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Abstract. This paper will introduce a new class of generalized inverses for square matrices: the weak
group G-Drazin (WGGD) inverse. The WGGD inverse is not unique and defined as a proper composition
of the weak group inverse and the G-Drazin inverse. We investigate the characterizations, representations,
and properties of the inverse. A variant of the successive matrix squaring computational iterative scheme
is given for calculating the WGGD inverse. Moreover, the Cramer’s rule for the solution of a singular
equation Ax � b is presented. In addition, we consider some additional properties of the WGGD inverse
through an induced binary relation. In the final, the WGGD inverse being used in solving appropriate
systems of linear equations is established.

1. Introduction

Throughout this paper, we denote the set of all m � n complex matrices by Cm�n. For A P Cm�n, the
symbols A�, rankpAq, NpAq and RpAq stand for the conjugate transpose, the rank, the null space and the
range space of A, respectively. Moreover, In will refer to the n� n identity matrix.

Let A P Cn�n, the smallest positive integer k for which rankpAkq �rankpAk�1q is called the index of A and
is denoted by IndpAq � k. Then Cn�n

k represents all n � n complex matrices with index k. PE,F represents
the projector on the subspace E along the subspace F. For A P Cn�n, PA stands for the orthogonal projection
onto RpAq. The symbol CCM

n represents the subset of all n� n complex matrices with index 1.
Next, let’s review the definitions of some generalized inverses. For A P Cm�n, the Moore-Penrose inverse

A: of A is the unique matrix X P Cn�m satisfying the following four Penrose equations [1]:

AXA � A, XAX � X, pAXq� � AX, pXAq� � XA.

The Moore-Penrose inverse can be used to represent orthogonal projectors PA :� AA: onto RpAq and
QA :� A:A onto RpA�q, respectively. A matrix X P Cn�m that satisfies the equality AXA � A is called an
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inner inverse or t1u-inverse of A, and a matrix X P Cn�m that satisfies the equality XAX � X is called an
outer inverse or t2u-inverse of A.

The Drazin inverse is a kind of outer inverse defined for square matrices. For A P Cn�n and IndpAq � k,
the Drazin inverse AD of A is the unique matrix X P Cn�n satisfying the following three equations [24]:

Ak�1X � Ak, XAX � X, AX � XA.

In particular, if IndpAq � 1, AD � A# is the group inverse of A.
For A P Cn�n with IndpAq � k, the core-EP inverse A †O of A is the unique matrix X P Cn�n satisfying the

following conditions [16]:
XAX � X, RpAkq � RpXq � RpX�q.

Obviously, the core-EP inverse is an outer inverse of A. Recall that, by [7], the core-EP inverse can be
expressed as A †O � ADAkpAkq:.

The weak group inverse is proposed by Wang and Chen [22] for square matrices of an arbitrary index
as an extension of the group inverse. For A P Cn�n, the weak group inverse AwO of A is the uniquely
determined matrix that satisfying:

AX2 � X, AX � A †OA.

Notice that, by [22], we have AwO � pA †Oq2A. Two new generalized inverses have emerged by combining
Moore-Penrose inverse and the weak group inverse, which are the weak core inverse (WCI) AwO,: and the
dual weak core inverse (d-WCI) A:,wO [3]. Precisely, the weak core inverse of A P Cn�n presents a unique
solution to the matrix system [3]:

XAX � X, AX � CA:, XA � ADC,

where C is the weak core part of A with C � AAwOA. Notice that AwO,: � AwOAA: and A:,wO � A:AAwO.
In [3], for APCn�n and IndpAq � k, the weak core part C of A satisfies the following equations:

CAk � Ak�1, C � A †OA2, pI � AADqC � 0, (1)

pI � AA †OqC � pI � AAwOqC � 0, CpI �QAq � 0. (2)

The DMP-inverse of A P Cn�n
k , written by AD,:, was defined in [14] as the unique matrix X P Cn�n

k
satisfying

XAX � X, XA � ADA, AkX � AkA:.

Moreover, it was proved that AD,: � ADAA:. Also, the dual DMP-inverse of A was introduced in [14],
namely A:,D � A:AAD.

The MPCEP inverse for bounded linear Hilbert space operators was proposed in [13] as a combination of
the Moore-Penrose inverse with the core-EP inverse. More precisely, the MPCEP (or MP-Core-EP) inverse
of APCn�n is presented as a composed generalized inverse defined by the matrix expression

A:, †O � A:AA †O,

and it presents the unique solution to the matrix system

XAX � X, XA � A:AA †OA and AX � AA †O.

Notice that, for APCn�n, the *CEPMP inverse of A, defined in [13], by A †O,: � A †OAA: is unique solution to
the system

XAX � X, AX � AA †OAA: and XA � A †OA,
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where A †O is the dual core-EP inverse of A.
In [23], let APCn�n and IndpAq � k. Then, XPCn�n is called the G-Drazin inverse of A if it serves as a

solution for the following equations:

AXA � A, pk1qXAk�1 � Ak, p1kqAk�1X � Ak. (3)

The G-Drazin inverse of A is denoted by AGD. It is known that this type inverse is not unique and can be
represented by the set in the general case. See [18] for details.

The ICEP inverse was introduced in [19]. In the following, we will present the definition of the ICEP
inverse. Firstly, let’s use At1u to denote the set of all t1u-inverse of A. For APCn�n, IndpAq � k and an
arbitrary GPAt1u, the matrix X is the unique solution to the matrix equations

XAX � X, XA � GAA †OA and AX � AA †O.

We call X the ICEP inverse of A and is denoted by X � A�, †O � GAA †O.
In [12], for APCn�n with IndpAq � k, and each AGDPAtGDu, where AtGDu stands for the set of all

G-Drazin inverse of A, the GDMP inverse of A, denoted by AGD,:, is the n�n matrix

AGD,: � AGDAA:.

Moreover, the dual GDMP inverse of A is also introduced in [8, 10, 12], namely A:,GD � A:AAGD.
Two new generalized inverses have emerged by combining core-EP inverse and the G-Drazin inverse,

which is the CEPGD inverse [17]. For a fixed G-Drazin inverse AGDPAtGDu, the CEPGD inverse of A,
denote by A †O,GD, is the unique matrix X satisfying the following equations:

XAX � X, XA � A †OA and AX � AA †OAAGD.

