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Abstract. This paper will introduce a new class of generalized inverses for square matrices: the weak
group G-Drazin (WGGD) inverse. The WGGD inverse is not unique and defined as a proper composition
of the weak group inverse and the G-Drazin inverse. We investigate the characterizations, representations,
and properties of the inverse. A variant of the successive matrix squaring computational iterative scheme
is given for calculating the WGGD inverse. Moreover, the Cramer’s rule for the solution of a singular
equation Ax = b is presented. In addition, we consider some additional properties of the WGGD inverse
through an induced binary relation. In the final, the WGGD inverse being used in solving appropriate
systems of linear equations is established.

1. Introduction

Throughout this paper, we denote the set of all m x n complex matrices by C"*". For A € C"*", the
symbols A*, rank(A), N(A) and R(A) stand for the conjugate transpose, the rank, the null space and the
range space of A, respectively. Moreover, I, will refer to the n x n identity matrix.

Let A € C"*", the smallest positive integer k for which rank(A¥) =rank(A**!) is called the index of A and
is denoted by Ind(A) = k. Then CZX" represents all n x n complex matrices with index k. Pgr represents
the projector on the subspace E along the subspace F. For A € C"*", P4 stands for the orthogonal projection
onto R(A). The symbol CSM represents the subset of all n x n complex matrices with index 1.

Next, let’s review the definitions of some generalized inverses. For A € C"*", the Moore-Penrose inverse
AT of A is the unique matrix X € C"*™ satisfying the following four Penrose equations [1]:

AXA=A, XAX =X, (AX)*=AX, (XA)*=XA.

The Moore-Penrose inverse can be used to represent orthogonal projectors P4 := AAT onto R(A) and
Qa := ATA onto R(A*), respectively. A matrix X € C"™*™ that satisfies the equality AXA = A is called an
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inner inverse or {1}-inverse of A, and a matrix X € C"*™ that satisfies the equality XAX = X is called an
outer inverse or {2}-inverse of A.

The Drazin inverse is a kind of outer inverse defined for square matrices. For A € C"*" and Ind(A) =k,
the Drazin inverse AP of A is the unique matrix X € C"*" satisfying the following three equations [24]:

Alx = Ak XAX = X, AX = XA.

In particular, if Ind(A) = 1, AP = A* is the group inverse of A.
For A € C"*" with Ind(A) = k, the core-EP inverse AD of A is the unique matrix X e C"*" satisfying the
following conditions [16]:
XAX =X,  R(A") =R(X) = R(X*).
Obviously, the core-EP inverse is an outer inverse of A. Recall that, by [7], the core-EP inverse can be
expressed as AD = ADAk(Ak)1,
The weak group inverse is proposed by Wang and Chen [22] for square matrices of an arbitrary index

as an extension of the group inverse. For A € C"*", the weak group inverse A® of A is the uniquely
determined matrix that satisfying:

AX? =X,  AXx=A®4,
Notice that, by [22], we have A® _ (A®)2A. Two new generalized inverses have emerged by combining
Moore-Penrose inverse and the weak group inverse, which are the weak core inverse (WCI) A®1 and the

dual weak core inverse (d-WCI) AT 3], Precisely, the weak core inverse of A € C"*" presents a unique
solution to the matrix system [3]:

XAX =X, AX=CA", XA=APC

where C is the weak core part of A with C = AA®A. Notice that A®T = A®AAT and AT® = ATAAD
In [3], for AeC™**" and Ind(A) = k, the weak core part C of A satisfies the following equations:

cak=a1 c=a®a2,  (1-aAP)C =0, )

(1—AAD)C = 1-4a®)c =0, C-Qu) =0. 2)

The DMP-inverse of A € C;*", written by AP, was defined in [14] as the unique matrix X € C;*"
satisfying
XAX =X, XA=APA,  A'X=AAT
Moreover, it was proved that APT = APAAT. Also, the dual DMP-inverse of A was introduced in [14],
namely A™P = ATAAD.
The MPCEP inverse for bounded linear Hilbert space operators was proposed in [13] as a combination of

the Moore-Penrose inverse with the core-EP inverse. More precisely, the MPCEP (or MP-Core-EP) inverse
of AeC"*" is presented as a composed generalized inverse defined by the matrix expression

A = 4144®,
and it presents the unique solution to the matrix system
XAX = X, XA=A"AADA and AX = 44D,

Notice that, for AeC"*", the *CEPMP inverse of A, defined in [13], by A® P = A®AAT is unique solution to

the system
XAX =X, AX = AA®AAT and XA = AgA,
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where A@ is the dual core-EP inverse of A.

In [23], let AeC"*" and Ind(A) = k. Then, XeC"*" is called the G-Drazin inverse of A if it serves as a
solution for the following equations:

AXA = A, (F1)XAHT = AF, (1F)AF1X = AF, 3)

The G-Drazin inverse of A is denoted by A®P. It is known that this type inverse is not unique and can be
represented by the set in the general case. See [18] for details.

The ICEP inverse was introduced in [19]. In the following, we will present the definition of the ICEP
inverse. Firstly, let’s use A{1} to denote the set of all {1}-inverse of A. For AeC"*", Ind(A) = k and an
arbitrary GeA{1}, the matrix X is the unique solution to the matrix equations

XAX = X, XA = GAAD A and Ax = 44D,

We call X the ICEP inverse of A and is denoted by X = A-D_ GAA®.
In [12], for AeC"*" with Ind(A) = k, and each A°PeA{GD}, where A{GD} stands for the set of all
G-Drazin inverse of A, the GDMP inverse of A, denoted by AP, is the nxn matrix

AP = ACPAAT.

