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On the deferred Riesz summability factors
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Abstract. In this study, a summability method is introduced using the deferred Riesz method, and the
result presented in [12] is re-examined through this approach. Furthermore, to demonstrate its relevance
to other areas, the obtained results are applied to Fourier series generated by orthogonal systems.

1. Introduction

A sequence (x,) is called to be 6—quasi monotone, if x, — 0, x, > 0 eventually, and Ax, > —6,, where

Ax, = x, — X441 and 0 = (0,,) is a sequence of positive numbers [2]. A sequence (A,) is said to be of bounded

variation, denoted by (A,,) € BV, if } |AA,| < oo.
n=1
Let ) d, be an infinite series with partial sums (s,). The nth (C, 1) means of the sequences (s,,) and (nd,)
are denoted by v, and t,, respectively. The series }, d, is said to be summable |C, 1|,, where k > 1, if [15]

k-1 k_ Ita[*
oy — vl = — < 0.
n=1 n=1 n

Let (p,) be a sequence of positive real numbers such that

n
pn=ZPk—>00 as n—oo, (Poi=p;=0, i21),
k=0

and let @ = (@) and § = (B,) be sequences of nonnegative integers satisfying a,, < 8, forn =1,2,3, ... and
limy, 0 B = oo with the condition

B

PP = Z p # 0.

k=a,+1
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Then the transformation
1 ﬁn
DiRn = T Z PmSm

ap+1 m=ay+1

denotes the deferred Riesz mean of the sequence (s,,) [1], [14]. The series }_d, is said to be |W, P, Onli
summability if

Y 05 IDIR, - DERy A < oo,
n=1
where (0,) is a sequence of positive numbers. If we consider that o, = 0 and 8, = n, then IDN, P, Onlk
summability reduces to IN, Pn, Onle summability [19]. Also, considering that 6, = n and p, = 1 for all n, we
obtain |C, 1| summability.
Recently, there has been considerable research on absolute summability (see [4]-[12], [16]-[18], [20]-[22]).
In [12], Bor presented a result on the IN, Pn, Onle summability factors of infinite series. Building on this work,

a result generalizing Bor’s study has been derived using the IDN, Pn, Oule summability method, which is
defined based on the deferred Riesz method.
Now, we need the following Lemma for the proof of our main theorem.

n
Lemma 1.1. ([3]), Let X,, = Y. %, forn>0,andlet A, — 0 as n — oo. Let (p,,) be a sequence of positive numbers
=P

such that
P, = O(np,), as n — co. 1)
Suppose there exists a sequence of numbers (K,) that is 6—quasi monotone with ), nX,0, < oo, Y, K,X, is
n=1 n=1
convergent, and |AA,| < K, for all n. Then we have that
AdlX, = O(1) as n — oo, )
nXu|Kul = O(1) as n — oo, 3)
Y X IAK,| < oo. (4)
n=1

2. Main result

We can now state the main theorem.

n
Theorem 2.1. Let X, = Y, %, for n > 0, where (GIZP”) is a non-increasing sequence, and let A, — 0 as n — oo.
'Z):O v n
Let (py) be a sequence of positive numbers such that

P, =O(np,), as n — oo. (5)

Suppose there exists a sequence of numbers (K,) that is d—quasi monotone with Y, nX,6, < oo, Y, K, X, is
n=1 n=1

convergent, and |AA,| < K, for all n. If the condition

i@k-l(p” I ok, ) as m o o ©6)
n \57) o1 = B ’
n=1 Pn Xﬁ !

holds, then the series Y d, A, is summable IDN, P Ouli, k> 1.
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Proof. Let (M,) denote the sequence of deferred (N, pun) mean of the series ), d,A,. Therefore from the
definition, we write

