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On the deferred Riesz summability factors
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Abstract. In this study, a summability method is introduced using the deferred Riesz method, and the
result presented in [12] is re-examined through this approach. Furthermore, to demonstrate its relevance
to other areas, the obtained results are applied to Fourier series generated by orthogonal systems.

1. Introduction

A sequence (xn) is called to be δ−quasi monotone, if xn → 0, xn > 0 eventually, and ∆xn ≥ −δn, where
∆xn = xn − xn+1 and δ = (δn) is a sequence of positive numbers [2]. A sequence (λn) is said to be of bounded

variation, denoted by (λn) ∈ BV, if
∞∑

n=1
|∆λn| < ∞.

Let
∑

dn be an infinite series with partial sums (sn). The nth (C, 1) means of the sequences (sn) and (ndn)
are denoted by vn and tn, respectively. The series

∑
dn is said to be summable |C, 1|k, where k ≥ 1, if [15]

∞∑
n=1

nk−1
|vn − vn−1|

k =

∞∑
n=1

|tn|
k

n
< ∞.

Let (pn) be a sequence of positive real numbers such that

Pn =

n∑
k=0

pk →∞ as n→∞, (P−i = p−i = 0, i ≥ 1),

and let α = (αn) and β = (βn) be sequences of nonnegative integers satisfying αn < βn for n = 1, 2, 3, ... and
limn→∞ βn = ∞with the condition

Pβn

αn+1 =

βn∑
k=αn+1

pk , 0.
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Then the transformation

Dβ
αRn =

1

Pβn

αn+1

βn∑
m=αn+1

pmsm

denotes the deferred Riesz mean of the sequence (sn) [1], [14]. The series
∑

dn is said to be |DN, pn, θn|k
summability if

∞∑
n=1

θk−1
n |D

β
αRn −Dβ

αRn−1|
k < ∞,

where (θn) is a sequence of positive numbers. If we consider that αn = 0 and βn = n, then |DN, pn, θn|k

summability reduces to |N, pn, θn|k summability [19]. Also, considering that θn = n and pn = 1 for all n, we
obtain |C, 1|k summability.

Recently, there has been considerable research on absolute summability (see [4]-[12], [16]-[18], [20]-[22]).
In [12], Bor presented a result on the |N, pn, θn|k summability factors of infinite series. Building on this work,
a result generalizing Bor’s study has been derived using the |DN, pn, θn|k summability method, which is
defined based on the deferred Riesz method.

Now, we need the following Lemma for the proof of our main theorem.

Lemma 1.1. ([3]), Let Xn =
n∑

v=0

pv

Pv
, for n ≥ 0, and let λn → 0 as n→∞. Let (pn) be a sequence of positive numbers

such that

Pn = O(npn), as n→∞. (1)

Suppose there exists a sequence of numbers (Kn) that is δ−quasi monotone with
∞∑

n=1
nXnδn < ∞,

∞∑
n=1

KnXn is

convergent, and |∆λn| ≤ Kn for all n. Then we have that

|λn|Xn = O(1) as n→∞, (2)

nXn|Kn| = O(1) as n→∞, (3)
∞∑

n=1

nXn|∆Kn| < ∞. (4)

2. Main result

We can now state the main theorem.

Theorem 2.1. Let Xn =
n∑

v=0

pv

Pv
, for n ≥ 0, where (θnpn

Pn
) is a non-increasing sequence, and let λn → 0 as n → ∞.

Let (pn) be a sequence of positive numbers such that

Pn = O(npn), as n→∞. (5)

Suppose there exists a sequence of numbers (Kn) that is δ−quasi monotone with
∞∑

n=1
nXnδn < ∞,

∞∑
n=1

KnXn is

convergent, and |∆λn| ≤ Kn for all n. If the condition

βm∑
n=1

θk−1
n (

pn

Pn
)k |tn|

k

Xk−1
n
= O(Xβm ) as m→∞, (6)

holds, then the series
∑

dnλn is summable |DN, pn, θn|k, k ≥ 1.
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Proof. Let (Mn) denote the sequence of deferred (N, pn) mean of the series
∑

dnλn. Therefore from the
definition, we write

Mβn =
1

Pβn

αn+1

βn∑
i=αn+1

pi

i∑
j=αn+1

d jλ j.

Let Pβn

αn+1 = Pβn . Then we get Mβn =
1

Pβn

βn∑
i=αn+1

diλi(Pβn − Pi−1).

For n ≥ 1, we get

Mβn −Mβn−1 =
pβn

Pβn Pβn−1

βn∑
i=αn+1

Pi−1λi

i
idi.

