

Generalized quasi-Einstein Weyl manifolds

İlhan Güla

^aFaculty of Engineering and Natural Sciences, Maltepe University, İstanbul, Türkiye

Abstract. In this paper, we introduce the notion of generalized quasi-Einstein Weyl manifold which extends the concept of quasi-Einstein Weyl manifold. We provide an explicit example to demonstrate its existence. Furthermore, we present several results concerning generalized quasi-Einstein Weyl manifolds that admit certain special vector fields. Finally, we investigate some special conformal transformation between such manifolds.

1. Introduction

A Riemannian manifold M_n ($n > 2$) with metric g is an Einstein manifold if its Ricci tensor Ric is of the form

$$Ric(X, Y) = \frac{r}{n}g(X, Y) \quad (1)$$

where r is the scalar curvature of M_n [2].

A non-Einstein Riemannian manifold M_n ($n > 2$) is called a quasi-Einstein manifold if its Ricci tensor Ric of type $(0, 2)$ is not identically zero and is of the form

$$Ric(X, Y) = ag(X, Y) + bA(X)A(Y), \quad (2)$$

where a, b are functions and A is a non-zero 1-form defined by $A(X) = g(X, U)$ for all vector fields X and a unit vector field U . A is called the associated 1-form and U is called the generator of the manifold [4].

The notion of quasi-Einstein manifolds were generalized in different ways such as generalized quasi-Einstein manifolds ([3], [5], [8]), nearly quasi-Einstein manifolds [7], generalized Einstein manifolds [1], super quasi-Einstein manifolds [6], pseudo quasi-Einstein manifolds [21], extended quasi-Einstein manifolds [12], mixed quasi-Einstein manifolds [15], etc.

A non-flat Riemannian manifold M_n ($n > 2$) is called a generalized quasi-Einstein manifold if its Ricci tensor Ric of type $(0, 2)$ is not identically zero and is of the form

$$Ric(X, Y) = ag(X, Y) + bA(X)A(Y) + cB(X)B(Y), \quad (3)$$

2020 Mathematics Subject Classification. Primary 53C18; Secondary 53C25.

Keywords. Generalized quasi-Einstein Weyl manifold; special vector fields; conformal transformation; generalized concircular transformation; conharmonic transformation.

Received: 30 June 2025; Revised: 28 November 2025; Accepted: 04 December 2025

Communicated by Ljubica Velimirović

Email address: ilhangul@maltepe.edu.tr (İlhan Gü)

ORCID iD: <https://orcid.org/0000-0002-0929-3503> (İlhan Gü)

where a, b, c are certain nonzero functions and A, B are two non-zero 1-forms. The unit vector fields U and V corresponding to 1-forms A and B respectively defined by

$$g(X, U) = A(X), \quad g(X, V) = B(X)$$

are orthogonal, i.e., $g(U, V) = 0$. The vector fields U and V are called the generators of the manifold [8].

The aim of this paper is to introduce the notion of generalized quasi-Einstein Weyl manifold which generalizes the concept of quasi-Einstein Weyl manifolds. A Weyl manifold is a conformal manifold equipped with a torsion free connection preserving the conformal structure. It is said to be Einstein-Weyl if the symmetric part of the Ricci tensor of the Weyl connection is proportional with its conformal metric. This condition is a generalization of the usual Einstein-Weyl manifolds.

Einstein-Weyl manifolds were studied by Folland [9], Tod [23], Pedersen and Tod [18] and many others. Quasi-Einstein Weyl manifolds were defined and studied by Güll and Canfes [13].

In the present work, we define generalized quasi-Einstein Weyl manifolds and give an example for the existence of them. Then, we examine some special vector fields on quasi-Einstein Weyl manifolds and present results. Moreover, we obtain some results about conformal, generalized concircular, and conharmonic transformations of quasi-Einstein Weyl manifolds.

2. Preliminaries

An n -dimensional differentiable manifold M having a torsion-free connection D and a conformal class $C[g]$ of metrics preserved by D is called a Weyl manifold which will be denoted by $M_n(g, \omega)$, where $g \in C[g]$ and ω is a 1-form satisfying the compatibility condition

$$Dg = 2(g \otimes \omega). \quad (4)$$

If ω is a closed form, then $M_n(g, \omega)$ is conformal to a Riemannian manifold.

Under the conformal change

$$\bar{g} = \lambda^2 g, \quad \lambda > 0 \quad (5)$$

of the representative metric tensor g , the 1-form ω changes by the law $\bar{\omega} = \omega + d \ln \lambda$.

It is easy to see that $M_n(\bar{g}, \bar{\omega})$ satisfies the compatibility condition and hence, it generates the same Weyl manifold ([11], [17], [22]).

