
Filomat 40:3 (2026), 1075–1092
https://doi.org/10.2298/FIL2603075S

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. This paper will extend some notions, such as convergence, to b-metric spaces with octonion
valued b-metric spaces constructed by Qiu et al. Octonion-valued metric spaces are based on modifying the
triangle inequality of a semi-metric space by multiplying one side of the inequality by a scalar b. This new
generalisation of metric spaces is very interesting since octonions are not even a ring since they do not have
the associative property of multiplication and the spaces do not satisfy the standard triangle inequality.
Through these concepts, statistical convergence and related concepts are generalised. Properties associated
with these concepts are given and the connections between them are established. Moreover, the influence
of some structures of octonions on statistical convergence is analysed. Octonion-valued structures extend
beyond quaternion-valued frameworks by incorporating non-associative properties, offering a richer setting
for studying convergence phenomena. The present work provides new insights by establishing results that
are not obtainable in associative settings. These and similar facts make the results obtained in these defined
b-metric spaces of particular interest.

1. Introduction

Sequence convergence and summability theory research has long been a significant field in pure mathe-
matics, with significant contributions to fields like computer science, topology, functional analysis, Fourier
analysis, applied mathematics, mathematical modeling, and measure theory. In recent years, the idea
of statistical convergence of sequences has grown in significance. The notion of statistical convergence
was previously mentioned as ”almost convergence” by Zygmund in the initial version of his renowned
monograph issued in 1935, (see [38]). Later on, the notion was introduced by Steinhaus [34]. This progress
initiated a series of studies of statistical convergence. In 1951, for the first time, the concept of statistical
convergence and its properties were given by Fast [11]. Later on, it was represented by Schoenberg [33] who
investigated statistical convergence as a summability method and also outlined some fundamental char-
acteristics of statistical convergence. Additional some interesting characteristics of statistical convergence
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were studied by Fridy [14] and Salat [30]. For work in other areas related to statistical convergence, we
refer the reader to [18, 19, 25, 31, 32, 37]. In mathematics, metric spaces are crucial, particularly in topology
and analysis. Frechet [13] initially proposed the idea of metric space in 1906. Since then, the generalization
of metric spaces has attracted the attention of several scholars, who have written numerous articles on the
topic [8, 15, 24]. The idea of octonion-valued b-metric space, which was put up by Qiu et al. [28] in 2025
as a generalization of octonion metrics—a logical extension of complex and quaternion-valued metrics as
well as the traditional concept of metric—is one outcome of their investigations. Examining statistical con-
vergence and its characteristics in octonion valued b–metric spaces is the goal of this research. However,
most existing studies are confined to associative structures such as real, complex, or quaternion-valued
spaces. Since octonions are non-associative, extending convergence concepts to this framework requires
new techniques. The present paper addresses this gap by formulating and analyzing statistical convergence
in octonion-valued b-metric spaces.

Soon after quaternions were discovered in 1843, John T. Graves created octonions. Arthur Cayley later
expanded and improved this idea on his own. A systematic extension in hypercomplex number theory
controlled by the Cayley-Dickson structure is demonstrated by the evolution from real numbers to complex
numbers, then to quaternions, and eventually to octonions. Because of their unique mathematical character-
istics, octonions stand out in this sequence. Octonions are neither commutative nor associative, in contrast
to real and complex numbers, which are commutative, and quaternions, which are non-commutative but
nonetheless associative. In addition to their theoretical significance, octonions’ special non-associative
properties are useful in applications that need to manage multidimensional data relationships. Octonions
have been employed in physics to create duality-invariant field equations for dyons, according to Kansu
et al.[23]. These equations effectively represent electric-magnetic dualities, much like Maxwell’s equations
do. Eight-dimensional octonions’ multicomponent character unifies the intricate interactions between elec-
tric and magnetic components. Octonions have emerged as a practical tool for processing and expressing
high-dimensional data in the field of machine learning. Deep octonion networks (DONs), which incorpo-
rate multidimensional characteristics into various layers of neural networks by taking use of the compact
structure of octonions, were first presented by Wu et al. Octonions facilitate effective data representa-
tion and processing in this context; activities like picture classification exhibit enhanced performance and
convergence. Accordingly, octonions’ associative and non-commutative characteristics have enabled cre-
ative applications in contemporary theoretical physics, artificial intelligence, and control systems where
multidimensionality and flexible data representation are essential, despite initially posing difficulties for
conventional algebraic applications. According to [1, 4, 7, 9, 26], octonions, their subalgebraic structure,
and multidisciplinary applications are covered in detail. The theoretical foundations of non-associative
algebras and their analytical extensions have been developed in several directions [4, 26]. Parallel to this,
operator-theoretic investigations and Banach algebraic approaches [16, 17, 21, 22] have yielded valuable
techniques for studying functional relationships within reproducing kernel and Wiener-type frameworks.
These results inspire the present research, which establishes new types of convergence in octonion-valued
b-metric spaces and highlights the algebraic–analytic interplay between octonion structures and generalized
metric notions.

In this paper, we extend certain fundamental concepts such as convergence to octonion valued b-metric
spaces, which were initially constructed by Qiu et al. [28] in 2025. By defining a partial ordering relation
on octonions, we present the necessary concepts related to this unique mathematical structure, including
statistical convergence, statistical Cauchy sequences, and statistically dense subsequences. These concepts
are generalized within the framework of octonion valued b-metric spaces, allowing us to explore their
properties and the connections between them.

The structure of the paper is as follows. Concepts and qualities that will be helpful in the future are
covered in Section 2. Summability theory and some concepts of statistical convergence on b-metric spaces
are covered in Section 3. Unlike classical metric spaces, octonion-valued b-metric spaces operate in a
non-associative setting, leading to behaviors and structural properties not observed in real, complex, or
quaternion-valued cases. Example 2.7 in this paper illustrates this distinction explicitly.
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2. Preliminaries

2.1. Preliminaries on Octonions
In the follow-up we will to examine on O, Octonions, a non-associative generalization of the division

algebra of quaternions. In this section, we will begin by extending the basis elements of quaternions,
represented as {1, i, j, k}, by incorporating an additional basis element ℓ. This extension enables us to
construct the eight-dimensional octonion division algebra in detail, as described in [12], including its
diagrammatic representation and algebraic operations.

e4 = ℓ

e1 = i

e2 = j e3 = k

e5 = iℓ

e6 = jℓe7 = kℓ

(1)

Thus, each element ⋊ ∈ O can be expressed in the form:

⋊ = o0 + o1e1 + o2e2 + o3e3 + o4e4 + o5e5 + o6e6 + o7e7, on ∈ R, where n = 0, 1, 2, 3, 4, 5, 6, 7.

The basis elements of O are 1, e1, e2, e3, e4, e5, e6, e7. The detailed multiplication of these basis elements is
shown in the table below.