Notice that A †O,GD � A †OAAGD.
Next, let us review the core-EP decomposition. Wang gave the core-EP decomposition in the document

[21]. Let APCn�n with IndpAq � k, rankpAkq � p. Then, one has A � A1 � A2, where A1PCCM
n , Ak

2 � 0,
A�

1 A2 � A2A1 � 0. Furthermore, there exists a unitary matrix U P Cn�n such that

A � U
�

T S
0 N



U�, A1 � U

�
T S
0 0



U�, A2 � U

�
0 0
0 N



U�, (4)

where TPCp�p is nonsingular and SPCp�pn�pq, NPCpn�pq�pn�pq is nilpotent of index k, i.e., Nk � 0.

Lemma 1.1. [4, 6, 21, 25] Let APCn�n
k as in p4q. Then

piq A: � U
�

T�△ �T� △ SN:

pIn�p �N:NqS�△ N: � pIn�p �N:NqS� △ SN:



U�,

piiq A †O � U
�

T�1 0
0 0



U�,

piiiq AwO � pA †Oq2A � U
�

T�1 T�2S
0 0



U�,

pivq AD � U
�

T�1 T�pk�1qrS
0 0



U�,

where △ � rTT� � SpIn�p �N:NqS�s�1.
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Lemma 1.2. [9] Let APCn�n with rank r ¡ 0. Then there exists a unitary matrix UPCn�n such that

A � U
�
ΣK ΣL
0 0



U�, (5)

where Σ � dia1pσ1Ir1, σ2Ir2, . . . , σtIrtq is the diagonal matrix of singular values of A, σ1 ¡ σ2 ¡ . . . ¡ σt ¡
0, r1 � r2 � . . .� rt � r, and KPCr�r, LPCr�pn�rq satisfy KK� � LL� � Ir.

Lemma 1.3. Let APCn�n be a matrix written as in p5q. Then

piq[5] the core-EP inverse of A is

A †O � U
�
pΣKq †O 0

0 0



U�.

piiq[3] the weak group inverse of A is

AwO � U
�
ppΣKq †Oq2ΣK ppΣKq †Oq2ΣL

0 0



U� � U

�
pΣKqwO ppΣKq †Oq2ΣL

0 0



U�.

Lemma 1.4. [3, 22] The following statements concerning AwO are true.

piq AwO is an outer inverse of A,

piiq RpAwOq � RpAkq,

piiiq AwOAk�1 � Ak,

pivq AAwO � AkB for some matrix B,

pvq AwO � AkZ for some matrix Z.

The main structure of this paper is as follows. In Sect. 2, we introduce the WGGD inverse. Then,
we give some representations and characterizations of this type inverse. In Sect. 3, we develop the SMS
method for finding the WGGD inverse. In Sect. 4, the Cramer’s rule for the solution of a singular equation
Ax � b is presented. In Sect. 5, a binary relation for this inverse is introduced along with some derived
properties. In Sect. 6, we give the application of the WGGD inverse in solving linear equations.

2. The WGGD-Inverse

In this part, we establish the weak group G-Drazin (WGGD) inverse on the set of square matrices.
Furthermore, we discuss a few characterizations of the WGGD inverse and their relation with the main
classes of generalized inverses. From here onward, we will consider a matrix APCn�n with IndpAq � k.
Theorem 2.2 provides the motivation to investigate the WGGD inverse.

Definition 2.1. paq Let APCn�n with IndpAq � k and AGDPAtGDu be a fixed G-Drazin inverse. Then, the WGGD
inverse of A is termed as AwO,GD and defined by the expression

AwO,GD � AwOAAGD.

pbq The WGGD family of A is marked withAtwO,GDu and defined as the set

AtwO,GDu � AwOAAGD �
 

AwOAAGD : AGDPAtGDu
(
.
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Theorem 2.2. Let APCn�n with IndpAq � k and AGDPAtGDu be a fixed G-Drazin inverse. C is the weak core part
of A. The matrix expression X � AwOAAGD is the solution of the subsequent matrix equations

XAX � X, XA � AwOA, AX � CAGD. (6)

The symbolAtwO,GDu stands for the set of all WGGD-inverses of A; clearlyAtwO,GDu � H becauseAtGDu is
a nonempty set. Hence, AtwO,GDu � tAwOAAGD : AGDPAtGDuu. Therefore, WGGD-inverses of A always exist
and, in general, they are not unique.

Proof. Let X � AwOAAGD. Then
XA � AwOAAGDA � AwOA,

AX � AAwOAAGD � CAGD

and
XAX � AwOAAGDAAwOAAGD � AwOAAwOAAGD � AwOAAGD � X.

l

Theorem 2.3. Let APCn�n with IndpAq � k. Suppose that C is the weak core part of A and AGDPAtGDu is a fixed
G-Drazin inverse. Then

AwO,GD � ADCAGD.

Proof. From [22] we have RpAwOq � RpAkq, and so AwO � AkZ from some matrix Z. Then

AwO,GD � AwOAAGD � AkZAAGD � ADAAkZAAGD � ADAAwOAAGD � ADCAGD.

l

Theorem 2.4. Let APCn�n with IndpAq � k and AGDPAtGDu be a fixed G-Drazin inverse. Then RpAwO,GDq �
RpAkq.

Proof. In fact, by p6q we obtain

RpAwO,GDq � RpAwO,GDAq � RpADCq � RpADq � RpAkq.

