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Generalized quasi-Einstein Weyl manifolds

ilhan Giil®

Faculty of Engineering and Natural Sciences, Maltepe University, Istanbul, Tiirkiye

Abstract. In this paper, we introduce the notion of generalized quasi-Einstein Weyl manifold which
extends the concept of quasi-Einstein Weyl manifold. We provide an explicit example to demonstrate its
existence. Furthermore, we present several results concerning generalized quasi-Einstein Weyl manifolds

that admit certain special vector fields. Finally, we investigate some special conformal transformation
between such manifolds.

1. Introduction

A Riemannian manifold M,, (n > 2) with metric g is an Einstein manifold if its Ricci tensor Ric is of the
form

Ric(X,Y) = %g(X, Y) (1)

where r is the scalar curvature of M, [2].

A non-Einstein Riemannian manifold M, (n > 2) is called a quasi-Einstein manifold if its Ricci tensor
Ric of type (0, 2) is not identically zero and is of the form

Ric(X,Y) = ag(X, Y) + BAX)A(Y), (2)
where g, b are functions and A is a non-zero 1-form defined by A(X) = g(X, U) for all vector fields X and a
unit vector field U. A is called the associated 1-form and U is called the generator of the manifold [4].

The notion of quasi-Einstein manifolds were generalized in different ways such as generalized quasi-
Einstein manifolds ([3],[5], [8]), nearly quasi-Einstein manifolds [7], generalized Einstein manifolds [1],
super quasi-Einstein manifolds [6], pseudo quasi-Einstein manifolds [21], extended quasi-Einstein mani-
folds [12], mixed quasi-Einstein manifolds [15], etc.

A non-flat Riemannian manifold M, (n > 2) is called a generalized quasi-Einstein manifold if its Ricci
tensor Ric of type (0,2) is not identically zero and is of the form

Ric(X,Y) = ag(X,Y) + bAX)A(Y) + cB(X)B(Y), 3)
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where a, b, ¢ are certain nonzero functions and A, B are two non-zero 1-forms. The unit vector fields U and
V corresponding to 1-forms A and B respectively defined by

g(X, U) = A(X), g9(X,V) = B(X)

are orthogonal, i.e., g(U, V) = 0. The vector fields U and V are called the generators of the manifold [8].

The aim of this paper is to introduce the notion of generalized quasi-Einstein Weyl manifold which
generalizes the concept of quasi-Einstein Weyl manifolds. A Weyl manifold is a conformal manifold
equipped with a torsion free connection preserving the conformal structure. It is said to be Einstein-Weyl
if the symmetric part of the Ricci tensor of the Weyl connection is proportional with its conformal metric.
This condition is a generalization of the usual Einstein-Weyl manifolds.

Einstein-Weyl manifolds were studied by Folland [9], Tod [23], Pedersen and Tod [18] and many others.
Quasi-Einstein Weyl manifolds were defined and studied by Giil and Canfes [13].

In the present work, we define generalized quasi-Einstein Weyl manifolds and give an example for
the existence of them. Then, we examine some special vector fields on quasi-Einstein Weyl manifolds
and present results. Moreover, we obtain some results about conformal, generalized concircular, and
conharmonic transformations of quasi-Einstein Weyl manifolds.

2. Preliminaries

An n-dimensional differentiable manifold M having a torsion-free connection D and a conformal class
Clg] of metrics preserved by D is called a Weyl manifold which will be denoted by M,,(g, w), where g € C[g]
and w is a 1-form satisfying the compatibility condition

Dg =2(g®w). 4)

If w is a closed form, then M, (g, @) is conformal to a Riemannian manifold.
Under the conformal change

g=2%, A>0 5)

of the representative metric tensor g, the 1-form w changes by the law @ = w + dIn A.

It is easy to see that M,,(§, @) satisfies the compatibility condition and hence, it generates the same Weyl
manifold ([11],[17], [22]).

Assume that M, (g, ) is a Weyl manifold of class C*®, covered by a system of coordinate neighborhoods
(U, x"). Then, Eq. (4) can be written in local coordinates by

Drgij = 2wy gij. (6)

We note that, throughout the paper, we will use Einstein summation convention over the repeated indices.
The curvature tensor, the covariant curvature tensor, the Ricci tensor, and the scalar curvature of M,,(g, w)
are defined, respectively, by:

vfw;’kl = (DyD; - DD, (7)
Wi = ghpW?k,, 8)
Wi = WZ-p = 9" Wi, )

s = gij Wi;. (10)

From (7) it follows that

(g P P P rh P rh
Why = kT = o, + T, T ~ T, T, (11)
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where ) = % and T}, are the coefficients of the Weyl connection D given by

r;d = {kll} - gim(gmk(‘)l + Jmiwg — gklwm), (12)

in which { } are the coefficients of the Levi-Civita connection.

i

ki

Definition 2.1. A tensor field A is called a satellite of g with weight p if it admits a transformation of the form
A=plA,

under the change (5) of the metric tensor g ([11],[17], [22]).