· 1 e1 e2 e3 e4 e5 e6 e7

1 1 e1 e2 e3 e4 e5 e6 e7
e1 e1 −1 e3 −e2 e5 −e4 −e7 e6
e2 e2 −e3 −1 e1 e6 e7 −e4 −e5
e3 e3 e2 −e1 −1 e7 −e6 e5 −e4
e4 e4 −e5 −e6 −e7 −1 e1 e2 e3
e5 e5 e4 −e7 e6 −e1 −1 −e3 e2
e6 e6 e7 e4 −e5 −e2 e3 −1 −e1
e7 e7 −e6 e5 e4 −e3 −e2 e1 −1

The conjugate element ⋊̄ is given by

⋊̄ = o0 − o1e1 − o2e2 − o3e3 − o4e4 − o5e5 − o6e6 − o7e7.

The norm of an arbitrary octonion is calculated as

∥⋊∥ =
√
⋊ · ⋊̄ =

√
o2

0 + o2
1 + o2

2 + o2
3 + o2

4 + o2
5 + o2

6 + o2
7.
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Additionally, the inverse of an arbitrary octonion ⋊ is given in the form

⋊−1 =
⋊̄

∥⋊∥2
.

Any quaternion’s imaginary part can be represented as a vector in three-dimensional Euclidean space,
analogous to a movement vector, with its real part indicating the time of this movement. Similarly,
octonions can be redefined in a seven-dimensional Euclidean space as a pair consisting of a scalar and
a vector, allowing for a different perspective. While quaternions differ from real and complex numbers
in their non-commutative multiplication, octonions, as a more complex structure, lose the associative
property from the group axioms in multiplication. Consequently, division algebra over octonions becomes
non-associative, adding to its intriguing properties.

We can represent octonions as an ordered set of eight real numbers (o0, o1, o2, o3, o4, o5, o6, o7) with
coordinate-wise addition and multiplication defined by a specific table. Here, the first component, o0,
is called the real part, while the remaining seven-tuple (o1, o2, o3, o4, o5, o6, o7) constitutes the imaginary part.
Thus, as noted above, any quaternion can be written in the form

(
o0,
−→u
)

,where −→u = (o1, o2, o3, o4, o5, o6, o7)
and o0 represents the real part. From here, the following properties can be easily observed:

⋊ : =
(
o0,
−→u
)
, −→u ∈ R7; o0 ∈ R

=
(
o0, (o1, o2, o3, o4, o5, o6, o7)

)
; o0, o1, o2, o3, o4, o5, o6, o7 ∈ R

= o0 + o1e1 + o2e2 + o3e3 + o4e4 + o5e5 + o6e6 + o7e7.

Now, let us define a partial ordering relation ⪯ on the non-associative and non-commutative octonion
algebra O as follows.
⋊ ⪯ ⋊′ if and only if Re(⋊) ≤ Re(⋊′), Ime(⋊) ≤ Ime(⋊′), ⋊,⋊′ ∈ O; e = e1, e2, e3, e4, e5, e6, e7, where

Imen = on; n = 1, 2, 3, 4, 5, 6, 7. To confirm that it is ⋊ ⪯ ⋊′, satisfying any one of the 256 conditions derived
from the sum of all possible combinations of 8, from 0 to 8 in respectively, will suffice. Obtained from the
0-combinations of 8, meaning none of its components are equal; this 1 case constitute

(1) Re(⋊) < Re(⋊′); Imen (⋊) < Imen (⋊′), where n = 1, 2, 3, 4, 5, 6, 7.

Obtained from the 1-combinations of 8, meaning only one component is equal; these 8 cases constitute

(2) Re(⋊) = Re(⋊′); Imen (⋊) < Imen (⋊′), where n = 1, 2, 3, 4, 5, 6, 7.

(3) Re(⋊) < Re(⋊′); Imen (⋊) < Imen (⋊′), where n = 2, 3, 4, 5, 6, 7; Ime1 (⋊) = Ime1 (⋊′).

(4) Re(⋊) < Re(⋊′); Imen (⋊) < Imen (⋊′), where n = 1, 3, 4, 5, 6, 7; Ime2 (⋊) = Ime2 (⋊′).

(5) Re(⋊) < Re(⋊′); Imen (⋊) < Imen (⋊′), where n = 1, 2, 4, 5, 6, 7; Ime3 (⋊) = Ime3 (⋊′).

(6) Re(⋊) < Re(⋊′); Imen (⋊) < Imen (⋊′), where n = 1, 2, 3, 5, 6, 7; Ime4 (⋊) = Ime4 (⋊′).

(7) Re(⋊) < Re(⋊′); Imen (⋊) < Imen (⋊′), where n = 1, 2, 3, 4, 6, 7; Ime5 (⋊) = Ime5 (⋊′).

(8) Re(⋊) < Re(⋊′); Imen (⋊) < Imen (⋊′), where n = 1, 2, 3, 4, 5, 7; Ime6 (⋊) = Ime6 (⋊′).

(9) Re(⋊) < Re(⋊′); Imen (⋊) < Imen (⋊′), where n = 1, 2, 3, 4, 5, 6; Ime7 (⋊) = Ime7 (⋊′).

Obtained from the 2-combinations of 8, meaning only two components are equal; these 27 cases consti-
tute

(10) Re(⋊) = Re(⋊′); Imen (⋊) < Imen (⋊′), where n = 2, 3, 4, 5, 6, 7; Ime1 (⋊) = Ime1 (⋊′).
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(11) Re(⋊) = Re(⋊′); Imen (⋊) < Imen (⋊′), where n = 1, 3, 4, 5, 6, 7; Ime2 (⋊) = Ime2 (⋊′).

(12) Re(⋊) = Re(⋊′); Imen (⋊) < Imen (⋊′), where n = 1, 2, 4, 5, 6, 7; Ime3 (⋊) = Ime3 (⋊′).

(13) Re(⋊) = Re(⋊′); Imen (⋊) < Imen (⋊′), where n = 1, 2, 3, 5, 6, 7; Ime4 (⋊) = Ime4 (⋊′).

(14) Re(⋊) = Re(⋊′); Imen (⋊) < Imen (⋊′), where n = 1, 2, 3, 4, 6, 7; Ime5 (⋊) = Ime5 (⋊′).

(15) Re(⋊) = Re(⋊′); Imen (⋊) < Imen (⋊′), where n = 1, 2, 3, 4, 5, 7; Ime6 (⋊) = Ime6 (⋊′).

(16) Re(⋊) = Re(⋊′); Imen (⋊) < Imen (⋊′), where n = 1, 2, 3, 4, 5, 6; Ime7 (⋊) = Ime7 (⋊′).

(17) Re(⋊) < Re(⋊′); Imen (⋊) < Imen (⋊′), n = 3, 4, 5, 6, 7; Ime1 (⋊) = Ime1 (⋊′); Ime2 (⋊) = Ime2 (⋊′).

(18) Re(⋊) < Re(⋊′); Imen (⋊) < Imen (⋊′), n = 2, 4, 5, 6, 7; Ime1 (⋊) = Ime1 (⋊′); Ime3 (⋊) = Ime3 (⋊′).

(19) Re(⋊) < Re(⋊′); Imen (⋊) < Imen (⋊′), n = 2, 3, 5, 6, 7; Ime1 (⋊) = Ime1 (⋊′); Ime4 (⋊) = Ime4 (⋊′).

