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Abstract. Let S be a ∗-semigroup and let a,w ∈ S. The initial goal of this work is to consider commuting
properties of a new class of generalized inverses, called the complete w-core inverse of a, extending the EP
invertibility of generalized inverses. It is shown that a is completely w-core invertible if and only if a is
w-core invertible and a #O

w commutes with aw if and only if a is w-EP invertible. Moreover, the representations
of complete w-core inverses and w-EP inverses are both presented in rings. Also, the connections between
the complete w-core inverse and other generalized inverses are given. More criterions for the complete
w-core inverse is derived by units and one-sided ideals in rings.

1. Introduction

The idea of generalized inverses was first proposed by Ivar Fredholm in the process of studying integral
equations [14]. Over the past hundred years, it appears in numerous applications that include areas such
as networks [2, 4], linear estimation [13, 18], Markov chains [15, 19], coding theory and cryptography
[6, 25, 30]. Many different types of generalized inverses have been introduced and studied whether at the
level of matrices and operators, or at the level of elements in rings and semigroups. In this article, we focus
on commuting properties of some given generalized inverses, as the generalization of the EP invertibility
of generalized inverses theory.

Throughout, unless otherwise indicated, S denotes a semigroup. Following Drazin, an element a ∈ S is
Drazin invertible [8] if there exists some x ∈ S such that (2) xax = x, (5) xa = ax and (1’) ak = ak+1x for some
nonnegative integer k. Such an x is called a Drazin inverse of a. It is unique if it exists, and is denoted by
aD. The smallest nonnegative integer k in the condition (1’) is called the Drazin index of a, and is denoted
by ind(a). The element a is called group invertible if ind(a) = 1, and the group inverse of a is denoted by
a♯. The set of all group invertible elements of S is denoted by S♯. In order to force its uniqueness, further
conditions have to be imposed:
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(1) a = axa, (3) (ax)∗ = ax, (4) (xa)∗ = xa,
(6) xa2 = a, (7) ax2 = x, (8) a2x = a, (9) x2a = x,

(i) a ∈ aa∗R, (ii) a ∈ Ra∗a, (iii) a ∈ a∗R, (iv) a ∈ Ra∗.

If the equation (1) is solvable, then we say a is regular, and x is called an inner inverse (also called {1}-inverse)
of a. In Eqs. (3, 4), the semigroup S is assumed to carry an involution ∗ (unary operation that satisfies
(x∗)∗ = x and (xy)∗ = y∗x∗ for all x, y ∈ S). A semigroup with a specific involution ∗ is called a ∗-semigroup.
In a ∗-semigroup, a solution to the system (1, 2, 3, 4) is called the Moore-Penrose inverse (MP-inverse) of a,
denoted by x = a†. If x ∈ S satisfies both Eqs. (1, 3), then x is called an {1, 3}-inverse of a and denoted by
a(1,3). The set of all {1, 3}-invertible elements of R is denoted by S{1,3}. Similarly, a(1,4) and S{1,4} are defined,
respectly. Specially, if aa† = a†a, then we say a is EP invertible. As we known, there are a variety ways to
characterize elements with EP properties. It is proven that a is EP invertible if and only if (aa♯)∗ = aa♯ if and
only if there exists x satisfies Eqs. (3, 8, 9) [31] if and only if there exists x satisfies Eqs. (4, 6, 7) [31] if and
only if a satisfies Eqs. (i, ii, iii, iv) [23].

Suppose that R is a ∗-ring, that is an associative ring with an involution ∗ satisfying (x∗)∗ = x, (xy)∗ = y∗x∗

and (x + y)∗ = x∗ + y∗ for all x, y ∈ R. The notion of core inverses was first introduced by Baksalary and
Trenkler [1] for square complex matrices of index one. Later, Rakić et al. [24] extended this concept from
Cn×n to arbitrary ∗-rings. For any ∗-ring element a, the core inverse a #O of a is the unique solution to the
system (1, 2, 3, 6, 7). In 2017, Xu et al. [32] found that the equations (1) and (2) above can be dropped,
more precisely, they characterized the core inverse by the solution of three equations (3, 6, 7). Moreover, it
was pointed out that a is core invertible if and only if a ∈ R♯ ∩ R{1,3}, in which case, a #O = a♯aa(1,3). For more
relevant literature on the core inverse, the reader is referred to the references [1, 16, 20, 21, 24, 32]. As weaker
versions of the core invertibility, one-sided core invertibility is introduced [26, 27, 29], the ideal of one-sided
generalized invertibility is mainly origin from one-sided (b, c)-invertibility proposed by Drazin [12]. More
details on (one-sided) core invertibility and (b, c)-invertibility can be found in [5, 7–11, 16, 22, 26, 34]. As
the generalization of the core invertibility, the one-sided core invertibility is one of the generalization, the
other one is weighted core invertibility, such as w-core and (b, c)-core invertibility introduced by Zhu et. al
[34–36].