Assume that $M_n(g, \omega)$ is a Weyl manifold of class C^∞ , covered by a system of coordinate neighborhoods (U, x^h) . Then, Eq. (4) can be written in local coordinates by

$$D_k g_{ij} = 2\omega_k g_{ij}. \quad (6)$$

We note that, throughout the paper, we will use Einstein summation convention over the repeated indices.

The curvature tensor, the covariant curvature tensor, the Ricci tensor, and the scalar curvature of $M_n(g, \omega)$ are defined, respectively, by:

$$v^j W_{jkl}^p = (D_k D_l - D_l D_k) v^p, \quad (7)$$

$$W_{hjkl} = g_{hp} W_{jkl}^p, \quad (8)$$

$$W_{ij} = W_{ijp}^p = g^{hk} W_{hijk}, \quad (9)$$

$$s = g^{ij} W_{ij}. \quad (10)$$

From (7) it follows that

$$W_{jkl}^p = \partial_k \Gamma_{jl}^p - \partial_l \Gamma_{jk}^p + \Gamma_{hk}^p \Gamma_{jl}^h - \Gamma_{hl}^p \Gamma_{jk}^h, \quad (11)$$

where $\partial_k = \frac{\partial}{\partial x^k}$ and Γ_{kl}^i are the coefficients of the Weyl connection D given by

$$\Gamma_{kl}^i = \left\{ \begin{array}{c} i \\ kl \end{array} \right\} - g^{im} (g_{mk}\omega_l + g_{ml}\omega_k - g_{kl}\omega_m), \quad (12)$$

in which $\left\{ \begin{array}{c} i \\ kl \end{array} \right\}$ are the coefficients of the Levi-Civita connection.

Definition 2.1. A tensor field A is called a satellite of g with weight p if it admits a transformation of the form

$$\bar{A} = \mu^p A,$$

under the change (5) of the metric tensor g ([11], [17], [22]).

From (9), (10), (11) and (12), it is easy to see that the Ricci tensor, the curvature tensor and Weyl connection coefficients are satellites of g with weight 0, and the scalar curvature s is a satellite of g with weight -2.

Definition 2.2. The prolonged derivative of a satellite A of g with weight p is defined by ([11], [17], [22])

$$\dot{\partial}_k A = \partial_k A - p\omega_k A.$$

Definition 2.3. The prolonged covariant derivative of a satellite A of g with weight p is defined by ([11], [17], [22])

$$\dot{D}_k A = D_k A - p\omega_k A. \quad (13)$$

We note that the prolonged covariant derivative and the prolonged derivative preserve the weights of the tensors.

From (5), (6) and (13) it follows that

$$\dot{D}_k g_{ij} = 0.$$

Moreover, since $\dot{\partial}_k g_{ij} = \partial_k g_{ij} - 2\omega_k g_{ij}$, it follows from (12) that

$$\Gamma_{kl}^i = \frac{1}{2} g^{im} (\dot{\partial}_k g_{lm} + \dot{\partial}_l g_{km} - \dot{\partial}_m g_{kl}).$$

Definition 2.4. A satellite of g is called prolonged covariantly constant if its prolonged covariant derivative is zero.

3. Generalized Quasi-Einstein Weyl Manifolds

In this section, we define generalized quasi-Einstein Weyl manifolds and give an example for the existence. Also, we give a result about the associated scalars of the manifold.

A Weyl manifold $M_n(g, \omega)$ is called a generalized quasi-Einstein Weyl manifold if

$$S_{ij} = ag_{ij} + bA_i A_j + cB_i B_j, \quad (14)$$

where a, b, c are functions of weight -2, S_{ij} denotes the symmetric part of the Ricci tensor W_{ij} of weight 0, and A_i, B_i are non-zero 1-forms of weight 1 satisfying

$$g^{ij} A_i A_j = 1, \quad g^{ij} B_i B_j = 1, \quad g^{ij} A_i B_j = 0. \quad (15)$$

In this case, A_i and B_i are called associated 1-forms, and a, b, c are called associated functions. If $c = 0$, then $M_n(g, \omega)$ is called quasi-Einstein Weyl manifold [13].

Multiplying (14) by g^{ij} , we get

$$s = an + b + c, \quad (16)$$

which is the scalar curvature of a generalized quasi-Einstein Weyl manifold.