(20) Re(⋊) < Re(⋊′); Imen (⋊) < Imen (⋊′), n = 2, 3, 4, 6, 7; Ime1 (⋊) = Ime1 (⋊′); Ime5 (⋊) = Ime5 (⋊′).

(21) Re(⋊) < Re(⋊′); Imen (⋊) < Imen (⋊′), n = 2, 3, 4, 5, 7; Ime1 (⋊) = Ime1 (⋊′); Ime6 (⋊) = Ime6 (⋊′).

(22) Re(⋊) < Re(⋊′); Imen (⋊) < Imen (⋊′), n = 2, 3, 4, 5, 6; Ime1 (⋊) = Ime1 (⋊′); Ime7 (⋊) = Ime7 (⋊′).

(23) Re(⋊) < Re(⋊′); Imen (⋊) < Imen (⋊′), n = 1, 4, 5, 6, 7; Ime2 (⋊) = Ime2 (⋊′); Ime3 (⋊) = Ime3 (⋊′).

(24) Re(⋊) < Re(⋊′); Imen (⋊) < Imen (⋊′), n = 1, 3, 5, 6, 7; Ime2 (⋊) = Ime2 (⋊′); Ime4 (⋊) = Ime4 (⋊′).

(25) Re(⋊) < Re(⋊′); Imen (⋊) < Imen (⋊′), n = 1, 3, 4, 6, 7; Ime2 (⋊) = Ime2 (⋊′); Ime5 (⋊) = Ime5 (⋊′).

(26) Re(⋊) < Re(⋊′); Imen (⋊) < Imen (⋊′), n = 1, 3, 4, 5, 7; Ime2 (⋊) = Ime2 (⋊′); Ime6 (⋊) = Ime6 (⋊′).

(27) Re(⋊) < Re(⋊′); Imen (⋊) < Imen (⋊′), n = 1, 3, 4, 5, 6; Ime2 (⋊) = Ime2 (⋊′); Ime7 (⋊) = Ime7 (⋊′).

(28) Re(⋊) < Re(⋊′); Imen (⋊) < Imen (⋊′), n = 1, 2, 5, 6, 7; Ime3 (⋊) = Ime3 (⋊′); Ime4 (⋊) = Ime4 (⋊′).

(29) Re(⋊) < Re(⋊′); Imen (⋊) < Imen (⋊′), n = 1, 2, 4, 6, 7; Ime3 (⋊) = Ime3 (⋊′); Ime5 (⋊) = Ime5 (⋊′).

(30) Re(⋊) < Re(⋊′); Imen (⋊) < Imen (⋊′), n = 1, 2, 4, 5, 7; Ime3 (⋊) = Ime3 (⋊′); Ime6 (⋊) = Ime6 (⋊′).

(31) Re(⋊) < Re(⋊′); Imen (⋊) < Imen (⋊′), n = 1, 2, 4, 5, 6; Ime3 (⋊) = Ime3 (⋊′); Ime7 (⋊) = Ime7 (⋊′).

(32) Re(⋊) < Re(⋊′); Imen (⋊) < Imen (⋊′), n = 1, 2, 3, 6, 7; Ime4 (⋊) = Ime4 (⋊′); Ime5 (⋊) = Ime5 (⋊′).

(33) Re(⋊) < Re(⋊′); Imen (⋊) < Imen (⋊′), n = 1, 2, 3, 5, 7; Ime4 (⋊) = Ime4 (⋊′); Ime6 (⋊) = Ime6 (⋊′).

(34) Re(⋊) < Re(⋊′); Imen (⋊) < Imen (⋊′), n = 1, 2, 3, 5, 6; Ime4 (⋊) = Ime4 (⋊′); Ime7 (⋊) = Ime7 (⋊′).

(35) Re(⋊) < Re(⋊′); Imen (⋊) < Imen (⋊′), n = 1, 2, 3, 4, 7; Ime5 (⋊) = Ime5 (⋊′); Ime6 (⋊) = Ime6 (⋊′).

(36) Re(⋊) < Re(⋊′); Imen (⋊) < Imen (⋊′), n = 1, 2, 3, 4, 6; Ime5 (⋊) = Ime5 (⋊′); Ime7 (⋊) = Ime7 (⋊′).

Following a similar approach, we can easily list the 56 cases where exactly 3 components are equal (derived
from the 3-combinations of 8), 70 cases with 4 equal components, 56 cases with 5 equal components, and 27
cases with 6 equal components. However, to avoid making the article overly tedious, we will not elaborate
in detail on the remaining 211 intermediate cases. For simplicity, let us focus only on the 8 cases with
exactly 7 equal components, corresponding to the 7-combinations of 8 where just one component differs.

(248) Re(⋊) < Re(⋊′); Imen (⋊) = Imen (⋊′), where n = 1, 2, 3, 4, 5, 6, 7.

(249) Re(⋊) = Re(⋊′); Imen (⋊) = Imen (⋊′), where n = 2, 3, 4, 5, 6, 7; Ime1 (⋊) < Ime1 (⋊′).
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(250) Re(⋊) = Re(⋊′); Imen (⋊) = Imen (⋊′), where n = 1, 3, 4, 5, 6, 7; Ime2 (⋊) < Ime2 (⋊′).

(251) Re(⋊) = Re(⋊′); Imen (⋊) = Imen (⋊′), where n = 1, 2, 4, 5, 6, 7; Ime3 (⋊) < Ime3 (⋊′).

(252) Re(⋊) = Re(⋊′); Imen (⋊) = Imen (⋊′), where n = 1, 2, 3, 5, 6, 7; Ime4 (⋊) < Ime4 (⋊′).

(253) Re(⋊) = Re(⋊′); Imen (⋊) = Imen (⋊′), where n = 1, 2, 3, 4, 6, 7; Ime5 (⋊) < Ime5 (⋊′).

(254) Re(⋊) = Re(⋊′); Imen (⋊) = Imen (⋊′), where n = 1, 2, 3, 4, 5, 7; Ime6 (⋊) < Ime6 (⋊′).

(255) Re(⋊) = Re(⋊′); Imen (⋊) = Imen (⋊′), where n = 1, 2, 3, 4, 5, 6; Ime7 (⋊) < Ime7 (⋊′).

Finally, let us consider the case derived from the 8-combinations of 8, where all corresponding components
are equal, which indicates that the two octonions are identical.

(256) Re(⋊) = Re(⋊′); Imen (⋊) = Imen (⋊′), where n = 1, 2, 3, 4, 5, 6, 7.

Specifically, if ∥⋊∥ , ∥⋊′∥ and any condition between (1) and (256) is satisfied, ⋊ ⪯ ⋊′ will be written. If only
condition (256) is satisfied, we will denote this by ⋊ ≺ ⋊′. We will briefly denote this situation as

⋊ ⪯ ⋊′ =⇒ ∥⋊∥ ≤ ∥⋊′∥. (2)

A careful examination of the 256 conditions above reveals that we can introduce octonion-valued metric
spaces, which generalize the complex metric spaces defined by Azam et al. [3], by taking the codomain as
the field of complex numbers. If a complex-valued metric space satisfies condition

ΩC(s, t) ⪯ b ·
(
ΩC(s, v) +ΩC(v, t)

)
(3)

for all s, t, v ∈ S, which is a relaxed version of the triangle inequality for b ≥ 1 derived using the partial
ordering in the third property, such a space is called a complex-valued b−metric space. Detailed information
about this space can be found in the literature, specifically in [10, 29].