Recently, the authors consider commuting properties of the generalized inverse such as the complete
inverse of a along d (abbr. completely Mary inverse) and the complete (b, c)-inverse [28]. As we known, the
core inverse with the commutative property is EP invertible. Hence, the study on commutative property of
w-core inverse can be considered as the deep research of generalized EP invertibility. Along this research
thread, the complete w-core invertibility and the w-EP invertibility are introduced and investigated in this
article. Specifically, it is proved that an element a is completely w-core invertible if and only if a is w-core
invertible and a #O

w commutes with aw. The paper is organized as follows. In Section 2, w-EP inverses and
complete w-core inverses were introduced and the relationship between them was investigated. It is proven
that a is w-EP invertible if and only if aw is EP invertible and a ∈ awS if and only if a is completely w-core
invertible. The different between w-EP inverses and complete w-core inverses is the different expression.
It is proven that if a is completely w-core invertible, then aw is EP and the complete w-core inverse of a is
(aw)♯. Moreover, the w-EP inverse of a is not unique and it is equal to z + awzR(1 − awz), where z = (aw)♯.
In Section 3, more characterizations of complete w-core inverses and the related generalized inverses are
provided.

2. w-EP inverses and complete w-inverses of a

At the begin of this section, we firstly provide some definitions and characterizations of well known
generalized inverses in a semigroup.

Definition 2.1. (1). [32, Theorem 3.1] Let S be a semigroup and a ∈ S. It is said that a is core invertible if there
exists some x ∈ S such that

ax2 = x, xa2 = a and ax = (ax)∗.
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Such an x is called a core inverse of a and it is denoted by a #O.
(2). [36, Definition 2.1] Let a,w ∈ S. An element a is said to be w-core invertible if there exists some x ∈ S such

that

awx2 = x, xawa = a and awx = (awx)∗.

Such an x is called a w-core inverse of a and it is denoted by a #O
w.

(3). [31, Theorem 2.2, 2.7] We say that a is EP invertible if there exists y ∈ S such that

y2a = y, a2y = a and ay = (ay)∗,

or equivalently if there exists z ∈ S such that

az2 = z, za2 = a and za = (za)∗.

Compare with the several definitions in Definition 2.1, we extend the EP invertibility to the w-EP
invertibility, and provide the definition of w-EP inverse as follows. It is worth noting that in Reference [33],
the authors also proposed the corresponding definition of the w-EP inverse by means of the Mary inverse,
and [33, Theorem 16] confirms that their definition is consistent with that of the w-EP inverse presented
in this paper. For related results, the reader is referred to Reference [33]. To ensure consistency in the
exposition of this paper, we present the required proof processes herein.

Definition 2.2. Let a,w ∈ S. We say that a is w-EP invertible if there exists x ∈ S such that

awx2 = x, xawa = a and (xaw)∗ = xaw.

In this case, x is called a w-EP inverse of a, denote it by aEP
w .

Proposition 2.3. Let a,w ∈ S. If a is w-EP invertible, then aw is EP invertible.

Proof. Set y = x2aw, where x = aEP
w . Then we can obtain awy = awx2aw = xaw = x(xawa)w = yaw. Moreover,

it is easy to check that awyaw = xawaw = aw and yawy = (xaw)x2aw = x2aw = y. This implies that aw ∈ R♯

and y = (aw)♯. Note that awy = xaw = (awy)∗. Hence, it shows that aw is EP invertible.

Remark 2.4. If aw is EP invertible, a is not w-EP invertible, in general. We only have to set a = w = e12 in M2(C).
It is clear that aw = O2 is EP invertible. However, a is not w-EP invertible. Indeed, if a is w-EP invertible, then there
exsits some x such that xawa = a. It leads to a = O2, it is a contradiction.

Lemma 2.5. For any a,w ∈ S, if x ∈ S is a w-EP inverse of a, then x = xawx and a = awxa.

Proof. As x is a w-EP inverse of a, then awx2 = x and xawa = a, which give that xawx = xawawx2 = awx2 = x
and a = xawa = awx2awa = awxa.

