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Abstract. Let S C R be a multiplicatively closed subset of a ring R. We extend several results on integral
domains to their S-versions and establish the S-version of Krull intersection theorem. We also show that

if R is an S-field, then the localization of R with respect to S is a ¢(S)-field, where ¢(S) = {%I se S} is a

multiplicatively closed subset of S7!R, and prove the converse under the condition of finiteness of S. As a
consequence, we show that every finite S-integral domain is an S-field. Also, we provide several examples
to illustrate the significance of our findings.

1. Introduction

Throughout, R denotes a commutative ring with unity, and S C R denotes a multiplicatively closed
subset. The concept of Noetherian modules significantly simplifies the study of ring and module structures.
The concepts of S-principal ideal rings and S-Noetherian rings, which are extensions of principal ideal rings
and Noetherian rings, were first presented by Anderson and Dumitrescu [5] in 2002. They established S-
versions of well-known results for Noetherian rings, along with an S-version of the Eakin-Nagata theorem.
A ring R is defined as an S-Noetherian ring if every ideal of R is S-finite. This means that for every
ideal I in R, there exist s € S and a finitely generated ideal | of R such that sI € J € I. In 2020, Sevim
et al. [16] extended the framework of Artinian rings by introducing the concept of S-Artinian rings. A
ring R is called S-Artinian if for every descending chain of ideals 71 2 7, 2 --- 2 I, 2 -+ of R, there
exist s € S and k € IN such that s7; C I, for all n > k. Several authors generalized numerous significant
properties of Noetherian and Artinian rings to S-variant such as S-prime ideals, S-strong Mori domains,
5-Noetherian properties on amalgamated algebras along an ideal, S-reduced modules, S-cogenerated rings,
and S-primary decomposition (see [1], [3], [4], [12], [13], [15], [16], [19], and [21]). Recently, Ersoy et al.

[10] introduced S-version and S-generalizations of idempotent elements, pure ideals, and gave S-version
of Stone type theorems.
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Integral domains are interesting algebraic structures that possess numerous characteristics analogous
to those of the ring of integers. A significant characteristic is the absence of zero divisors, which ensures a
consistent and precise arithmetic structure. This makes them essential in number theory for the study of
divisibility, prime factorization, and Diophantine equations. In algebraic geometry, integral domains are
associated with coordinate rings of irreducible varieties, which allow us to analyze geometric objects. In
2020, Yildiz et al. [22] introduced the concept of S-integral domain with respect to a multiplicatively closed
set S, which is one of the most interesting generalizations of the integral domains. A ring R is said to be an
S-integral domain if there exists an s € S such that for all 4,b € R, whenever ab = 0, then either sa = 0 or
sb = 0. This approach allows one to generalize the classical integral domain and study algebraic structures
where certain elements of the ring are invertible or have special behaviour due to the presence of S. The
notion of S-integral domains is essential in the analysis of the localization of rings and modules and in
algebraic geometry. By focusing on particular multiplicative closed subsets, we gain greater flexibility in
analyzing the structure of rings in various mathematical settings.

In the first part of the paper, we extend several results from the integral domain to the S-integral domain.
We present the idea of the S-cancellation property in a ring (see Definition[2.4) and prove that S-cancellation
property holds in a ring if and only if the ring is an S-integral domain (see Proposition[2.7). Additionally,
we establish that the localization of a ring R with respect to S is an S-integral domain if R is an S-integral
domain; however, the converse is not generally true (see Example[2.9). Under some assumptions, we prove
the converse. In an integral domain, the only idempotent elements are 0 and 1; however, an S-integral
domain can have additional S-idempotent elements (see Example 2.16). Moreover, we give sufficient
conditions on an integral domain to be an S-Noetherian ring (see Theorem 2.25).

Fields are important algebraic structures that serve as a domain for exploration in various areas, in-
cluding polynomial theory, algebraic geometry, coding theory, and cryptography. In the second part of this
paper, we examine the concept of S-fields, which extend the idea of fields as introduced by E. Yildiz et al.
[22] in 2020. Precisely, a ring R is called an S-field if its zero ideal is an S-maximal ideal (see Definition
B.3). Extending the concept of modules over rings to modules over S-fields is an interesting and important
problem. Such a generalization naturally encompasses vector spaces as a special case, thereby enriching
and extending the classical framework. In doing so, it provides a foundation for the systematic analysis
of algebraic structures within commutative algebra from a new perspective. Moreover, this extension is
not merely of theoretical interest; it opens promising directions for applied research, particularly in areas
such as coding theory, cryptography, and related areas where the interplay between vector spaces and
field theory plays a foundational role. In this work, we extend several fundamental properties of fields to
S-fields and give a characterization of S-fields. We define S-proper ideals of a ring (see Definition[3.7) and
prove that a ring is an S-field if and only if it has no S-proper ideal. We also provide the characterization
of S-maximal and S-prime ideals of a ring in connection with S-fields (see Proposition [3.9|and Theorem
B.13). Additionally, we investigate the localization of a ring with respect to a multiplicatively closed set S
and determine the conditions under which the localization of a ring becomes a ¢(S)-field. As a corollary,
we show that every finite 5-integral domain is an S-field. The Krull intersection theorem is a cornerstone
in the theory of commutative Noetherian rings, providing deep insight into the structure and stability of
ideals under infinite intersections. Building upon this classical framework, we present an S-analogue of
this classical result, which we call the S-Krull intersection theorem (see Theorem [4.5).