These are then generalized to quaternion-valued metric spaces, as defined by Ahmed et al. [2], taking
the codomain as the skew field of quaternions, which serve as a non-commutative extension of these metric
spaces to Clifford algebra analysis.

2.2. Definitions and notations
Following, we will define octonion-valued metric spaces, an interesting generalization of metric spaces

that are neither commutative nor associative.

Definition 2.1. ([6]) Given a nonempty set S. If the transformation ΩO : S × S → O on this set satisfies
following conditions,

(1) 0O ⪯ ΩO(s, t) for all s, t ∈ S and ΩO(s, t) = 0O if and only if s = t,

(2) ΩO(s, t) = ΩO(t, s) for all s, t ∈ S,

(3) ΩO(s, t) ⪯ ΩO(s, v) +ΩO(v, t) for all s, t, v ∈ S.

Then ΩO is called an octonion valued metric on S, and the pair (S,ΩO) is called an octonion valued metric
space.

Example 2.2. Let ΩO : O × O → O be an octonion valued function defined as ΩO(⋊,⋊′) = |o0 − o′0| + |o1 −

o′1|e1 + |o2 − o′2|e2 + |o2 − o′2|e2 + |o3 − o′3|e3 + |o4 − o′4|e4 + |o5 − o′5|e5 + |o6 − o′6|e6 + |o7 − o′7|e7, where ⋊,⋊′ ∈ Owith

⋊ = o0 + o1e1 + o2e2 + o3e3 + o4e4 + o5e5 + o6e6 + o7e7,

⋊′ = o′0 + o′1e1 + o′2e2 + o′3e3 + o′4e4 + o′5e5 + o′6e6 + o′7e7;

oi, o′i ∈ R; i = 0, 1, 2, 3, 4, 5, 6, 7.

Then (O,ΩO) defines an octonion valued metric space.
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Below, we provide an example of an octonion-valued metric that does not have a known numerical set
as its domain.

Example 2.3. Let X = {a, b, c} be an arbitrary set with three elements. Define the distances between the
elements of the set by

ΩO(a, b) = ΩO(b, a) = 3 + 4e1 − 6e2 + 4e3 + 3e4 + 3e5 − 2e6 + e7

ΩO(b, c) = ΩO(c, b) = 1 + 2e1 + 3e3 − 5e4 − 3e6 + 4e7

ΩO(a, c) = ΩO(c, a) = 2 + 3e1 + e2 + e3 − 2e4 + 2e5 − e6 + 5e7

ΩO(a, a) = ΩO(b, b) = ΩO(c, c) = 0 + 0e1 + 0e2 + 0e3 + 0e4 + 0e5 + 0e6 + 0e7.

Since they are ∥ΩO(a, b)∥ = 10, ∥ΩO(a, c)∥ = 7, ∥ΩO(c, b)∥ = 8, ∥ΩO(a, b) + ΩO(a, c)∥ =
√

195, ∥ΩO(a, b) +
ΩO(b, c)∥ =

√
200 and ∥ΩO(c, b)+ΩO(a, c)∥ =

√
169 = 13, it can be seen through straightforward calculations

that the conditions given in Definition 2.1 above are satisfied.

Definition 2.4. ([28]) Given a nonempty set S. If the transformation ΩO : S × S → O on this set satisfies
following conditions,

(1) 0O ⪯ ΩO(s, t) for all s, t ∈ S and ΩO(s, t) = 0O if and only if s = t,

(2) ΩO(s, t) = ΩO(t, s) for all s, t ∈ S,

(3) ΩO(s, t) ⪯ b ·
(
ΩO(s, v) +ΩO(v, t)

)
for all s, t, v ∈ S, 1 ≤ b ∈ R.

Then ΩO is called an octonion valued b−metric on S, and the pair (S,ΩO) is called an octonion valued
b−metric space.

Example 2.5. Example 2.2 and Example 2.3 are instances of octonion-valued 1-metric spaces for the real
scalar b = 1.

Remark 2.6. It should be explicitly noted that, as seen from Definition 2.1 and Definition 2.4, every octonion-
valued metric space is an octonion-valued b−metric space in the special case where b = 1.

The converse of the remark we provided above is not true, except for the special case of b = 1. The next
example we will present is an octonion-valued b−metric space for b = 2, yet it is not an octonion-valued
metric space.

Example 2.7. Let Ωb
O

: O × O → O be an octonion valued function defined as Ωb
O

(⋊,⋊′) = |o0 − o′0|
2 + |o1 −

o′1|
2e1 + |o2 − o′2|

2e2 + |o3 − o′3|
2e3 + |o4 − o′4|

2e4 + |o5 − o′5|
2e5 + |o6 − o′6|

2e6 + |o7 − o′7|
2e7, where ⋊,⋊′ ∈ Owith

⋊ = o0 + o1e1 + o2e2 + o3e3 + o4e4 + o5e5 + o6e6 + o7e7,

⋊′ = o′0 + o′1e1 + o′2e2 + o′3e3 + o′4e4 + o′5e5 + o′6e6 + o′7e7;

oi, o′i ∈ R; i = 0, 1, 2, 3, 4, 5, 6, 7.

Then (O,ΩO) defines an octonion valued b−metric space. Indeed, note that if we take

⋊ = 3 + 3e1 + 3e2 + 3e3 + 3e4 + 3e5 + 3e6 + 3e7

⋊′ = 2 + 2e1 + 2e2 + 2e3 + 2e4 + 2e5 + 2e6 + 2e7

⋊′′ = 1 + e1 + e2 + e3 + e4 + e5 + e6 + e7,
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although they are comparable under the partial ordering relation defined on octonions in [6],

Ωb
O(⋊,⋊′′) = 4 + 4e1 + 4e2 + 4e3 + 4e4 + 4e5 + 4e6 + 4e7

Ωb
O(⋊,⋊′) = 1 + e1 + e2 + e3 + e4 + e5 + e6 + e7

Ωb
O(⋊′,⋊′′) = 1 + e1 + e2 + e3 + e4 + e5 + e6 + e7

Ωb
O(⋊,⋊′) +Ωb

O(⋊′,⋊′′) = 2 + 2e1 + 2e2 + 2e3 + 2e4 + 2e5 + 2e6 + 2e7,

which would violate the third property of the axioms for being an octonion-valued metric space as stated
in Definition 2.1, making it not an octonion-valued metric space. However, if we take b = 2, in this case, the
partial ordering ⪯ satisfies the axioms in Definition 2.4.

As can be seen from the definitions and example above, the definition we provided is a natural gen-
eralization of the classical b−metric definition, as well as complex and quaternion-valued b− metrics. To
express the connections between them, let us present the following propositions.

Proposition 2.8. Every quaternion-valued b−metric space can be embedded into an octonion-valued b−metric space.