From (9), (10), (11) and (12), it is easy to see that the Ricci tensor, the curvature tensor and Weyl connection
coefficients are satellites of g with weight 0, and the scalar curvature s is a satellite of g with weight —2.

Definition 2.2. The prolonged derivative of a satellite A of g with weight p is defined by ([11],[17], [22])
WA = KA — parA.

Definition 2.3. The prolonged covariant derivative of a satellite A of g with weight p is defined by ([11],[17], [22])
DA = DiA — payA. (13)

We note that the prolonged covariant derivative and the prolonged derivative preserve the weights of
the tensors.
From (5), (6) and (13) it follows that

Dkgij =0.

Moreover, since 9kgi]- = 0kgij — 2wy yij, it follows from (12) that

N . .
Ly = 59”” (3kglm + A1 Gkm — amgkl) .

Definition 2.4. A satellite of g is called prolonged covariantly constant if its prolonged covariant derivative is zero.

3. Generalized Quasi-Einstein Weyl Manifolds

In this section, we define generalized quasi-Einstein Weyl manifolds and give an example for the
existence. Also, we give a result about the associated scalars of the manifold.
A Weyl manifold M, (g, w) is called a generalized quasi-Einstein Weyl manifold if

S;i =ag;; + bA;A; + cB;B;, (14)
j = a9ij i j

where 4, b, c are functions of weight —2, S;; denotes the symmetric part of the Ricci tensor W;; of weight 0,
and A;, B; are non-zero 1-forms of weight 1 satisfying

giinA]' = 1, gijBiBj = 1, giinBj =0. (15)

In this case, A; and B; are called associated 1-forms, and a, b, ¢ are called associated functions. If ¢ = 0, then
My (g, w) is called quasi-Einstein Weyl manifold [13].
Multiplying (14) by gV, we get

s=an+b+c, (16)

which is the scalar curvature of a generalized quasi-Einstein Weyl manifold.
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Theorem 3.1. Ifthe associated scalar functions of a generalized quasi-Einstein Weyl manifold M, (g, w) are prolonged
covariantly constant, then M, (g, w) is conformal to a generalized quasi-Einstein manifold.

Proof. Assume that M,(g,w) is a generalized quasi-Einstein Weyl manifold. The prolonged covariant
derivative of (16) is

Dis = Di(an + b + ¢) = nDya + Dib + Dyc. (17)

If the associated scalar functions 4, b, ¢ are prolonged covariantly constant, and since the weight of s is -2,
then from (17) we find

DkS = Dys + 2wys = 0.

D
Hence, we have wy = —2—’;5, from which it follows that wy is locally a gradient. Thus, M, (g, w) is conformal

to generalized a quasi-Einstein manifold. [J

Furthermore, contracting Eq. (14) with A’A/ and then with B'B/, we obtain

A'AIS;j=a+b, BB/S;j=a+c. (18)
From these, it follows that

s=(n-2)a+(A'A +BB)S;;.
Similarly, multiplying Eq. (14) by A’ and then by B, respectively, yields

A'Sij = (a+b)A;, B'S;j=(a+c)B;,

from which we conclude that the dual of the associated 1-forms are eigenvectors of symmetric part of the
Ricci tensor of the generalized quasi-Einstein Weyl manifold.

Example 3.2. We consider a 3—dimensional Weyl manifold Ms(g, ») endowed with a metric by ds* = gjjdx'dx) =
(@dx)? + (dx2)? + ¥ (dx®)? and a 1-form w = w;dx’ = ¢ dx®. The nonzero Weyl connection coefficients are

1

X
1 _ ol oA 1 _ ¢ 2 _ 12 _ 3 _
I = Ig=-¢, Iy= 5 I =Tp=-, I7; =1,
9, = T =s =1 T%=—e
B T taTy tn=h 1n=

A direct computation yields the following nonzero components of the Ricci tensor.