Theorem 3.1. *If the associated scalar functions of a generalized quasi-Einstein Weyl manifold $M_n(g, \omega)$ are prolonged covariantly constant, then $M_n(g, \omega)$ is conformal to a generalized quasi-Einstein manifold.*

Proof. Assume that $M_n(g, \omega)$ is a generalized quasi-Einstein Weyl manifold. The prolonged covariant derivative of (16) is

$$\dot{D}_k s = \dot{D}_k(an + b + c) = n\dot{D}_k a + \dot{D}_k b + \dot{D}_k c. \quad (17)$$

If the associated scalar functions a, b, c are prolonged covariantly constant, and since the weight of s is -2 , then from (17) we find

$$\dot{D}_k s = D_k s + 2\omega_k s = 0.$$

Hence, we have $\omega_k = -\frac{D_k s}{2s}$, from which it follows that ω_k is locally a gradient. Thus, $M_n(g, \omega)$ is conformal to generalized a quasi-Einstein manifold. \square

Furthermore, contracting Eq. (14) with $A^i A^j$ and then with $B^i B^j$, we obtain

$$A^i A^j S_{ij} = a + b, \quad B^i B^j S_{ij} = a + c. \quad (18)$$

From these, it follows that

$$s = (n - 2)a + (A^i A^j + B^i B^j)S_{ij}.$$

Similarly, multiplying Eq. (14) by A^i and then by B^i , respectively, yields

$$A^i S_{ij} = (a + b)A_j, \quad B^i S_{ij} = (a + c)B_j,$$

from which we conclude that the dual of the associated 1-forms are eigenvectors of symmetric part of the Ricci tensor of the generalized quasi-Einstein Weyl manifold.

Example 3.2. *We consider a 3-dimensional Weyl manifold $M_3(g, \omega)$ endowed with a metric by $ds^2 = g_{ij}dx^i dx^j = (dx^1)^2 + (dx^2)^2 + e^{x^1}(dx^3)^2$ and a 1-form $\omega = \omega_i dx^i = e^{x^1} dx^3$. The nonzero Weyl connection coefficients are*

$$\begin{aligned} \Gamma_{13}^1 &= \Gamma_{31}^1 = -e^{x^1}, \quad \Gamma_{33}^1 = -\frac{e^{x^1}}{2}, \quad \Gamma_{23}^2 = \Gamma_{32}^2 = -e^{x^1}, \quad \Gamma_{11}^3 = 1, \\ \Gamma_{13}^3 &= \Gamma_{31}^3 = \frac{1}{2}, \quad \Gamma_{22}^3 = 1, \quad \Gamma_{33}^3 = -e^{x^1} \end{aligned}$$

A direct computation yields the following nonzero components of the Ricci tensor.

$$W_{11} = \frac{1}{4} + e^{x^1}, \quad W_{13} = -W_{31} = \frac{3}{2}e^{x^1}, \quad W_{22} = e^{x^1}, \quad W_{33} = \frac{1}{4}e^{x^1}.$$

Moreover, the nonzero components of symmetric parts of the Ricci tensor S_{ij} and the scalar curvature s are

$$S_{11} = \frac{1}{4} + e^{x^1}, \quad S_{22} = e^{x^1}, \quad S_{33} = \frac{1}{4}e^{x^1}, \quad s = \frac{1}{2} + 2e^{x^1}.$$

If the associated scalar functions are given by

$$a = \frac{1}{4}, \quad b = e^{x^1}, \quad c = e^{x^1} - \frac{1}{4},$$

and the associated 1-forms are $A = A_i dx^i = dx^1, B = B_i dx^i = dx^2$ then, the Eqs. (14) and (15) are satisfied. Therefore, $M_3(g, \omega)$ is a generalized quasi-Einstein Weyl manifold.

4. Some Special Vector Fields On Generalized Quasi-Einstein Weyl Manifolds

In this section, we define some special vector fields on a Weyl manifold and then present the results related to a generalized quasi-Einstein Weyl manifolds.

A vector field ϕ in a Riemannian manifold M is called *torse-forming* if it satisfies the condition

$$\nabla_i \phi^h = \alpha \delta_i^h + \phi^h \gamma_i,$$

where α is a smooth function, ϕ^h and γ_i are the components of the vector field ϕ and 1-form γ , respectively, and δ_i^h is the Kronecker symbol [27]. For details, see [16, p. 168].