Proposition 2.9. Every complex-valued b−metric space can be embedded into a quaternion-valued b−metric space
and an octonion-valued b−metric space.

Proposition 2.10. Every b−metric space can be embedded into a complex-valued b−metric space, a quaternion-valued
b−metric space and an octonion-valued b−metric space.

Categorically speaking, the diagrammatic representation of the above propositions and the transitions
between these different metric space categories are as follows:

Met

b −Met

MetC

b −MetC

MetH

b −MetH

MetO

b −MetO
.

From usual metric spaces, the transition to complex-valued metric spaces is achieved through the generaliza-
tion of scalar fields. Further generalization to quaternion-valued metric spaces extends the integral domain,
and non-associative, higher-dimensional extensions lead to octonion-valued metric spaces. Relaxing the
triangle inequality for b ≥ 1 introduces the categories of classical, complex-valued, quaternion-valued,
and octonion-valued b−metric spaces. These transitions are facilitated by inclusion functors, while reverse
transitions occur through forgetful functors. Here, we focus on the calculus aspects of octonion-valued
b−metric spaces rather than their algebraic and categorical properties.

Thus, we can now proceed to define some fundamental concepts related to the definition above (see
[5, 28]).

Definition 2.11. Any point s ∈ S is called an interior point of set A ⊂ S whenever there exists 0O ≺ r ∈ O
such that

B(s, r) = {t ∈ S : ΩO(s, t) ≺ r} ⊂ A.
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Definition 2.12. Any point s ∈ S is called a limit point of A ⊂ S whenever for every 0O ≺ r ∈ O

B(s, r) ∩ (A − {s}) , ∅.

Definition 2.13. Set O is said to be an open set whenever each element of O is an interior point of O. Subset
C ⊂ S is called a closed set whenever each limit point of C belongs to C. The family

F = {B(s, r) : s ∈ S, 0O ≺ r}

is a subbase for Hausdorff topology τ on S.

Definition 2.14. Let s ∈ S and sk be a sequence in the set S. If for each ⋊ ∈ Owith 0O ≺ ⋊ there is k0 ∈N such
that for all k > k0,ΩO(sk, s) ≺ ⋊, then (sk) is called convergence sequence. Then, in this case (sk) sequence
converges to the limit point s; as notation, sk → s as k→∞ or limk sk = s.

Definition 2.15. If there exists k0 ∈N such that for all k > k0,ΩO(sk+m, sk) ≺ ⋊, then (sk) is said to be a Cauchy
sequence in the octonion-valued b−metric space (S,ΩO). If every Cauchy sequence is convergent in (S,ΩO),
then (S,ΩO) is said to be a complete octonion valued b−metric space.

Let’s review the meanings of statistical convergence, statistical Cauchy, and natural density (for more
information, read the cited sources above). Here

δ (K) = lim
N→∞

1
N
|{k ≤ N : k ∈ K}|

is the definition of the asymptotic (or natural) density for a set K of positive integers. If

lim
N

1
N
|{k ≤ N : |sk − s| ≥ ε}| = 0

for any ε > 0, then a sequence (sk) is statistically convergent to s,Also, if there is a positive integer M =M(ε)
such that

lim
N

1
N
|{k ≤ N : |sk − sM| ≥ ε}| = 0

for all ε > 0, then the sequence (sk) is statistically Cauchy.

3. Main result

In this section, we present some definitions for octonion valued b-metric spaces as provided in [28],
in the context of concepts like convergent sequences, Cauchy sequences, and bounded sequences. These
definitions are statistically generalized versions of their classical counterparts. These concepts apply when
not all, but only a significant majority of the terms of a sequence exhibit behavior such as convergence,
Cauchy properties, or boundedness.

Definition 3.1. A sequence (sk) in an octonion valued b-metric space (S,ΩO) is said to converge statistically

to a point s ∈ S (denoted as sk
st1
−→ s), if as for all 0O ≺ ⋊, we have

lim
N→∞

1
N

∣∣∣∣∣{k ≤ N : ΩO(sk, s) ⊀ ⋊
}∣∣∣∣∣ = 0.

In this definition,∣∣∣∣∣{k ≤ N : ΩO(sk, s) ⊀ ⋊
}∣∣∣∣∣
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represents the number of terms in the sequence (sk) for which the octonion value indicating the distance to
s does not precede ⋊ according to the partial ordering relation given in Definition 2.4 above. The ratio of
these terms to the number of terms N must approach zero as N→∞. That is,∣∣∣∣∣{k ≤ N : ΩO(sk, s) ⊀ ⋊

}∣∣∣∣∣
N

→ 0 as N→∞.

This is a necessary condition for the sequence to be statistically convergent to s.

In classical convergence, for all 0O ≺ ⋊ ∈ O, there exists N ∈ N such that for k ≥ N, ΩO(sk, s) ≺ ⋊ holds.
In statistical convergence, ΩO(sk, s) ≺ ⋊must hold only for the majority of the terms in the sequence; some
terms are allowed to be far from s.

Statistical convergence is a generalized version of the classical convergence concept, indicating that the
majority of the terms in a sequence converge to a point. This concept can be considered a weaker form of
classical convergence.

Example 3.2. Let S be a set, (sk) a sequence in S, and let ΩO an arbitrary octonion valued b-metric on this
set. Define the elements of the sequence as follows:

f (k) = sk =

s8, if k = n3,∃n ∈N,
s2, in the other cases.

Here, the function f : N −→ S specifies the sequence. Since the asymptotic density of the set A = {k :
k = n3

∃n ∈ N} ⊂ N, is determined by N
−2
3 , we find that lim

N→∞
1

N
2
3
= 0. Consequently, the sequence (sk) is

statistically convergent.The sequence is statistically convergent to s2.

Theorem 3.3. In a given octonion valued b-metric space (S,ΩO), every convergent sequence is also statistically
convergent.

Proof. From the definition of convergence provided in Definition 2.14, for every ⋊ ∈ O with 0O ≺ ⋊, there
exists k0 ∈ N such that for all k > k0,ΩO(sk, s) ≺ ⋊. Consequently, the number of terms that fail to satisfy
this condition must be finite. Since the asymptotic density of any finite subset of the natural numbers is
zero, it follows from Definition 3.1 that the sequence is statistically convergent.

Statistical convergence, unlike standard convergence, requires that the majority of the terms, rather
than all of them, are close to s. This concept is particularly significant in the analysis of large data sets and
complex structures.

Theorem 3.4. Given an octonion valued b-metric space (S,ΩO) and a sequence (sk) in this space, a necessary and
sufficient condition for the sequence (sk) to converge statistically to s is

∥ΩO(sk, s)∥
st1
−→ 0 as k→∞.

Proof. Let the sequence (sk) statistical converge to point s. Given a real number ε > 0, suppose that

⋊ =
ε

2
√

2
+ e1

ε

2
√

2
+ e2

ε

2
√

2
+ e3

ε

2
√

2
+ e4

ε

2
√

2
+ e5

ε

2
√

2
+ e6

ε

2
√

2
+ e7

ε

2
√

2
.