On the other hand, RpAkq � RpAwO,GDq because applying p6q and using Lemma 1.4 we have

AwO,GDAk�1 � pAwOAAGDqAk�1 � AwOAAk � Ak. (7)

Hence, RpAkq � RpAwO,GDq. l

Example 2.5. Consider a matrix A �

����
2 2 1 0
3 4 2 0
0 0 0 1
0 0 0 0

���
. Clearly, rankpAq � 3, rankpA2q �rankpA3q � 2, so that

k � IndpAq � 2. Then

A: �

����
2 �1 0 0

�6{5 4{5 0 0
�3{5 2{5 0 0

0 0 1 0

���
, AD � A2pA5q:A2 �

����
2 �1 �1{2 �3{2

�3{2 1 1{2 5{4
0 0 0 0
0 0 0 0

���
,

A:,D � A:AAD �

����
2 �1 �1{2 �3{2

�6{5 4{5 2{5 1
�3{5 2{5 1{5 1{2

0 0 0 0

���
, AD,: � ADAA: �

����
2 �1 �1{2 0

�3{2 1 1{2 0
0 0 0 0
0 0 0 0

���
,
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A †O � A2pA3q: �

����
2 �1 0 0

�3{2 1 0 0
0 0 0 0
0 0 0 0

���
, AwO � pA †Oq2A �

����
2 �1 �1{2 0

�3{2 1 1{2 0
0 0 0 0
0 0 0 0

���
,

A:, †O � A:AA †O �

����
2 �1 0 0

�6{5 4{5 0 0
�3{5 2{5 0 0

0 0 0 0

���
, A †O,: � A †OAA: �

����
2 �1 0 0

�3{2 1 0 0
0 0 0 0
0 0 0 0

���
,

AwO,: � AwOAA: �

����
2 �1 �1{2 0

�3{2 1 1{2 0
0 0 0 0
0 0 0 0

���
, A:,wO � A:AAwO �

����
2 �1 �1{2 0

�6{5 4{5 2{5 0
�3{5 2{5 4{5 0

0 0 0 0

���
.

Furthermore, for a fixed A� �

����
2 �1 0 0
�1 1 1{2 0
�1 0 �1 0
0 0 1 0

���
, and AGD �

����
2 �1 0 0
�2 1 �1{2 3
1 2 1 2
0 0 1 8

���
,

we have

A�,D � A�AAD �

����
2 �1 �1{2 �3{2
�1 1 1{2 1
�1 0 0 1{2
0 0 0 0

���
, AD,� � ADAA� �

����
2 �1 �1{2 0

�3{2 1 1{2 0
0 0 0 0
0 0 0 0

���
,

A�, †O � A�AA †O �

����
2 �1 0 0
�1 1 0 0
�1 0 0 0
0 0 0 0

���
, A †O,� � A †OAA� �

����
2 �1 0 0

�3{2 1 0 0
0 0 0 0
0 0 0 0

���
,

A�,wO � A�AAwO �

����
2 �1 �1{2 0
�1 1 1{2 0
1 0 0 0
0 0 0 0

���
, AwO,� � AwOAA� �

����
2 �1 �1{2 0

�3{2 1 1{2 0
0 0 0 0
0 0 0 0

���
,

AGD,: � AGDAA: �

����
2 �1 0 0
�2 1 �1{2 0
1 2 1 0
0 0 1 0

���
, A:,GD � A:AAGD �

����
2 �1 0 0

�6{5 8{5 0 16{5
�3{5 4{5 1 8{5

0 0 1 8

���
,

AGD, †O � AGDAA †O �

����
2 �1 0 0
�2 1 0 0
1 2 0 0
0 0 0 0

���
, A †O,GD � A †OAAGD �

����
2 �1 0 0

�3{2 2 0 4
0 0 0 0
0 0 0 0

���
,

AwO,GD � AwOAAGD �

����
2 �1 �1{2 �4

�3{2 2 1{2 8
0 0 0 0
0 0 0 0

���
, AGD,wO � AGDAAwO �

����
2 �1 �1{2 0
�2 1 1{2 0
1 2 1 0
0 0 0 0

���
.
It is observable that the WGGD inverse of A differs from the selected inner inverse, core-EP inverse,

Drazin inverse, Moore-Penrose inverse, weak group inverse, G-Drazin inverse, DMP inverse, MPCEP
inverse, *CEPMP inverse, MPD inverse, inner Drazin inverse, Drazin inner inverse, inner core-EP inverse,
core-EP-inner inverse, inner weak group inverse, weak group inner inverse, ICEP inverse, GDMP-inverse,
MPGD-inverse, CEPGD inverse, and GDCEP inverse. l
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Theorem 2.6. Let APCn�n be written as in p4q with IndpAq � k and AGDPAtGDu be a fixed G-Drazin inverse.
Then

AwO,GD � U
�

T�1 X2 � T�1SN� � T�2SNN�

0 0



U�,

where pTX2 � SN�qN � 0, X2 � T�pk�1qrS� T�krSN� and rS � °k�1
i�0 TiSNk�1�i.

Proof. Let A � U
�

T S
0 N



U�. From AXA � A, we obtain

U
�

T S
0 N



U� � U

�
T S
0 N


�
X1 X2
X3 X4


�
T S
0 N



U�

� U
�

TX1T � SX3T TX1S� TX2N � SX3S� SX4N
NX3T NX3S�NX4N



U�.

Thus, NX3 � 0, X4 � N�, TX1 � SX3 � I, pTX2 � SX4qN � 0. Next, we evaluate

Ak � U
�

Tk rS
0 0



U�,

where rS � °k�1
i�0 TiSNk�1�i. Hence,

XAk � U
�

X1 X2
X3 X4


�
Tk rS
0 0



U� �

�
X1Tk X1rS
X3Tk X3rS

�
U�,

and

AkX � U
�

Tk rS
0 0


�
X1 X2
X3 X4



U� � U

�
TkX1 � rSX3 TkX2 � rSX4

0 0



U�.

Using the condition AkX � XAk, we obtain X1Tk � TkX1, X3 � 0, X1rS � TkX2 � rSX4. Hence, the GD
inverses of A are of the form

AGD � U
�

T�1 X2
0 N�



U�, (8)

where pTX2 � SN�qN � 0, X2 � T�pk�1qrS � T�krSN�. By Lemma 1.1 and p8q, we can see the GD inverses
are of the form

AwO,GD � U
�

T�1 X2 � T�1SN� � T�2SNN�

0 0



U�.

l

We discuss the general form of the WGGD inverse via the Hartwig and Spindelböck decomposition (in
short, HS decomposition) [9].