In the following, we will provide the relationship between the w-EP invertibility and the EP invertibility.

Theorem 2.6. For any a,w ∈ S, a is w-EP invertible if and only if aw is EP invertible and a ∈ awS.

Proof. Firstly, suppose that a is w-EP invertible. By Proposition 2.3 and Lemma 2.5, we known that aw
is EP invertible and a ∈ awS. Conversely, since aw is EP invertible, we have (aw)♯ and (aw)† both exist
and (aw)♯ = (aw)†. Set x = (aw)♯. Then it is clear that (xaw)∗ = xaw, awx2 = x and xawaw = aw. Hence,
xawa = xawaws = aws = a since a = aws for some s ∈ S.

Remark 2.7. Let a,w ∈ S and a be w-EP invertible. We claim that the w-EP inverse of a is not unique. Moreover,
there exists some w-EP inverse x of a, such that awx , xaw. It means that there exists at least one w-EP inverse of
a, which is not commutative with aw. Indeed, set S = M2(C), a = e11 and w = E2. Then, one can see aw = a is EP
invertible and (aw)† = (aw)♯ = a = e11. Clearly, x1 = a is one w-EP inverse of a. Moreover, by a computation, we can
obtain x2 = e11M2(1) is also one w-EP inverse of a. Further, awx2 , x2aw. We denote by {aEP

w } the set of all w-EP
inverse of a.
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Assume that a is core invertible and x is the core inverse of a. It is well known that if a and x are
commutative each other, then a is EP invertible. In [36], the authors introduced the w-core inverse, as the
generalization of core inverse. In the following, we will consider the commutativity of the w-core inverse
as the generalization of EP-invertibility. We called the w-core inverse with the commutative property as the
complete w-core inverse.

Definition 2.8. Let a,w ∈ S. We say that a is completely w-core invertible if there exists z ∈ S such that

awz2 = z, a∗ = a∗zaw and awz = (awz)∗.

In this case, z is called a complete w-core inverse of a.

Remark 2.9. Let a,w ∈ S. If a is completely w-core invertible and z is a complete w-core inverse of a, then we
have zawz = z. Indeed, awza = (wz)∗a∗a = (wz)∗a∗zawa = awz2awa = zawa. Post-multiplying by wz2, we have
awza(wz2) = zawa(wz2), and consequently, z = zawz since awz2 = z.

Theorem 2.10. Let a,w ∈ S. Then a is completely w-core invertible if and only if a is w-core invertible and a #O
w

commutes with aw.

Proof. If a is completely w-core invertible and z is a complete w-core inverse of a, then by Remark 2.9, one
can see that z = zawz = z(awz)∗ = z(wz)∗a∗. It gives that z2aw = z(wz)∗a∗zaw = z(wz)∗a∗ = z. Combine z2aw = z
and awz2 = z, it follows that awz = awz2aw = zaw. Furthermore, this means that a is w-core invertible and
a #O

w commutes with aw.
Conversely, we only have to prove a∗ = a∗zaw where z = a #O

w. Indeed, by zawa = a and awz = zaw, we can
obtain a = awza, it follows from (awz)∗ = awz that a∗ = a∗awz = a∗zaw.

Remark 2.11. In view of Theorem 2.10, it is known that the complete w-core inverse is unique if it exists. In fact, the
complete w-core inverse of a is the w-core inverse of a which is commutative with aw. The complete w-core inverse of
a is denoted by a⊛w. We denote by S⊛w the set of all completely w-core invertible elements in S.

In the following, we will provide the relationship between the complete w-core invertibility and the
w-EP invertibility,

Theorem 2.12. Let a,w ∈ S. Then a is completely w-core invertible if and only if a is w-EP invertible.

Proof. As a is completely w-core invertible, by Theorem 2.10, we know that a⊛w commutes with aw. And
then a⊛w is also a w-EP inverse of a.

Conversely, as we know that a is w-EP invertible, it follows from Theorem 2.6 that aw is EP invertible
and a ∈ awS. Set z = (aw)† = (aw)♯. We claim that z is the complete w-core inverse of a. Indeed, it is not
difficult to check that z is a w-EP inverse of a. Herein, we only have to prove a∗zaw = a∗ By Lemma 2.5, one
can see that a∗zaw = a∗(aw)†aw = [aw(aw)†a]∗ = [aw(aw)†awza]∗ = (awza)∗ = a∗.

