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Sensitivity to initial condition on interval maps
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Abstract. Deterministic chaos is commonly characterized by sensitivity to initial conditions. This paper
investigates the relationships between sensitivity, recurrence, and R-mixing in interval maps. We provide
a characterization of R-mixing based on endpoint accessibility, establish links between sensitivity and
recurrent interval cycles, and show that sensitive systems exhibit a unique recurrent structure. Our main
results include new equivalence conditions for local eventual surjectivity, as well as explicit constructions
of sensitive maps admitting a unique recurrent cycle.

1. Introduction

Throughout this paper, X denotes a compact metric space. An interval map refers to a continuous map
acting on a real interval. For integers n ≤ m, the notation ⟦n,m⟧ denotes the closed integer interval

⟦n,m⟧ := {k ∈ Z | n ≤ k ≤ m}.

The notion of chaos has attracted considerable attention in recent decades, and various definitions have
been proposed. One widely accepted approach emphasizes sensitivity to initial conditions. The concept was
first formalized by Guckenheimer [18], who described systems in which the set of β-unstable points has
positive Lebesgue measure for some β > 0. In this work, however, we adopt Devaney’s definition [15].

Given a topological dynamical system (X, f ) and β > 0, a point x ∈ X is called β-unstable if, for every
neighborhood U of x, there exist y ∈ U and m ∈N such that

d( f m(x), f m(y)) ≥ β.

The set of all β-unstable points is denoted by Uβ( f ). A map f is β-sensitive if Uβ( f ) = X, and sensitive if this
holds for some β > 0.

Sensitivity reflects the property that initially close trajectories eventually separate by at least β. For
interval maps, Ruette [28] proved that transitivity implies sensitivity, while sensitivity implies transitivity
for an iterate of the map on a subinterval, demonstrating the strong connection between these notions.
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Recurrence is another classical concept in topological dynamics. A point x ∈ X is recurrent (or T-recurrent
for an operator T) if there exists a strictly increasing sequence (km) of positive integers such that

Tkm x −→ x as m→∞.

The operator T is recurrent if for every nonempty open set U ⊂ X, there exists m ∈Nwith

T−m(U) ∩U , ∅.

A map f : X→ X is topologically R-mixing if for every nonempty open set U ⊂ X, there exists M ≥ 0 such
that

f m(U) ∩U , ∅ for all m ≥M.

For interval maps f : [s, t]→ [s, t], it was shown in [11] that f is R-mixing if and only if, for every ϵ > 0 and
every nondegenerate interval K ⊂ [s, t], there exists M such that

[s, s + ϵ] ⊂ f m(K) (resp. [t − ϵ, t]) for all m ≥M.

For additional material on recurrent operators, R-mixing, and related notions in linear and nonlinear
dynamics, we refer the reader to [1–3, 7, 8, 11–14, 16, 19–27]

Outline of the paper. In Section 2, we study R-mixing, accessible endpoints, and the property of being
locally eventually onto (LEO). We prove that a map f : [s, t]→ [s, t] is LEO if and only if both endpoints are
accessible. We also show that if s is the only non-accessible endpoint, then s must be a fixed point; moreover,
if s (resp. t) is non-accessible and fixed, then there exists a decreasing (resp. increasing) sequence of fixed
points (ym)m≥0 converging to s (resp. t), and f |[ym+1,ym] is non-monotone for all m ≥ 0. We also construct a
map on [0, 1] which is R-mixing but not locally eventually onto.

In Section 3, we investigate sensitivity to initial conditions and its links with recurrence and R-mixing.
We prove that R-mixing implies β-sensitivity under appropriate conditions on β. Furthermore, if Uβ( f ) has
nonempty interior, then there exists a recurrent cycle of intervals (I1, . . . , Iq) such that

I1 ∪ · · · ∪ Iq ⊂ Uβ( f ) and |I j| ≥ β for some j ∈ ⟦1, q⟧.

In Section 4, we show that even if all points are β-unstable for some β > 0, the system admits a unique
recurrent cycle of intervals. To illustrate this, we construct a sensitive interval map with exactly one
recurrent cycle of q + 1 intervals.