Lemma 2.7. [17] Consider A as defined in p5q. Then, the GD inverses of A are of the form

AGD � U
�

X1 X2
X3 X4



U�,

where ΣKX1 � ΣLX3 � Ir, X1pΣKqk � pΣKqk�1, X3pΣKqk�1 � 0 and

pΣKqk�1X2 � pΣKqkΣLX4 � pΣKqk�1ΣL.
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Theorem 2.8. Consider the A as defined in p5q and AwO be written as in Lemma 1.3. Then, the WGGD inverses of
A are of the form

AwO,GD � U
�
pΣKqwOX1 � ppΣKq †Oq2ΣLX3 pΣKqwOX2 � ppΣKq †Oq2ΣLX4

0 0



U�,

where
ΣKX1 � ΣLX3 � Ir, X1pΣKqk � pΣKqk�1, X3pΣKqk�1 � 0,

and
pΣKqk�1X2 � pΣKqkΣLX4 � pΣKqk�1ΣL.

Proof. The proof can be demonstrated by Lemma 1.3 and Lemma 2.7. l

Theorem 2.9. Let APCn�n with IndpAq � k and AGDPAtGDu be a fixed G-Drazin inverse. C is the weak core part
of A. The system of conditions

AX � CAGD and RpXq � RpAkq, (9)

is consistent and it has the unique solution X � AwO,GD.

Proof. Let X � AwO,GD. Clearly, from p6q we obtain AX � CAGD. On the other hand, according to
Theorem 2.4, we have RpXq � RpAkq. So, we deduce that AwO,GD satisfies the two conditions in p9q.

In order to show that system p9q has a unique solution, assume that both X1 and X2 satisfy p9q, that is,
AX1 � CAGD � AX2, RpX1q � RpAkq, and RpX2q � RpAkq. Since ApX1 � X2q � 0, we obtain RpX1 � X2q �
NpAq � NpAkq. We also get RpX1 � X2q � RpAkq. Therefore, RpX1 � X2q � NpAkq X RpAkq � t0u because
IndpAq � k. Thus, X1 � X2. l

Lemma 2.10. Let APCn�n with IndpAq � k and AGDPAtGDu be a fixed G-Drazin inverse. Then the weak core part
C of A satisfies CAGDC � C.

Proof. It is clear that

CAGDC � AAwOAAGDAAwOA � AAwOAAwOA � AAwOA � C.

l

Theorem 2.11. Let APCn�n with IndpAq � k and AGDPAtGDu be a fixed G-Drazin inverse. C is the weak core
part of A. Then, X is a WGGD inverse of A if and only if XCX � X, CX � CAGD, and XC � ADC.

Proof. Let X � AwO,GD. According to Lemma 2.10 and AD is an inner inverse of C in [3], we have

XCX � ADpCAGDCqADCAGD � ADpCAGDCqAGD � ADCAGD � X,

and
CX � pCADCqAGD � CAGD, XC � ADpCAGDCq � ADC.

Conversely, if X satisfies XCX � X, CX � CAGD, XC � ADC, then we have XCX � ADCX � X.
Applying Theorem 2.3 and CX � CAGD, we can get

X � AwO,GD � ADCX � AwO,GD � 0.

Thus, X � AwO,GD, i.e. X is a WGGD inverse of A. l

Theorem 2.12. Let APCn�n with IndpAq � k and AGDPAtGDu be a fixed G-Drazin inverse. Then

AwO,GD � Ap2q
RpAkq,NppAkq�A2AGDq

.
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Proof. By Theorem 2.3 and Theorem 2.14 we have that AwO,GD is an outer inverse of A with RpAwO,GDq �
RpAkq. On the other hand, we are going to prove that NpAwO,GDq � NppAkq�A2AGDq holds. In fact, by
Theorem 2.3 and p1q we get

NpAwO,GDq � NpAAwO,GDq � NpCAGDq � NpA †OA2AGDq.

Then xPNpAwO,GDq if and only if A2AGDxPNpA †Oq � NppAkq�q, since in [6], A †O � Ap2q
RpAkq,NppAkq�q

. Therefore,

xPNpAwO,GDq if and only if xPNppAkq�A2AGDq. l

Theorem 2.13. Let APCn�n with IndpAq � k and AGDPAtGDu be a fixed G-Drazin inverse. The WGGD inverse
AwO,GD is the unique solution to the following constrained matrix equations:

p1q AX � PRpAkq,NppAkq�A2AGDq and RpXq � RpAkq, where PRpAkq,NppAkq�A2AGDq is a projection onto RpAkq along
NppAkq�A2AGDq satisfying AAwO,GD � CAGD;

p2q XA � PRpAkq,NppAkq�A2q and RpX�q � RppAAGDq�q, where PRpAkq,NppAkq�A2q is a projection onto RpAkq

along NppAkq�A2q satisfying AwOA � AwO,GDC.

Proof. Since, by definition, AwO,GD is an outer inverse of A, we obtain that AwO,GDA idempotent and
NpAAwO,GDq � NpAwO,GDq and RpAwO,GDAq � RpAwO,GDq. Therefore, Theorem 2.13 implies NpAwO,GDq �
NppAkq�A2AGDq and RpAwO,GDAq � RpAkq.

(1) According to Theorem 2.3, we have

RpAAwO,GDq � ARpAwO,GDq � ARpAkq � RpAk�1q � RpAkq.

On the other hand, by the definition of the WGGD inverse and AD is an inner inverse of C in [3] we obtain

AAwO,GD � AAwOAAGD � CAGD.

(2) Firstly, we are going to prove that NpAwO,GDAq � NppAkq�A2q holds. In fact, xPNpAwO,GDAq if and
only if AxPNpAwO,GDq � NppAkq�A2AGDq. Therefore, xPNpAwO,GDAq if and only if xPNppAkq�A2AGDAq �
NppAkq�A2q.