2. On S-integral domains

In this section, we first provide an example of an S-integral domain which is not an integral domain and
demonstrate that if R is an S-integral domain, then the localization S™'R is an integral domain. However,
the converse does not necessarily hold. We characterize the S-idempotent and S-nilpotent elements in
S-integral domains. Then we prove that if R is an integral domain and each non-S-radical ideal is S-finite,
then R is an S-Noetherian ring.

Definition 2.1. [22] A ring R is said to be an S-integral domain if there exists s € S such that for all a,b € R,
whenever ab = 0, then either sa = 0 or sb = 0.
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Let S; € S, be two multiplicatively closed subsets of R. Then every S;i-integral domain is also an S;-integral
domain. Following [22], we observe that every integral domain is an S-integral domain but the converse
does not necessarily hold.

Example 2.2. Take R = Z, S = {1,2,4}. Then R is an S-integral domain but not an integral domain. To see this,
let a,b € R\ {0} with ab = 0. Then either a = 2 or 4 and b = 3. Setting s = 2 € S, we have sb = 0. Therefore, R is an
S-integral domain.

Example 2.3. Let R = Z3, S =11,

,4,8,16). It is clear that R is not an S-integral domain, since 5 -6 = 0, but for
any s € S, neithers-5=0nors-6=0.

Definition 2.4. A ring R is said to have the S-cancellation property if for all a,b,c € R with sa # 0 for everys € S
and ab = ac, then sb = sc for some s € S.

With this definition, we can extend the cancellation property of the integral domain for the S-integral
domain. In the following examples, we describe the S-cancellation property.

Example 2.5. Let R = Z5, S = {1,3,9). Fora = 2, observe that sa # 0 forall s € S. Tuke b = 4 and ¢ = 10 in R,
then ab = ac = 8. Note that sb # sc for all s € S. Therefore R does not have the S-cancellation property.

Example 2.6. Consider R = Z5, S = {1, 6}. Fora,b,c € R, ifab = acand sa + 0 for all s € S, then sb = sc for
s =6 € S. In particular, fora = 3,b =7 and ¢ = 2, we have sa # 0 for all s € S and ab = ac = 6. This implies that

sb=sc=12fors=6.
Proposition 2.7. A ring R is an S-integral domain if and only if the S-cancellation property holds in R.

Proof. Suppose R is an S-integral domain. Leta, b,c € Rbe such thatsa # 0 for all s € S and ab = ac. Then, by
definition of the S-integral domain, sa = 0 or s(b — ¢) = 0 for some s € S. Also, sa # 0 for all s € S. Therefore
s(b—c) =0, i.e., sb = sc. Hence the S-cancellation property holds in R.

Conversely, letab = 0. If sa = 0 for some s € S, we are done. If sa # 0 foralls € S, thenab =0 = a0, then
by the definition of S-cancellation, sb = s -0 = 0 for some s € S. Hence R is an S-integral domain. [

Recall from [3], an ideal P (which is disjoint with S) of R is called an S-prime ideal if there existsans € S
such that for any a,b € R with ab € P, we have either sa € P or sb € P. It is clear that every prime ideal is an
S-prime, but converse does not hold in general (see [3, Example 1(3)]).

Lemma 2.8. [8] A ring R is an S-integral domain if and only if (0) is an S-prime ideal.

Proposition 2.9. [8] Let P be an ideal of R disjoint from S. Then P is an S-prime ideal of R if and only if R/P is an
S-integral domain, where S = {s + P | s € S} is a multiplicatively closed subset of R/P.

Recall that R is an integral domain if and only if R[X] is an integral domain. We extend this result for
S-Integral domain.

Proposition 2.10. R[X] is an S-integral domain if and only if R is an S-integral domain.

Proof. Let P be an ideal of R which is disjoint with S, the fact that (P[X] :rx] s) = (P :r s)[X] and R[X]/(P :r
s)[X] = (R/(P :r s))[X] for some s € S. According to [3 Proposition 1], P[X] is an S-prime ideal of R[X] if
and only if (P[X] :gxy 5) = (P :r s)[X] is a prime ideal of R[X], if and only if (P :r s) is a prime ideal of R if
and only if P is an S-prime ideal of R. In particular if P = (0), then (0) is an S-prime ideal of R if and only if
(0) is an S-prime ideal of R[X]. Thus R[X] is an S-integral domain if and only if R is S-integral domain. [

Proposition 2.11. Ifa ring R is an S-integral domain, then S™'R is an integral domain.
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Proof. Suppose R is an S-integral domain. Let u_ uﬁ € S7IR be such that u_ b =0, where a,f € R and
1
u1,up € S. Then there exists s € S such that saf = 0in R. Since R is an 5- mtegral domam there existsu € S
u
such that either usa = 0 or up = 0. If usa = 0, then T Similarly, if uf = 0, then b = il =0
U usuy Uy Uy

Therefore S™'R is an integral domain. [J

Recall from [7], let M be an R-module. The idealization of R-module M, R(+)M = {(r,m) | r € R,m € M}
is a commutative ring with component wise addition and the multiplication defined by (a1, m1)(a2, my) =
(a1, a1my + apmy) for all aq, ax € R and my, mp € M. It is straightforward to verify that S(+)M = {(s, m) |
s € S,m € M} forms a multiplicative closed set in R(+)M.