Moreover, the dual GDMP inverse of A is also introduced in [8, 10, 12], namely A"P = ATAACP.
Two new generalized inverses have emerged by combining core-EP inverse and the G-Drazin inverse,
which is the CEPGD inverse [17]. For a fixed G-Drazin inverse ASPeA{GD}, the CEPGD inverse of 4,

denote by ADGD g the unique matrix X satisfying the following equations:
XAX = X, XA = ADA and Ax = 44D 4P,

Notice that ADCD = 4® 446D

Next, let us review the core-EP decomposition. Wang gave the core-EP decomposition in the document
[21]. Let AeC™" with Ind(A) = k, rank(A*) = p. Then, one has A = A; + Ay, where AleCSM, A’; =0,
Ai"Az = A»A; = 0. Furthermore, there exists a unitary matrix U € C"*" such that

(T SN AT S\ . (0 0, .
A_u<0 N)U,Al—u<0 0>u,A2_u<0 N)u, (4)

where TeCP*? is nonsingular and SeCP* (n=p)  NeC—p)x(n-p) ig nilpotent of index k, i.e., Nk = 0.
Lemma 1.1. [4, 6, 21, 25] Let AECZX” as in (4). Then

T# A —T* A SNt
. T — *
(AT =U ((Inp —N'N)S*a N — (I, , = N'N)S* A 5NT> e

y T-1
(ii) AD _ U< 0 8) ux,

(iii) A® = (ADy24 = u <T(; 1 T;)25> u,

1 p—(k+1)
(iv)AD=U<T0 T . 5>u*,

where A = [TT* + S(I,_, — NTN)S*] 1.
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Lemma 1.2. [9] Let AeC™"*" with rank r > 0. Then there exists a unitary matrix UeC"*" such that

_ YK XL\, .
A= U( 0 0 ) ur*, (5)
where ¥ = diag(o11,1, 02112, ..., 01ly) is the diagonal matrix of singular values of A, 61 > 02 > ... > 0 >

0,71+ 7 +... + 1 =r,and KeC™", LeC™*("~") satisfy KK* + LL* = I,.
Lemma 1.3. Let AeC"*" be a matrix written as in (5). Then

(i)[5] the core-EP inverse of A is

A% _y <(ZIE)® 8) u*.

(ii)[3] the weak group inverse of A is

@ . ((CKD2sk (zx®ezrY . (E0® (=Dezry .
A _u( . . )u _u< ) >u.

Lemma 1.4. [3, 22] The following statements concerning A® are true.
(i) A® is an outer inverse of A,
(i) R(A®) = R(A¥),
(iii) ADAk+1 = AK,
(iv) AAD — AFB for some matrix B,

(v) A® = AXZ for some matrix Z.

The main structure of this paper is as follows. In Sect. 2, we introduce the WGGD inverse. Then,
we give some representations and characterizations of this type inverse. In Sect. 3, we develop the SMS
method for finding the WGGD inverse. In Sect. 4, the Cramer’s rule for the solution of a singular equation
Ax = b is presented. In Sect. 5, a binary relation for this inverse is introduced along with some derived
properties. In Sect. 6, we give the application of the WGGD inverse in solving linear equations.

2. The WGGD-Inverse

In this part, we establish the weak group G-Drazin (WGGD) inverse on the set of square matrices.
Furthermore, we discuss a few characterizations of the WGGD inverse and their relation with the main
classes of generalized inverses. From here onward, we will consider a matrix AeC"*" with Ind(A) = k.
Theorem 2.2 provides the motivation to investigate the WGGD inverse.

Definition 2.1. (a) Let AeC"™ " with Ind(A) = k and A°PeA{GD} be a fixed G-Drazin inverse. Then, the WGGD
inverse of A is termed as A®GCD g defined by the expression

ABED _ A® 44D,
(b) The WGGD family of A is marked with A{@®), GD} and defined as the set

A{®,GD} = ABAAD = (A®AACD : APeA(GD}} .
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Theorem 2.2. Let AcC™*" with Ind(A) = k and A°PeA{GD} be a fixed G-Drazin inverse. C is the weak core part
of A. The matrix expression X = A®AACD is the solution of the subsequent matrix equations

XAX = X, XA = A®A, AX = CACP. ©6)

The symbol A{@®, GD} stands for the set of all WGGD-inverses of A; clearly A{®W, GD} # & because A{GD} is
a nonempty set. Hence, A{®, GD} = {A®AACD . AP A{GD}}. Therefore, WGGD-inverses of A always exist
and, in general, they are not unique.

Proor. Let X = AB®AACD Then
XA = A®AADA = A®4

AX = AA®AAD — AP

and
XAX = A®AAPAA®AACD — AW AA®AACD _ p® 445D _ x.

O
Theorem 2.3. Let AcC™*" with Ind(A) = k. Suppose that C is the weak core part of A and ASPe A{GD} is a fixed
G-Drazin inverse. Then
ABED — APCACP,
Proor. From [22] we have R(A@) = R(A¥), and so A® — A¥Z from some matrix Z. Then
ABED _ ABAACD _ AFZAATD = APAAFZAASD = APAA®AAP = APCACP.
O

Theorem 2.4. Let AcC"™*" with Ind(A) = k and ASPeA{GD} be a fixed G-Drazin inverse. Then R(A®CD) =
R(AK).