If $\alpha = 0$, then the *torse-forming* vector field is called *recurrent* vector field, that is, the vector field ϕ satisfies

$$\nabla_i \phi^h = \phi^h \gamma_i.$$

If $\gamma = 0$, then the *torse-forming* vector field is called *concircular* vector field, that is, the vector field ϕ satisfies

$$\nabla_i \phi^h = \alpha \delta_i^h.$$

A $\varphi(Ric)$ -vector field is a vector field φ on a Riemannian manifold M satisfying

$$\nabla_i \varphi^h = \beta R_i^h, \quad (19)$$

where φ^h and R_i^h are the components of the vector field φ and the Ricci tensor of the Riemannian manifold M , respectively, and β is a constant [10]. Equation (19) can also be expressed in index-lowered for as

$$\nabla_i \varphi_j = \beta R_{ij},$$

where R_{ij} is the Ricci tensor of the Riemannian manifold. We note that generalized $\varphi(Ric)$ -vector fields are also defined by taking β as a function [20]. A detailed analysis of these equations for (pseudo)-Riemannian spaces is carried out in [19]. We follow the methodology of that paper in our present work.

Now, we define these vector fields by using prolonged covariant derivative on a Weyl manifold.

A vector field ϕ of weight p in a Weyl manifold $M_n(g, \omega)$ is called *generalized torse-forming* vector field if it satisfies the condition

$$\dot{D}_i \phi^h = \alpha \delta_i^h + \phi^h \gamma_i, \quad (20)$$

where α is a smooth function of weight p , ϕ^h and γ_i are the components of the vector field ϕ and 1-form γ of weights p and 0, respectively.

If $\alpha = 0$, then the *generalized torse-forming* vector field is called *generalized recurrent* vector field, that is, the vector field ϕ satisfies

$$\dot{D}_i \phi^h = \phi^h \gamma_i. \quad (21)$$

If $\gamma = 0$, then the *generalized torse-forming* vector field is called *generalized concircular* vector field, that is, the vector field ϕ satisfies

$$\dot{D}_i \phi^h = \alpha \delta_i^h. \quad (22)$$

Since, the Ricci tensor W_{ij} of a Weyl manifold $M_n(g, \omega)$ is not symmetric, we define *generalized $\varphi(Ric)$ -vector fields* by taking symmetric part of the Ricci tensor S_{ij} .

Definition 4.1. A generalized $\varphi(\text{Ric})$ -vector field of weight p is a vector field φ on a Weyl manifold $M_n(g, \omega)$ satisfying

$$\dot{D}_i \varphi^h = \beta S_i^h, \quad (23)$$

where φ^h are the components of the vector field φ , S_i^h is defined $S_i^h = g^{hj} S_{ij}$ with weight -2 , and β is a function of weight $p + 2$.

Equation (23) can also be written index-lowered form as

$$\dot{D}_i \varphi_j = \beta S_{ij}, \quad (24)$$

where $\varphi_j = \varphi^h g_{hj}$, which is of weight $p + 2$.

Theorem 4.2. If $M_n(g, \omega)$ is a generalized quasi-Einstein Weyl manifold, then both of the vector fields dual to the associated 1-forms cannot be generalized torse-forming vector fields.

Proof. Assume that the vector fields dual to the associated 1-forms are both generalized torse-forming vector fields on a generalized quasi-Einstein Weyl manifold. Then, from (20) we have:

$$\dot{D}_i A^h = \alpha \delta_i^h + A^h \gamma_i, \quad \dot{D}_i B^h = \check{\alpha} \delta_i^h + B^h \check{\gamma}_i. \quad (25)$$

Multiplying (25) by g_{hj} , we obtain:

$$\dot{D}_i A_j = \alpha g_{ij} + A_j \gamma_i, \quad \dot{D}_i B_j = \check{\alpha} g_{ij} + B_j \check{\gamma}_i, \quad (26)$$

where A_j and B_j are the components of the associated 1-forms of weight 1 , α and $\check{\alpha}$ are nonzero scalar functions of weight -1 , γ_i and $\check{\gamma}_i$ are 1-forms of weight 0 . Contracting Eq. (26) with A^j and B^j , respectively, we get

$$0 = \alpha A_i + \gamma_i, \quad 0 = \check{\alpha} B_i + \check{\gamma}_i,$$

since $A^j \dot{D}_i A_j = B^j \dot{D}_i B_j = 0$ and $A^j A_j = B^j B_j = 1$. Hence we obtain

$$\gamma_i = -\alpha A_i, \quad \check{\gamma}_i = -\check{\alpha} B_i. \quad (27)$$

Using Eq. (27) in (26), we get

$$\dot{D}_i A_j = \alpha (g_{ij} - A_i A_j), \quad \dot{D}_i B_j = \check{\alpha} (g_{ij} - B_i B_j). \quad (28)$$

From (15), we have $A^i B_i = 0$. Taking prolonged covariant derivative of this equation and using (28), we obtain

$$0 = \dot{D}_k (A^i B_i) = A^i \dot{D}_k B_i + B_i \dot{D}_k A^i = A^i \dot{D}_k B_i + B^i \dot{D}_k A_i = \check{\alpha} A_k + \alpha B_k. \quad (29)$$

Contracting (29) with A^k and B^k , respectively, we get $\alpha = \check{\alpha} = 0$, which contradicts the assumption that α and $\check{\alpha}$ are nonzero scalar functions. Therefore, both of the vector fields dual to the associated 1-forms cannot be generalized torse-forming vector fields in a generalized quasi-Einstein Weyl manifold. \square

Theorem 4.3. If the vector fields dual to the associated 1-forms are generalized concircular vector fields on a generalized quasi-Einstein Weyl manifold, then the associated 1-forms are prolonged covariantly constant.