From the definition of statistical convergence, for ∀ 0O ≺ ⋊′ ∈ O, we have

lim
N→∞

1
N

∣∣∣∣∣{k ≤ N : ΩO(sk, s) ⊀ ⋊′
}∣∣∣∣∣ = 0.
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In this case, specially for 0O ≺ ⋊ ∈ O and there exists

lim
N→∞

1
N

∣∣∣∣∣{k ≤ N : ΩO(sn, s) ⊀ ⋊
}∣∣∣∣∣ = lim

N→∞

1
N

∣∣∣∣∣{k ≤ N : ∥ΩO(sk, s)∥ ≥ ∥⋊∥ = ε
}∣∣∣∣∣ = 0.

Thus, we obtain

lim
N→∞

1
N

∣∣∣∣∣{k ≤ N : ∥ΩO(sk, s)∥ < ∥⋊∥ = ε
}∣∣∣∣∣ = 1.

Hence, ∥ΩO(sk, s)∥
st1
−→ 0 as k→∞.

On the other hand, suppose that ∥ΩO(sk, s)∥
st1
−→ 0 as k→∞. In this case, for a given ⋊ ∈ O with 0O ≺ ⋊,

there exists a real number δ > 0, such that for any ⋊′ ∈ O, the following holds:

∥⋊′∥ < δ =⇒ ⋊′ ≺ ⋊.

For this δ, we find

lim
N→∞

1
N

∣∣∣∣∣{k ≤ N : ∥ΩO(sk, s)∥ ≥ ∥⋊∥ = ε ≥ δ ≥ ∥⋊′∥
}∣∣∣∣∣ = lim

N→∞

1
N

∣∣∣∣∣{k ≤ N : ΩO(sk, s) ⊀ ⋊′
}∣∣∣∣∣ = 0.

This leads to

lim
N→∞

1
N

∣∣∣∣∣{k ≤ N : ∥ΩO(sk, s)∥ < ∥⋊∥ = ε
}∣∣∣∣∣ = 1.

which implies

lim
N→∞

1
N

∣∣∣∣∣{k ≤ N : ΩO(sk, s) ⊀ ⋊
}∣∣∣∣∣ = 0.

Hence, the sequence (sk) converges statistically to point s.

Theorem 3.5. Let (sk) be a sequence in the octonion valued b-metric space (S,ΩO). Let both sk
st1
−→ s0 and sk

st1
−→ t0

hold in this metric space. In that case, s0 = t0.

Proof. Assume that sk
st1
−→ s0 and sk

st1
−→ t0. Conjunction from here, by the definition of statistical convergence

given in Definition 3.1, for any ε > 0 and 0O ≺ ⋊ ∈ O, let us take

⋊ =
ε

4
√

2
+ e1

ε

4
√

2
+ e2

ε

4
√

2
+ e3

ε

4
√

2
+ e4

ε

4
√

2
+ e5

ε

4
√

2
+ e6

ε

4
√

2
+ e7

ε

4
√

2
.

The equalities

lim
N→∞

1
N

∣∣∣∣∣{k ≤ N : ΩO(sk, s0) ⊀ ⋊
}∣∣∣∣∣ = 0,

and

lim
N→∞

1
N

∣∣∣∣∣{k ≤ N : ΩO(sk, t0) ⊀ ⋊
}∣∣∣∣∣ = 0

hold. From the third axiom of the octonion valued b-metric space, we have

0O ⪯ ΩO(s0, t0) ⪯ b ·
(
ΩO(s0, sk) +ΩO(sk, t0)

)
,
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and as a result,

lim
N→∞

1
N

∣∣∣∣∣{k ≤ N : ΩO(sk, s0) +ΩO(sk, t0) ⊀ ⋊
}∣∣∣∣∣ = 0.

By the partial ordering property, it follows that

0 ≤ ∥ΩO(s0, t0)∥ ≤ ∥b ·
(
ΩO(s0, sk) +ΩO(sk, t0)

)
∥ ≤ b ·

(
∥ΩO(s0, sk)∥ + ∥ΩO(sk, t0)∥

)
= b ·

(
0 + 0

)
= 0.

From this, we conclude that ∥ΩO(s0, t0)∥ = 0,which implies ΩO(s0, t0) = 0O. Finally, by the first axiom of the
octonion valued b-metric space, we deduce s0 = t0. This completes the proof.

Proposition 3.6. In both cases the quaternion valued b-metric space (S,ΩH) and the complex valued b-metric space
(S,ΩC), the statistical limit is unique.

Proof. This can be directly seen from Proposition 2.8, Proposition 2.9 and Theorem 3.5, respectively.

Definition 3.7. Let (sk) be a sequence in the octonion valued b-metric space (S,ΩO). For a sequence (sk), a
subsequence (skn ) is called a statistical cluster subsequence if:

∀ 0O ≺ ⋊, ∃s ∈ S such that lim sup
N→∞

1
N

∣∣∣{n ≤ N : ΩO(skn , s) ⊀ ⋊}
∣∣∣ = 0.

Theorem 3.8. Let (sk) and (tk) be two sequences in the octonion valued b-metric space (S,ΩO). If tk
st1
−→ s, and

ΩO(sk, s) ⪯ ΩO(tk, s) for each k ∈N, then sk
st1
−→ s.

Proof. Since tk
st1
−→ s, it follows from Theorem 3.4 that

∥ΩO(tk, s)∥
st1
−→ 0 as k→∞.

For each 0O ≺ ⋊ ∈ O and k ∈N, we observe that

{k ≤ N : ΩO(tk, s) ≺ ⋊} ⊆ {k ≤ N : ΩO(sk, s) ≺ ⋊}.

Thus,

1 = lim
N→∞

1
N

∣∣∣∣∣{k ≤ N : ΩO(tk, s) ≺ ⋊
}∣∣∣∣∣ ≤ lim

N→∞

1
N

∣∣∣∣∣{k ≤ N : ΩO(sk, s) ≺ ⋊
}∣∣∣∣∣.

Since the asymptotic density can be at most 1, by Definition 3.1, for all 0O ≺ ⋊, we have

lim
N→∞

1
N

∣∣∣∣∣{k ≤ N : ΩO(sk, s) ⊀ ⋊
}∣∣∣∣∣ = 0.

Consequently, sk
st1
−→ s.

Definition 3.9. ([11, 14]) A subsequence (skn ) of a sequence (sk) is statistically dense in (sk) if the index set
{kn : n ∈N} is a statistically dense subset ofN, in other words,

lim
N→∞

1
N

∣∣∣∣∣{kn ≤ N : n ∈N
}∣∣∣∣∣ = 1.

Theorem 3.10. In an octonion valued b-metric space (S,ΩO), let (sk) be an arbitrary sequence. In this case, the
following conditions are equivalent:
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1. The sequence (sk) is statistically convergent in the octonion-valued space (S,ΩO).
2. There exists a sequence (tk) in S that converges such that sk = tk for almost all k ∈N.
3. The sequence (sk) contains a statistically dense subsequence (skn ), which is a convergent sequence.
4. The sequence (sk) contains a statistically dense subsequence (skn ), which is statistically convergent.

