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Multiplicative fractional integral inequalities for multiplicative
s-convex functions: A multi-parameter approach
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Abstract. Within the multiplicative Riemann-Liouville (RL) fractional framework, we develop multi-
parameter inequalities for multiplicatively differentiable s-convex positive functions. Using a multi-
parameter multiplicative fractional integral identity, we establish several inequalities under the conditions:
(i) W exhibits multiplicative s-convexity, and (ii) (In W*)? maintains s-convexity (§ > 1). Numerical examples
and graphical visualizations verify the proposed inequalities.

1. Motivation and background

Breakthroughs in mathematical analysis often give rise to revolutionary theoretical frameworks. The
multiplicative calculus, also recognized as non-Newtonian calculus, proposed by Grossman and Katz
in Ref. [18], serves as such a paradigm. By substituting linear operations in classical calculus with
multiplicative ones, this theoretical framework can effectively models nonlinear systems with exponential

and multiplicative characteristics. The core of this framework lies in the definition for the multiplicative
derivative:

, (1)
where W (y) # 0 and W\S/(;)p ) > 0 for sufficiently small values of p. The derivative exists provided that

this limit converges, and its non-zero value signifies the instantaneous logarithmic growth rate, thereby
encapsulating the intensity of exponential variation. This differs from the classical derivative:

W -y
(y + p; (y)‘ @)

Y (y) = lim
p—0
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Upon comparing the equations (I) and @), it becomes evident that the multiplicative derivative replaces
the operations of subtraction and multiplication with division and exponentiation, respectively. The rela-
tionship between W* and W’ is represented as:

W (y) = exp {(InW) ()} - €)

Bashirov et al. [5], drawing from the multiplicative derivative, formulated the definition of the multiplicative
integral:

f ) (w0))" = exp { f ) IH‘V(V)dV}/ @)

where the function W(y) > 0 is required. The multiplicative integral represents accumulation through
continuous exponentiation, with dy acting as a multiplicative infinitesimal, whereas the Riemann integral
fK ’ (\I’()/))d)/ computes additive summation.

As a formidable mathematical tool, the multiplicative integral derives the cumulative geometric mean
through the exponential reconstruction of logarithmic integrals, thus rendering it apt for exponential
modeling in contexts such as financial compounding and biological population dynamics. Let us illustrate
its application using a bacterial growth model. Suppose J(¢) > 0 represents the size of the population at
time ¢. The population’s evolution can be described by the following dynamical model:

J'(€) = R(e)3(e), (5)

where R(¢) > 0 denotes the relative growth rate of the population, and J'(¢) is the rate of change of the
population over time. This idealized model, though neglecting carrying capacity limitations, serves as a
foundational case for generalized growth models (e.g., Logistic growth).

Through the equation (3), we derive the multiplicative reformulation of the equation (5):

J'(e) = exp {R(e)}, (6)
with a multiplicative integral solution given by

de
7

30 =360 [ (ewlRe) %

€0
where J(&p) is the initial population size.

This example illustrates the application value of multiplicative calculus in differential equations, with
the equation (6) providing a more direct representation of exponential growth dynamics than the equation
).

After analyzing multiplicative operations and functional properties, we find that convexity is essential
for the theory of inequalities. An important result in this field is the following Hermite-Hadamard (HH)
inequality

1 7 Y Y
W(KEO)SG—KJK‘ \P(y)dyﬁw, ®

holds for any convex function W defined on [, o]. The inequality (8) reflects the geometric properties of
convexity and contributes to the advancement of integral inequality theory. In particular, Xi and Qi [52]
generalized the HH-type inequality through the following parameterized identity.

Lemma 1.1. [52] Assume that the function V¥ : [k, 0] — R exhibits differentiability on (x,0). If ¥’ € L1 [k, 0] and
A, 1 € R, then the following identity holds:

v v 2—-A— o
AV (k) + u¥ (o) N A ,u\y(x+o)_ 1 f W (1) du
2 2 2 0—x% Ji

:G;Kj:[(l—)\—e)\I”(EK+(1—8)K;G)+(y—8)‘l"(e1<;o+(1—5)‘7)]d5-
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Later, Toseef et al. [47] proposed the following four-parameter identity extending the HH-type inequal-
ity:
Lemma 1.2. [47] Consider a differentiable function WV : [k,0] — R where k¥ < o, with V' € Li[x,c]. For any
non-negative parameters y, ¢,z and w, the following identity holds:

(147 =)@ + PO+ -y +w-2)|w(Z0) w22
269w (50)- 2 [ v

1
=(0o—- K)fo P(y,p,z,w,e) [V (eo+ (1—e)x) — ¥ (ex + (1 - €)0)]de,

where
e-y, e€0),
o celi)
P(y,(p,z,w,e)z -
E—z, €€ [E Z)
e-w, e} ]
For example, by choosing y = ¢ = z = w = }, the identity in Lemmau degenerates into the following
trapezoid form:
P () ; Yo _ f W (u)du = (e - 1) [V (co+(1-e)x) -V (ex+ (1 —¢)o)lde. (9)

And by choosing y = ¢ = 0 and z = w = 1, the identity in Lemma degenerates into the following
midpoint form:

2 o—K

. 1
\I,(KHF)_ 1 f\y(u)duz(j;Kf¢)(€)[‘I"(£G+(1—S)K)—‘I’I(EK"‘(l_E)U)]df/ (10)
« 0

where

¢(£):{s, 0<e<i,

e—1, %Sssl.