2. Some properties of R-mixing interval maps

We begin this section by establishing a condition ensuring that an interval map admitting the R-mixing
property must possess a periodic point.

Corollary 2.1. Let f : I→ I be an interval map. If f is topologically R-mixing, then f admits a periodic point of odd
period greater than 1.

Proof. Let I = [s, t] and let

F = {x ∈ I : f (x) = x}

denote the set of fixed points of f . Since a nonempty interior of F would contradict the R-mixing property, the
set F is closed and has empty interior. Consequently, one may choose a closed, nondegenerate subinterval
K ⊂ I such that K contains no fixed point.

Since f is topologically R-mixing, Proposition 2.4 of [11] ensures that there exists an integer M such that

K ⊂ f m(K) for all m ≥M.

Choose an odd integer m ≥M. By Lemma 1.11 of [28], there exists a point x ∈ K satisfying f m(x) = x.
The minimal period of x divides m, and therefore must be odd. Moreover, since K contains no fixed

point, its period cannot equal 1. Thus the period of x is an odd integer greater than 1.
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3. Accessible endpoints and R-mixing

Let f : [s, t]→ [s, t] be an interval map. Recall that f is topologically R-mixing if, for every nonempty open
set K ⊂ [s, t] and every ϵ > 0, there exists M ≥ 0 such that for all m ≥M,

f m(K) ⊃ [s, s + ϵ] (resp. [t − ϵ, t]),

that is, the iterates of every nondegenerate interval K eventually cover arbitrarily large portions of the
interval [s, t].

A natural question is: under what conditions do the iterates of a nondegenerate interval eventually
cover the whole interval [s, t]? As we shall see, this happens precisely when both endpoints s and t are
accessible in the sense of Definition 3.4. The notions of accessible and non-accessible endpoints are discussed
in [9] and further developed in the published paper [10].

Definition 3.1 (locally eventually onto). A topological dynamical system (X, f ) is termed locally eventually
onto (or topologically exact) if, for every nonempty open subset U ⊆ X, there exists an integer M ≥ 1 such that

f m(U) = X for all m ≥M.

Remark 3.2. This property implies that the dynamical system is topologically R-mixing by definition.

Lemma 3.3. Let f : I→ I be an interval map. The following statements are equivalent:

1. f is locally eventually onto.
2. For every ϵ > 0, there exists M ≥ 0 such that any subinterval K ⊂ I with |K| > ϵ satisfies f m(K) = I for all

m ≥M.

Proof. (2) =⇒ (1): Assume (2) holds. Let U ⊂ I be any nonempty open set. Then U contains a nondegenerate
subinterval K. Set ϵ = |K|. By (2), there exists M ≥ 0 such that f m(K) = I for all m ≥ M. Hence f is locally
eventually onto.

(1) =⇒ (2): Suppose f is locally eventually onto. Fix ϵ > 0. Divide I = [s, t] into k equal subintervals

K j =
(
s + j

k (t − s), s + j+1
k (t − s)

)
, j ∈ ⟦0, k − 1⟧,

where k is chosen such that

t − s
k
<
ϵ
2
.

By (1), for each K j, there exists M j ≥ 0 such that f m(K j) = I for all m ≥ M j. Let M = max{M j : 0 ≤ j ≤ k − 1}.
Now, let K ⊂ I be any subinterval with |K| > ϵ. Then K contains at least one of the K j, so for all m ≥ M we
have

f m(K) ⊃ f m(K j) = I,

which proves (2).

Definition 3.4 (accessible endpoint). Let f : [s, t] → [s, t] be an interval map. We say that the endpoint s (resp.
t) is accessible if there exist y ∈ (s, t) and m ≥ 1 such that f m(y) = s (resp. f m(y) = t).

Proposition 3.5. Let f : [s, t] → [s, t] be a topologically R-mixing interval map. The following statements are
equivalent:

1. f is locally eventually onto.
2. Both endpoints s and t are accessible.