The following example shows that even if the localization SR is an integral domain, it does not
guarantee that R is an S-integral domain.

Example 2.12. Let E = @pep Z[pZ, where P is the set of all prime numbers. Define R = Z(+)E and S =
(Z \ {0)(+)(0). According to [11, Example 3.12], the localization SR = Q, which is a field and therefore is an
integral domain. Contrary, suppose that R is an S-integral domain, (0) is an S-prime ideal of R. Consequently, there
exists s € S such that for each o, € R if ap = 0, then either sa = 0 or sp = 0. Take s = (n,0). Since for every q € E,
(0,9)* = (0,0), then there exists (n,0) € S such that (n,0)(0,9) = (0,0). It follows that nq = 0, for n € Z.\ {0}. This
implies nlE = 0 which is not possible. Therefore R is not an S-integral domain.

Theorem 2.13. Suppose S is finite subset of a ring R. Then R is an S-integral domain if and only if S™'R is an
integral domain.

Proof. If R is an S-integral domain, then SR is an integral domain, follows from Proposition Con-

b b
versely, let a,b € R be such that ab = 0. Consequently, &L a2 € S7IR, where s’,s” € S. Then 2 _ 0
SISI/ Sl SI/ s/

b a
or i 0 since S7!R is an integral domain. If 5= 0, then there exists 1; € S such that u;a = 0. Further, if

b
i 0, then there exists u, € S such that uyb = 0. Since S is finite, define u = [],cs ¢, thenua =0orub =0

Hence R is an S-integral domain. [J

Example 2.14. Consider R=27.xQ, S =1{(1,1), (0,1)}. Evidently, R is not an integral domain. Let o, f € R such
that a = (x,u) and p = (y,v), where x,y € Z and u,v € Q. Now, if a - = (xy,uv) = (0,0), then it follows that
xy = 0and uv = 0. This implies that either x = 0 or y = 0 and either u = 0 or v = 0 since Z and Q are integral
domains. Therefore there are two possibilities for a and B, if « = (x,0), then p = (0,v). Further, if @ = (0, u), then
B = (y,0). Takes = (0,1) € S. Then either s = 0 or sp = 0. Thus R is an S-integral domain, and hence by Theorem
i S7IR is an integral domain.

In 2024, Ersoy et al. [10], introduced the concept of S-idempotent elements of a ring R. In this work, we
identify the class of S-idempotent elements in an S-integral domain.

Definition 2.15. [10] An element a € R is called S-idempotent if a> = s - a for some s € S.
Observe that every idempotent element is S-idempotent, but converse may not be true.

Example 2.16. Let R be any ring. We take R X Z = {(r, m) | r € R, m € Z}. Then define addition coordinate wise
and multiplication as follows:
(r, m)(s, n) = (rs + sm + nr, mn).

It is easy to verify that R X Z is a commutative ring with identity (0, 1). Consider S = {0} X Z*, where Z* = Z.\ {0}.
Let (0, a) € Rx Z, wherea € Z\ {0,1}. Then (0, a)*> = (0, a?) ;t (0, a) for a® # a, that is, (0, a) is not an idempotent
element, but (0, a)* = s(0, a) for s = (0, a) € S. Therefore (0, a) is an S-idempotent element of R X Z.

Definition 2.17. [10] Let y be an element of a ring R. Then we have the following:
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1. Ifsy" = 0 for some s € S and n € IN, then y is called S-nilpotent.
2. If sy = 0 for some s € S, then y is called S-zero. Note that 0 is also an S-zero element.

Definition 2.18. An element a € R is said to be S-non-zero if sa # 0 for all s € S.

Definition 2.19. [15] A ring R is said to be S-reduced, if r" = 0, where v € R, and n € IN, then there exists s € S
such that sr = 0.

Notion of S-reduced ring [15], which is a proper generalization of reduced ring was first presented by A.
Pekin et al. in 2020. The S-version results for the S-integral domain is shown below.

Theorem 2.20. Let R be an S-integral domain. Then we have the following:

1. R does not possess any S-non-zero S-nilpotent element.
2. If SN Z(R) = 0, then non-zero S-idempotent elements of R must be elements of S.
3. Ris an S-reduced ring.

Proof.

1. Suppose there exists r € R such that sr # 0 for all s € S, i.e. r is an S-non-zero and it is an S-nilpotent.
Then there exists t € S such that ##* = 0 for some n € IN. Since R is an S-integral domain, there exists
s’ € S such that s’r = 0, a contradiction, as sr # 0 for all s € S. Hence the result.