Finally, by the definition of the WGGD inverse, we get AwO,GDC � AwOAAGDAAwOA � AwOA. l

Theorem 2.14. Let APCn�n with IndpAq � k and AGDPAtGDu be a fixed G-Drazin inverse. Then, the following
statements are equivalent.

p1q X is a WGGD inverse inverse of the given matrix A.

p2q AXA � A †OA2, XAX � X, AX � A †OA2AGD, XA � AwOA.

p3q AXA � A †OA2, XAX � X, XA †OA2 � AwOA, A †OA2X � A †OA2AGD.

p4q XA †OA2X � X, XA †OA2 � AwOA, AX � A †OA2AGD.

p5q A †OA2XA †OA2 � A †OA2, A †OA2X � A †OA2AGD, AwOAX � X.

p6q XAAwOAX � X, AwOAXAX � X, XA � AwOA, XAAGD � X.

Proof.
p1q ñ p2q: On the basis of AX � A †OA2AGD. One can verify AXA � A †OA2AGDA � A †OA2. The rest of

the proof is evident by Theorem 2.2.
p2q ñ p3q: Using XA � AwOA and AXA � A †OA2, then

XA †OA2 � XAXA � XA � AwOA, A †OA2X � AXAX � AX � A †OA2AGD.
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p3q ñ p4q: By AXA � A †OA2 and XAX � X, we have

XA †OA2X � XAXAX � XAX � X.

Using AAwO � A †OA and A †OA2X � A †OA2AGD, we get

AAwOAX � AX � A †OA2AGD.

p4q ñ p5q: The assumptions imply X � XA †OA2X � AwOAX.
Since AX � A †OA2AGD, we can obtain

A †OA2X � A †OAA †OA2AGD � A †OA2AGD.

By XA †OA2 � AwOA, we get

A †OA2XA †OA2 � A †OA2AwOA � A †OA2pA †Oq2A2 � A †OA2.

p5q ñ p1q: Since AwO � pA †Oq2A, this implication follows obviously from

X � AwOAX � pA †Oq2A2X � pA †Oq2A2AGD � AwOAAGD.

p1q ñ p6q: The definition X � AwOAAGD yields

XAAwOAX � AwOAAGDAAwOAAwOAAGD � AwOAAGD � X.

And
AwOAXAX � AwOAAwOAAGDAAwOAAGD � AwOAAGD � X.

It is observable that

XA � AwOAAGDA � AwOA, XAAGD � AwOAAGDAAGD � AwOAAGD � X.

p6q ñ p1q: By applying X � XAAGD and XA � AwOA, this implication follows obviously from

XAAGD � AwOAAGD � X.

Corollary 2.15. Let APCn�n and AGDPAtGDu be a fixed G-Drazin inverse.Then

AwO,GD P pA †OA2qt1, 2u.

Proof. It follows from Theorem 2.14, part p4q and p5q. l

Definition 2.16. [2, 26] The pB,Cq-inverse of APCm�n denoted by ApB,Cq, is the unique matrix XPCn�m satisfying
XAB � B, CAX � C, NpXq � NpCq and RpXq � RpBq, where B,CPCn�m.

Theorem 2.17. Let APCn�n with IndpAq � k and AGDPAtGDu be a fixed G-Drazin inverse. Then AwO,GD is a
pAk,A †OA2AGDq inverse of A.

Proof. By Lemma 1.4, we can get

AwO,GDAAk � AwOAAGDAk � AwOAAk � Ak,

and
A †OA2AGDAAwO,GD � A †OA2AGDAAwOAAGD � AAwOAAGDAAwOAAGD � A †OA2AGD.

On the other hand, from Theorem 2.12, we have

RpAwO,GDq � RpAkq, NpAwO,GDq � NpA †OA2AGDq.

l
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Theorem 2.18. Let APCn�n with IndpAq � k and AGDPAtGDu be a fixed G-Drazin inverse. For l ¥ k,

AwO,GD � AkpAk�2q:A2AGD. (10)

Proof. According to [11], it follows AwO � AkpAk�2q:A. By the corresponding Theorem 2.2, we get the
equality p10q. l

Theorem 2.19. Let APCn�n with IndpAq � k and AGDPAtGDu be a fixed G-Drazin inverse. Then

AwO,GD � ADA †OA2AGD.

Proof. Since AAwO � A †OA, we get A †OA2 � AAwOA. Then

AwO,GD � ADCAGD � ADAAwOAAGD � ADA †OA2AGD.

l

Theorem 2.20. Let APCn�n with IndpAq � k and AGDPAtGDu be a fixed G-Drazin inverse. Then

AwO,GD � AkppAkq�Ak�3q:pAkq�A2AGD.

Proof. Using AwO,GD � Ap2q
RpAkq,NppAkq�A2AGDq

, we obtain on the basis of Urquhart formula [3, 20],

AwO,GD � AkppAkq�A2AAkq:pAkq�A2AGD � AkppAkq�Ak�3q:pAkq�A2AGD.

l

In the first result, we discuss a few properties of the WGGD inverse, which can be verified easily.

Proposition 2.21. For each AGDPAtGDu, the WGGD inverse AwO,GD satisfies the subsequent properties:

p1q AwO,GDA � AwOA;

p2q AwO,GDAk�1 � Ak, k � indpAq;

p3q AwO,GD � AwO,GDAAGD;

p4q AwO,GDAAwO,GD � AwO,GD;

p5q AwO,GD � AlpAl�2q:A2AGD, where l ¥ k � indpAq.

Theorem 2.22. Let APCn�n with IndpAq � k and AGDPAtGDu be a fixed G-Drazin inverse. C is the weak core
part of A. The following statements are equivalent:

p1q X � AwO,GD � AwOAAGD.

p2q XCX � X, CX � CAGD, XC � ADC.

p3q X � ADAAwO,GD.

Proof.
That p1q implies all other items p2q � p3q can be checked directly.
p2q ñ p1q: It is obvious that X � XCX � AwOAAGD.
p3q ñ p1q: Since AwO � AkZ for some matrix Z. It follows that

X � ADAAwO,GD � ADAAwOAAGD � AkZAAGD

� AkZAAGD � AwOAAGD.

l
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3. The successive matrix squaring algorithm for the WGGD inverse

In this section, we give the successive matrix squaring algorithms for computing the WGGD inverse.
The development of the SMS iterations start from the transformations.