More precisely, for every ϵ > 0 and any nontrivial subinterval K ⊂ (s, t):
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• [s, t − ϵ] ⊂ f m(K) for all m ≥M if and only if s is accessible.

• [s + ϵ, t] ⊂ f m(K) for all m ≥M if and only if t is accessible.

Proof. The equivalence (1) ⇐⇒ (2) follows immediately from the definition of locally eventually onto
together with the definition of accessible endpoints, so we focus on the refined statements.

Assume first that s is accessible. Then there exist y0 ∈ (s, t) and m0 ≥ 1 such that f m0 (y0) = s. Fix ϵ > 0
small enough so that y0 ∈ [s+ ϵ, t− ϵ]. By the R-mixing property (Proposition 3.4 in [11]), there exists M ≥ 0
such that

[s, s + ϵ] ⊂ f m(K) for all m ≥M.

Since y0 ∈ [s + ϵ, t − ϵ] and f m0 (y0) = s, the intermediate value theorem gives

[s, t − ϵ] ⊂ f m+m0 (K) for all m ≥M.

Conversely, suppose that for some ϵ > 0 and some m ≥ 1 we have

[s, t − ϵ] ⊂ f m(K).

Then, in particular, s ∈ f m(K). As s < K, there exists y ∈ K such that f m(y) = s; hence s is accessible. The
argument for the endpoint t is entirely similar.

In the next lemma we show that, near a non-accessible endpoint, an R-mixing map exhibits infinite
oscillatory behavior: if an endpoint is not accessible, its neighborhood contains infinitely many fixed points
accumulating at the endpoint, and the map fails to be monotone on each interval between consecutive fixed
points.

Lemma 3.6. Let f : [s, t]→ [s, t] be a topologically R-mixing interval map.

1. If s (resp. t) is the unique non-accessible endpoint, then it is a fixed point. If both s and t are non-accessible,
then either f (s) = s and f (t) = t, or f (s) = t and f (t) = s.

2. If s (resp. t) is a fixed non-accessible endpoint, then there exists a decreasing (resp. increasing) sequence of fixed
points (ym)m≥0 converging to s (resp. t). Furthermore, for all m ≥ 0, the restriction f |[ym+1,ym] is not monotone.

Proof. 1. Assume that s is not accessible, so that s < f ((s, t)). Since f is topologically R-mixing, Lemma 3.5
of [11] implies that f is onto. Therefore, either f (s) = s or f (t) = s. If t is accessible and f (t) = s, then
s would be accessible, a contradiction. Thus, if s is the only non-accessible endpoint, then f (s) = s.
By a similar argument, if t is the only non-accessible endpoint, then f (t) = t. If both s and t are
non-accessible, then either f (s) = s and f (t) = t, or f (s) = t and f (t) = s.

2. Suppose that s is a fixed non-accessible endpoint, i.e. f (s) = s and s < f ((s, t)). Fix ϵ ∈ (0, t − s). By R-
mixing, we cannot have f ([s, s+ ϵ]) ⊂ [s, s+ ϵ] (otherwise one obtains a forward invariant subinterval,
contradicting R-mixing). Hence, there exists z ∈ (s, s + ϵ] such that f (z) ≥ s + ϵ.
If f (x) ≥ x for all x ∈ [s, t], set

y = min
{
z, min f ([z, t])

}
.

Then f ([y, t]) ⊂ [y, t], again contradicting the R-mixing property. Therefore, there exists x ∈ [s, z] such
that f (x) < x. By Lemma 1.11 in [11], there is a fixed point in [x, z]. Let y0 be such a fixed point, and
choose ϵ arbitrarily small to construct a decreasing sequence (ym)m≥0 of fixed points converging to s.
Finally, suppose that for some m the restriction f |[ym+1,ym] were monotone. Then f ([ym+1, ym]) would
be the interval [ym+1, ym], giving a nontrivial forward-invariant subinterval, again contradicting R-
mixing. Hence f |[ym+1,ym] is not monotone for all m ≥ 0.
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Remark 3.7. Lemma 3.6 shows that if s is a non-accessible endpoint which is not fixed, then by (1) we have f 2(s) = s,
so statement (2) applies to the map f 2.