Applying Abel’s transformation to Mβn −Mβn−1, we have

Mβn −Mβn−1 =
pβn

Pβn Pβn−1
[
βn−1∑

i=αn+1

∆(
Pi−1λi

i
)

i∑
r=0

rdr + (
βn∑

r=0

rdr)
Pβn−1λβn

βn
]

=
pβn tβnλβn (βn + 1)

Pβnβn
−

pβn

Pβn Pβn−1

βn−1∑
i=αn+1

piλi(i + 1)ti

i
+

pβn

Pβn Pβn−1

βn−1∑
i=αn+1

Pi∆λiti
i + 1

i
+

pβn

Pβn Pβn−1

βn−1∑
i=αn+1

Piλi+1ti

i

=Mβn,1 +Mβn,2 +Mβn,3 +Mβn,4.

To finish the proof of the theorem using Minkowski’s inequality, it will be sufficient to show that

∞∑
n=1

θk−1
n |Mβn,r|

k < ∞, f or r = 1, 2, 3, 4.

Therefore we see that

βm+1∑
n=αm+1

θk−1
n |Mβn,1|

k =

βm+1∑
n=αm+1

θk−1
n |

pβn tβnλβn (βn + 1)
Pβnβn

|
k

= O(1)
βm+1∑

n=αm+1

θk−1
n |λβn ||λβn |

k−1(
pβn

Pβn

)k
|tβn |

k

= O(1)
βm+1∑

n=αm+1

|λβn |θ
k−1
n (

pβn

Pβn

)k |tβn |
k

Xk−1
βn

.

Now, by applying Abel’s transformation to this last sum, we obtain

= O(1)
βm∑

n=αm+1

∆|λβn |

n∑
r=1

θk−1
r (

pβr

Pβr

)k |tβr |
k

Xk−1
βr

+O(1)|λβm+1|

βm+1∑
r=0

θk−1
r (

pβr

Pβr

)k |tβr |
k

Xk−1
βr
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= O(1)
βm∑

n=αm+1

|∆λβn |Xβn +O(1)|λβm+1|Xβm+1

= O(1)
βm∑

n=αm+1

|Kβn |Xβn +O(1)|λβm+1|Xβm+1 = O(1) as m→∞,

according to the conditions of the theorem and Lemma. From here, continuing with the Hölder’s inequality
in a similar way to Mβn,1, the following result is obtained:

βm+1∑
n=αm+1

θk−1
n |Mβn,2|

k = O(1)
βm+1∑

n=αm+1

θk−1
n (

pβn

Pβn

)k 1
Pk
βn−1

(
βn−1∑

i=αn+1

pi|λi||ti|)k

= O(1)
βm+1∑

n=αm+1

θk−1
n (

pβn

Pβn

)k 1
Pβn−1

[
βn−1∑

i=αn+1

pi|λi|
k
|ti|

k][
1

Pβn−1

βn−1∑
i=αn+1

pi]k−1

= O(1)
βm∑

i=αm+1

pi|λi|
k−1
|λi||ti|

k
βn+1∑

n=i+1

(
θnpβn

Pβn

)k−1 pβn

Pβn Pβn−1

= O(1)
βm∑

i=αm+1

(
θipβi

Pβi

)k−1pi|ti|
k
|λi|(

1
Xi

)k−1
βn+1∑

n=i+1

pβn

Pβn Pβn−1

= O(1)
βm∑

i=αm+1

θk−1
i (

pβi

Pβi

)k |ti|
k

Xk−1
i

|λi| = O(1) as m→∞.

For r = 3, we have that

βm+1∑
n=αm+1

θk−1
n |Mβn,3|

k = O(1)
βm+1∑

n=αm+1

θk−1
n (

pβn

Pβn Pβn−1
)k(

βn−1∑
i=αn+1

pi|Ki||ti|i)k

= O(1)
βm+1∑

n=αm+1

θk−1
n (

pβn

Pβn

)k 1
Pβn−1

(
βn−1∑

i=αn+1

pi|Ki|
k
|ti|

kik)(
1

Pβn−1

βn−1∑
i=αn+1

pi)k−1

= O(1)
βm∑

i=αm+1

pi|ti|
k(i|Ki|)k−1i|Ki|

βn+1∑
n=i+1

(
θnpβn

Pβn

)k−1 pβn

Pβn Pβn−1

= O(1)
βm∑

i=αm+1

(
θipβi

Pβi

)k−1 pβi

Pβi

(
1
Xi

)k−1i|Ki||ti|
k

= O(1)
βm∑

i=αm+1

θk−1
i i|Ki|(

pβi

Pβi

)k |ti|
k

Xk−1
i

.
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Now applying Abel’s transformation, we obtain

= O(1)
βm−1∑

i=αm+1

∆(i|Ki|)
i∑

r=1

θk−1
r (

pβr

Pβr

)k |tr|
k

Xk−1
r
+O(1)βm|Kβm |

βm−1∑
i=αm+1

θk−1
i (

pβi

Pβi

)k |ti|
k

Xk−1
i

= O(1)
βm−1∑

i=αm+1

|∆(iKi)|Xi +O(1)βm|Kβm |Xβm

= O(1)
βm−1∑

i=αm+1

iXi∆|Ki| +O(1)
βm−1∑

i=αm+1

|Ki|Xi +O(1)βm|Kβm |Xβm = O(1) as m→∞.