Proor. In fact, by (6) we obtain
R(A®CD) ¢ R(A®ED 4) = R(APC) € R(AP) = R(A¥).
On the other hand, R(A¥) R(A@'GD ) because applying (6) and using Lemma 1.4 we have
AWGD gk+1 _ (A@AAGD)AkJrl — AW pak — Ak )

Hence, R(A¥) = R(A@'GD). ]

2 210
Example 2.5. Consider a matrix A = g g g (1) . Clearly, rank(A) = 3, rank(A?) =rank(A3) = 2, so that
0 0 0O
k =1Ind(A) = 2. Then
2 -1 0 0 2 -1 -1/2 =32
—6/5 4/5 0 0 -3/2 1 1/2 5/4
(- D _ A2/ A5\T A2 _
A=l 35 255 0 oA =AW= 4 o 0o o |
0 0 1 0 0 0 0 0
2 -1 -1/2 -3/2 2 -1 =12 0
—-6/5 4/5 2/5 1 -3/2 1 12 0
1D _ 7t D _ Dt _ aD T
AT =AAAT = 35 05 s ap AT EAAY =L 0 0 0 o
0 0 0 0 0 0 0 o0
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2 -1 00 2 -1 =172 0
D _ a2t |32 1 00| ,@_ D2, |32 1 12 0
AT = AA) = 0 0 0 O’A = (AF)yA= 0 0 0o o)
0 0 0O 0 0 0 0
2 -1 00 2 -1 00
t® _ gtaa®_ | 65 45 0 0 _ « =32 1 00
AT =AAAT = 35 25 0 of ADs=4dM =] o 0 0 o)
0 0 00 0 0 0O
2 -1 =12 0 2 -1 -1/2 0
@i @t |32 1 172 0 t® _ ataa® _ | —6/5 4/5 2/5 0
AT = ATAAT = 0 0 0 o AT AT = -3/5 2/5 4/5 0
0 0 0 0 0 0 0 0
2 -1 0 O 2 -1 0 ©
, _ -1 1 1220 eco_ |2 1 -1/2 3
Furthermore, for a fixed A~ = 1 0 -1 o0 ,and A%" = 1 2 1 a2l
0 0 1 0 0 0 1 8
we have
2 -1 -1/2 -3)2 2 -1 -1/2 0
. - -1 1 12 1 - - -3/2 1 12 0
D _ D _ D~ _ aD -
AT =ATAAT = 0 0 12 , AT = AYAAT = 0 0 0 ol
0 0 0 0 0 0 0 0
2 -1 00 2 -1 00
D 4eaa® |11 00 ®D-  a®ga-_ |32 1 00
A =ATAAY = | 0 0 ol A =AY AAT = 0 0o 0 ol
0 0 0O 0 0 00
2 -1 -1/2 0 2 -1 -1/2 0
W@ _ [T 1 12 0| @-_ 4@aa-_ |32 1 12 0
A =ATAAY = [ 0 0o ol A =AYAA™ = 0 0 o ol
0 0 0 0 0 0 0 0
2 -1 0 © 2 -1 0 O0
-2 1 =12 0 —-6/5 8/5 0 16/5
GDt _ AGD g at _ 1.GD _ At A AGD _
AT =ATRAAT = [, 1 o , AVPE = ATAARY = 35 45 1 85 |
0 0 1 0 0 0 1 8
2 -1 00 2 -1 00
eo® _ 4cpa® |2 1 0 0 ®cp _ a0 | -3/2 2 0 4
A =A"PAAY = 1 2 0ol A =AY AA™ = 0 0 0 ol
0 0 0O 0 0 00
2 -1 -1/2 —4 2 -1 -1/2 0
W.GD _ AW 4 AGD _ _3/2 2 1/2 8 GD®N) _ AGD 4 4 _ -2 1 1/2 0
A = ATAAT = 0 0 0 0| A = ATAAT = 1 2 1 0
0 0 0 0 0 0 0 0

It is observable that the WGGD inverse of A differs from the selected inner inverse, core-EP inverse,
Drazin inverse, Moore-Penrose inverse, weak group inverse, G-Drazin inverse, DMP inverse, MPCEP
inverse, *CEPMP inverse, MPD inverse, inner Drazin inverse, Drazin inner inverse, inner core-EP inverse,
core-EP-inner inverse, inner weak group inverse, weak group inner inverse, ICEP inverse, GDMP-inverse,
MPGD-inverse, CEPGD inverse, and GDCEP inverse. []
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Theorem 2.6. Let AcC"*" be written as in (4) with Ind(A) = k and A°PeA{GD} be a fixed G-Drazin inverse.

Then
A@'GD _u (Tol X5 + T*15N*0+ TZSNN) ur,

where (TX; + SN™)N = 0, X = T-"1§ — T*SN~ and § = Y7} TISNk—1-1,

T S
0 N

T S\, . _ T S\ /X1 X\ /(T S\,.
u(s ) = a8 (e X X)u

1 (TX1T +SX5T  TXiS + TXoN + SXa5 + SXuN\ |
= NX5T NX3S + NXsN '

Proor. LetA = U ( ) U*. From AXA = A, we obtain

Thus, NX3 =0, X4 =N—, TX; + SX5 =1, (TX; + SX4)N = 0. Next, we evaluate

=
Ak=u<€ g>u*,

where § = Y TIiSN¥1-7, Hence,
X; X5\ [Tt §> X T X4S
XAk =Uu u* = <) ur,
<X3 X4> <0 0 X3TF X3S
and

" S\ (X1 Xo\,m . (T"X1 +5X5 T5Xp +SXs) ;s
0 0>(X3 X4>u =u 0 0 .

AkX=u<

Using the condition AKX = XA¥, we obtain X;T% = T¥X;, X5 = 0, X,S = T*X, + SX4. Hence, the GD
inverses of A are of the form

—1
AP — (To ifi) u*, 8)

where (TX; + SN™)N = 0, X, = T-*+D5 — T=kgN~. By Lemma 1.1 and (8), we can see the GD inverses

are of the form
A@'GD _u (Tol X5 + T*15N*0+ TZSNN> U*.