1 3 1
Wi = +e", Wiz=-Ws = zexl, Wy =e", W= Zexl-

Moreover, the nonzero components of symmetric parts of the Ricci tensor S;j and the scalar curvature s are

1 1 1
511=Z+€x1, Sp=¢", S33:ZEX]' S=§+2€x]-

If the associated scalar functions are given by

and the associated 1— forms are A = Aidxt = dx},B = Bidx' = dx? then, the Egs. (14) and (15) are satisfied.
Therefore, M3(g, w) is a generalized quasi-Einstein Weyl manifold.
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4. Some Special Vector Fields On Generalized Quasi-Einstein Weyl Manifolds

In this section, we define some special vector fields on a Weyl manifold and then present the results
related to a generalized quasi-Einstein Weyl manifolds.
A vector field ¢ in a Riemannian manifold M is called torse-forming if it satisfies the condition

Vio" = adl + ¢"y;,

where a is a smooth function, ¢" and y; are the components of the vector field ¢ and 1-form y, respectively,
and 6? is the Kronecker symbol [27]. For details, see [16, p. 168].

If @ = 0, then the torse-forming vector field is called recurrent vector field, that is, the vector field ¢
satisfies

Vigh = ¢y

If y = 0, then the torse-forming vector field is called concircular vector field, that is, the vector field ¢
satisfies

Vio" = adl.
A @(Ric)-vector field is a vector field ¢ on a Riemannian manifold M satisfying
Vip" = R, (19)

where ¢" and Rf? are the components of the vector field ¢ and the Ricci tensor of the Riemannian manifold
M, respectively, and f is a constant [10]. Equation (19) can also be expressed in index-lowered for as

Vipj = BRij,

where R;; is the Ricci tensor of the Riemannian manifold. We note that generalized ¢(Ric)-vector fields are
also defined by taking  as a function [20]. A detailed analysis of these equations for (pseudo)-Riemannian
spaces is carried out in [19]. We follow the methodology of that paper in our present work.

Now, we define these vector fields by using prolonged covariant derivative on a Weyl manifold.

A vector field ¢ of weight p in a Weyl manifold M, (g, w) is called generalized torse-forming vector field
if it satisfies the condition

Di¢p" = ad + p"y;, (20)

where a is a smooth function of weight p, ¢" and y; are the components of the vector field ¢ and 1-form y
of weights p and 0, respectively.

If a = 0, then the generalized torse-forming vector field is called generalized recurrent vector field, that
is, the vector field ¢ satisfies

Di¢" = ¢y (21)

If y = 0, then the generalized torse-forming vector field is called generalized concircular vector field,
that is, the vector field ¢ satisfies

Dig" = aol. (22)

Since, the Ricci tensor W;; of a Weyl manifold M, (g, ) is not symmetric, we define generalized ¢(Ric)-
vector fields by taking symmetric part of the Ricci tensor S;;.
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Definition 4.1. A generalized @(Ric)-vector field of weight p is a vector field ¢ on a Weyl manifold M,(g, w)
satisfying

D" = gst, (23)

where " are the components of the vector field ¢, S! is defined S! = g"'S;; with weight =2, and B is a function of
weight p + 2.

Equation (23) can also be written index-lowered form as
Dip; = BSij, (24)
where @; = ¢"gy;, which is of weight p + 2.

Theorem 4.2. If M,/(g, w) is a generalized quasi-Einstein Weyl manifold, then both of the vector fields dual to the
associated 1-forms cannot be generalized torse-forming vector fields.

Proof. Assume that the vector fields dual to the associated 1-forms are both generalized torse-forming
vector fields on a generalized quasi-Einstein Weyl manifold. Then, from (20) we have:

D;A" = ad] + Ay;, D;B" = ao} + B'y;. (25)
Multiplying (25) by g;,;, we obtain:
DiAj = agij + A]‘)/i, DiB]' = cvlfg,']' + ij,‘, (26)

where A; and B; are the components of the associated 1-forms of weight 1, a and & are nonzero scalar
functions of weight —1, y; and y; are 1-forms of weight 0. Contracting Eq. (26) with A/ and B/, respectively,
we get

0=aA;+vy;, 0=aB;+,
since A/D;A; = BID;Bj = 0 and A/A; = B/B;j = 1. Hence we obtain
Yi = —adA;, Yi=—0dB;. (27)
Using Eq. (27) in (26), we get
DiAj = a(gij— AiAj), DiB; = &(g; - BiB)). (28)

From (15), we have A'B; = 0. Taking prolonged covariant derivative of this equation and using (28), we
obtain

0=Dy (AfBi) = A'DyB; + BiDyA' = A'IDyB; + B'DyA; = dAx + aBy. (29)

Contracting (29) with A¥ and B, respectively, we get @ = & = 0, which contradicts the assumption that
a and & are nonzero scalar functions. Therefore, both of the vector fields dual to the associated 1-forms
cannot be generalized torse-forming vector fields in a generalized quasi-Einstein Weyl manifold. [