The following result states that the type of behavior described in Lemma 3.6(2) cannot occur if f is
piecewise monotone or C1. The case of piecewise monotonicity is discussed in [12]. Recall that f is piecewise
monotone if the interval can be divided into finitely many subintervals on each of which f is monotone (see
[28, p. 5] for more details).

Proposition 3.8. Let f : [s, t]→ [s, t] be a topologically R-mixing interval map. If f is either piecewise monotone or
C1, then the endpoints s and t are accessible. Consequently, f is locally eventually onto.

Proof. Suppose that s is not accessible. Then, by Lemma 3.6(1), f 2(s) = s. Set 1 := f 2. Since f is topologically
R-mixing, so is 1.

If f is C1, then 1 is C1 as well. Since 1(s) = s, the case 1′(s) < 0 is impossible (it would force nontrivial
intervals to be strictly repelled from s in one direction), and if 1′(s) = 0 then, as 1 is R-mixing, one obtains
a contradiction from the existence of a small neighborhood on which 1(x) ≤ x or 1(x) ≥ x. Thus we must
have 1′(s) > 0, so 1 is increasing in a neighborhood of s.

If instead f is piecewise monotone, then 1 is also piecewise monotone, and there exists r ∈ (s, t) such
that 1|[s,r] is increasing.

In both cases, there exists r ∈ (s, t) such that 1 is increasing on [s, r]. However, Lemma 3.6(2) applied to 1
ensures the existence of two distinct points y < z in (s, r) such that 1|[y,z] is not monotone, which is impossible
since 1 is increasing on [s, r]. This contradiction shows that s must be accessible. A similar argument applies
at t, hence both endpoints are accessible. By Proposition 3.5, f is locally eventually onto.

Remark 3.9. Proposition 3.8 remains valid if the R-mixing map f is either monotone or C1 only in a neighborhood
of the two endpoints.

Example 3.10. We build a continuous map f : [0, 1] → [0, 1] which is topologically R-mixing but not locally
eventually onto. This example, adapted from [4], illustrates the existence of R-mixing maps with non-accessible
endpoints.

Consider a bi-infinite sequence (tn)n∈Z in (0, 1) with tn < tn+1 for all n ∈ Z and

lim
n→−∞

tn = 0, lim
n→+∞

tn = 1.

Define intervals In := [tn, tn+1] for each n ∈ Z. For each n, construct a piecewise linear map

fn : In → In−1 ∪ In ∪ In+1

such that

fn(tn) := tn, fn(tn+1) := tn+1,

fn
(2tn + tn+1

3

)
= tn+2, fn

( tn + 2tn+1

3

)
= tn−1,

and fn is linear between these points.
Define the global map f by

f (0) = 0, f (1) = 1, and f (y) = fn(y) for all y ∈ In.

It is straightforward to check that f is continuous. Moreover, there is no y ∈ (0, 1) and m ≥ 1 such that f m(y) ∈ {0, 1},
so 0 and 1 are non-accessible endpoints. Hence f is not locally eventually onto by Proposition 3.5.

We now show that f is R-mixing. Let K ⊂ [0, 1] be any nontrivial interval. By the 3-expanding property
(Lemma 2.10 in [28]), there exists n ≥ 0 such that f n(K) contains at least two critical points of f , and therefore

f n+1(K) ⊃ I j for some j ∈ Z.
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Iterating further, for all m ≥ 0 we have

f m(I j) ⊃ [t j−m, t j+m+1].

As m→∞, these intervals expand and converge to [0, 1] in the sense that for every ϵ > 0, there exists M such that

f m(K) ⊃ [0, ϵ] ∪ [1 − ϵ, 1] for all m ≥M.

By definition, this implies that f is topologically R-mixing.

4. Links between recurrence, R-mixing and sensitivity

In simple terms, sensitivity to initial conditions means that there exist points arbitrarily close to each
other whose trajectories eventually separate by at least a fixed amount. We shall show that, for interval
maps, recurrence implies sensitivity. This demonstrates that the notions of recurrence and sensitivity are
closely related on the interval.