Bu i

M,gn pﬁ" Z pz Z d/\

ap+l i=aptl  j=ay+l

ﬁVl
Let P? | =Py Thenwe get My, = 7= X, APy, = Pia).
=, +

Bn i

Forn > 1, we get

}gn
Pg. Pi1A;.
Mg —Mg 1= —— E —id,;.
B B 1 Pﬁnpﬁn—l l 1a;

i=a,+1

Applying Abel’s transformation to Mg, — Mg, -1, we have

1 ,Bu_l
Pe.tp. g, (Bn + 1) P, pidi(i + 1)f Pg. i+1 P, Pidiat
= - E E PiAAti—— + E

Pﬁu 1871 Pﬁ’l Pﬁu - Pﬁn Pﬁn Pﬁn Pﬁn *1 Z

i=a,+1 i=a,+1 i=a,+1

= Mﬁ”,l + Mﬁmg + Mﬁmg, + M‘gm4.

To finish the proof of the theorem using Minkowski’s inequality, it will be sufficient to show that
Z Qﬁ_llMﬁmAk <o, for r=1,234.
n=1

Therefore we see that

But+1 B+l
Z 01 M, [ = Z ek_1|Pﬁnf/s,,Aﬁ,,(ﬁn+1)|k
n " Py, B

n=a,+1 n=ay,+1

P+l
P,
=0() Y, 07 017 (5 A
n=a,+1
ﬁm"’l p}g | ﬁ I
_ k=1, B Nk Bn
=0() ) s o, b=
n=a,+1 Bn

Now, by applying Abel’s transformation to this last sum, we obtain

ﬁm ﬁm+1 k
P, Itg, p, Itg,
=o@) Y, Ammxa’” s ﬁ 0(1)|Aﬁm+1|29k o by ol

k-1
n=a,,+1 X
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ﬁm
=0(1) Y 1AAg,IXp, + O(M)IAg, 11X, 1

n=ay,+1

,Bm
= O(l) Z |Kﬁn |Xﬁ” + O(1)|Aﬁm+1lxﬁm+1 = O(l) as m — oo,
n=ay,+1
according to the conditions of the theorem and Lemma. From here, continuing with the Holder’s inequality
in a similar way to M, 1, the following result is obtained:

ﬁr!x+1 }gm+1
k-1 k_ k=1 Pﬁn
2, oM =00 3 oG Pk (Z pilAlIE)*
n=ay,+1 n=a,+1 pn—1 i=a,+1
Bmt1 p Bu—1
=o() ), o) —[ 2 pif I Y pil!
n=a,+1 ﬁ" i=a,+1 ﬂ” i=a,+1
ﬁnx n+1 pﬁ pﬁ
— k 1 k n n n
=0 Y, pld Al Z( 5 5
i=ay+1 n=i+1 " no P
p &y
ﬁx - k k-1 Bu
=031 i LA (=
()Z(ﬁ it ) )My
i=ay,+1 ! n=i+1 n= pn
& 1, PBi k |t|
=0(1) Z 0 (5 ) Tl = O(1) as m — co.
=y, +1
For r = 3, we have that
ﬁm“’l m+1 p
05 My, o = 0(1) Y 05 (oo ( p1|1<||t 1)
P
n=a;,+1 n=a;,+1 ﬁ” i=a,+1
B+l Pﬁ
k—1 n k
=o@) ) 65k P_(ZpAKHt, - sz
n=a,+1 i=a,+1 i=a,+1
,Bm ﬁn+l pﬁ pﬁ
— k k-1 n n —1 n
=0 ), pl KNk ) (55—
i=ay+1 n=i+1 B n n

o) Z( "”*)" 1pﬁ( K

i=a,+1 pi
,Bm
pl |t
=0(1) Y 6K WX;l

i=a,+1
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Now applying Abel’s transformation, we obtain

ﬁm_l ﬂm
Po, . |11 P i Il
o Y, A<1|K|>Zek (o) i *+ OBl Y o 3, kX“
i=a,+1 i=ay,+1
ﬁm_l
=0(1) Y IAGK)IX; + O(1)nlKs, X,
i=ay,+1
,Bm_1 }gm_l
=0(1) Y XK +0(1) Y IKidX; + OM)BulKp, |Xp, = O(1) as m — co.
i=a,+1 i=a,+1