Remark 2.13. According to Remark 2.11 and Theorem 2.12, we can obtain if a is completely w-core invertible, then
the complete w-core inverse is unique, and furthermore a⊛w = a #O

w = (aw)† = (aw)♯.

In fact, we know that if a is completely w-core invertible, then a is w-core invertible and aw is EP
invertible. Next, we will consider the converse and provide the following result.

Corollary 2.14. Let a,w ∈ S. If a is w-core invertible and x = a #O
w, then the followings are equivalent:

(i) a is completely w-core invertible.
(ii) xaw = awx.
(iii) (xaw)∗ = xaw.
(iv) aw is EP invertible.
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Proof. (i)⇒ (ii) and (ii)⇒ (iii) By Definition 2.8 and Theorem 2.10, they are clear.
(iii)⇒ (vi) By [31, Theorem 2.2], it is clear.
(vi) ⇒ (i) By Theorem 2.6 and Theorem 2.12, we only have to prove a ∈ awS. In fact, as a is w-core

invertible, it follows from [36, Theorem 2.10] that a ∈ awS.

By Theorem 2.12, we know that the complete w-core invertibility and the w-EP invertibility are coincide.
However, by Remark 2.7 and Remark 2.11, one can see that the expressions of the w-EP inverse and the
complete w-core inverse are different. Indeed, the complete w-core inverse is unique, and the w-EP inverse
is not unique. Moreover, it is easy to find that the complete w-core inverse is a w-EP inverse of a. In the
following, we will consider the expression of the w-EP inverse of a in a ∗-ring R.

Proposition 2.15. Let a,w ∈ R. If a is w-EP invertible, then {aEP
w } = z + awzR(1 − awz), where z = a⊛w.

Proof. Since a is w-EP invertible, it follows from Theorem 2.12 and Remark 2.13 that a is completely w-core
invertible, and aw is EP. Write z = a⊛w = (aw)†. By a computation, we can obtain x = z + awzr(1 − awz) is a
w-EP inverse of a for any r ∈ R. That is, z + awzR(1 − awz) ⊆ {aEP

w }. Indeed, by Theorem 2.10, we know that
a = zawa = awza, and then xaw = zaw = (xaw)∗ and xawa = zawa = a. Moreover, by Remark 2.9, it is easy to
check that x2 = z2 + zr(1 − awz) and awx2 = z + awzr(1 − awz) = x.

Conversely, set x be a w-EP inverse of a and z = (aw)†. Then we can check that awz(x− z) = awzx− awz2 =
awzawx2

− z = x − z, and (x − z)awz = xawz − z = (xawa)wz2
− z = 0. Hence, awz(x − z)(1 − awz) = x − z, and

consequently, x = z + awz(x − z)(1 − awz). So, one can see that {aEP
w } ⊆ z + awzR(1 − awz).

As the special case of complete w-core inverses and w-EP inverses, when w = 1, we can prove that a is
completely 1-core invertible if and only if a is 1-EP invertible if and only if a is EP invertible. And in this
case, a⊛1 = a♯ = a† and {aEP

1 } = {a
♯ + aa♯r(1 − aa♯)} for any r ∈ R. In fact, we also can provide a equivalent

definition of w-EP invertibility as follows. And moreover, it is necessary to repeat that the ideal of this
equivalent definition is similar to the Definition 2.1 (3).

Proposition 2.16. Let a,w ∈ S. Then the followings are equivalent:
(i) a is w-EP invertible.
(ii) There exists y ∈ S such that (awy)∗ = awy, y2aw = y and awawy2a = a.

Proof. We claim that the condition (ii) is also equivalent to aw is EP invertible and a ∈ awS. Indeed, by
the condition (ii) y2aw = y and awawy2a = a, one can see that a ∈ awS and awawy2aw = aw, consequently,
we have awawy = aw. It follows from [31, Theorem 2.7] that aw is EP invertible. Conversely, if aw is EP
invertible and a ∈ awS, then, by [31, Theorem 2.7], there exists some y ∈ S such that (awy)∗ = awy, y2aw = y
and awawy = aw. Furthermore, we can obtain awawy2aw = aw. Then, it follows from awawy2aw = aw that
awawy2a = a since a = aws for some s ∈ S.