2. Let a € R be S-idempotent, so that a> = sa for some s € S. This implies that a(a — s) = 0, then there
exists t € S such that either ta = 0 or t(a — s) = 0, since R is an S-integral domain. Consequently, either
a=0ora=ssince SN Z(R) =, as desired.

3. Suppose R is an S-integral domain. Leta € R, and a" = 0 for some 1 € IN. Then there exists s" € S such
that s’a = 0 since R is an S-integral domain. Therefore R is an S-reduced ring.

|

Note that the converse may not be true for Theorem 3).

Example 2.21. Consider a ring R = Z, X Zy X --+ X Z, X --- (countably infinite copies of Z,), where p is
prime. Then R is an S-reduced ring, for R has no non-zero nilpotent elements. Consider a multiplicative set
S={1x=(1,1,1,..),s=(1,1,0,..)}. Leta=(1,0,1,0,...)and b =(0,1,0,1,...) € R. Thenab = (0,0,...), but
neither sa = (0,0,...) nor sb = (0,0,...) forall s € S. Therefore R is not an S-integral domain.

In general, an integral domain need not be an S-Noetherian ring. We now present an example of an
integral domain that is not S-Noetherian.

Example 2.22. Let R = Z + XQ[X] and S = {+1, =1} be multiplicatively closed set of R. Clearly, R is an integral
domain. Consider R[Y] which is not Noetherian so is not S-Noetherian.

This leads to a natural question:
Question 2.23. When is an integral domain, an S-Noetherian ring?

The answer to the above question is given in Theorem 2.25 using S-radical ideals.

Definition 2.24. [18) Definition 2.1] Let S C R be a multiplicatively closed set, and I be an ideal of R. Then S-radical
of 1 is defined by
VI = {aeR|sa" €l forsomeseSandn e N}

Also, if \T =1, then I is said to be an S-radical ideal of R.

Theorem 2.25. If every non-S-radical ideal of an integral domain R is S-finite, then R is an S-Noetherian ring.
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Proof. We show that every proper ideal of R is S-finite. If I NS # @, then there exists t € S such that ¢ € ],
then tI C | C I, where | =< t > is the ideal generated by ¢. Hence I is an S-finite. Assume that [ # (0) and
INS =0. Fors € S, there exists 0 # x; € I such that sx; # 0. As x; € I, but sx; ¢ x;I, for this, if sx; € x,I, then
sx; = xsi for some i € I but by the cancellation property this implies s = i € I, which is not possible since
INS = 0. Thus sxs ¢ xI, but sx? € sx;I C x;I. This implies that x,! is a non-S-radical, so x,[ is an S-finite.
Now, define an R-module homomorphism ¢; : I — x,I by ¢s(j) = xsj for all j € I. Then

kerps={yel|ps(y) =xy=0}={yellxs,=00ry=0}.

Since R is an integral domain, ker ¢; = {0}. Hence ¢; is injective. Next, if a € x;I, then a = x,i for some i € |
such that ¢s(i) = xsi = a. Thus ¢ is surjective, and hence ¢, is an R-module isomorphism, i.e., x,I = I as
R-module. Therefore I is an S-finite, and hence R is an S-Noetherian ring. [

In the context of Theorem the following question arises, which we leave open for future study.

Question 2.26. Suppose every non-S-radical ideal of an S-integral domain is S-finite. Is R S-Noetherian?

3. Characterization of S-field

In this section, we extend the concept of a field to an S-field. We introduce the notion of S-proper ideals
in R and establish results analogous to those in fields. First, we recall definitions of S-maximal ideal and
S-field from [22] 23], and provide several examples.

Definition 3.1. [23] Definition 2.2] An ideal I C R (disjoint from S) is called an S-maximal ideal if there exists s € S
such that for any ideal | of R with I C ], then either s CIor [NS # 0.

It is evident that every maximal ideal of R qualifies as an S-maximal ideal for any multiplicatively closed
set S in R. However, the converse does not hold.

Example 3.2. Consider R = Zg, S = {1,2,4}. The zero ideal (0) is not a maximal ideal in R. The proper ideals of R
are [y = 2Z¢ and I = 3Z. Since zero ideal (0) C I and , NS # 0, and (0) C I, then fors =2 € S, sl C (0). Then
(0) is an S-maximal ideal.

Definition 3.3. [22] Definition 9] A ring R is said to be an S-field if the zero ideal (0) is an S-maximal ideal of R.

Note that every S-field is an S-integral domain, and every field is an S-field for any multiplicatively closed
set S C R but the converse is not true.

Example 3.4. Let R = Z, S = {2/| i € N}. Then R is an S-integral domain since R is an integral domain. But R is
not an S-field. For this, (0) C I, where I = 37 is an ideal of R. Observe that I NS = 0 and there does not exist any
s € S such that sI C (0).

Example 3.5. Let R = Z, S = Z\ {0}. Then for any ideal I of R, IN'S # O and the ideal (0) is an S-maximal. Hence
R is an S-field.