Proof. Assume that the vector fields dual to the associated 1-forms are generalized concircular vector fields on a generalized quasi-Einstein Weyl manifold. Then, by Eq. (22), we have

$$\dot{D}_i A^h = \alpha \delta_i^h, \quad \dot{D}_i B^h = \check{\alpha} \delta_i^h,$$

from which it follows that

$$\dot{D}_i A_j = \alpha g_{ij}, \quad \dot{D}_i B_j = \check{\alpha} g_{ij}, \quad (30)$$

where A_j and B_j are the components of the associated 1-forms of weight 1, α and $\check{\alpha}$ are scalar functions of weight -1 . Multiplying Eq. (30) by A^j and B^j , respectively, we get

$$0 = \alpha A_i, \quad 0 = \check{\alpha} B_i, \quad (31)$$

since $A^j \dot{D}_i A_j = 0$ and $B^j \dot{D}_i B_j = 0$. Multiplying Eq. (31) by A^j and B^j , respectively, we obtain $\alpha = \check{\alpha} = 0$. Therefore, by Eq. (30), the result follows. \square

Theorem 4.4. *If the vector fields dual to the associated 1-forms are generalized recurrent vector fields on a generalized quasi-Einstein Weyl manifold, then the associated 1-forms are prolonged covariantly constant.*

Proof. Assume that the vector fields dual to the associated 1-forms are generalized recurrent vector fields on a generalized quasi-Einstein Weyl manifold. Then, by Eq. (21), we have

$$\dot{D}_i A^h = A^h \gamma_i, \quad \dot{D}_i B^h = B^h \check{\gamma}_i,$$

from which it follows that

$$\dot{D}_i A_j = A_j \gamma_i, \quad \dot{D}_i B_j = B_j \check{\gamma}_i, \quad (32)$$

where A_j and B_j are the components of the associated 1-forms of weight 1, γ_i and $\check{\gamma}_i$ are components of the 1-forms γ and $\check{\gamma}$ of weight 0.

Multiplying Eq. (32) by A^j and B^j , respectively, we get $\gamma_i = \check{\gamma}_i = 0$, since $A^j \dot{D}_i A_j = 0$ and $B^j \dot{D}_i B_j = 0$. Hence, the theorem is proved. \square

Definition 4.5. *A Weyl manifold $M_n(g, \omega)$ is said to be a nearly quasi-Einstein Weyl manifold if S_{ij} , the symmetric part of the Ricci tensor W_{ij} of the Weyl manifold, satisfies the condition*

$$S_{ij} = a g_{ij} + b E_{ij},$$

where a is a scalar function of weight -2 , b is a scalar function and E_{ij} are components of the symmetric $(0,2)$ -tensor E , such that sum of weight of b and E_{ij} is zero [14].

Theorem 4.6. *If the vector fields dual to the associated 1-forms are generalized $A(\text{Ric})$ and $B(\text{Ric})$ vector fields on a generalized quasi-Einstein Weyl manifold, then the manifold is nearly quasi-Einstein Weyl manifold.*

Proof. Suppose that the vector fields dual to the associated 1-forms are generalized $A(\text{Ric})$ and $B(\text{Ric})$ vector fields on a generalized quasi-Einstein Weyl manifold. Then, by (24), we have

$$\dot{D}_i A_j = \beta S_{ij}, \quad \dot{D}_i B_j = \check{\beta} S_{ij}, \quad (33)$$

where A_j and B_j are the components of the associated 1-forms of weight 1, β and $\check{\beta}$ are nonzero scalar functions of weight 1, and S_{ij} denotes the components of the symmetric part of the Ricci tensor of the Weyl manifold, which has weight 0.

Multiplying (33) by A^j and B^j , respectively, we get

$$0 = \beta A^j S_{ij}, \quad 0 = \check{\beta} B^j S_{ij}, \quad (34)$$

where we used the facts $A^j \dot{D}_i A_j = 0$ and $B^j \dot{D}_i B_j = 0$.

