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Surfaces with H? = K along a given curve

Burcu Kose?, Ergin Bayram®”

?Ondokuz Mayis University, Turkey

Abstract. In the present paper, we handle the problem of construction of surfaces with a given curve
whose squared mean curvature is equal to the Gaussian curvature, that is H* = K, along the given curve.
We express surfaces parametrically possessing the given curve and obtain conditions for the coefficient
functions to satisfy H* = K along the curve. The theory is validated by illustrative examples..

1. Introduction

Curves and surfaces are among the subjects studied in differential geometry for many years. These
topics are covered in almost all differential geometry books [9], [17], [20], [21].

We can think of a curve as a geometric shape obtained by bending and twisting a wire from various
parts. Surfaces are shapes such as planes, spheres and saddle surfaces in three-dimensional space.

There are special curves such as geodesic, asymptotic curve and curvature line on a surface. Geodesic
is the shortest path connecting two different points on a surface. When creating ship and aircraft routes,
care is taken to ensure that the route is a geodesic. The asymptotic curve is the curve in which the tangent
vector field at each point is an asymptotic direction. If the tangent vector field at every point on the curve
is a principal direction, then the curve is called a line of curvature.

A curve in three-dimensional space is completely evident by its curvature and torsion. The mean
curvature and Gaussian curvature defined on surfaces provide information about the shape of the surface.
Let the principal curvatures at a point of the surface be k; and k,. The mean curvature is denoted by H and
itis defined as H = @ The Gaussian curvature at a point is denoted by K and is defined as K = kik».

In differential geometry, classification of surfaces with constant mean curvature is a fundamental prob-
lem. A surface of constant mean curvature can be thought of as a surface in which tensile forces and external
pressure are balanced. There are many studies on surfaces with constant mean curvature. In 1951, Hopf
proved that any immersed surface of constant mean curvature in IR® is a sphere [15]. Alexandrov showed
that any compact embedded surface of constant mean curvature in IR? is a sphere [2]. Meeks and Tinaglia
derived intrinsic curvature and discrete diameter estimates for R*>-embedded compact discs with con-
stant non-zero mean curvature and applied these estimates to study the global geometry of IR3>-embedded
complete surfaces with constant non-zero curvature [19].
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A lot of work has been done related to Gaussian curvature. Bayram [3] examined surfaces with constant
Gaussian curvature along a given curve. Guan and Spruck discussed surfaces with constant Gaussian
curvature, accepting the curves given in the n-dimensional sphere as boundary curves [12]. Chen [10]
examined minimal surfaces with constant mean curvature in his study.

Surface creation problems, specifically problems of finding a surface that passes through a given curve
and accepts this curve as a special curve, attract the attention of many scientists [3H7]], [11], [13], [14], [16],
[22], [24]. Wang et al. [23] first posed this type of problem in 2004 and obtained surfaces passing through
a given curve and accepting this curve as a common geodesic. Kasap et al. [16] generalized the functions
of Wang et al. [23] and presented a more general family of surfaces with common geodesic. In 2011, Li
et al. [18] presented sufficient conditions for a surface family with a common line of curvature. Ergiin et
al. [11] carried the work done by Li et al. [18] to 3 dimensional Minkowski space. Surface family with
common asymptotic curve defined by Bayram et al. [4]. Bayram [5] constructed surfaces with constant
mean curvature along a given timelike curve in Minkowski 3 space. Saffak et al. [22] presented a different
approach for designing a surface pencil through a given geodesic curve. Yaman and Kasap [24] investigated
the problem of the construction of a ruled surface family passing through the striction curve of a ruled
surface.

It is a well known fact that if H> = K at every point of the surface in IR?, then the surface is a piece of
a plane or a sphere. In this study, we handle the problem of finding surfaces where H? = K along a given
curve. We express surfaces parametrically using the Frenet frame defined along the curve. The conditions
that the so called marching scale functions, which are the coefficient functions of the vector fields of the
frame, should meet are investigated. Examples are given to support the results obtained.