Proof. (1)⇒ (2) Assume that sk
st1
−→ s. By Definition 3.1, for all 0O ≺ ⋊, we have

lim
N→∞

1
N

∣∣∣∣∣{k ≤ N : ΩO(sk, s) ⊀ ⋊
}∣∣∣∣∣ = 0.

Specially, let ∥⋊′∥ = 1 for a chosen element ⋊′ ∈ O. Then

lim
N→∞

1
N

∣∣∣∣∣{k ≤ N : ΩO(sk, s) ≺
⋊′

3

}∣∣∣∣∣ = 1.

This implies that there exists N1 ∈N such that

lim
N→∞

1
N

∣∣∣∣∣{k ≤ N : ΩO(sk, s) ≺
⋊′

3

}∣∣∣∣∣ > 1 −
1
3

for all N > N1. We can construct a sequence (Nn) of natural numbers satisfying

lim
N→∞

1
N

∣∣∣∣∣{l ≤ N : ΩO(sl, s) ≺
⋊′

3n

}∣∣∣∣∣ > 1 −
1
3n

for all N > Nn. Suppose that Nn < Nn+1 for each n ∈N. Let tl be defined as

tl =


sl, 1 ≤ l ≤ N1,

sl, Nn < l ≤ Nn+1, ΩO(sl, s) ≺ ⋊
′

3n ,

s, otherwise.

Given 0O ≺ ⋊ ∈ O, choose n ∈ N such that ⋊
′

3n ≺ ⋊. Then, ΩO(tl, s) ≺ ⋊ for all l > Nn, indicating that the
sequence (tl) converges to s.

For all 0O ≺ ⋊ ∈ O, there exists n ∈Nwith ⋊′

3n < ⋊. Let N ∈N. If Nn < N ≤ Nn+1, then

{l ≤ N : tl , sl} ⊂ {1, 2, . . . ,N} − {l ≤ N : ΩO(sl, s) ≺
⋊′

3n },

so

1
N
|{l ≤ N : tl , sl}| ≤ 1 −

1
N
|{l ≤ N : ΩO(sl, s) ≺

⋊′

3n }| <
1
3n < ∥⋊∥.

Therefore lim
N→∞

1
N

∣∣∣∣∣{l ≤ N : tl , sl

}∣∣∣∣∣ = 0. Hence sl = tl for almost every l ∈N.

(2) ⇒ (3) Assume that (tk) is a convergent sequence in S with sk = tk for almost every k ∈ N. In this

situation, lim
N→∞

1
N

∣∣∣∣∣{l ≤ N : tl , sl

}∣∣∣∣∣ = 0. If we take (tk) = (skn ), in this situation, from Definition 2.14 and

Definition 3.9, (tk) is both a convergent sequence and a statistically dense subsequence of (sk).
(3)⇒ (4) If we take (tk) = (skn ) as a subsequence, it can be directly seen from the definition of a statistically

dense subsequence (Definition 3.9) and the definition of statistical convergence (Definition 3.1).
(4) ⇒ (1) Assume that there exists a statistically dense subsequence (skn ) of the sequence (sk) with the

sequence (skn ) is statistically convergent. By the definition of statistical convergence, we have for all 0O ≺ ⋊,
we have

lim
N→∞

1
N

∣∣∣∣∣{kn ≤ N : ΩO(skn , s) ⊀ ⋊
}∣∣∣∣∣ = 0.
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and let

skn

st1
−→ s as n→∞.

It follows that

lim
N→∞

1
N

∣∣∣∣∣{kn ≤ N : ΩO(skn , s) ≺ ⋊
}∣∣∣∣∣ = 1.

Because it happens that for each 0O ≺ ⋊ ∈ O,

{kn ∈N : ΩO(skn , s) ≺ ⋊} ⊂ {k ∈N : ΩO(sk, s) ≺ ⋊},

and

lim
N→∞

1
N

∣∣∣∣∣{k ≤ N : ΩO(sk, s) ≺ ⋊
}∣∣∣∣∣ ≥ lim

N→∞

1
N

∣∣∣∣∣{kn ≤ N : ΩO(skn , s) ≺ ⋊
}∣∣∣∣∣ = 1.

we have

sk
st1
−→ s as k→∞.

Corollary 3.11. In the octonion valued b-metric space (S,ΩO), every statistically convergent sequence has a conver-
gent subsequence within this space.

Proof. The desired result can be directly seen through Definition 2.14, Definition 3.1, and Theorem 3.10.

Definition 3.12. A sequence (sk) in an octonion valued b-metric space (S,ΩO) is said to be statistical Cauchy
sequence, if as for all 0O ≺ ⋊, we have l ∈N+ depending on the norm of ⋊ ∈ O

lim
N

1
N

∣∣∣∣∣{k ≤ N : ΩO(sk, sl) ⊀ ⋊
}∣∣∣∣∣ = 0.

If we carefully examine this definition,∣∣∣∣∣{k ≤ N : ΩO(sk, sl) ⊀ ⋊
}∣∣∣∣∣

represents the number of terms in the sequence (sk) in S whose octonion value, indicating the distance
between the elements of the sequence, does not precede ⋊ according to the partial ordering relation given
in Definition 2.1. The ratio of these terms to the total number of terms N must approach zero as N→∞. In
other words,

∣∣∣∣∣{k, l ≤ N : ΩO(sk, sl) ⊀ ⋊
}∣∣∣∣∣

N
→ 0 as N→∞.

This is a necessary condition for the sequence to be statistically Cauchy.

In accustomed definition Cauchy sequence, for every 0O ≺ ⋊ ∈ O, We have N ∈ N with as k, l ≥ N,
ΩO(sk, sl) ≺ ⋊ satisfies. In statistical Cauchy sequence, ΩO(sk, sl) ≺ ⋊ must satisfy only for the majority of
the terms in the sequence; It is acceptable for the distances between some terms to follow after ⋊.

The concept of a statistical Cauchy sequence is a generalized version of the classical Cauchy sequence
and can be understood as a sequence where the distances between the majority of its terms precede ⋊ in
the ordering.
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Theorem 3.13. Given an octonion valued b-metric space (S,ΩO) and let (sk) be a sequence in S. Then (sk) is a
statistically Cauchy sequence if and only if

∥ΩO(sk, sk+m)∥
st1
−→ 0 as k→∞.

Proof. We assume that (sk) is a statistically Cauchy sequence in S. From Definition 3.12, as for all 0O ≺ ⋊,
we have l ∈N+ depending on the norm of ⋊ ∈ O

lim
N

1
N

∣∣∣∣∣{k, l ≤ N : ΩO(sk, sl) ⊀ ⋊
}∣∣∣∣∣ = 0.

As a given real number ε > 0, suppose that

⋊ =
ε

2
√

2
+ e1

ε

2
√

2
+ e2

ε

2
√

2
+ e3

ε

2
√

2
+ e4

ε

2
√

2
+ e5

ε

2
√

2
+ e6

ε

2
√

2
+ e7

ε

2
√

2
.

lim
N

1
N

∣∣∣∣∣{k, l ≤ N : ΩO(sk, sl) ⊀ ⋊
}∣∣∣∣∣ = lim

N

1
N

∣∣∣∣∣{k, l ≤ N : ∥ΩO(sk, sl)∥ ≥ ∥⋊∥ = ε
}∣∣∣∣∣ = 0.