Multiplying (34) again by A^j and B^j , respectively, and using Eq. (18), we get

$$0 = (a + b)\beta, \quad 0 = (a + c)\check{\beta}. \quad (35)$$

From (35), since β and $\check{\beta}$ are nonzero functions, we obtain $b = c = -a$ from which, by (14), we get

$$S_{ij} = a g_{ij} + b E_{ij},$$

where $E_{ij} = A_i A_j + B_i B_j$ are the components of the symmetric (0,2)-tensor E of weight 2. Therefore, generalized quasi-Einstein Weyl manifold is a nearly quasi-Einstein Weyl manifold. \square

5. Some Special Conformal Transformations On Generalized Quasi-Einstein Weyl Manifolds

In this section, we examine generalized concircular transformations and conharmonic transformations of generalized quasi-Einstein Weyl manifolds.

Let $\tau : M_n(g, \omega) \longrightarrow \tilde{M}_n(\tilde{g}, \tilde{\omega})$ be a conformal transformations of the Weyl manifold $M_n(g, \omega)$ onto another Weyl manifold $\tilde{M}_n(\tilde{g}, \tilde{\omega})$. Then, at the corresponding points of $M_n(g, \omega)$ and $\tilde{M}_n(\tilde{g}, \tilde{\omega})$ one can choose [24]

$$g_{ij} = \tilde{g}_{ij}.$$

Let D, \tilde{D} be the connections of $M_n(g, \omega), \tilde{M}_n(\tilde{g}, \tilde{\omega})$, respectively, with connection coefficients Γ_{jk}^i and $\tilde{\Gamma}_{jk}^i$. Then, the relation between the curvature tensors of $M_n(g, \omega)$ and $\tilde{M}_n(\tilde{g}, \tilde{\omega})$ is given by

$$\tilde{W}_{jkl}^p = W_{jkl}^p + \delta_l^p P_{jk} - \delta_k^p P_{jl} + g_{jk} g^{pm} P_{ml} - g_{jl} g^{pm} P_{mk} + 2\delta_j^p \dot{D}_{[k} P_{l]}, \quad (36)$$

where $\dot{D}_{[k} P_{l]}$ denotes the antisymmetric part of $\dot{D}_k P_l$, $P = \omega - \tilde{\omega}$ is a covector field of weight 0 and

$$P_{kl} = \dot{D}_l P_k - P_k \dot{D}_l + \frac{1}{2} g_{kl} P^s P_s. \quad (37)$$

Contraction on the indices p and l in (36) gives us

$$\tilde{W}_{jk} = W_{jk} + (n - 2)P_{jk} + g_{jk} g^{lm} P_{ml} + 2\dot{D}_{[k} P_{l]}, \quad n > 2. \quad (38)$$

Using (38), we obtain

$$\tilde{S}_{jk} = S_{jk} + (n - 2)P_{(jk)} + g_{jk} g^{lm} P_{ml}, \quad (39)$$

where $P_{(jk)}$ is symmetric part of P_{jk} .

In [25] and [13], the following theorems are proved.

Theorem 5.1. *The conformal transformation $\psi : M_n(g, \omega) \longrightarrow \tilde{M}_n(\tilde{g}, \tilde{\omega})$ which preserves circles is called generalized concircular if and only if*

$$P_{kl} = \phi g_{kl},$$

where ϕ is a smooth scalar function of weight -2, $P_{kl} = \nabla_l P_k - P_k \nabla_l + \frac{1}{2} g_{kl} g^{rs} P_r P_s$, and $P = \omega - \tilde{\omega}$ is the covector field of the conformal transformations of weight zero.

Theorem 5.2. *The tensor Z of type (1,3) whose components are given by*

$$Z_{jkl}^p = W_{jkl}^p - \frac{s}{n(n-1)} (\delta_l^p g_{jk} - \delta_k^p g_{jl}) \quad (40)$$

is invariant under a generalized concircular mapping of $M_n(g, \omega)$. Such a tensor is called the generalized concircular curvature tensor of $M_n(g, \omega)$.