Finally, for r = 4 we get

βm+1∑
n=αm+1

θk−1
n |Mβn,4|

k = O(1)
βm+1∑

n=αm+1

θk−1
n (

pβn

Pβn Pβn−1
)k(

βn−1∑
i=αn+1

pi|λi+1||ti|)k.

Considering Hölder’s inequality, it follows from the conditions of theorem and Lemma that

= O(1)
βm+1∑

n=αm+1

θk−1
n (

pβn

Pβn

)k 1
Pβn−1

βn−1∑
i=αn+1

pi|λi+1|
k
|ti|

k(
1

Pβn−1

βn−1∑
i=αn+1

pi)k−1

= O(1)
βm+1∑

n=αm+1

θk−1
n (

pβn

Pβn

)k 1
Pβn−1

βn−1∑
i=αn+1

pi|λi+1|
k
|ti|

k

= O(1)
βm∑

i=αm+1

pi|λi+1|
k−1
|λi+1||ti|

k
βn+1∑

n=i+1

(
θnpβn

Pβn

)k−1 pβn

Pβn Pβn−1

= O(1)
βm∑

i=αm+1

θk−1
i (

pβi

Pβi

)k pi

Pβi

Pβi

pβi

|λi+1|
k |ti|

k

Xk−1
i

= O(1)
βm∑

i=αm+1

θk−1
i (

pβi

Pβi

)k
|λi+1|

|ti|
k

Xk−1
i

= O(1)
βm−1∑

i=αm+1

∆|λi+1|

i∑
r=1

θk−1
r
|tr|

k

βrXk−1
r
+O(1)|λβm+1|

βm∑
r=1

θk−1
r
|tr|

k

βrXk−1
r

= O(1)
βm−1∑

i=αm+1

|∆λi+1|Xi+1 +O(1)|λβm+1|Xβm+1

= O(1)
βm−1∑

i=αm+1

|Ki+1|Xi+1 +O(1)|λβm+1|Xβm+1 = O(1) as m→∞.

Therefore the proof is completed.
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3. An application to Fourier series with respect to orthogonal systems

Let {ϕk}
∞

k=0 be a system of real functions defined on the interval [a, b]. If

b∫
a

ϕk(t)ϕm(t)dt = 0 (m , k, m, k = 0, 1, 2, ...),

then the system {ϕk}
∞

k=0 is said to be orthogonal on the interval [a, b].
We know that the basic trigonometric system {1, cost, sint, ..., cosnt, sinnt, ...} is orthogonal on any interval

of length 2π.
Let f (t) be a function defined on the interval [a, b].The Fourier series of f (t) with respect to the orthogonal

system {ϕk}
∞

k=0 is defined as

f (t) ∼ c0ϕ0(t) + c1ϕ1(t) + ... + cnϕn(t) + ... =
∞∑

k=0

ckϕk(t) :=
∞∑

k=0

Bk(t),

where

cn =

b∫
a

f (t)ϕn(t)dt

b∫
a
ϕ2

n(t)dt

, n = 0, 1, 2, ... .

When it comes to orthogonal systems, square integrable functions are particularly preminent. In this case,
unlike the ordinary convergence, the convergence in the mean is used. Because the ordinary convergence
of a Fourier series to a function may not always be possible even if the system is complete. However, in the
case of convergence in the mean, this convergence is always possible if the system is complete.

From this point of view, the main theorem can be specified in a Fourier series given with respect to the
orthogonal system.

In [13], we know that if ψ(t) = 1
t

t∫
0

f (t+u)− f (t−u)
2 du belongs to the class BV(0, π), then σn(t) = O(1), where

σn(t) is Cesàro mean of the sequence (nBn(t)). Therefore we write the following results.

Theorem 3.1. Let (pn) be a positive sequence with Pn = O(npn) as n → ∞. Assume that X =
n∑

v=0

pv

Pv
, the sequence

(θnpn

Pn
) is a non-increasing sequence and, λn → 0 as n→∞.Moreover, suppose that the conditions of Theorem 2.1 are

satisfied for Xn and λn. If ψ(t) ∈ BV(0, π) and the conditions of Theorem 2.1 are satisfied, then the series
∞∑

k=0
Bn(t)λn

is summable |DN, pn, θn|k, k ≥ 1.

Remark 3.2. Under the conditions of Theorem 3.1, if we take the basic trigonometric system, then the result
holds for the trigonometric Fourier series.

Remark 3.3. If we take αn = 0 and βn = n for all n, then the summability method |DN, pn, θn|k turns into
|N, pn, θn|k. Therefore, the results obtained here coincide with the results in [12].
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