U
We discuss the general form of the WGGD inverse via the Hartwig and Spindelbock decomposition (in

short, HS decomposition) [9].

Lemma 2.7. [17] Consider A as defined in (5). Then, the GD inverses of A are of the form

X; X
GD _ 1 2 %
A _U<X3 X4>U,

where KXy + ELX3 = I,, X1(ZK)k = (EK)*1, X3(ZK)F! = 0 and

(ZK)*1X, + (ZK)*LLX, = (ZK)*1ZL.
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Theorem 2.8. Consider the A as defined in (5) and AW be written as in Lemma 1.3. Then, the WGGD inverses of
A are of the form

A®CD _ g ((ZK)@X1 + ((()ZK)®)ZZLX3 (ZK)®X, + ((()ZK)®)2ZLX4> U,

where
YKX; 4+ ZLX;3 = I, X1(ZK)F = (ZK)*1, X3(ZK)*1 =0,

and
(ZK)*1X, + (ZK) ZLX, = (ZK)*1ZL.

Proor. The proof can be demonstrated by Lemma 1.3 and Lemma 2.7. [J

Theorem 2.9. Let AcC"*" with Ind(A) = k and ASPeA{GD} be a fixed G-Drazin inverse. C is the weak core part
of A. The system of conditions

AX = CA®P and R(X) < R(AY), 9)
is consistent and it has the unique solution X = A®CD,

Proor. Let X = A®CD_ Clearly, from (6) we obtain AX = CASP. On the other hand, according to
Theorem 2.4, we have R(X) € R(A¥). So, we deduce that A®CD gatisfies the two conditions in (9).

In order to show that system (9) has a unique solution, assume that both X; and X, satisfy (9), that is,
AX; = CA®P = AX;y, R(X1) € R(AF), and R(X;) € R(AF). Since A(X; — Xp) = 0, we obtain R(X; — X;) €
N(A) C N(A). We also get R(X; — Xz) € R(AF). Therefore, R(X; — Xa) € N(A¥) n R(A¥) = {0} because
Ind(A) = k. Thus, X; = X,. OO

Lemma 2.10. Let AeC"™*" with Ind(A) = k and A°Pe A{GD} be a fixed G-Drazin inverse. Then the weak core part
C of A satisfies CASPC = C.

Proor. It is clear that
CASPC = AABAALAAB A — apBpa®p — 42®4 _ ¢,
O

Theorem 2.11. Let AeC"™" with Ind(A) = k and ASPeA{GD} be a fixed G-Drazin inverse. C is the weak core
part of A. Then, X is a WGGD inverse of A if and only if XCX = X, CX = CA®P, and XC = APC.

Proor. Let X = A®GD, According to Lemma 2.10 and AP is an inner inverse of C in [3], we have
XCX = AD(CAGDC)ADCAGD _ AD(CAGDC)AGD _ ADCAGD _ X,

and
CX = (CAPC)A®P = CA®P, XC = AP(CACPC) = APC.

Conversely, if X satisfies XCX = X, CX = CA®P, XC = APC, then we have XCX = APCX = X.
Applying Theorem 2.3 and CX = CA“P, we can get

X — AP _ pbcx — A®CD _ g
Thus, X = A®CP je. Xisa WGGD inverse of A. [
Theorem 2.12. Let AeC™*" with Ind(A) = k and ASPe A{GD} be a fixed G-Drazin inverse. Then

W.GD _ 4(2)
A - AR(Ak),N((Ak)*AZAGD)'
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Proor. By Theorem 2.3 and Theorem 2.14 we have that AY/CD is an outer inverse of A with R(A®CD) =
R(AF). On the other hand, we are going to prove that N(A®6D) = N((A¥)*A2ACP) holds. In fact, by
Theorem 2.3 and (1) we get

N(A®D) = N(AABD) — N(CAP) = N(ADA245D).
Then xeN (A@'GD ) if and only if A2APxeN (A®) = N((A")*), since in [6], AD _ Al(:()Ak),N (A5 %)" Therefore,
xeN(A®CD) if and only if xeN((AF)*A2ACP). O

Theorem 2.13. Let AeC™*" with Ind(A) = k and ASPe A{GD} be a fixed G-Drazin inverse. The WGGD inverse
A®ECD s e unique solution to the following constrained matrix equations:

(1) AX = Prary n((at)* a2acoy and R(X) © R(AY), where Prary n((ary# a2ac0) 1S a projection onto R(AX) along
N((A¥)* A2ACP) satisfying AA®CD — CACD;

¢ * ’ R(AK),N((Ak)* A2 ] i
(2) (AF),N((AF)* A2) and R(X*) R((A 4GD)*) where P (A9 N((ab)# 42) 15 @ projection onto R( k)
along N((AX)*A?) satisfying A® A = A®6DC, A

Proor. Since, by definition, A®GED ig an outer inverse of A, we obtain that A®GD 4 idempotent and
N(AA®GDY) N(A@rc%and RA®CDA) = R(A®ED) Therefore, Theorem 2.13 implies N(A®CD) =
N((A%)*A2ACP) and R(AWCPA) = R(AF).

(1) According to Theorem 2.3, we have

R(AA®CD) = AR(A®CDY — AR(AF) = R(AF1) = R(AN).
On the other hand, by the definition of the WGGD inverse and AP is an inner inverse of C in [3] we obtain
AABCD — 4a® 44D — cACD,

(2) Firstly, we are going to prove that N(A®CDA) = N((4¥)*A2) holds. In fact, xeN(A®CDA) if and
only if AxeN(A®CD) = N((A¥)*A2ACP). Therefore, xeN(A®CDA) if and only if xeN((A¥)*A2APA) =
N((A*)*A2).