Since

pAk�2q:ApAAwO,GDq � pAk�2q:A2AkpAk�2q:A2AGD

� pAk�2q:Ak�2pAk�2q:A2AGD � pAk�2q:A2AGD,

we have

AwO,GD � AwO,GD � βppAk�2q:ApAAwO,GDq � pAk�2q:A2AGDq

� pI � βpAk�2q:A2qAwO,GD � βpAk�2q:A2AGD.

Observe the following matrices

P � I � βpAk�2q:A2, Q � βpAk�2q:A2AGD, β ¡ 0.

It is obvious that AwO,GD is the unique solution of X � PX�Q. Then an iterative procedure for computing
the WGGD inverse AwO,GD can be defined as follows

X1 � Q, Xm�1 � PXm �Q. (11)

This algorithm can be implemented in parallel by considering the block matrix

T �

�
P Q
0 I



, Tm �

�
Pm Σm�1

i�0 PiQ
0 I



.

The top right block of Tm is Xm, the mth approximation to AwO,GD. The matrix power Tm can be computed
by the successive squaring, i.e.

T0 � T, Ti�1 � T2
i , i � 0, 1, . . . , j,

where the integer j is such that 2 j ¥ m. The following theorem gives the sufficient condition for the
convergence of the iterative process p11q.

Theorem 3.1. Let APCn�n with IndpAq � k and AGDPAtGDu be a fixed G-Drazin inverse. Suppose rankpAkq � r.
Then the approximation

X2m �
2m�1¸
i�0

pI � βpAk�2q:A2qiβpAk�2q:A2AGD,

defined by the iterative process p11q converges to the WGGD inverse AwO,GD if the spectral radius ρpI � X1Aq ¤ 1.
Moreover, the following error estimation holds:��AwO,GD � X2m

�� ¤ ��pI � X1Aq2m�� .
As a result,

lim
mÑ8

sup 2m
b
}AwO,GD � X2m} ¤ pI � X1Aq.

Proof. We know that
AwO,GDAAwO,GD � AwO,GD, X2m AAwO,GD � X2m .

By the mathematical induction, we can get

I � X2m A � pI � X1Aq2m
.
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Therefore,��AwO,GD � X2m

�� �
��AwO,GD � X2m AAwO,GD

��
�

��pI � X2m AAwO,GD
��

¤
��AwO,GD

�� }I � X2m A}

�
��AwO,GD

�� ��pI � X1Aq2m�� ,
and

lim
mÑ8

sup 2m
b
}AwO,GD � X2m} ¤ lim

mÑ8
sup 2m

b
}AwO,GD} }pI � X1Aq2m}

� ρpI � X1Aq.

In the last equality, we use the fact that limmÑ8 }Bn}1{n
� ρpBq, for any square matrix B.

If β is a real parameter such that max
1¤i¤t

|1� βλi|   1,where λi pi � 1, 2, . . . , sq are the nonzero eigenvalues

of pAk�2q:A2AGD, then
ρpI � X1Aq � ρpI � βpAk�2q:A2q ¤ 1.

It completes the proof. l

Example 3.2. Consider the following matrix:

A �

�� 0 4{3 �1{3
�1{3 1 �1{3
�2{3 �2{3 0

�
, indpAq � 2.

Let
P � I � βpA4q:A2, Q � βpA4q:A2AGD, β � 0.6.

The eigenvalues λi of QA are included in the set t0, 0, 0.5u. The nonzero eigenvalues λi satisfy

max
i
|1� λi| � |1� 0.5| � 0.5   1.

Then we obtain the satisfactory approximation for AwO,GD after the 12th iteration of the successive matrix squaring
algorithm.

pT2q12 �

��������
0.9466 0.3792 0.9238 0.1617 �0.1617 0
0.1256 0.1233 0.3780 0.3757 0.3757 0
�0.0351 0.2512 0.8940 �0.1081 �0.1081 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

�������
.

The upper right corner of pT2q12 is an approximation of the WGGD inverse, that is

AwO,GD �

�� 0.9466 0.3792 0.9238
0.1256 0.1233 0.3780
�0.0351 0.2512 0.8940

�
.
4. The Cramer’s rule for the solution of a singular equation Ax � b

Theorem 4.1. Let APCn�n with IndpAq � k and AGDPAtGDu be a fixed G-Drazin inverse. Suppose UPCn�r and
V�PCn�r having full column rank such that

RpUq � NpAwO,GDq and RpAkq � NpVq.
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Then, the bordered matrix

X �

�
A U
V 0



is nonsingular and

X�1 �

�
AwO,GD pIn � AwO,GDAqV:

U:pIn � AAwO,GDq �U:pA� AAwO,GDAqV:



. (12)

Proof. Since RpAwO,GDq � RpAkq � NpVq, we obtain VAwO,GD � 0. By

RpUq � RpUU:q � NpIn �UU:q,

we can obtain
In � AAwO,GD � UU:pIn � AAwO,GDq.

Let

Y �

�
AwO,GD pIn � AwO,GDAqV:

U:pIn � AAwO,GDq �U:pA� AAwO,GDAqV:



,

we have

XY �
�

AAwO,GD �UU:pIn � AAwO,GDq ApIn � AwO,GDAqV: �UU:pA� AAwO,GDAqV:

VAwO,GD VpIr � AwO,GDAqV:



�

�
AAwO,GD � pIn � AAwO,GDq ApIn � AAwO,GDqV: �UU:pIn � AAwO,GDqAV:

VAwO,GD VV: � VAwO,GDAV:



�

�
In ApIn � AwO,GDqV: � pIn � AAwO,GDqAV:

VAwO,GD VV:



�

�
In 0
0 Ir



� In�r.

In an analogous way, it is possible to verify that YX � In�r. Thus, X is nonsingular and X�1 � Y. l

Theorem 4.2. Let APCn�n with IndpAq � k and AGDPAtGDu be a fixed G-Drazin inverse. If RpBq � RpAAwOq,
then

AX � B, RpXq � RpAkq (13)

has the unique solution X � AwO,GDB.

Proof. Since RpBq � RpAAwOq,we have B � AAwOZ, for some ZPCn�n. If X � AwO,GDB, then we can obtain

AX � AAwO,GDB � AAwOAAGDAAwOZ � AAwOZ � B.