Remark 2.17. In a ∗-ring R, we claim that {y} = z+ (1−awz)Rawz, where z = a⊛w, under the condition of Proposition
2.16. Since a is w-EP invertible, we have aw is EP invertible and z = (aw)†. Set y = z + (1 − awz)rawz for any
r ∈ R. By a computation, we can obtain y satisfies the condition (ii) of Proposition 2.16. Indeed, we can check that
awy = awz = (awy)∗ and y2 = z2 + (1− awz)rz. It gives that y2aw = z2aw+ (1− awz)rzaw = z+ (1− awz)rawz = y
and awy2 = awz2 = z. Furthermore, since a is w-EP invertible, by Theorem 2.6, we have a ∈ awR, and then
awawy2a = awza = awzaws = aws = a for some s ∈ R. This implies that z + (1 − awz)Rawz ⊆ {y}. Conversely, for
any element y satisfies the condition (ii) of Proposition 2.16, we can check that (y− z)awz = (1− awz)(y− z) = y− z.
Indeed, by a computation, we can obtain (y − z)awz = yawz − zawz = y2awawz − z = y2aw − z = y − z
and awz(y − z) = awzy − awz2 = awzy2aw − z = z2(aw)2y2aw − z = z2aw − z = 0. Hence, we have that
y − z = (1 − awz)(y − z)awz, furthermore, y = z + (1 − awz)(y − z)awz ∈ z + (1 − awz)Rawz.

Remark 2.18. Note that in Proposition 2.16 it is not difficult to find that awya = a. Indeed, in the proof of Proposition
2.16, we know that aw is EP invertible, and then awya = awy2awa = z(aw)2y2awa = zawa = awz(awawy2a) =
awawy2a = a, where z is the EP inverse of aw.
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(1). Maybe, we can guess that a is w-EP invertible if and only if there exists y ∈ S such that (awy)∗ = awy,
y2aw = y and awya = a. In fact, it is not true, in generally. This is a new one-sided EP inverse, the authors will
discuss this topic in a new article. Herein, we can provide a counter-example, by checking the following Example 2.19.

(2). Moreover, similar to the definition of Definition 2.1 (3), maybe we guess that a is w-EP invertible if and only
if there exists y ∈ S such that (awy)∗ = awy, y2aw = y and away = a. In fact, it is also not true, in generally. By

checking the following Remark 2.20, herein, we only have to set a =
(

0 1
0 0

)
and w =

(
3 6
1 0

)
. Then a is w-EP

invertible. However, it is easy to check that awa = O2. And it is a contradiction that there exists some y ∈ S such
that away = a if a is w-EP invertible. Of course, by this counter example, we can see that it is also not true that a is
w-EP invertible if and only if there exists y ∈ S such that (awy)∗ = awy, y2aw = y and a2wy = a.

Example 2.19. Let S be the semigroup of infinite matrices over the real number field R, which are row and column-
finite. The involution ∗ of S is the transpose of real matrices. Let

a =


0
1 0

1 0
. . .

. . .

 , y = a∗ =


0 1

0 1

0
. . .
. . .

 and w = E.

Then awy =


0

1
1
. . .

 = (awy)∗, ya =


1

1
1
. . .

. It is clear that awya = a and y2aw = y.

Moreover, it is not difficult to find that awawy2a = a2y , a. In fact, we know that when a is w-EP invertible, then
a ∈ (aw)2S. However, in this case, a is not w-EP invertible, since a < (aw)2S.

Remark 2.20. For any a,w ∈ S, if a is completely w-core invertible, then a is also w-EP invertible. Set z = a⊛w. Then,
we know z is also a w-EP inverse of a. By Lemma 2.5, we know that z = zawz and a = awza. However, we claim that

azaw , a. Indeed, we only have to set a =
(

0 1
0 0

)
and w =

(
3 6
1 0

)
. Then a is completely w-core invertible and

z =
(

1 0
0 0

)
. Clearly, azaw = O2.

According to the above discuss, we can obtain the following corollary, when w = 1.

Corollary 2.21. Let a ∈ R. Then the following conditions are equivalent:
(i) a is EP invertible.
(ii) There exists x ∈ S such that (xa)∗ = xa, ax2 = x and xa2 = a.
(iii) There exists y ∈ S such that (ay)∗ = ay, y2a = y and a2y = a.
(iv) There exists z ∈ S such that (az)∗ = az, az2 = z and a∗za = a∗.
In this case, z = a† = a♯, {y} = a♯ + (1 − aa♯)Raa♯ and {x} = a♯ + aa♯R(1 − aa♯).

In what follows, we will continue to consider the special case of the complete w-core inverse, when we
choose different elements for w.