Example 3.6. Consider the ring R = Z, and let S = {m' | i € IN U {0}} be a multiplicatively closed subset of R,
where m, n are distinct prime numbers. The proper ideals of R are Iy = mZyy and I = nZyy. As zero ideal (0) C Iy
and; NS # 0, and (0) C I, then for s = 1 € S, sl C (0). Then (0) is an S-maximal ideal but not a maximal. Thus
R is an S-field but not a field.

Definition 3.7. An ideal I C R is said to be an S-proper ideal if INS = @ and sI # 0 for all s € S.

Observe that every S-proper ideal is a proper ideal, but a proper ideal of R need not be an S-proper ideal.
For instance, in Example theideal I = mZ,,, is a proper ideal but not an S-proper ideal since SN1; # 0.
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Proposition 3.8. A ring R is an S-field if and only if it has no S-proper ideal.

Proof. Assume R is an S-field and I is a non-zero ideal of R. Then (0) is an S-maximal ideal and (0) C I,
therefore, INS # @ or sI € (0) for some s € S. Thus I is not S-proper. Conversely, suppose R has no S-proper
ideals. If I is not an S-proper ideal, then by definition, INS # @ or sI = (0) for some s € S. Thus (0) is an
S-maximal ideal. [

Proposition 3.9. An ideal M C R such that MN'S = 0 is an S-maximal if and only if R/M is an S-field, where
S ={s + M| s € S} is a multiplicatively closed subset of R/M.

Proof. Suppose M is an S-maximal ideal of R. Then, by Definition R/M is an S-field.

Conversely, assume that R/M is an S-field. Let M C M’ for some ideal M’ of R. As M’/M is an ideal of
R/M containing M. By Proposition M’ /M is not an S-proper ideal of R/M. Then there are two cases:
Case 1: If (M’ /M) N S # 0, then there exists 5 € S such that 5 € M’ /M. This implies thats+ M € M'/M,s € M’
since M NS = 0. Thus M’ NS # 0, and hence M is an 5S-maximal ideal of R.

Case 2: If SM’ /M C M, the zero ideal of R/M for some 5 € S. This implies that (s+ M)M'/M € M, sM’ /M C M.
Thus sM’ C M, and therefore M is an S-maximal ideal of R. [

Corollary 3.10. If ¢ is a surjective homomorphism from a ring R to an S-field F, then ker¢ is an S-maximal ideal of
R

A ring R with x> = x for all x € R is called a Boolean ring. In Boolean rings, every prime ideal is maximal.
We extend this result to S-version in the next Proposition.

Proposition 3.11. Every S-prime ideal is an S-maximal ideal in a Boolean ring R.

Proof. Let P C R be an S-prime ideal and P C Q with QNS = 0, where Q is an ideal of R. We show that
sQ C P for some s € S. Let x € Q. Then x*r = xr for all r € R. Consequently, x(xr — r) = 0 € P, then there
exists s € S such that sx € P or s(xr —r) € P. If s(xr —r) € P, sxr — sr = p for some p € P. This implies that
sr=sxr—p € Qsince x € Qand P € Q. Consequently, sR € Q. Then s € Q, which is not possible since R has
unity and SN Q = 0. Thus sx € P, sQ C P. Hence P is an S-maximal ideal of R. [J

Corollary 3.12. Let R be a Boolean ring, and P be an S-prime ideal of R. Then R/P is an S-field, where S = {s + P |
s € S} is a multiplicatively closed set of R/P.

Theorem 3.13. Let R be an S-Artinian ring, and P be an S-prime ideal of R. Then R/P is an S-field, where

S ={s + P |s € S} is a multiplicatively closed subset of R/P.

Proof. Let R be an S-Artinian ring, and P be an S-prime ideal of R. Then R/P is S-integral domain. To show
R is an S-field, it is enough to show that P is an S-maximal ideal of R. Suppose P C Q for some ideal Q of
R with sQ € P for all s € S. Then for all s € S, there exists g € Q such that sg ¢ P. Since P is S-prime, there
exists t € S such that (P : t) is a prime ideal of R, by [3, Proposition 1]. According to our assumption, for this
t, there exists ' € Q such that tg’ ¢ P. This implies that g’ ¢ P. Our aim is to show that Q N S # 0. Consider
the following decreasing sequence of ideals of R

P+Ry 2P+Rg*2---2P+Rq"2:--.

Since R is an S-Artinian, there exist s’ € S and k € IN such that s'(P + Rq’k) c (P+ Rq’k“). Letp € P.
Then s'(p + q’) = p’ + q’**1r for some r € R and p’ € P. This implies that g’%(s’ — q'r) € P. Consequently,
q%(s’ —q'r) € (P : t). Then either g* € (P: t) ors’ —q'r € (P : t) since (P : t) is a prime ideal of R. If ’* € (P : 1),
q" € (P :t). Thus tq’ € P, which contradicts the assumption that tg” ¢ P. On the other hand, if s’ —gq’r € (P : #),
then ts’ —trqg’ € P C Q. Since trq’ € Q, this implies that ts” € Q. Thus QN S # 0, as desired. O
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Next we investigate S-integral domains and S-fields under ring homomorphisms. Let f : R — R’ be a
ring homomorphism and S be a multiplicatively closed subset of R. Then f(S) is a multiplicatively closed
subset of R’ if and only if S N Ker(f) = 0. In particular, if f is one-one, then f(S) is a multiplicatively closed
setin R'.