2. Preliminaries

Let I be an open interval and a : I — R® be a regular curve, that is o’ (1) # 0, Yu € I. Then T (u) =
”Z:—EZ;H, N@)=Bu)xT ), Bu) = 2WXW 46 called the tangent, the principal normal and the binormal

lla’ () xa ()|
lla’ () xa” @)l () =

vector fields of «, respectively. The curvature and the torsion of « are defined as « (1) = T

G O Vu € I respectively. If k¥ > 0, then we have

T'w) = Awx@)N (),
N () = -A@wx@T@w)+A@wr7@)B@w),
B'(w) = -A@)t@)N®@),

where A (u) = [la’ (u)||, Yu € I [20]. A differentiable function F : R" — R™ is called regular if its derivative
map F., is one-to-one Yp € R". Let D C R? be an open set and X : D — R be a differentiable function. If
X is regular and one-to-one, then it is called a coordinate patch. A coordinate patch is called proper if the
inverse function X! : X (D) — D is continuous. A surface in R? is a subset M of R such that for each point
p of M there exists a proper patch in M whose image contains a neighborhood of p in M [20].

Lemma 2.1. Let X : D — R3 be a coordinate patch. The Gauss and the mean curvature of X is given by

K = det (X, Xy, Xy)det (Xop, Xu, Xp) — (det (Xyo, Xu, Xv))2

2
(Il Xl = (X, X))
b= det (X, Xu Xo)det (Xoo, Xu, Xo) (Xu, Xo) + det (Koo, X, Xo) Xl
- § ,
2 (Xl 1Xol? = (X, X))

respectively, where the subscript denotes the partial derivative with respect to indicated variable [1]].
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3. Main Results

In this section, we handle the problem of constructing surfaces possessing a given curve along which
the equality H? = K holds. For the sake of simplicity, we may assume that the given curve is a parameter
curve.

Let o (u), u; < u < up, be aregular curve, thatis ||a’ (1)|| = A # 0, Yu € [uy, u2]. To have the Frenet frame
defined along «, assume that the curvature does not vanish. Otherwise, the curve turns in to a straight line.

Surfaces possessing the curve a (1) can be represented parametrically as

Xw,v)=a)+1w,0)Twu)+mu,v)N ) +n(u,v)Bu), (1)

1 < u < iy, v1 <v < vyp. The functions I (1, v), m (u,v) and n (u,v) are real valued C? functions, which are
called marching scale functions. To satisfy the parameter curve requirement for the curve a, we should
have

1(u,v9) = m(u,v9) =n(u,v9) =0, u1 <u <y, )

for some fixed vy € [v1, v;] . Note that choosing different marching scale functions yields different surfaces
accepting the curve a as a common parameter curve.

We want to obtain conditions for surfaces X (i, v) to satisfy H? = K along the curve a. We need following
calculations to find the mean and the Gauss curvature of these surfaces along the given curve. Using Eqn.
we have the following

X, (u,0)=A+1, —mAx) T + (Alx + m, — nAt)N + (mAt + n,) B,

Xy (u,v) =1, (u,v) T (1) + my (u, v) N (1) + n, (u,v) B ().

Along the curve @, we have
Xy (u,00) = Aw) T (u),

Xu (,00) = A () T (u) + A> () < () N (),
Xuo (1, v0) = (Lo — Ampx) T + (Alyx + My, — AnyT) N + (AmyT + 1yy) B,
va (u/ UO) = lvv (Ll, Z]0) T (Ll) + Myy (u/ Z)O) N (u) + Ny (u/ UO) B (M) .

Also, we have
det (qul Xu, Xv) = _AsKnv/

det (Xy0, X, Xo) = —A%klytty — Ay, + A2t + A2tm? + Amyiy,,
det (Xoo, Xu, Xo) = —A (Mot — newtiy),

IXul? = (AT, AT) = A%,

IXoll* = 15 + 3 + 3,

(Xu, Xo) = AL,

along the curve a. Plugging above calculations in Lemma 2.1, we have the mean and the Gaussian curvature
of the surface X (1, v) along the curve a (1) as

H(u,v) = [(—Axnv) (l% +m2 + n%)
+21, [y (Axly + gy — ATng) — my (AT + 1yy,)] (3)

—A (Tt = Nypity)] ——,
2A(m2+n2)?
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and

2
A2 k1, (Mgt — Hyptly) — (—Aklvﬂv — Moty + ATH2 + Atm?2 + mvnm,)
K(u,v9) = 3 ,
A2 (m% + n%)

respectively.

Theorem 3.1. Sufficient conditions for the surface X (u,v) to satisfy H> = K along the curve a are

1y (U, v9) = (oy (1, v0) + ATy, (1, v9)) = 0,

lv (u/ UO)
I(u,vg)

m (1, v9) = n(u,vg) = 0 # my (u,vo),

Vu € [uy, up] and for some fixed vy € [v1,v2] .