Finally, by the definition of the WGGD inverse, we get ADCDC = A®AADAA®A = A®A

Theorem 2.14. Let AcC™*" with Ind(A) = k and ASPe A{GD} be a fixed G-Drazin inverse. Then, the following
statements are equivalent.

(1) X is a WGGD inverse inverse of the given matrix A.
2) AXA = ADA2, xAx = X, AX = ADA24D, x4 = A®A.
(3) AXA = AD A2, xAx = X, xADA2 = A®4, ADA2x = AD A240D,
) xADA2x = x, xAD A2 = A®A, ax = AD 240D,
5) ADA2xA® A2 = AD A2 aADp2x = ADA2460 ABAX = .
(6) XAA®AX = X, AWAXAX = X, XA = A®A, XAAP = X.
Proor.
(1) = (2): On the basis of AX = ADA246D One can verify AXA = ADa24604 = ADA2 The rest of

the proof is evident by Theorem 2.2.
(2) = (3): Using XA = A®A and AXA = AD A2, then

XAD A2 = xaxA = xA = A04, ADA2x — axax = Ax = AD 246D,
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(3) = (4): By AXA = AD A2 and XAX = X, we have
xADA2x — xAXAX = XAX = X.
Using AA® = A®4 and ADA2x = ADA246D e get
AA®AX = Ax = AD 240D,

(4) = (5): The assumptions imply X = xA®A2x = A®Ax.
Since AX = ADA2ACP we can obtain

ADazx = AD4AD p246D — 4D 2400
By XADA2 = A® 4, we get
ADA2xaA® 42 - AD 22404 = 4D 224Dy242 = 4D y2
(5) = (1): Since A® _ (A®)2A, this implication follows obviously from
X = A®Ax = (AD)242x = (AD 242460 = A® p40D
(1) = (6): The definition X = A®AACD yields
XAA®AX = ABAACAABDAAB A ACD = AW AACD — X,

And
A®AxAX = ADAA®AADAA®AACD — AW pACD _ X

It is observable that
XA = ABAAPA = ABA, XAATD = ABAADAAL — A®AAD — ¥
(6) = (1): By applying X = XAA®P and XA = A®A, this implication follows obviously from
XAAP = A®AAD — X
Corollary 2.15. Let AcC"*" and APeA{GD} be a fixed G-Drazin inverse.Then
A®D ¢ (4a® a2y 21,
Proor. It follows from Theorem 2.14, part (4) and (5). O

Definition 2.16. [2, 26] The (B, C)-inverse of AcC"*" denoted by ABC), is the unique matrix XeC"™*™ satisfying
XAB = B, CAX = C, N(X) = N(C) and R(X) = R(B), where B, CeC"*™.

Theorem 2.17. Let AeC"*" with Ind(A) = k and A°PeA{GD} be a fixed G-Drazin inverse. Then A®CD g g
(AK, AD A2ACDY inverse of A.

Proor. By Lemma 1.4, we can get
ABD AR = ABAADAF = ABppk = A,

and
AD 424D A AB6D _ AD 224D A AW AACD = AAB®AADPAABAACD = gD p2 46D

On the other hand, from Theorem 2.12, we have

R(A®P) = r(ab), N(ABP) = N(aDA24%P),
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Theorem 2.18. Let AeC™*" with Ind(A) = k and ASPe A{GD} be a fixed G-Drazin inverse. For | > k,

A@,GD _ Ak(AkJrz)TAZAGD’ (10)
Proor. According to [11], it follows A® - AK(AM2)TA. By the corresponding Theorem 2.2, we get the
equality (10). O
Theorem 2.19. Let AeC™*" with Ind(A) = k and ASPe A{GD} be a fixed G-Drazin inverse. Then

ABD _ A0 A® p2460,

Proor. Since AA® — A®A, we get ADA2 — 44®4, Then
ABCD _ 4PCACD — APAA® 44D — AP AD g240P,
]
Theorem 2.20. Let AeC™*" with Ind(A) = k and ASPe A{GD} be a fixed G-Drazin inverse. Then

A@,GD _ Ak((Ak)*Ak+3)T(Ak)*A2AGD.

Proor. Using A®GD _ A(z() AN (A4 azacoy We obtain on the basis of Urquhart formula [3, 20],

ABED — AK(AF)* AZAAR)T(AF)* APACD = AR((AF)* AFF3)T(AF)* A2ACPD,

O

In the first result, we discuss a few properties of the WGGD inverse, which can be verified easily.
Proposition 2.21. For each ASPe A{GDY}, the WGGD inverse AD'CD satisfies the subsequent properties:
(1) ABGDA — 4B 4;
(2) ABCD AR+1 _ AK [k = ind(A);
(3) AW _ A@,GDAAGD;
(4) A®GD A AW 6D A@,GD;
(5) ABCD — Al(AI+2)1 A2ACD  where | > k = ind(A).

Theorem 2.22. Let AcC"™*" with Ind(A) = k and ASPe A{GD} be a fixed G-Drazin inverse. C is the weak core
part of A. The following statements are equivalent:

(1) X = A®CD — A®pp6D,
(2) XCX = X, CX = CACP, XC = APC.
(3) X = APAA®IGD,

Proor.
That (1) implies all other items (2) — (3) can be checked directly.
(2) = (1): Itis obvious that X = XCX = A®AACD
(3) = (1): Since A® — A¥Z for some matrix Z. It follows that
X = APAADCD — APAA®AACD — AFZAACP
AZAAP = ABAACD.