In this case, we have

∥ΩO(sk, sl)∥
st1
−→ 0 as k→∞.

by Theorem 3.4 and Definition 3.1.

On the other hand, we assume that ∥ΩO(sk, sk+m)∥ < ∥⋊∥
st1
−→ 0 as k → ∞. So, given ⋊ ∈ O with 0O ≺ ⋊,

there is a real number δ > 0 such that as ⋊′ ∈ O,

lim
N→∞

1
N

∣∣∣∣∣{k ≤ N : ∥ΩO(sk, sk+m)∥ ≥ ∥⋊∥ = ε ≥ δ ≥ ∥⋊′∥
}∣∣∣∣∣ = lim

N→∞

1
N

∣∣∣∣∣{k ≤ N : ΩO(sk, sk+m) ⊀ ⋊′
}∣∣∣∣∣ = 0.

Corresponding to this δ, there exists l ∈N+ depending on the norm of ⋊ ∈ O, so, we get

lim
N

1
N

∣∣∣∣∣{k ≤ N : ∥ΩO(sk, sl)∥ < ∥⋊∥ = ε
}∣∣∣∣∣ = 1.

This implies that

lim
N

1
N

∣∣∣∣∣{k ≤ N : ΩO(sk, s) ⊀ ⋊
}∣∣∣∣∣ = 0.

Hence the sequence (sk) is statistical Cauchy sequence. Thus, the proof is complete.

Theorem 3.14. Every statistically convergent sequence in an octonion valued b-metric space is a statistical Cauchy
sequence.

Proof. Let (sk) be a sequence in the octonion valued b-metric space (S,ΩO). Suppose that sk
st1
−→ s. In this

case, for all 0O ≺ ⋊, we have

lim
N→∞

1
N

∣∣∣∣∣{k ≤ N : ΩO(sk, s) ⊀ ⋊
}∣∣∣∣∣ = 0.

Additionally, by the independence of the representation of statistical convergence and by its definition, for
every 0O ≺ ⋊′, there exists a K ∈N such that when k, l > K, and given the partial ordering definition above
and the fact that 0O ≺ ⋊′ ∈ O, it follows for the octonion ⋊′

2 that 0O ≺ ⋊
′

2b ∈ O. Furthermore,

lim
N→∞

1
N

∣∣∣∣∣{k ≤ N : ΩO(sk, s) ⊀
⋊′

2b

}∣∣∣∣∣ = 0.
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and

lim
N→∞

1
N

∣∣∣∣∣{k ≤ N : ΩO(sl, s) ⊀
⋊′

2b

}∣∣∣∣∣ = 0.

hold. Thus, for k, l > K, by the third axiom of the octonion valued b-metric space, we have:

ΩO(sk, sl) ⪯ b ·
(
ΩO(sk, s) +ΩO(s, sl)

)
≺ b ·

( ⋊′
2 · b
+
⋊′

2 · b

)
= ⋊′,

so for each N ∈N,{
k ≤ N : ΩO(sk, s) ≺ ⋊′

}
⊂

{
k, l ≤ N : ΩO(sk, sl) ≺ ⋊′

}
,

and

lim
N→∞

1
N

∣∣∣∣∣{k ≤ N : ΩO(sl, sk) ⊀ ⋊′
}∣∣∣∣∣ = 0.

Therefore, sinceΩO(sk, sl) ≺ ⋊′ holds for every 0O ≺ ⋊′ ∈ O, the sequence (sk) is a statistical Cauchy sequence.
The proof is complete.

Proposition 3.15. Every statistically convergent sequence is also a statistical Cauchy sequence in both quaternion
valued b-metric spaces and complex valued b-metric spaces.

Proof. This can be directly seen from Theorem 3.14, Proposition 2.8 and Proposition 2.9, respectively.

Definition 3.16. If every statistically Cauchy sequence is statistically convergent in (S,ΩO), then (S,ΩO) is
said to be a statistically complete octonion valued b-metric space.

Corollary 3.17. Every statistically complete octonion valued b-metric space is a complete.

Proof. This can be directly observed from Definition 2.15 and Definition 3.16.

Note that not every octonion valued b-metric space must be statistically complete. The following
example of an octonion valued b-metric space supports this.

Example 3.18. Let dO :N+ ×N+ → O be an octonion valued function defined as

dO(n,m) =

1O, m is prime,
ΩO(n,m), otherwise,

where n,m ∈ N+. Then (N+, dO) defines an octonion valued b-metric space. However, since it is 0 < N+,
this octonion valued b-metric space is not statistically complete.

A statistically dense subsequence is not necessarily statistically Cauchy. Statistical density and statistical
Cauchy-ness are distinct concepts, and their relationship depends on the structure of the sequence. Statisti-
cal density implies that the sequence clusters around certain points or values, while statistical Cauchyness
indicates that the distances between terms of the sequence decrease in a controlled manner. However, if a
sequence has a statistically dense subsequence, then this subsequence is statistically convergent within the
sequence, and thus it is also a statistically Cauchy subsequence.This and the results we have obtained can



E. Savaş et al. / Filomat 40:3 (2026), 1075–1092 1091

roughly be represented diagrammatically in the form of

Cauchy St −Density

St − Cauchy

St − Conver1enceConver1ence

.

Remark 3.19. Every ring forms a module over itself, and every field forms a vector space over itself, as is
commonly known. Let’s be clear, though, that octonions cannot form a module over themselves since they
lack multiplicative associativity, which makes them ineligible even as rings. Because of this, our established
metric spaces and the associated conclusions are of special importance.

4. Conclusion

In this paper, we have introduced and studied statistical convergence and related concepts in octonion-
valued b-metric spaces. We established fundamental properties such as the uniqueness of statistical limits,
the relation between statistical Cauchy and convergence sequences, and the existence of statistically dense
subsequences. The presented results extend the framework of convergence beyond associative settings and
demonstrate how octonionic algebra affects these notions. Future work may focus on fixed point results,
completeness criteria, and functional analytic extensions in non-associative metric structures. These results
may find potential applications in areas involving non-associative data structures, hypercomplex analysis,
and theoretical physics, where octonionic frameworks naturally arise.
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[10] Ö. Ege, Complex valued rectangular b-metric spaces and an application to linear equations, J. Nonlinear Sci. Appl. 6 (2015), 1014–1021
[11] H. Fast, Sur la convergence statistique, Colloq. Math. 10 (1951), 142–149.
[12] D. Fiorenza, H. Sati, U. Schreiber, Super-exceptional embedding construction of the heterotic M5: Emergence of SU(2)-flavor sector, J.

Geom. Phys. 170 (2021), 104349.
[13] M. M. Frechet, Sur quelques points du calcul fonctionnel, Rend. Circolo Mat. Palermo (1884-1940) 22 (1906), 1–72.
[14] J. A. Fridy, On statistical convergence, Analysis 5 (1985), 301-313.
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[18] M. Gürdal, N. Sarı, E. Savaş, A-statistically localized sequences in n-normed spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.

69(2) (2020), 1484–1497.
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