Proposition 2.22. Let a ∈ S. Then the following conditions are equivalent:
(i) a ∈ S⊛a .
(ii) a ∈ SEP.

Proof. From Theorem 2.10, we know that if a is completely a-core invertible, then a is a-core invertible and
a #O

a a2 = a2a #O
a . By [36, Proposition 2.15], we can find that, in this case, a is core invertible and a #O

a = a♯a #O. As
a #O

a a2 = a2a #O
a , it gives that a♯a #Oa2 = aa #O, and consequently, aa♯ = aa(1,3) since a #O = a♯aa(1,3), hence we have

a ∈ SEP. Conversely, we only have to set x = (a♯)2. Then it is easy to check that x is the complete a-core
inverse of a.
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Proposition 2.23. Let a ∈ S. Then the following conditions are equivalent:
(i) a ∈ S⊛a∗ .
(ii) a ∈ S†.

Proof. From Theorem 2.10, we know that if a is completely a∗-core invertible, then a is a∗-core invertible, and
hence a ∈ S† by [36, Proposition 2.22]. Conversely, assume that a ∈ S†, and set x = (a†)∗a†. Then it is easy to
check that x is the complete a∗-core inverse of a.

In fact, we can extend the result of Proposition 2.22 as the following form.

Proposition 2.24. Let a ∈ S and let n ≥ 2 be an integer. Then the following conditions are equivalent:
(i) a ∈ S⊛an .
(ii) a ∈ SEP.

Proof. Since a is completely an-core invertible, we have an+1 is EP invertible and a ∈ an+1S. Set z = an(an+1)♯ =
an(an+1)†. By the double commutativity property of the group inverse, it leads to za = [an(an+1)♯]a =
an+1(an+1)♯ = az. This implies az = (az)∗ = za = (za)∗. Furthermore, since a ∈ an+1S, we can see aza =
an+1(an+1)♯a = an+1(an+1)♯an+1t = a for some t ∈ S. Additionally, zaz = (an+1)♯an+1an(an+1)♯ = z. Thus, a is EP
invertible with a† = a♯ = z.

Conversely, if a is EP invertible, then we only have to set x = (a♯)n = (a†)n. Then it is easy to check that x
is the complete an-core inverse of a.

According to Proposition 2.23 and Proposition 2.24, we will guess that, for any integer n ≥ 2, a is
completely (an)∗-core invertible if and only if a is Moore-Penrose invertible. In the following result, we
will explain that if a is completely (an)∗-core invertible then a is Moore-Penrose invertible. However,
unfortunately, we have the following counter-example to show that the converse is not true, in generally.

Remark 2.25. As we known, a is completely (an)∗-core invertible, then there exists x ∈ S such that a(an)∗x2 = x,
a∗ = a∗xa(an)∗ and [a(an)∗x]∗ = a(an)∗x. Moreover, we know that a(an)∗x = xa(an)∗, and consequently, we can obtain
that a = x∗ana∗a. It gives that a ∈ Saa∗a and then a ∈ S†.

Example 2.26. Set S = M2(C) and a =
(

0 1
0 0

)
. Then we can obtain that a is Moore-Penrose invertible and

a† =
(

0 0
1 0

)
. However, it is easy to find that a(an)∗ = O2, where n ≥ 2. And it implies that a < a(a2)∗S. By Theorem

2.6 and Theorem 2.12, we know that a is not completely (an)∗-core invertible.

3. More characterizations of complete w-inverses of a

In [36], the authors point out one important characterization of the w-core invertibility. That is, a is
w-core invertible if and only if w∥a, a(1,3) both exist. And in this case, w∥a = a #O

wa and a #O
w = w∥aa(1,3). In the

following, we will consider more characterizations of the completely w-core invertibility.

Proposition 3.1. Let a,w ∈ S. Then a is completely w-core invertible if and only if w∥a, a(1,3) both exist and
w∥aw = aa(1,3).

Proof. ⇒: Since a is completely w-core invertible, by [36, Theorem 2.6], we have that w∥a, a(1,3) both exist
and w∥a = a⊛wa, which guarantee w∥aw = a⊛waw. As aw(a⊛w)2 = a⊛w, then aa(1,3)a⊛w = a⊛w, and consequently, we
can obtain

w∥aw = aa(1,3)a⊛waw = (a(1,3))∗a∗a⊛waw = (a(1,3))∗a∗ = aa(1,3).