Thus, X � AwO,GDB is a solution of p13q. Finally, we show the uniqueness of X. Let X1PRpAkq also satisfies
(13). Then

X � X1 P RpAwOq XNpAq � RpAwOq XNpAwOAq � RpAwOAq XNpAwOAq � t0u.

Hence, X � X1. l
Using the relationship between the WGGD inverse of A and a nonsingular bordered matrix, we give

the Cramer’s rule for solving a singular linear equation Ax � B. Api j Ñ b jq denotes the matrix obtained by
replacing ith column of A with b j, where b j is the jth column of B.
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Theorem 4.3. Let APCn�n with IndpAq � k and AGDPAtGDu be a fixed G-Drazin inverse. Suppose UPCn�r and
V�PCn�r having full column rank such that

RpAkq � NpVq, RpUq � NpAwO,GDq.

If RpBq � RpAkq, then the unique solution X � AwO,GDB of the singular linear equation p13q is given by

xi j �

det
�
pApi Ñ b jq U
Vpi Ñ 0q 0



det

�
A U
V 0


 , i � 1, 2, . . .n, j � 1, 2, . . .n. (14)

Proof. Since X � AwO,GDB P RpAAwOq � NpVq and B P RpAAwOq, we have

VX � 0, pIn � AAwO,GDqB � 0. (15)

It follows from (15) that the solution of AX � B satisfies�
A U
V 0


�
X
0



�

�
B
0



. (16)

By Theorem 4.1, the coefficient matrix of (16) is nonsingular. Using (12) and (15), we can obtain�
X
0



�

�
AwO,GD pIn � AwO,GDAqV:

U:pIn � AAwO,GDq �U:pA� AAwO,GDAqV:


�
B
0



�

�
AwO,GDB

0



.

Therefore, X � AwO,GDB and (14) follows from the classical Cramer’s rule [24]. l

5. Binary relation on the WGGD inverse

It is well known that a reflexive and transitive binary relation on a non-empty set is a pre-order [15]. In
addition, if the relation is also anti-symmetric, it is termed as a partial order.

Definition 5.1. [15] Let A, BPCn�n with IndpAq � 1. Then, A is below B under the sharp order A ¤7 B if there
exists commuting 1-inverses A� and A�, such that AA� � BA� and A�A � A�B.

Definition 5.2. For A, BPCn�n, we will say that A is below B under the relation ¤wO,GD if AwO,GDA � AwO,GDB
and AAwO,GD � BAwO,GD for a fixed AGDPAtGDu. Such a relation is termed as A ¤wO,GD B.

Naturally, we will consider whether this binary relationship can become a partial order. The answer to
this question is No. A binary relation is called a partial order if it is reflexive, transitive, and anti-symmetric
on a non-empty set. Next, we give a concrete example to prove that this relationship is not satisfied
anti-symmetry.

Example 5.3. Consider the matrices

A �

����
1 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

���
,B �

����
1 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0

���
.
Since

AwO �

����
1 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

���
, BwO �

����
1 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

���
,
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AGD �

����
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

���
,BGD �

����
0 0 0 0
0 0 0 0
0 1 0 0
1 0 0 0

���
,
we can get

AAwO,GD � BAwO,GD �

����
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

���
,AwO,GDA � AwO,GDB �

����
1 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

���
,

BBwO,GD � ABwO,GD �

����
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

���
,BwO,GDB � BwO,GDA �

����
1 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

���
.
Thus,

AAwO,GD � BAwO,GD,AwO,GDA � AwO,GDB,

ABwO,GD � BBwO,GD,BwO,GDB � BwO,GDA.

Clearly, A ¤wO,GD B and B ¤wO,GD A hold, but A � B. Hence, The relation ¤wO,GD is not anti-symmetric.

Example 5.4. Consider the matrices

A �

����
1 2 0 0
0 0 0 0
0 0 0 0
0 1 0 0

���
,B �

����
1 2 �2 1
0 0 1 0
0 0 0 0
0 0 0 0

���
.
Since

AwO �

����
1 2 0 0
0 0 0 0
0 0 0 0
0 0 0 0

���
, BwO �

����
1 2 �2 1
0 0 0 0
0 0 0 0
0 0 0 0

���
,

AGD �

����
1 0 0 �2
0 0 0 1
0 0 0 0
0 0 0 0

���
,BGD �

����
1{6 1{3 0 0
1{3 2{3 0 0
0 1 0 0

1{6 1{3 0 0

���
,
then, by calculating we get

AwO,GD �

����
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

���
,BwO,GD �

����
1 2 0 0
0 0 0 0
0 0 0 0
0 0 0 0

���
.
It is easy to check AwO,GDA � AwO,GDB and BwO,GDB � BwO,GDA, we can not get A ¤wO,GD B and B ¤wO,GD A. Thus,
the relation ¤wO,GD is not symmetric.

Next, we discuss the conditions that make it becoming a partial order.

Proposition 5.5. If AwO,GD is the WGGD inverse of A, then subsequent statements are mutually equivalent for
A, BPCn�n:

p1q A ¤wO,GD B.
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p2q AAwOA � BAwOA � AAwO,GDB.

p3q AwOA � AwO,GDB and AAwO � BAwO.

Proof. p1q ñ p2q: Let A ¤wO,GD B. Then

AAwOA � AAwOAAwOA � AAwOAAGDAAwOA � BAwOA,

and
AAwOA � AAwOAAGDA � AAwOAAGDB � AAwO,GDB.

p2q ñ p3q: Let AAwOA � BAwOA � AAwO,GDB. Then

AwOAAwOA � AwOBAwOA � AwOAAwO,GDB � AwO,GDB,

and

AAwO � AAwOAAwO � AAwOAAGDAAwO � BAwO.

p3q ñ p1q: Assume p3q holds. Then, it follows:

AwO,GDA � AwOA � AwO,GDB

in conjunction with
AAwO,GD � AAwOAAGD � BAwOAAGD � BAwO,GD.

l

Theorem 5.6. Assume that APCn�n is represented by p4q. In addition, if BPCn�n, the subsequent statements are
equivalent:

p1q A ¤wO,GD B.

p2q B � U
�

T S� pTX2 � SN� � T�1SNN�qB4
0 B4



U�.