Theorem 4.3. If the vector fields dual to the associated 1-forms are generalized concircular vector fields on a gener-
alized quasi-Einstein Weyl manifold, then the associated 1-forms are prolonged covariantly constant.
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Proof. Assume that the vector fields dual to the associated 1-forms are generalized concircular vector fields
on a generalized quasi-Einstein Weyl manifold. Then, by Eq. (22), we have

DiA" = as!!, D;B" = as!,
from which it follows that

D;A; = agij, D;B; = dgij, (30)
where Aj and B; are the components of the associated 1-forms of weight 1, & and & are scalar functions of
weight —1. Multiplying Eq. (30) by A’ and B/, respectively, we get

0=adA;, 0=aB, (31)

since A/D;A; = 0 and B/D;B; = 0. Multiplying Eq. (31) by A/ and B/, respectively, we obtain a = & = 0.
Therefore, by Eq. (30), the result follows. [

Theorem 4.4. If the vector fields dual to the associated 1-forms are generalized recurrent vector fields on a generalized
quasi-Einstein Weyl manifold, then the associated 1-forms are prolonged covariantly constant.

Proof. Assume that the vector fields dual to the associated 1-forms are generalized recurrent vector fields
on a generalized quasi-Einstein Weyl manifold. Then, by Eq. (21), we have

DjAh = Ah)/i, DiBh = Bh vi,
from which it follows that
DiAj = Ajyi, DBj =By, (32)

where A; and B; are the components of the associated 1-forms of weight 1, ; and y; are components of the
1-forms y and ¥ of weight 0.

Multiplying Eq. (32) by A/ and B/, respectively, we get y; = 7% = 0, since A/D;A; = 0 and B/D;B; = 0.
Hence, the theorem is proved. [

Definition 4.5. A Weyl manifold M,,(g, w) is said to be a nearly quasi-Einstein Weyl manifold if S;;, the symmetric
part of the Ricci tensor Wi of the Weyl manifold, satisfies the condition

S,']' = agij + bEij,

where a is a scalar function of weight —2, b is a scalar function and E;; are components of the symmetric (0,2)-tensor
E, such that sum of weight of b and E;; is zero [14].

Theorem 4.6. If the vector fields dual to the associated 1-forms are generalized A(Ric) and B(Ric) vector fields on a
generalized quasi-Einstein Weyl manifold, then the manifold is nearly quasi-Einstein Weyl manifold.

Proof. Suppose that the vector fields dual to the associated 1-forms are generalized A(Ric) and B(Ric) vector
fields on a generalized quasi-Einstein Weyl manifold. Then, by (24), we have

Dl‘A]‘ = ,BSij, DiB]‘ = ﬁSij, (33)

where A; and B; are the components of the associated 1-forms of weight 1,  and f are nonzero scalar
functions of weight 1, and S;; denotes the components of the symmetric part of the Ricci tensor of the Weyl
manifold, which has weight 0.

Multiplying (33) by A/ and B/, respectively, we get

0=pBA'S;, 0=pBS;, (34)
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where we used the facts A/D;A; = 0 and B/D;B; = 0.
Multiplying (34) again by A/ and B/, respectively, and using Eq. (18), we get

0=(@+b)p, 0=(@+c)p. (35)
From (35), since 8 and f§ are nonzero functions, we obtain b = ¢ = —a from which, by (14), we get
Sij = ag;j + bEj;,
where E;; = A;A; + B;B; are the components of the symmetric (0,2)-tensor E of weight 2. Therefore,
generalized quasi-Einstein Weyl manifold is a nearly quasi-Einstein Weyl manifold. O
5. Some Special Conformal Transformations On Generalized Quasi-Einstein Weyl Manifolds

In this section, we examine generalized concircular transformations and conharmonic transformations
of generalized quasi-Einstein Weyl manifolds.

Let 7 : My (g, w) — M,,(§, ®) be a conformal transformations of the Weyl manifold M, (g, w) onto another
Weyl manifold M, (§, @). Then, at the corresponding points of M,(g, ) and M,,(§, @) one can choose [24]

gij = Gij-
Let D, D be the connections of M, (g, w), M,(§, @), respectively, with connection coefficients F;k and flj',k.