Theorem 3.2. Sufficient conditions for the surface X (u,v) to satisfy H> = K along the curve a are

I(u,v0) = m(u,vo) =n(u,v) = my,(1,vg) = Ny (1, v0) =0,
My (M,U()) _

(1, (1, v0))?

oo (1, v0) I (u,v0) = T (u) = 0 # 1, (u,v0), K (1),

Vu € [uy, uz] and for some fixed vy € [v1,v2] .
Corollary 3.3. The curve a is a geodesic on the surface X (u, v) satisfying Theorem 3.2.

Theorem 3.4. Sufficient conditions for the surface X (u,v) to satisfy H> = K along the curve a are

Iu,v9) = m(u,v) =n(u,v) =n,(1,v9) =0+, (1,v9) = my, (U,vp),
Mo (U,00) = My (1, Vo) = Ny (1, 00) = T () =0,

Yu € [uy, up] and for some fixed vy € [v1,v2] .
Corollary 3.5. The curve o is an asymptotic curve on the surface X (u,v) satisfying Theorem 3.4.
Corollary 3.6. There exists a ruled surface satisfying H> = K along a planar curove.

Proof. Assume that « is a planar curve. Choosing marching scale functions as
I(u,0) = m(u,v) =0v,n@u,v) =0,
we obtain the ruled surface

X(w,v)=a)+o(T@w)+NWw).

1018

Since « is a planar curve, we have 7 () = 0 along the curve, which satisfies Theorem 3.4 and completes the

proof. [

Corollary 3.7. There exists a developable surface satisfying H* = K along a planar curve.
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Figure 1: The curve a (black in color) and the surface X (1, v) which satisfies H? =K along this curve.

4. Numerical Examples

Example 4.1. For the curve a = (cos u, sinu, 0) we have

Tw) = (-sinu,cosu,0),
N(u) = (—cosu,—sinu,0),
Bu) = (0,0.1).

Choosing marching scale functions as
1(u,v) = 2uv®, m(u,v) =uv, n(u,v) =uv’, 0<u<1l 0<v<l,
and vy = 0 satisfies Theorem 3.1 and we obtain the surface
X1 (u,v) = ((1 — uv) cos u — 2uv® sinu, (1 — uv) sin u + 2uv? cos u, uv3) ,

satisfying H* = K along the curve a (Figure 1).
For the same curve, if we choose the marching scale functions as

2
I(u,0) =7°, m(u,v)=%, nwv)=v, 0<u<3 0<v<l,

and vy = 0, then Theorem 3.2 and Corollary 3.3 are satisfied and we obtain the surface

v? v?
X5 (u,v) = ((1 - E)cosu -° sinu,(l - 7)sinu +0° cosu,v),

satisfying H? = K along the geodesic a (Figure 2).
To obtain another surface with the same property, we choose marching scale functions as

1(u,v) =uv, m@u,v)=uv, n(,0)=uv’>, 0<u<3, -1<v<l,
and vy = 0 which satisfies Theorem 3.4 and Corollary 3.5. Thus, we obtain the surface
X3 (u,0) = ((1 —uv)cosu —uvsinu, (1 — uv)sinu + uv cos u, uv3),

with H* = K along the asymptotic curve a (Figure 3).

1019
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Figure 2: The geodesic a (black in color) and the surface X» (1,v) which satisfies H? = K along this curve.

Figure 3: The asymptotic curve a (black in color) and the surface X3 (1, v) which satisfies H?2 =K along this curve.

Example 4.2. Now we take the skloid curve a (u) = (u — sinu, 1 — cosu,0) . A straight calculation gives

LU u
T(u) = (sm E,cos E’O)'
u . u
N(u) = (—cos E,sm 5,0),
Bu) = (0,0,1).

Choosing marching scale functions as

1(u,v) = uv, m(u,v)=u*v, n(w,0)=uv’, 0<u<1l, 0<v<l,
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and vy = 0 satisfies Theorem 3.4 and Corollary 3.5. Hence, we get the surface

. u 2 u . u 2 . u 3
Xy (u,v) =1 —cosu+uvs1n§ — UV Cos E,s1nu+uvcos§ +u vsin -, uv” |,

with H* = K along the asymptotic curve a (Figure 4).
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Figure 4: The asymptotic curve a (black in color) and the surface X4 (1,v) which satisfies H> = K along this curve.
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