Definition 4.1 (unstable point, sensitivity to initial conditions). Let (X, f ) be a topological dynamical system
and ϵ > 0. A point x ∈ X is ϵ-unstable (in the sense of Lyapunov) if, for every neighborhood U of x, there exists
y ∈ U and n ≥ 0 such that d( f n(x), f n(y)) ≥ ϵ. The set of all ϵ-unstable points is denoted by Uϵ( f ). A point is
unstable if it is ϵ-unstable for some ϵ > 0.

Definition 4.2. Let (X, f ) be a topological dynamical system and ϵ > 0. The map f is called ϵ-sensitive to initial
conditions (or simply ϵ-sensitive) if Uϵ( f ) = X. The map is sensitive to initial conditions if it is ϵ-sensitive for
some ϵ > 0.

4.1. Sensitivity and recurrence

Proposition 4.3. Let f : I→ I be an interval map. Then:

• If f is topologically R-mixing, then f is β-sensitive for all β ∈ (0, |I|2 ).

Proof. Let I = [s, t] and assume that f is topologically R-mixing. Fix ϵ ∈ (0, |I|2 ), and let y ∈ [s, t] and V be a
neighborhood of y. By Proposition 3.3 of [11], there exists m ≥ 0 such that

[s, s + ϵ] ⊂ f m(V) or [t − ϵ, t] ⊂ f m(V).

Thus there exist x, z ∈ V with f m(x) = s + ϵ and f m(z) = t − ϵ. Hence

max
{
| f m(y) − f m(x)|, | f m(y) − f m(z)|

}
≥

(t − s) − 2ϵ
2

=
|I|
2
− ϵ.

Thus y is β-unstable with β := |I|2 − ϵ. Since ϵ is arbitrary, the result follows.

The converse of Proposition 4.3 is false in general. However, somewhat surprisingly, a partial converse
holds: instability on a subinterval guarantees the existence of a recurrent cycle of intervals.

Proposition 4.4. Let f be an interval map. Suppose that, for some ϵ > 0, the set Uϵ( f ) of ϵ-unstable points has
nonempty interior. Then there exists a cycle of intervals (K1, . . . ,Kq) such that f |K1∪···∪Kq is recurrent. Moreover,

K1 ∪ · · · ∪ Kq ⊂ Uϵ( f ) and ∃ j ∈ ⟦1, q⟧ such that |K j| ≥ ϵ.
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Proof. Define the family

F :=
{
X ⊂ Uϵ( f ) : X closed, f (X) ⊂ X, Int(X) , ∅

}
.

Since Uϵ( f ) contains a nonempty open interval J, Lemma (iii) of [28] implies f m(J) ⊂ Uϵ( f ) for all m ≥ 0.
Define

X̃ :=
⋃
m≥0

f m(J).

Then X̃ ∈ F, so F , ∅.
Let X ∈ F and let K ⊂ X be a nondegenerate interval. Since Int(X)∩Uϵ( f ) , ∅, Lemma (v) of [28] ensures

that there exists m ≥ 0 such that | f m(K)| ≥ ϵ. Thus:

Every X ∈ F has a connected component C with |C| ≥ ϵ. (1)

Equip F with the partial order ⊂. Given a totally ordered subfamily {Xα}, put

X =
⋂
α

Xα.

Then X is closed, forward invariant ( f (X) ⊂ X), contains a connected component of length≥ ϵ by Lemma (v)
of [28], and satisfies Int(X) , ∅. Thus X ∈ F. By Zorn’s lemma, F has a minimal element Y.

Now Y has at least one connected component J j of length ≥ ϵ. By Lemma (v) of [11], repeated iteration
yields an m j ≥ 1 such that f m j (J j) ⊂ J j. More generally, the image of J j must fall into some Jτ j . Since the total
number of components is finite, there exist i,n with f n(J j) ⊂ Ji. Set:

Y′ =
n⋃

m=0

f m(J j).

Then Y′ ∈ F and Y′ ⊂ Y. By minimality of Y, we get Y′ = Y.
Hence Y has finitely many connected components I1, . . . , Iq, cyclically permuted by f :

f (I j) = I j+1, j ∈ ⟦1, q − 1⟧, f (Iq) = I1.