Finally, for r = 4 we get

ﬁrn"’l /gm+1

— — pﬂ
Y, oMt =00 Y, o (2 pilAsaltl)

n=a,+1 n=ay,+1 i=a,+1

Considering Holder’s inequality, it follows from the conditions of theorem and Lemma that

ﬁ”l+1 ﬁﬂ
k— 1 pﬁn k—1
om Y, 6 o Pﬁ_ Z pilAi P _ Z g
n=ay+1 i=a,+1 i=a,+1
P+l Pﬁ
=ow Y. 6’;,1 i P 2 pildis L
n=a,+1 Bn—1 i=a,+1
ﬁnx ﬁn+1 6
— 1. k=11 etk nPBy k-1 PBa
=0 ), plhial M alil ) (o 5D
= +1 n=i+1 n n= pPn
Pﬁx k Pz k |ti|k
= 0(1) oy BB
i= D(Zmil P Pﬁz p 1 Xl
e k-1, PBi \x It |
=0 ), 075 il
=y, +1
5m*1 ﬁm |t |k
o Y A|A,+1|Ze“ Ll +o<1>|Aﬁ,,z+1|Ze“ e
i=a,+1 r=1 lBrXf
Bu1
=0(1) Y IMsalXet + OMIAg, lXp, 41
i=a,+1
ﬁm_l
=0() Y IKialXia1 + OM)IAg,11Xg,41 = O(1) as m — oo.
i=ay,+1

Therefore the proof is completed. O
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3. An application to Fourier series with respect to orthogonal systems
Let {¢x}2, be a system of real functions defined on the interval [4, b]. If

b

f PPt =0 (m#k, mk=0,1,2,..),

a

then the system {¢x};? is said to be orthogonal on the interval [a, b].

We know that the basic trigonometric system {1, cost, sint, ..., cosnt, sinnt, ...} is orthogonal on any interval
of length 27t.

Let f(t) be a function defined on the interval [4, b]. The Fourier series of f(t) with respect to the orthogonal
system {¢x};? is defined as

FE) ~ cobo(®) + 11(E) + .+ Cachi(t) + Z ar(t) = Z By(#),

k=0

where

b
[ fOda bt
Cn = ”b—, n=0,1,2,...
[ ittt
a
When it comes to orthogonal systems, square integrable functions are particularly preminent. In this case,
unlike the ordinary convergence, the convergence in the mean is used. Because the ordinary convergence
of a Fourier series to a function may not always be possible even if the system is complete. However, in the
case of convergence in the mean, this convergence is always possible if the system is complete.

From this point of view, the main theorem can be specified in a Fourier series given with respect to the
orthogonal system.

t
n [13], we know that if {(t) = % f [ femw) f ) 3y belongs to the class BV(0, it), then o,(t) = O(1), where

0
o,(t) is Cesaro mean of the sequence (nB,(t)). Therefore we write the following results.

Theorem 3.1. Let (p,) be a positive sequence with P, = O(np,,) as n — oo. Assume that X = Z , the sequence
(91’,’—?’) is a non-increasing sequence and, A, — 0as n — co. Moreover, suppose that the conditions of Theorem 2.1 are
satisfied for X,, and A,,. If (t) € BV(0, i) and the conditions of Theorem 2.1 are satisfied, then the series f B, (HA,
is summable |DN, P, Onlie, k> 1. -

Remark 3.2. Under the conditions of Theorem 3.1, if we take the basic trigonometric system, then the result
holds for the trigonometric Fourier series.

Remark 3.3. If we take a,, = 0 and 8, = n for all n, then the summability method IW, Pn, Onlk turns into
IN, Pn, Onlk. Therefore, the results obtained here coincide with the results in [12].
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