Contraction on the indices p and l in (40) gives the generalized concircularly invariant tensor

$$Z_{jk}^p = Z_{jk} = W_{jk} - \frac{s}{n}g_{jk}. \quad (41)$$

Theorem 5.3. *If the symmetric part $P_{(kl)}$ of the tensor P_{kl} is zero, then the symmetric part of the Ricci tensor for a Weyl manifold $M_n(g, \omega)$ ($n > 2$) is preserved by the conformal mapping*

$$\tau : M_n(g, \omega) \longrightarrow \tilde{M}_n(\tilde{g}, \tilde{\omega}).$$

So, we have,

Theorem 5.4. *Let $M_n(g, \omega)$ and $\tilde{M}_n(\tilde{g}, \tilde{\omega})$ be two Weyl manifolds and let τ be a conformal mapping of $M_n(g, \omega)$ into $\tilde{M}_n(\tilde{g}, \tilde{\omega})$. If $M_n(g, \omega)$ is a generalized quasi-Einstein (or Einstein) Weyl manifold and the symmetric part $P_{(kl)}$ of the tensor P_{kl} is zero, then $\tilde{M}_n(\tilde{g}, \tilde{\omega})$ is a generalized quasi-Einstein (or Einstein) Weyl manifold.*

Proof. The result follows directly from Theorem 5.3. \square

Theorem 5.5. *A generalized quasi-Einstein Weyl manifold is transformed into a generalized quasi-Einstein Weyl manifold by a generalized concircular mapping.*

Proof. Let $\psi : M_n(g, \omega) \longrightarrow \tilde{M}_n(\tilde{g}, \tilde{\omega})$, be a generalized concircular mapping between two Weyl manifolds. Assume that $M_n(g, \omega)$ is a generalized quasi-Einstein Weyl manifold. From (41), we can write

$$\tilde{W}_{jk} - \frac{\tilde{s}}{n}\tilde{g}_{jk} = W_{jk} - \frac{s}{n}g_{jk}, \quad (42)$$

since the generalized concircular tensor Z_{jk}^p and its contracted tensor Z_{jk} are invariant under a generalized concircular mapping.

From (42), we obtain

$$\tilde{S}_{jk} - \frac{\tilde{s}}{n}\tilde{g}_{jk} = S_{jk} - \frac{s}{n}g_{jk}.$$

Since the map ψ is concircular, we may take $\tilde{g}_{jk} = g_{jk}$. Moreover, using Eq. (14), it follows that

$$\tilde{S}_{jk} = \left(a - \frac{s}{n} + \frac{\tilde{s}}{n}\right)g_{jk} + bA_jA_k + cB_jB_k.$$

Therefore, $\tilde{M}_n(\tilde{g}, \tilde{\omega})$ is a generalized quasi-Einstein Weyl manifold, which completes the proof. \square

Now, we consider a conharmonic transformation between two generalized quasi-Einstein Weyl manifolds. The conharmonic transformation is a conformal transformation preserving the harmonicity of a certain function. If the conformal mapping is also conharmonic, then we have

$$g^{kl}\tilde{D}_kP_l + \frac{1}{2}(n-2)P^kP_k = 0, \quad (43)$$

where P_k is the components of the covector field $P = \omega - \tilde{\omega}$ [26].

Theorem 5.6. *A conformal transformation between two generalized quasi-Einstein Weyl manifolds is conharmonic if and only if the associated scalars are preserved.*

Proof. Let $\tau : M_n(g, \omega) \longrightarrow \tilde{M}_n(\tilde{g}, \tilde{\omega})$ be a conformal transformation of a generalized quasi-Einstein Weyl manifold $M_n(g, \omega)$ onto another generalized quasi-Einstein Weyl manifold $\tilde{M}_n(\tilde{g}, \tilde{\omega})$. Then, from (14) and (39), we obtain

$$\tilde{a}\tilde{g}_{ij} + \tilde{b}\tilde{A}_i\tilde{A}_j + \tilde{c}\tilde{B}_i\tilde{B}_j = ag_{ij} + bA_iA_j + cB_iB_j + (n-2)P_{(ij)} + g_{ij}g^{rs}P_{rs}. \quad (44)$$

Multiplying (44) by $g^{ij} = \tilde{g}^{ij}$ and summing up on the indices i and j gives

$$\tilde{a}n + \tilde{b} + \tilde{c} = an + b + c + (2n - 2)g^{rs}P_{(rs)}. \quad (45)$$

Suppose that τ is also a conharmonic transformation. Then, it follows from Eqs. (37) and (43) that

$$g^{rs}P_{(rs)} = g^{rs}P_{rs} = 0. \quad (46)$$

Therefore, using Eqs. (45) and (46), we obtain $\tilde{a} = a, \tilde{b} = b, \tilde{c} = c$.

Conversely, suppose that $\tilde{a} = a, \tilde{b} = b, \tilde{c} = c$. Then, from Equation (45) it follows that

$$g^{rs}P_{(rs)} = g^{rs}P_{rs} = 0. \quad (47)$$

Therefore, Eq. (47) implies Eq. (43) which shows that conformal transformation τ is also a conharmonic transformation. \square

Acknowledgements

The author would like to thank the referee for the careful reading of the paper and for the valuable comments and suggestions, which have improved its quality.