To show recurrence, suppose for contradiction that f |Y is not recurrent. Then there exists an open set
V ⊂ Y such that

f m(V ∩ Y) ∩ (V ∩ Y) = ∅ ∀m ≥ 0.

Let I ⊂ V ∩ Y be a nonempty open interval and define

Z :=
⋃
m≥0

f m(I).

Then Z ∈ F and Z ⊂ Y, yet Z ∩ V = ∅, contradicting the minimality of Y. Hence f |Y is recurrent.

Example 4.5. We construct a sensitive interval map with a unique recurrent cycle of intervals. Even when a map
has ϵ > 0 such that every point is ϵ-unstable, the union of its recurrent cycles of intervals need not be dense. We
illustrate this by constructing a sensitive interval map with exactly one recurrent cycle of q + 1 intervals.

Fix q ≥ 1. Define

y j :=
j

2q + 1
, j ∈ ⟦0, 2q + 1⟧, I j := [y j, y j+1], j ∈ ⟦0, 2q⟧.
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Define a continuous map f : [0, 1]→ [0, 1] by

f (y0) := y3, f
( y0 + y1

2

)
:= y2, f (y1) := y3,

f (y2q−1) := y2q+1, f (y2q) := y0, f (y2q+1) := y1,

and extend linearly between these points. On [y1, y2q−1], f has slope 1 and satisfies f (y j) = y j+2 for all j ∈ ⟦1, 2q−1⟧.
All points are ϵ-unstable for ϵ = 1

8(2q+1) , but the system has exactly one recurrent cycle of intervals:

(I0, I2, . . . , I2q).

The cycle C = I0 ∪ I2 ∪ · · · ∪ I2q is recurrent because f q+1
|I0 is conjugate to an inverted rescaled tent map T2 ([28]),

and by Proposition 4.3 f q+1
|I0 is β-sensitive with β := 1

2(2q+1) . Hence C ⊂ Uβ( f ).

We show f is β4 -sensitive.

Case 1: the orbit of y meets the cycle C. Assume f m(y) ∈ C for some m. The recurrence of C implies the existence
of ϵ0 > 0 such that either

f m([y, y + ϵ0]) ⊂ C or f m([y − ϵ0, y]) ⊂ C.

For any ϵ ∈ (0, ϵ0], f m([y − ϵ, y + ϵ]) contains a nondegenerate subinterval of C. By β-sensitivity on C there exist
k ≥ m and x, z ∈ [y − ϵ, y + ϵ] with

| f k(x) − f k(z)| ≥ β.

Consequently,

max{| f k(y) − f k(x)|, | f k(y) − f k(z)|} ≥
β

2
.

Thus ⋃
n≥0

f−n(C) ⊂ Uβ/2( f ). (1)

Case 2: the orbit of y never meets C. Define

Y :=
⋂
m≥0

f−m
(q−1⋃

j=0

I2 j+1

)
.

We claim that Y is a Cantor set (see [28] for the definition). On each odd interval I2 j+1, f is a linear homeomorphism:

f |I2 j+1 : I2 j+1
∼
−→ I2 j+3 ( j < q − 1), f |I2q−1 : I2q−1

∼
−→ [0, 1].

Hence the set of y ∈ I j such that f q− j+1(y) lies in I1 ∪ I3 ∪ · · · ∪ I2q−1 is a union of q disjoint closed intervals of equal
length. Iterating this argument constructs Y as a Cantor set: closed, nowhere dense, perfect, with empty interior.

Thus [0, 1] \ Y = [0, 1]. By (1) and the density lemma (Lemma (iv) of [28]), f is β4 -sensitive.
Finally, suppose there existed another recurrent cycle C′. Since C and C′ are disjoint, there would exist a

nondegenerate interval I such that f m(I) ∩ C = ∅ for all m, so I ⊂ Y. But Y is a Cantor set (no intervals), a
contradiction. Thus C is the unique recurrent cycle of f .
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