Mn(1, ω) is a generalized quasi-Einstein Weyl manifold. From (41), we can write

W̃ jk −
s̃
n
1̃ jk =W jk −

s
n
1 jk, (42)

since the generalized concircular tensor Zp
jkl and its contracted tensor Z jk are invariant under a generalized

concircular mapping.
From (42), we obtain

S̃ jk −
s̃
n
1̃ jk = S jk −

s
n
1 jk.

Since the map ψ is concircular, we may take 1̃ jk = 1 jk. Moreover, using Eq. (14), it follows that

S̃ jk =
(
a −

s
n
+

s̃
n

)
1 jk + bA jAk + cB jBk.

Therefore, M̃n(1̃, ω̃) is a generalized quasi-Einstein Weyl manifold, which completes the proof.

Now, we consider a conharmonic transformation between two generalized quasi-Einstein Weyl man-
ifolds. The conharmonic transformation is a conformal transformation preserving the harmonicity of a
certain function. If the conformal mapping is also conharmonic, then we have

1klḊkPl +
1
2

(n − 2)PkPk = 0, (43)

where Pk is the components of the covector field P = ω − ω̃ [26].

Theorem 5.6. A conformal transformation between two generalized quasi-Einstein Weyl manifolds is conharmonic
if and only if the associated scalars are preserved.

Proof. Let τ : Mn(1, ω) −→ M̃n(1̃, ω̃) be a conformal transformation of a generalized quasi- Einstein Weyl
manifold Mn(1, ω) onto another generalized quasi- Einstein Weyl manifold M̃n(1̃, ω̃). Then, from (14) and
(39), we obtain

ã1̃i j + b̃ÃiÃ j + c̃B̃iB̃ j = a1i j + bAiA j + cBiB j + (n − 2)P(i j) + 1i j1
rsPrs. (44)
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Multiplying (44) by 1i j = 1̃i j and summing up on the indices i and j gives

ãn + b̃ + c̃ = an + b + c + (2n − 2)1rsP(rs). (45)

Suppose that τ is also a conharmonic transformation. Then, it follows from Eqs. (37) and (43) that

1rsP(rs) = 1
rsPrs = 0. (46)

Therefore, using Eqs. (45) and (46), we obtain ã = a, b̃ = b, c̃ = c.
Conversely, suppose that ã = a, b̃ = b, c̃ = c. Then, from Equation (45) it follows that

1rsP(rs) = 1
rsPrs = 0. (47)

Therefore, Eq. (47) implies Eq. (43) which shows that conformal transformation τ is also a conharmonic
transformation.
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[25] A. Özdeğer and Z. Şentürk, Generalized circles in a Weyl space and their conformal mapping, Publ. Math.Debrecen 60 (1/2) (2002),

75–87.
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