Proposition 3.14. Let f be an isomorphism of a ring R onto a ring R’. Then we have the following:

1. If R is an S-integral domain, then R’ is an f(S)-integral domain.
2. IfRis an S-field, then R’ is an f(S)-field.

Proof.

1. Let R be an S-integral domain. Since S C R is a multiplicatively closed set in R and f is injective,
0¢ f(S),as 0 ¢ Sand f(1g) = 1g € f(S). Thus f(S) is a multiplicatively closed subset of R’. Let
a, B € R’ be such that a - § = Og.. Since f is an isomorphism, there exist unique a,b € R such that
f(a) = aand f(b) = . Now a - = Og implies f(a) f(b) = Or-. Consequently, f(ab) = f(Og). This implies
that ab = Og. Since R is an S-integral domain, there exists s € S such that either sa = 0 or sb = 0. It
follows that either f(s)a = Og or f(s)B = Or'. Thus R’ is an f(S)-integral domain.

2. Let R be an S-field. Our aim is to show that the zero ideal (Og:) € R’ is an f(S)-maximal ideal of R’.
Clearly, (03) C Iz for some ideal I C R’. Let Jg = f ~I(Ig/). Then Jg is an ideal of R and contains zero
ideal (Og) of R. Therefore, there exists an s € S such that either sJg € (Og) or SN Jr # 0. Consequently,
we have f(s)Irgr = f(sJr) € f(Or) = (Or) or @ # f(S) N f(Jr) = f(S) N Ig since f is an isomorphism.
Therefore (Og-) is an S-maximal ideal of R’. Hence R’ is an f(S)-field.

|

Definition 3.15. A multiplicatively closed set is said to be proper if it does not contain zero or zero divisors of R.

Remark 3.16. Let S be a multiplicatively closed subset of R. Define ¢ : R — S™'R as ¢(r) = % forall r € R.

Then ¢(S) = {; €S IR|se S} is a multiplicatively closed suset of S'R. Moreover, observe that if S is a proper

multiplicatively closed set, then ¢(S) is also a proper multiplicatively closed set.
Proposition 3.17. If R is an S-field, then S™'R is a ¢(S)-field.

Proof. We denote zeroidealin S™'R by [0] and zeroidealin R by (0). By Remark ¢(S)is amultiplicatively
closed set of S7IR. Let R be an S-field. We show that S™IR is a ¢(S)-field, that is, [0] is a ¢(S)-maximal ideal
in S7!R. Suppose that [0] € S7'I € S7IR, for some ideal I of R. Define | = {a € R| ¢(a) € S~'I}. Note that
whenever £ € S71I, then ; . S =2¢ S7U, thatis,a € ] Thus | = {a € R| e S71, for some s € S}. It is easy

s
to see that | is an ideal of R and (0) C J. Since R is an S-field, then either ] N S # 0 or there is an s € S such
that s] C (0).

Casel: Letae JNS # 0, then g € S71I for some s € S. Since S71I is an ideal therefore, ; -— = % e ST
Thus % € SN @(S) # 0. Thus [0] is a p(S)-maximal ideal of S'R.

0
T , that

AN
“ o

Case 2: If ] NS =0, then s] C (0). Consequently, for any g € S7'1, we have ¢(s) - g =

is, ¢(s)S™I C [0]. Therefore [0] is a ¢(S)-maximal ideal.
Hence, S'R is a ¢(S)-field.
[

The converse of the above theorem is not true in general.

Example 3.18. Let E = @pe? Z|pZ, where P is the set of all prime numbers. Define R = Z(+)E and S =

(Z\ {0})(+)(0). By [11) Example 3.12], the localization S™'R = Q, which is a field, but R is not an S-field since R is
not an S-integral domain (see Example[2.12).
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Next, we give some sufficient conditions on multiplicatively closed sets so that the converse of Proposition

holds.

Theorem 3.19. Let S be a proper multiplicatively closed subset of R, and S™'R is a (S)-field. Then R is an S-field if
any one of the following holds

1. S is a finite set.
2. Ris S-PID.

Proof. 1. Let ] be an ideal of R. Then S™!] € S7!R is an ideal containing the zero ideal [0] of S™!R. Since
SR is a (S)-field, therefore, S~ N ¢(S) # 0 or there exists % € ¢(S) such that ;(5‘1]) c [0].

Case 1: Suppose S~ JN¢(S) # 0 and g € ST N ¢(S). This implies that g -1 STZ for some sy, € S

51
and j € J. Consequently, there exists u € S such that u(j —sisp) = 0. Thus j = s15; since S is proper.

Thussisp € JNS # 0.

Case 2: Suppose %S‘l] C [0], where ; € ¢(S). This implies that S'] € [0], since % is a unit in S'R.

Consequently, é = g foralls € S and j € J. In particular, fors =1, % = %, Vj € ] which implies

that there exists s; € S for all j such that s;j = 0. Take u = [[css, then u] C (0), because u € S is
finite product of elements in S.
Thus (0) is an S-maximal that is R is an S-field.