⇐: By the hypothesis, w∥a and a(1,3) both exist, then a is w-core invertible. It follows from [36, Theorem 2.10]
that aw is core invertible and a ∈ awS. Next, we only have to prove aw is EP invertible and then, by Theorem
2.6 and Theorem 2.12, we can obtain a is completely w-core invertible. Indeed, in terms of [17, Theorem 7],
we know that if w∥a exists, then (aw)♯ exists and w∥a = (aw)♯a. As w∥aw = aa(1,3), then aa(1,3) = w∥aw = (aw)♯aw,
which implies [(aw)♯aw]∗ = (aw)♯aw and consequently, aw is EP invertible.
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Remark 3.2. By checking the proof of Proposition 3.1, one can see that a is completely w-core invertible if and only
if w∥a, a(1,3) both exist and (w∥aw)∗ = w∥aw.

Next, we want to consider what will happened when we replace {1, 3}-invertibility into EP invertibility
in Remark 3.2.

Remark 3.3. In fact, by Remark 2.20, we know a is completely w-core invertible, but not be EP invertible, in generally.

We only have to set a =
(

0 1
0 0

)
and w =

(
3 6
1 0

)
. Then a is completely w-core invertible and a⊛w =

(
1 0
0 0

)
. It

is clear that a is not group invertible and consequently a is not EP, since a2 = 0 and a < a2S.
Moreover, in this case, we know that awa = a and w∥a exists. It means that if w∥a exists, then a is completely

w-core invertible can not imply that a is EP.

In [28], the authors consider commuting properties of the generalized inverse along one element, and
introduce one kind of generalized inverse, the complete inverse of a along d. Let a, d ∈ S. It is said that a
is completely invertible along d if there exists x ∈ S such that axd = d = dxa and x ≤H d. In this case, x is
called a complete inverse of a along d, and use the notation a♯d to denote.

Theorem 3.4. Let a,w ∈ R. If w♯a exists, then a is EP invertible if and only if a is completely w-core invertible.

Proof. ⇐ Since a is completely w-core invertible, by Remark 2.13, we have that aw is EP invertible and
a⊛w = (aw)♯ = (aw)†. Set z = wa⊛w. Then, we can obtain az = aw(aw)† and (az)∗ = az. And by awa⊛wa = a and
a⊛wawa⊛w = a⊛w, it is easy to find aza = aw(aw)†a = aw(aw)†(awa⊛wa) = a and zaz = wa⊛wawa⊛w = z. Moreover,
by hypothesis, we know that w∥a = (aw)♯a and w∥aw = ww∥a. Then, it means that w(aw)♯a = (aw)♯aw,
and consequently, we have za = w(aw)♯a = (aw)♯aw = az. Hence, one can see that a is EP invertible, and
a† = a♯ = z.
⇒ By [36, Theorem 2.6], if a is EP invertible and w∥a exists, then a is w-core invertible and a #O

w = w∥aa♯.
Herein, we only have to prove that a #O

w commutes with aw. That is to say, we need to prove this equality
w∥aa♯aw = aww∥aa♯. Herein, note that when w♯a exists, then aa♯w = waa♯ [28, Theorem 3.12]. Hence, we can
obtain that the left side of the equality is w∥aa♯aw = w∥awaa♯ = aa♯. And the right side of the equality is
aww∥aa♯ = aa♯. It is proven that a #O

w commutes with aw.

Lemma 3.5. Let a,w ∈ R. If w∥a exists and aw = wa, then w♯a exists.

Proof. By hypothesis, w∥a exists and by [17, Theorem 7], one can see that (aw)♯ exists and w∥a = (aw)♯a.
From [10, Theorem 2.2] and aw = wa, then we have w(aw)♯ = (aw)♯w. This implies that w∥aw = (aw)♯aw =
w(aw)♯a = ww∥a, and consequently, w♯a exists.

Corollary 3.6. Let a,w ∈ R and aw = wa. The following conditions are equivalent:
(i) a is completely w-core invertible.
(ii) a is EP invertible and w∥a exists.
In this case, a⊛w = w∥aa♯.

We need to say, at last part of this section, more criterions for the complete w-core inverse is derived
by units and one-sided ideals in a ∗-ring R. In [3, Theorem 2.1], the author gave the characterizations and
expressions of EP invertibility by a projection and units in a ring. It is proven that a is EP invertible if and
only if there exists a projection p such that pa = ap = 0 and a + p ∈ R−1. In this section, we present some
equivalent conditions for the existence of completely w-core inverses. Before we start, look at the following
results.