Proof. p1q ñ p2q: Let A ¤wO,GD B and consider B � U
�

B1 B2
B3 B4



U�,where Bi pi � 1, 2, 3, 4q are arbitrary.

By comparing AAwO,GD � BAwO,GD, using Theorem 2.6 and the matrix form of AwO,GD, we obtain

B1 � T, B3 � 0.

Applying AwO,GDA � AwO,GDB,we get

T�1S� pX2 � T�1SN� � T�2SNN�qN � T�1B2 � pX2 � T�1SN� � T�2SNN�qB4. (17)

Using pTX2 � SN�qN � 0 (see Theorem 2.6) and the equality p17q, we have

B2 � S� pTX2 � SN� � T�1SNN�qB4.

p2q ñ p1q: It follows by direct verification. l

Definition 5.7. For A, BPCn�n, we will say that A is below B under the relation ¤wO,� if AwO,�A � AwO,�B and
AAwO,� � BAwO,� for a fixed AGDPAtGDu. Such a relation is termed as A ¤wO,� B.

Theorem 5.8. Let A,BPCCM
n . If AGD � A�, then A ¤wO,� B equivalent to A7 ¤ B, where 7 ¤ is the left sharp

partial order.

Proof. Suppose that A ¤wO,� B for A,BPCCM
n . Then AwO,�A � AwO,�B and AAwO,� � BAwO,�. Since

APCCM
n , we have AwO � A7, where A7 denotes the group inverse of A (that is, AA7A � A,A7AA7 and

AA7 � A7Aq. Now from AwO,�A � AwO,�B, we get A7AA�A � A7AA�B and AA7A�A � AA7A�B.
Multiplying AA7A�A � AA7A�B by A2 from the left side, we have A2 � AB. On the other hand, similarly
from AAwO,� � BAwO,�, we obtain A2 � BA, and then RpAq � RpBq. By Definition 6.3.1 in [15], we have that
A7 ¤ B, that is, A is a predecessor of B under the left sharp partial order. l
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6. Applications

In this section, we will give the application of the WGGD inverse in solving linear equations.

Theorem 6.1. Let APCn�n with IndpAq � k and AGDPAtGDu be a fixed G-Drazin inverse. The equation

pAk�2q�A2x � pAk�2q�A2AGDb, (18)

is consistent and its general solution is

x � AwO,GDb� pI � AwO,GDAqy, (19)

for arbitrary yPCn.

Proof. Suppose that x has the form p19q. Applying AwO,GD � AkpAk�2q:A2AGD,we have

pAk�2q�A2AwO,GD � pAk�2q�A2AkpAk�2q:A2AGD

� pAk�2q�Ak�2pAk�2q:A2AGD

� pAk�2q�A2AGD.

Therefore pAk�2q�A2AwO,GDb � pAk�2q�A2AGDb,which implies that p18q holds for x.
For a solution x to p18q, we obtain

AwO,GDb � AkpAk�2q:A2AGDb
� AkpAk�2q:ppAk�2q:q�pAk�2q�A2AGDb
� AkpAk�2q:ppAk�2q:q�pAk�2q�A2x
� AkpAk�2q:ppAk�2q:q�pAk�2q�A2AGDAx
� AwO,GDAx.

Now, we get
x � AwO,GDb� x� AwO,GDAx � AwO,GDb� pI � AwO,GDAqx.

i.e., x possesses the form p19q. l

Theorem 6.2. Let APCn�n with IndpAq � k and AGDPAtGDu be a fixed G-Drazin inverse. Then the general
solution to

AwOAx � AwO,GDb (20)

is given by

x � AwO,GDb� pI � AwOAqy, (21)

for arbitrary yPCn.

Proof. Notice that x of the form p21q is a solution to p20q:

AwOAx � AwOAAwO,GDb � AwO,GDb.

Let x be a solution to p20q. Then, by AwOAx � AwO,GDb, we deduce that x has the form p21q:

x � AwO,GDb� x� AwOAx � AwO,GDb� pI � AwOAqx.

l
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Theorem 6.3. Let APCn�n with IndpAq � k and AGDPAtGDu be a fixed G-Drazin inverse. Then the general
solution to

AwOAx � AwOb, bPRpAkq, (22)

is given by

x � AwO,GDb� pI � AwOAqy, (23)

� AwOb� pI � AwOAqy

for arbitrary yPCn.

Proof. If x is represented by p23q, then

AwOAx � AwOAAwO,GDb � AwOPRpAkq,NpI�AwOAqb � AwOb.

Hence, x is a solution to p22q.
On the other hand, assume that x is a solution to p22q. Using

AwO,GDb � AwOPRpAkq,NpI�AwOAqb � AwOb � AwOAx,

one can conclude that
x � AwO,GDb� x� AwOAx � AwO,GDb� pI � AwOAqx.

Thus, the solution x to p22q possesses the form (23). Since bPRpAkq, we have PRpAkq,NpI�AwOAqb � b, then we

observe the identities AwO,GDb � AwOPRpAkq,NpI�AwOAqb � AwOb � AwOAx, which confirms the second identity
in p23q. l

7. Conclusion

A novel class of outer generalized inverses, termed as the WGGD inverse, is introduced as a proper
composition of the weak group and the G-Drazin inverse. A few properties and computationally efficient
representations of the WGGD inverse are presented and investigated. The image and nullity of the WGGD
inverse are considered. The representations of the WGGD inverse based on the core-EP decomposition
and the Hartwig-Spindelböck decomposition are established. A binary relation induced by this inverse is
introduced along with some derived properties. Some encouraging subjects for future investigation are
mentioned as follows:

• Perturbations, limit representations, and continuity of the WGGD inverse;

• Studying of the WGGD inverse for tensors;

• Investigation of the WGGD inverse for Hilbert spaces operators;

• The proposed combination of two types of generalized inverses can be an inspiration for future
composite generalized inverses defined on the basis of existing ones.
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