2. Let (0) € ] be an ideal of R. Since R is an S-PID, there exist s € S and a € | such that s] C (a). Thus to
show R is an S-field, it is sufficient to show that whenever (0) C (a), then {a) N S # 0 or there exists
t € S such that #(a) C (0). Let S7'R be ¢(S)-field, and (0) C (a), where a € R. Then S~!(a) is an ideal of

S7IR containing the zero ideal [0] of S~!R. Therefore, S™'(a) N #(S) # O or there exists % € ¢(S) such
t
that is—1<a> c [0].

t t b

Case 1: Let S7{a) N ¢(S) # 0 and S € S~Hay N ¢(S). This implies that ST T STZ for some b € {(a) and
1

51,52 € S. Consequently, u(b — s15;) = 0 for some u € S. Thus b = s;s,, since S is proper. Hence

beaynS+0.

t t
Case 2: Let T(S‘l(a» C [0]. This implies that S~*{a) C [0], since 1 is a unit in S'R. Consequently,
s¢ay € (0) for some s € S.

Thus (0) is an S-maximal that is R is S-field.
|

Every finite integral domain is a field. A natural question is: Does analogous result hold for the S-integral
domain? The answer to this question is affirmative.

Corollary 3.20. Every finite S-integral domain is an S-field.

Proof. Let R be finite S-integral domain. Then, by Theorem S71R is a finite integral domain because S
is finite. Therefore S'R is a field since every finite integral domain is a field. As every field is an S-field for
any multiplicatively closed set S, therefore, S7'R is a ¢(S)-field. Also S is finite; then by Theorem Ris
an S-field. O
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4. S-Version of Krull intersection theorem

In 2024, Kim et al. [11] gave the definition of S-dimension and prove that if R is an S-Noetherian
S-domain with dimg(R) = 1. Then every proper ideal S™'I of S7!'R, where I is an ideal of R disjoint with
S can be uniquely written as a product of primary ideals whose radicals are distinct (see Theorem [4.3).
Krull in the 1930, provided a fundamental insight into the structure of Noetherian rings. He proved that

for a Noetherian ring R and an ideal I, we have () I" = I((") I"). Moreover, if R is an integral domain, then
n=1 n=1

ﬂ I" = 0 (see [6]). In2024, Singh etal. [21] proved the existence of S-primary decomposition in S-Noetherian
rlngs In this section, we prove the 5-Krull intersection theorem using S-primary decomposition.

Definition 4.1. [11]] Let R be a ring and S C R be a multiplicatively closed set.
1. Then the sequence P = Py O Py D --- D P,y D P, is said to be an S-strictly decreasing chain (or an S-chain,
for short) if for every i € {0, ...,n — 1} and for each s € S, we have sP;1 € P;.
2. Let P be an S-prime ideal of R. Then S-height of P, denoted by S-ht(P), is the supremum of the lengths n
of all S-strictly decreasing chains P = Py D P; D --- D P,_1 D Py, of S-prime ideals of R, and dims(R) =
sup{S—ht(P) | P € Specs(R)} is called the S-Krull dimension of R.

Remark 4.2. IfP; (1 < i < n) are distinct S-prime ideals, then S~ P; need not be distinct. For this, consider R = Z13,
S =1{1,2,4,8} and let Py = 3Z1y, Py = 6Z1 be two ideals of R. Observe that P;NS = 0 for i = 1,2. Since Py isa
prime ideal of R, and so S-prime ideal of R. Clearly, P, is also an S-prime ideal of R. To show this let a,b € R be such

that ab € P,. Then choice of a = 2k and b = 3k or (a = 3k’ and b = 2k), where k, k’ € Z, then it follows that sb € P,
or sa € Py fors =4. Thus P, is an S-prime ideal of R. Evidently, S ~1P; = (0) = S7'P,, but P, # P,.

Recall from [14, Proposition 2.5] that if Q is an S-primary ideal of a ring R, then P = rad(Q) is an S-prime
ideal. In such a case, Q is called P-S-primary ideal of R.

Theorem 4.3. Let R be an S-Noetherian S-domain with dimg(R) = 1. Then every proper ideal S~'I of ST'R, where I
is an ideal of R disjoint with S can be uniquely written as a product of primary ideals whose radicals are all distinct.

n
Proof. Since R is S-Noetherian, I has a minimal S-primary decomposition I = () Q;, by [21, Theorem
i=1

9], where each Q; is S-primary and rad(Q;) = P;. Consequently, S'I = (0 S7!Q;, where each S7'Q; is a
i=1

primary ideal and rad(S~'Q;) = S7'P;, by [21, Remark 11]. It is clear from Remark all S71P; are not

necessarily distinct. Assume that if rad(S~1Q;) are equal for i = 1,...,k, say, S7'P, and rad(S7'Q;) are all
k

distinct for i = k+1,...,n, then by [9, Lemma 4.3], S™'I' = () S'Q;j is also S~'P-primary, so we replace
j=1

S7'Q1, S7'Qy, ..., S Qk by S'I in the decomposition. Now we can guarantee that S'P; # S~'P; fori # j for

i,j€{1,2,...,nyand Nicp o, api S~ Qj € S7' Qi Thus S7' represents the minimal primary decomposition.