Theorem 3.7. Let a,w ∈ R. The following conditions are equivalent:
(i) a is completely w-core invertible.
(ii) There exists a unique projection p ∈ R such that awp = pa = 0 and u = p + aw ∈ R−1.
(iii) There exists a projection p ∈ R such that awp = pa = 0 and u = p + aw ∈ R−1.
In this case, a⊛w = u−1(1 − p).
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Proof. (i) ⇒ (ii) Suppose that a ∈ R is completely w-core invertible, then, by Theorem 2.10 and Theorem
2.12, aw is EP invertible and a ∈ awR. So, there exists a unique projection p ∈ R such that awp = paw = 0 and
u = p + aw ∈ R−1. Since a ∈ awR, the equality paw = 0 implies pa = 0.

(ii)⇒ (iii) It is clear.
(iii) ⇒ (i) Set z = u−1(1 − p). By (1 − p)u = aw, it gives that awz = awu−1(1 − p) = 1 − p. As pu = p and

u(1 − p) = aw, then p = pu−1 and 1 − p = u−1aw, and hence, we can obtain that awz2 = (1 − p)u−1(1 − p) =
u−1(1−p)−pu−1(1−p) = z. Moreover, zaw = u−1(1−p)aw = u−1aw = 1−p, it shows that a∗zaw = a∗(1−p) = a∗.
This means that a is completely w-core invertible and a⊛w = u−1(1 − p).

Following Drazin, given any a ∈ R, the left annihilator of a is defined by l(a) = {x ∈ R : xa = 0}, and the
right annihilator of a is defined by r(a) = {x ∈ R : ax = 0}.

Theorem 3.8. Let a,w ∈ R. Then the following conditions are equivalent:
(i) a is completely w-core invertible.
(ii) There exists some x ∈ R such that a∗xaw = a∗, xR = aR and Rx = Ra∗.
(iii) There exists some x ∈ R such that a∗xaw = a∗, l(x) = l(a) and r(x) = r(a∗).
(iv) There exists some x ∈ R such that a∗xaw = a∗, l(x) = l(a) and r(x) ⊆ r(a∗).
(v) There exists some x ∈ R such that a∗xaw = a∗, l(a) ⊆ l(x) and r(x) ⊆ r(a∗).

Proof. (i)⇒ (ii) by [36, Theorem 2.13].
(ii)⇒ (iii), (iii)⇒ (iv) and (iv)⇒ (v) are clear.
(v)⇒ (i) As a∗xaw = a∗, we have a = (xaw)∗a, and it gives that 1− (xaw)∗ ∈ l(a) ⊆ l(x). Then we can obtain

x = (xaw)∗x. It follows from xaw = (xaw)∗xaw that xaw = (xaw)∗ and x = xawx. By x = xawx, it gives that
1− awx ∈ r(x) ⊆ r(a∗), and then a∗ = a∗awx. It implies a = (awx)∗a and awx = (awx)∗awx. Hence, we can obtain
(awx)∗ = awx and a = awxa. It follows from a = awxa that 1 − awx ∈ l(a) ⊆ l(x), and then x = awx2.

Set w = 1 in Theorem 3.8, we get the characterization for EP inverses in ∗-rings.

Corollary 3.9. Let a ∈ R. Then the following conditions are equivalent:
(i) a is EP invertible.
(ii) There exists some x ∈ R such that a∗xa = a∗, xR = aR and Rx = Ra∗.
(iii) There exists some x ∈ R such that a∗xa = a∗, l(x) = l(a) and r(x) = r(a∗).
(iv) There exists some x ∈ R such that a∗xa = a∗, l(x) = l(a) and r(x) ⊆ r(a∗).
(v) There exists some x ∈ R such that a∗xa = a∗, l(a) ⊆ l(x) and r(x) ⊆ r(a∗).
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[20] D. Mosić, New generalizations of the core and dual core inverses, Publicationes Mathematicae 105 (2024) 119-140.
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[24] D.S. Rakić, N.S. Dinčić, D.S. Djordjević, Group, Moore-Penrose, core and dual core inverse in rings with involution, Linear Algebra

Appl. 463 (2014) 115-133.
[25] H.M. Sun, Cryptanalysis of a public-key cryptosystem based on generalized inverses of matrices, IEEE Commun. Lett. 5 (2001) 61-63.
[26] L. Wang, D. Mosić, The one-sided inverse along two elements in rings, Linear Multilinear Algebra 69 (2021) 2410-2422.
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