O
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3. The successive matrix squaring algorithm for the WGGD inverse

In this section, we give the successive matrix squaring algorithms for computing the WGGD inverse.
The development of the SMS iterations start from the transformations.
Since

(Ak+2)TA(AA@,GD) _ (Ak+2)TA2Ak(Ak+2)TA2AGD
_ (Ak+2)TAk+2(Ak+2)TA2AGD _ (Ak+2)TA2AGDI
we have
A@,GD — A@,GD _ ﬁ((Ak+2)TA(AA@,GD) _ (AkJrZ)TAZAGD)
_ (I _ ‘B(Ak+2)TA2)A@,GD + ﬁ(Ak+2)TA2AGD.
Observe the following matrices
P=]— ﬁ(AkJrZ)TAZ, Q _ ‘B(Ak+2)TA2AGD, ‘B = 0.

It is obvious that AYCD is the unique solution of X = PX+Q. Then an iterative procedure for computing
the WGGD inverse A®CD can be defined as follows

X1 =Q, Xpus1 = PX,, + Q. (11)

This algorithm can be implemented in parallel by considering the block matrix

(P Q w_ (P" ZIPQ
T (5 9) - (7 ).

The top right block of T is X", the mth approximation to A®CD The matrix power T™ can be computed
by the successive squaring, i.e.
To=T, Tis1 =T7,i=0,1,...,j,
where the integer j is such that 2/ > m. The following theorem gives the sufficient condition for the

convergence of the iterative process (11).

Theorem 3.1. Let AeC"*" with Ind(A) = kand ASPeA{GD} be a fixed G-Drazin inverse. Suppose rank(A¥) = r.
Then the approximation

om__q
Xon = Z (I _ ‘B(Ak+2)TA2)iﬁ(Ak+2)TA2AGD,

i=0

defined by the iterative process (11) converges to the WGGD inverse A®CD if the spectral radius p(I — X;A) < 1.
Moreover, the following error estimation holds:

[AB — Xon | < [ = Ko

As a result,
lim sup */[A®CD — Xou| < (I — X1 A).
m—aoo

Proor. We know that
A@'GDAA@’GD = A@,GD, XZ}HAA@/GD = XZm.

By the mathematical induction, we can get

I— XA = (I—X1A)*".



J. Yao et al. / Filomat 40:3 (2026), 1055-1074 1067

Therefore,
H A®GD _x 1 = ” A®GD _ x4 A@,GDH
= || = XAA®CD|
< [A®P) |1~ X
[A®] 1 - 4],
and

; 21 AWGD _ X, ; 2 [ A@,GD _ om
lim sup *\/JA®D — X | < lim sup 3/ JADCD |1 - X1A)|

= p(I-X;A).
In the last equality, we use the fact that lim,,_,.. |B" ||1/ " = p(B), for any square matrix B.
If B is a real parameter such that 1rngxt |1 —BAil <1, whereA; (i =1,2,...,s) are the nonzero eigenvalues
<i<

of (AF+2)TAZACD then
pI = X1 A) = p(I - B(A™?)TA?) < 1.

It completes the proof. [
Example 3.2. Consider the following matrix:
0 4/3 -1/3
A=[-13 1 -1/3],ind(A) =2.
-2/3 -2/3 0

Let
P=1-B(AYTA%, Q= pB(A")TA2AP, p=0.6.

The eigenvalues A; of QA are included in the set {0,0,0.5}. The nonzero eigenvalues A; satisfy
max|1—A;] =1]1-05=05<1.
1

Then we obtain the satisfactory approximation for A®GD after the 12th iteration of the successive matrix squaring
algorithm.

09466 03792 09238 0.1617 —0.1617 0

0.1256  0.1233 0.3780 0.3757 03757 O

(T2)12 ~ —0.0351 0.2512 0.8940 —0.1081 —0.1081 O
- 0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

The upper right corner of (T?)'? is an approximation of the WGGD inverse, that is

09466 0.3792 0.9238
A®CD _ [ 01256 0.1233 0.3780 |.

—0.0351 0.2512 0.8940

4. The Cramer’s rule for the solution of a singular equation Ax = b

Theorem 4.1. Let AcC"*" with Ind(A) = k and A°Pe A{GD} be a fixed G-Drazin inverse. Suppose UeC™*" and
V*eC"™ " having full column rank such that

R(U) = N(A®ED) and R(AF) € N(V).
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x=(v o)

Then, the bordered matrix

is nonsingular and

®, —A®
A®e A ) 1)

—-1 _
X = (uT(I,, — AADCDY  _Ut(A — AABGD )yt
Proor. Since R(A®CP) = R(A¥) € N(V), we obtain VA®CD = 0. By
R(U) = R(UUY) = N(1, — uu"),

we can obtain
I, — AA®CD — Ut (1, — AA®SD),

Let
9 _ A®GD (I, — ADCD 4yt
ut(1, — AA®CD)  _Ut(A — AADCD )yt
we have
X9 — AA®GD | uuT(I — AABCD)  A(1, — ABCD At — Ut (A — AABGD A VT

= @co V(I, — ABCD )V

_ (AADGD o (1, — AABCD) A1, — AABCDYVT _ Ut (1, — AADCD) AV

- VA /GD vV — vABGD Ayt

A(l, — ABGOYYT (1, — AA@GD)AVT)

<VA@ GD vV
(52

In an analogous way, it is possible to verify that X = I, ,. Thus, X is nonsingular and X! = 9. [

Theorem 4.2. Let AeC"*" with Ind(A) = k and ASPe A{GD} be a fixed G-Drazin inverse. If R(B) C R(AA@),
then