References

- [1] C. L. Bejan and T. Q. Binh, *Generalized Einstein Manifolds*, Proceedings of the 10th international conference on differential geometry and its applications, , World Scientific, 57–64 (2008).
- [2] A. L. Besse, *Einstein Manifolds*, Springer- Verlag, Berlin, 2008.
- [3] G. Catino, *Generalized quasi-Einstein manifolds with harmonic Weyl tensor*, Math. Z. **271** (3–4) (2012), 751–756.
- [4] M. C. Chaki and R. K. Maity, *On quasi Einstein manifolds*, Publ. Math. Debrecen **57** (2000), 297–306.
- [5] M. C. Chaki, *On generalized quasi Einstein manifolds*, Publ. Math. Debrecen **58** (2001), 683–691.
- [6] M. C. Chaki, *On super quasi Einstein manifolds*, Publ. Math. Debrecen **64** (2004), 481–488.
- [7] U. C. De and A. K. Gazi, *On nearly quasi Einstein manifolds*, Novi Sad J. Math. **38** (2008), 115–121.
- [8] U. C. De and G. C. Ghosh, *On generalized quasi Einstein manifolds*, Kyungpook Math. J. **44** (4) (2004), 607–615.
- [9] G. B. Folland, *Weyl manifolds*, J. Differential Geom. **4** (1970), 145–153.
- [10] I. Hinterleitner and V. A. Kiosak, *φ (Ric)-vector fields in Riemannian spaces*, Arch. Math. (Brno) **44** (5)(2008), 385–390.
- [11] V. Hlavaty, *Theorie d'immersion d'une W_m dans W_n* , Ann. Soc. Polon. Math. **21** (1949), 196–206.
- [12] Z. Huang, F. Su and W. Lu, *The extended quasi-Einstein manifolds*, Filomat **38** 11 (2024), 3761–3775.
- [13] İ. Güll and E. Ö. Canfes, *On quasi-Einstein Weyl manifolds*, Int. J. Geom. Methods Mod. Phys. **14** (2017), 1750122 (12 pages).
- [14] İ. Güll, *On Generalized Recurrent and Generalized Concircularly Recurrent Weyl Manifolds*, Sakarya University Journal of Science **25** (5) (2021), 1189–1196.
- [15] S. Mallick, A. Yıldız, and U. C. De, *Characterizations of mixed quasi-Einstein manifolds*, Int. J. Geom. Methods Mod. Phys. **14** 6 (2017), 1750096.
- [16] J. Mikeš et al., *Differential Geometry of Special Mappings*, (2nd edition), Palacky Univ. Press, Olomouc, 2019.
- [17] A. P. Norden, *Spaces with affin connection*, Moskow: Nauka, 1976.
- [18] H. Pedersen and K. P. Tod, *Three-dimensional Einstein-Weyl geometry*, Adv. Math. **97** (1993), 74–109.
- [19] P. Peška, L. Vítkova and J. Mikeš, *Fundamental equations of generalized φ (Ric)-vector fields*, Geom. Integrability & Quantization **30** (2024), 81–86.
- [20] A. Savchenko, N. Vashpanova and N. Vasylyeva, *Generalized φ (Ric)-vector fields in special pseudo-Riemannian spaces*, Proceedings of the International Geometry Center **14** 4 (2021), 231–242.
- [21] A. A. Shaikh, *On pseudo quasi Einstein manifold*, Period. Math. Hungar. **59** (2009), 119–146.
- [22] B. Tsareva and G. Zlatanov, *On the geometry of the nets in the n -dimensional space of Weyl*, J. Geom. **38** (1/2) (1990), 182–197.
- [23] K. P. Tod, *Compact 3-dimensional Einstein-Weyl structures*, J. Lond. Math. Soc. **45** (1992), 341–351.
- [24] A. Özdeğer, *Conformal and generalized concircular mappings of Einstein-Weyl manifolds*, Acta Math. Sci. Ser. B Engl. Ed. **30** (5) (2010), 1739–1745.
- [25] A. Özdeğer and Z. Şentürk, *Generalized circles in a Weyl space and their conformal mapping*, Publ. Math. Debrecen **60** (1/2) (2002), 75–87.
- [26] F. Özdemir and E. Ö. Canfes, *On generalized conformally recurrent kaehlerian Weyl spaces*, Iran. J. Sci. Technol. Trans. A Sci. **36** (3) (2012), 299–304.
- [27] K. Yano, *On the torse-forming directions in Riemannian spaces*, Proc. Imp. Acad. **20** (6) (1944), 340–345.