Since R is S-domain and dimg(R) = dim(S™'R) = 1, by [11, Theorem 4.11], each non-zero prime ideal of

S7IR is maximal, hence the S™!P; are distinct maximal ideals, and are therefore pairwise coprime. Hence,

by [9, Proposition 1.16] the S™'Q; are pairwise comaximal and therefore by [9, Proposition 1.10] we have

[T, S7'Qi = N S7'Q; = S!I. On the other hand, if S7'I = T[], S7'Q;, then the same arguments lead to
i=1

n
S7'I = N S71Q;; the minimal primary decomposition of S~!I, where S~1Q; is an isolated primary component
i=1
and unique by [9} Corollary 4.11]. O
To prove the S-version of the Krull intersection theorem, we need the following lemma.

Lemma 4.4. Let R be an S-Noetherian ring and I be an ideal disjoint with S. Then there exist s € S and an integer
m such that s(rad(I))" C I, where rad(I) = {x € R| x" € I for some n € IN} is the radical ideal of I.
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Proof. Since rad(l) is an S-finite, t - rad(I) € | C rad(I) for some ¢t € S and a finitely generated ideal | =
(x1,x2,...,x) of R. Suppose n; € IN be such that x:" € I. Take m = Zle(n,- — 1)+ 1. Then J™ C I
Consequently, s(rad(I))" C J" € I, wheres = t". [J

Theorem 4.5. (5-Krull intersection theorem) Let R be an S-Noetherian domain and I be an ideal of R disjoint from
S. Let B = () I". Then there exists t € S such that tB = 0.

n=1

Proof. Evidently, IBNS = Qbecause INS = (. Then IB admits S-primary decomposition since in S-Noetherian,
any ideal which is disjoint from S admits an S-primary decomposition [20]. Write

IB=BiNB,N---N B,

where B; (1 < i < k) is P;-S-primary ideal of R, where P; = rad(B;) is an S-prime. Since rad(B;) is S-finite,
therefore s;(rad(B;)) C J; C rad(B;) for some finitely generated ideal J; of R and s; € S.

By Lernrna there exist s; and integer m; such that siP;”’ C B;. Takes = Hf-‘:l s; € Sand m = maxy<j<k{m;}.
Then sP!" C B; forall 1 <i < k. Observe that IB C B; forall 1 <i < k. As B; is P;-S-primary, there exists t; € S
such that either £, C P; or ;B C B;. If ;I C P; then

£'sB = t;”s[ﬂ I”] C H"sI" C P! C B;

n=1

that is t/B C B;, where t/ = t!"s. Combining both cases (#;[ C P; or t;B C B;), we conclude that there exist
u; € S such that u;B C B; (where u; = t; when t;,I C P; and u; = t; when ;B C B;). Putu = ITi<i<k ui € S, then
uB C B;forall 1 <i < k. Consequently, we get uB C IB. By S-Nakayama’s lemma [2, Lemma 2.1], there exist
t € Sand a € [ such that (t + a)B = 0. Hence, (t + a)b = 0 for all b € B. Since R is S-domainand IN S = 0,
therefore tB = 0. This completes the proof. [

Corollary 4.6. Let R be an S-Noetherian domain and I is an ideal of R disjoint from S. If I C J(R), where J(R) is the
Jacobson radical of R, then there exist s € S and a € I such that (s +a) () I" = 0.

n=1

(o8]

Proof. Let B = () I". Then there exists u € S such that uB C IB, by Theorem Using [2, Remark 2.1],

n=1

(s+a) 1 ["=0forsomeseSandacl O

n=1

Corollary 4.7. If R is an S-Noetherian domain, then there exist s € S and a € Js(R) such that (s +a) () (Js(R))" =0,
n=1
where Js(R) is the S-Jacobson radical of R.

5. Conclusion

In this paper, we have generalized several results on integral domain and field to S-integral domain
and S-field respectively. We discussed several characterizations of S-Noetherian ring with the help of
S-domains. We also presented the S-version of the Krull intersection theorem.

A defining property of a field is that every non-zero element has a unique multiplicative inverse, and
vector spaces are traditionally defined over fields. By extending the concept of vector spaces to S-vector
spaces (i.e., vector spaces over S-fields), we can introduce a new framework for analyzing and exploring
algebraic structures in commutative algebra. This generalization also opens up new avenues for research
in coding theory, cryptography, and other areas where vector spaces and field theory are fundamental. In
light of this, we propose the following questions:
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Question 5.1. How can we define a unique multiplicative inverse of an S-non-zero element in a ring with respect to
S (say, S-inverse)? Furthermore, how can we show that every S-non-zero element in an S-field possesses an S-inverse?
This definition must ensure that when the S-field is replaced by a conventional field, the S-inverse coincides with the
usual multiplicative inverse.

Question 5.2. Is it possible to extend the vector space structure over the S-field?
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