AX = B, R(X) < R(A) (13)
has the unique solution X = A®GDR,
Proor. Since R(B) < R(AA@), we have B = AA®Z, for some ZeC"*". If X = A®CDB, then we can obtain
AX = AADCPR — AA®AAPAAB7 — A4B7 — B,

Thus, X = A®CDB is a solution of (13). Finally, we show the uniqueness of X. Let X;eR(A¥) also satisfies
(13). Then

X — X; e RA®) A N(A) € RA®) A NA®A) = RA®A) A N4®4) = (0}

Hence, X = X;. O

Using the relationship between the WGGD inverse of A and a nonsingular bordered matrix, we give
the Cramer’s rule for solving a singular linear equation Ax = B. A(ij — b;) denotes the matrix obtained by
replacing ith column of A with b;, where b; is the jth column of B.
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Theorem 4.3. Let AcC"*" with Ind(A) = k and ASPeA{GD} be a fixed G-Drazin inverse. Suppose UeC"*" and
V*eC"™" having full column rank such that

R(A¥) = N(V), R(U) = N(A®ED),

IfR(B) < R(AK), then the unique solution X = A®cDp of the singular linear equation (13) is given by

(=4 4

A U
det (V O)

Proor. Since X = A®CPB e R(AA®) = N(V) and B € R(AA®), we have

,i=1,2,...n,j=1,2,...n (14)

xij =

VX =0, (I, —- AA®CD)B — . (15)

It follows from (15) that the solution of AX = B satisfies

v 0)(@)-6) <16>
By Theorem 4.1, the coefficient matrix of (16) is nonsingular. Using (12) and (15), we can obtain
X A®GD (I, — ABCD 4yt B A®GPp
<0> B (Lﬂ(ln — AA®CD)  _ut(A - AA@GDAW*) <0> N ( 0 ) '
Therefore, X = A®GDE and (14) follows from the classical Cramer’s rule [24]. ]

5. Binary relation on the WGGD inverse

It is well known that a reflexive and transitive binary relation on a non-empty set is a pre-order [15]. In
addition, if the relation is also anti-symmetric, it is termed as a partial order.

Definition 5.1. [15] Let A, BeC"" with Ind(A) = 1. Then, A is below B under the sharp order A <* B if there
exists commuting g-inverses A~ and A=, such that AA~ = BA~ and A=A = A=B.

Definition 5.2. For A, BeC"*", we will say that A is below B under the relation <®P if A®CDA - A®CDR
and AA®CD — BABCD for 4 fixed ASPe A{GDY. Such a relation is termed as A <®CP B,

Naturally, we will consider whether this binary relationship can become a partial order. The answer to
this question is No. A binary relation is called a partial order if it is reflexive, transitive, and anti-symmetric
on a non-empty set. Next, we give a concrete example to prove that this relationship is not satisfied
anti-symmetry.

Example 5.3. Consider the matrices

100 1 100 1
000 0 00 10
A=1000 0|B=]0 0 0 0
000 0 000 0
Since
100 1 100 1
@_[0 00 0| @ (0000
000 0| 000 0|
000 0 000 0
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AGD _ , BGD

_— O O
o O O
o O O
o O O
_ O O
O = OO
OO OO
o O OO

we can get

AA®CD _ pa®GD _ ,A®GD Y _ p®60p

[l e RN
[N
S O O

BE®ED _ gp@cD _ ,B®cPp _ p®6py

oo oo coc oo
S O oo coc oo

S O O

SO oo SO oo
(el e RN

S O oo S O O o
o O O O o O O O

(el e RN

Thus,
AA®CD _ pA®GD J®GD, _ p®GDR

AP _ pp®cD p®opp _ p®6D

Clearly, A <®6D B und B <®SD A hold, but A # B. Hence, The relation <®EP is not anti-symmetric.

Example 5.4. Consider the matrices

1 2 0 0 1 2 -2 1
0 00O 00 1 o0
A=10 00 o|B=lo 0 o o
01 00 00 0 O
Since
1 2 0 0 1 2 -2 1
A® _ 0 00O , B@ o0 o0 o0 ,
0 00O 00 0 O
0 00O 00 0 O
1 0 0 -2 1/6 1/3 0 0
ACD _ 0 00 1 BCD 1/3 2/3 0 0
“10 0 0 0} 10 1 0 0}
0 00 O 1/6 1/3 0 0
then, by calculating we get
1 0 0 O 1 2 00
A@'GD _ 0 0 00O ) B@'GD _ 0 00O
0 000 0 00O
0 0 00O 0 00O

It is easy to check A®CPA = A®CDB gpd BOCDB 2 BOCD A we can not get A <D Band B <®CP A, Thus,
the relation <®CD is not symmetric.

Next, we discuss the conditions that make it becoming a partial order.

Proposition 5.5. If A®ECD s the WGGD inverse of A, then subsequent statements are mutually equivalent for
A, BeC™":

(1) A <®cpp,
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(2) AA®A = BA® A = AA®6Dp,
(3) A®A = A®GDPB and AA® = BAD.
Proor. (1) = (2): Let A <®D B. Then
AA®A = AAPAADA = AABAALCAAB A — A4,

and
AA®A = AAB®AADA = AAPAACPE = AADCDR,

(2) = (3): Let AA®A = BA®A = AA®CDB. Then
ABAAOS = AOBAB A - p® 4B 6D _ q®CDp
and
AA® = 4A0AA® _ 4 A® AP AN _ pA®
(3) = (1): Assume (3) holds. Then, it follows:
AL — A® 4 _ p®CDp

in conjunction with ABD _ B 44D _ pABAACD _ pADD
O

Theorem 5.6. Assume that AcC"*" is represented by (4). In addition, if BeC"*", the subsequent statements are
equivalent:

(1) A <®cp .