Then, the relation between the curvature tensors of M, (g, w) and M, (g, @) is given by
Wiy = Wiy + 0P = 8Pt + 79" P = 39" P + 20 D Py, (36)
where Dj;P;j denotes the antisymmetric part of DyP;, P = w — @ is a covector field of weight 0 and
) 1
Py = D/Py — PPy + Egklpsps- (37)

Contraction on the indices p and / in (36) gives us

W]'k = W]k + (I’l - Z)ij + gjkglmpml + ZD[kP]‘], n>2. (38)
Using (38), we obtain
Sik = Sjk + (1 = 2)P(jy + Fjkg"" P, (39)

where Pj) is symmetric part of Pj.
In [25] and [13], the following theorems are proved.

Theorem 5.1. The conformal transformation ¢ : M, (g, w) — M,(§, @) which preserves circles is called generalized
concircular if and only if

Py = ¢gu,

where ¢ is a smooth scalar function of weight =2, Py = ViPy — PrP; + % Jag PP, and P = w — @ is the covector
field of the conformal transformations of weight zero.

Theorem 5.2. The tensor Z of type (1, 3) whose components are given by

P WP S p p
Zigy = Wi = (= 1)(51 g~ O1) (40)

is invariant under a generalized concircular mapping of M, (g, ). Such a tensor is called the generalized concircular
curvature tensor of M, (g, w).
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Contraction on the indices p and ! in (40) gives the generalized concircularly invariant tensor

. s
Zyy = Zjk = Wik = =ik (41)

Theorem 5.3. If the symmetric part P of the tensor Py is zero, then the symmetric part of the Ricci tensor for a
Weyl manifold M, (g, w) (n > 2) is preserved by the conformal mapping

T My(g, ) — M, (§, ).
So, we have,

Theorem 5.4. Let M,(g, ) and M,(g, @) be two Weyl manifolds and let T be a conformal mapping of My, (g, w) into
M, (g, ®). If M,,(g, ) is a generalized quasi-Einstein (or Einstein) Weyl manifold and the symmetric part Py of the
tensor Py is zero, then M, (§, &) is a generalized quasi-Einstein (or Einstein) Weyl manifold.

Proof. The result follows directly from Theorem 5.3. [J

Theorem 5.5. A generalized quasi-Einstein Weyl manifold is transformed into a generalized quasi-Einstein Weyl
manifold by a generalized concircular mapping.

Proof. Let ¢ : M,(g,w) — M,(d, @), be a generalized concircular mapping between two Weyl manifolds.
Assume that M, (g, w) is a generalized quasi-Einstein Weyl manifold. From (41), we can write

- 5 s
Wik = ~gie = Wi = — g, 42)

since the generalized concircular tensor Z’;’kl and its contracted tensor Zj; are invariant under a generalized

concircular mapping.
From (42), we obtain

~ S
Sik= 20k = Sjk = - Gjk-

S | w

Since the map 1) is concircular, we may take §j = gjx. Moreover, using Eq. (14), it follows that
% s 8§
Sjk = ({Il - T_l + E)gjk + bA]'Ak + CBjBk.

Therefore, M,,(§, @) is a generalized quasi-Einstein Weyl manifold, which completes the proof. [J

Now, we consider a conharmonic transformation between two generalized quasi-Einstein Weyl man-
ifolds. The conharmonic transformation is a conformal transformation preserving the harmonicity of a
certain function. If the conformal mapping is also conharmonic, then we have

. 1
g"DiPr + 5 (1 = 2)P'Pe =0, (43)

where Py is the components of the covector field P = w — @ [26].

Theorem 5.6. A conformal transformation between two generalized quasi-Einstein Weyl manifolds is conharmonic
if and only if the associated scalars are preserved.

Proof. Let T : M,(g,w) — M,(d, ®) be a conformal transformation of a generalized quasi- Einstein Weyl
manifold M, (g, w) onto another generalized quasi- Einstein Weyl manifold M,(§, @). Then, from (14) and
(39), we obtain

6757,']' + ~A1'A~]' +C igj = agij + bA,'A]' + CBI'B]' +(n— Z)P(,‘j) + gijgrsprs. (44)
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Multiplying (44) by ¢'/ = §'/ and summing up on the indices i and j gives
an+b+&=an+b+c+(2n—2)g"Pgs). (45)
Suppose that 7 is also a conharmonic transformation. Then, it follows from Egs. (37) and (43) that
9" Pis) = §°Prs = 0. (46)

Therefore, using Egs. (45) and (46),~we obtaind=a,b=b,¢ =c.
Conversely, suppose that @ = a,b = b, & = c. Then, from Equation (45) it follows that

grsp(rs) = grsPyS =0. (47)

Therefore, Eq. (47) implies Eq. (43) which shows that conformal transformation 7 is also a conharmonic
transformation. [
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