_ - 4 T-1GNN-
2)B=U <g S — (TX, + SNB4+ T-1SNN )B4> -

Proor. (1) = (2): Let A <®€D Band consider B = U (g; gi) U*, where B; (i = 1,2,3,4) are arbitrary.
By comparing AA®GD _ pA®GD , using Theorem 2.6 and the matrix form of A®GD , wWe obtain

Bi=T,B;=0.
Applying A®CDA — AWCDE, we get
TS+ (Xo + TSN~ + T™2SNN™)N = T™'B, + (X, + T"'SN™ + T~2SNN~)B,. (17)
Using (TX, + SN™)N = 0 (see Theorem 2.6) and the equality (17), we have
By=S—(TXy +SN~ + T 'SNN")By.
(2) = (1): It follows by direct verification. [

Definition 5.7. For A, BeC™*", we will say that A is below B under the relation <®- if A®-A = A®-B and
AA®~ = BA®~ for g fixed ASPe A{GD}. Such a relation is termed as A <®— B.

Theorem 5.8. Let A, BeCM, If AP = A=, then A <®— B equivalent to A < B, where # < is the left sharp
partial order.

Proor. Suppose that A <®- B for A, BeCSM. Then A®-A = A®-B and AAD~ = BA®~ Since
AeCtM, we have A® — At where A* denotes the group inverse of A (that is, AA*A = A, A*AA* and
AA! = A'A). Now from A®~4A = A®~B, we get APAA"A = A’AA™B and AA*A~A = AA'A™B.
Multiplying AA*A~A = AA*A~B by A? from the left side, we have A2 = AB. On the other hand, similarly
from AA®~ = BA®~ we obtain A2 = BA, and then R(A) < R(B). By Definition 6.3.1 in [15], we have that
Af < B, that is, A is a predecessor of B under the left sharp partial order. []
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6. Applications
In this section, we will give the application of the WGGD inverse in solving linear equations.
Theorem 6.1. Let AcC"™*" with Ind(A) = k and A°PeA{GD} be a fixed G-Drazin inverse. The equation
(Ak+2)*A2x — (Ak+2)*A2AGDb, (18)
is consistent and its general solution is
x = A®p 1 (1 - A®6Dy),, (19)
for arbitrary yeC".
Proor. Suppose that x has the form (19). Applying ADCD = Ak(AF+2)1A2ACP, we have
(Ak+2)*A2A@,GD _ (Ak+2)*A2Ak(Ak+2)TA2AGD
— (Ak+2)*Ak+2(Ak+2)TA2AGD
(Ak+2)*A2AGD.
Therefore (AF+2)* A2A®.6Dp — (Ak+2)* A2ACDp, which implies that (18) holds for x.
For a solution x to (18), we obtain
AB®GDL  _ pk (AF+2)T 4245}
_ Ak(Ak+2)T((Ak+2) )*(Ak+2)*A2AGDb
_ Ak(Ak+2) ((AkJrZ) )*(Ak+2)*A2x
_ Ak(Ak+2) ((Ak+2) )*(Ak+2)*A2AGDAx
= A®GD gy,

|
b

Now, we get
x = A®ODY 4 x — ABCD gy — AWCDY | ([ ABCD 4y,

i.e., x possesses the form (19). O

Theorem 6.2. Let AcC"™ " with Ind(A) = k and A°PeA{GD} be a fixed G-Drazin inverse. Then the general
solution to

A® Ay = ABGDy, (20)
is given by

x=A®Dy (1 ABp)y, (21)
for arbitrary yeC".

Proor. Notice that x of the form (21) is a solution to (20):
ABAx = A®AAB6DY _ 46Dy,
Let x be a solution to (20). Then, by A®Ax = ABGDp, we deduce that x has the form (21):

x =AWy Ly A®Ax = ABODY 4 (1 - AV Ay,
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Theorem 6.3. Let AcC"™" with Ind(A) = k and A°PeA{GD} be a fixed G-Drazin inverse. Then the general
solution to

A®Ax = ADp, peRr(AN), (22)
is given by
x=A®y (1 ABp)y, (23)

= Ay (1- 4A®4)y
for arbitrary yeC".

Proor. If x is represented by (23), then

A®Ax = ABAADDY = A®p, @b = A,

Hence, x is a solution to (22).
On the other hand, assume that x is a solution to (22). Using

,GDy, _ — —
AODPY = A®p i @b = ADb = ABAx,

one can conclude that
x =AWy Ly A®Ax = ABODY 4 (1 - AV Ay,
Thus, the solution x to (22) possesses the form (23). Since beR(A*), we have P (AN

observe the identities A®CPp — A@PR A N(IAD A)b — A®p — A® Ax, which confirms the second identity
in (23). O

(I_A@A)b = b, then we

7. Conclusion

A novel class of outer generalized inverses, termed as the WGGD inverse, is introduced as a proper
composition of the weak group and the G-Drazin inverse. A few properties and computationally efficient
representations of the WGGD inverse are presented and investigated. The image and nullity of the WGGD
inverse are considered. The representations of the WGGD inverse based on the core-EP decomposition
and the Hartwig-Spindelbdck decomposition are established. A binary relation induced by this inverse is
introduced along with some derived properties. Some encouraging subjects for future investigation are
mentioned as follows:

e Perturbations, limit representations, and continuity of the WGGD inverse;
e Studying of the WGGD inverse for tensors;
¢ Investigation of the WGGD inverse for Hilbert spaces operators;

e The proposed combination of two types of generalized inverses can be an inspiration for future
composite generalized inverses defined on the basis of existing ones.
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