Currently, the exploration of inequalities has expanded into fractional calculus. To proceed, we recall
the definition of RL-fractional integral operators.

Definition 1.3. [24] Assume that W € L1([x, 0]). For a > 0, the RL-fractional integrals, expressed as 1',,W(y) and
I8 W(y), are defined as follows:

() = y(y — o W(e)de, ¥ >k,

1
T(a@)
and
1
nw =—f e—-y) " "W(e)de, y <o
Y0 =t y( P Wlede,

Here, T'(-) represents the Euler gamma function, and it is defined through the integral representation:

T'(a) :f e le7*de, Re(a) >0

0

withT(a + 1) = al'(a).
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Recent advances in fractional calculus have stimulated growing interest in various integral inequalities
involving fractional integrals, yielding important progress. In the context of RL-fractional integrals, Merad
etal. [31] formulated parameterized symmetric inequalities of Simpson-like type for s-tgs-convex functions,
while Nasri et al. [37] derived Newton-type inequalities for s-convex functions, and Sitthiwirattham et al.
[46] yielded parameterized HH-Mercer type inequalities for convex functions. Besides the RL-fractional
integral operators, Zhao et al. [55] constructed a two-parameter identity via generalized fractional integrals,
which can be reduced to Simpson-, midpoint- and trapezoid-type inequalities. Utilizing the local fractional
integrals, Butt and Khan [11]] developed parameterized integral inequalities, while Meftah et al. [34] derived
Newton-type inequalities. Additionally, the parameterized local fractional inequalities were proposed by
Zhang and Sun [57] for generalized h-preinvex functions. Further contributions include Qi and Li [42]
on Katugampola fractional inequalities for s-convex functions, Yuan et al. [54] on parameterized fractal-
fractional integral inequalities for fractal (P, m)-convex functions, Benaissa and Azzouz [10] on HH-Fejér
inequalities for y-Hilfer fractional integrals, and Butt et al. [12] on HH-Mercer inequalities involving
Atangana-Baleanu Katugampola fractional integrals, along with related works on parameteized fractional
schemes in Refs. [19} 127,28 45| 50]. However, all the aforementioned studies have been conducted within
the framework of fractional analyses, rather than multiplicative integrals.

Building upon the RL-fractional integrals, the multiplicative form was proposed in Ref. [1] as a extension.

Definition 1.4. [1] Let « > 0. For a positive function Y on [«x, 0], the left- and right-sided multiplicative RL-
fractional integrals, denoted by I3V (y) and .I5WV(y), respectively, are defined as follows:

JEW() = exp{Z8InW(y))

exp {ﬁ f:(y/ - e)“‘lln\I’(e)ds} , Y >K,

and

J2W(y) = exp{7: In¥(y)}

=exp {ﬁ f):a(f - y)a_lln\P(E)dE} , V<0

where the function \V(y) is positive for every y € [k, o], and I’ (-) denotes the Euler gamma function.

Multiplicative calculus has been extended to inequality analysis involving both integer-order and frac-
tional integrals. In the integer-order field, the midpoint- and trapezoid-type inequalities were explored
by Khan and Budak [22] and Xie et al. [53]. Additionally, Meftah et al. derived Maclaurin-type [32]
and dual Simpson-type [33] inequalities for multiplicatively convex functions, and Boole-type inequalities
were established by Mateen and Zhang [29]. Moreover, Berkane et al. [9] developed Right-Radau-type
inequalities for multiplicatively s-convex functions. In 2024, Frioui et al. [17] proposed a dual-parameter
multiplicative integral identity, from which one-point, two-point, and Newton-Cotes type inequalities can
be derived.

In the realm of fractional calculus, through the application of the multiplicative RL-fractional integrals,
Budak and Ozgelik [7] studied HH-type inequalities in 2020. This subsequently motivated research by
Boulares et al. [6] on Bullen-type inequalities, by Peng and Du [40] on Maclaurin-type inequalities, by
Moumen et al. [35] on Simpson-type inequalities, and by Lakhdari et al. [25] on Newton-type inequalities.
Later, Mateen et al. [30] established fractional midpoint-Mercer-, trapezoid-Mercer- and HH-Mercer-type
inequalities. Especially, Almatrafi et al. [4] and Zhu et al. [60] proposed parameterized fractional integral
inequalities for multiplicatively s-convex functions, whereas Du and Long [14] developed a multi-parameter
integral identity that enabled the derivation of three-point Newton-Cotes type inequalities, and Zhou and
Du [59] established multi-parameterized inequalities, generalizing traditional inequalities such as Bullen-
type, Boole-type, and other inequalities. Additionally, significant progress has been achieved in research
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on other multiplicative fractional integral inequalities, such as multiplicative conformable fractional in-
tegrals [8]], multiplicative tempered fractional integrals [16], multiplicative (k, s)-fractional integrals [56],
multiplicative fractional integrals with exponential kernels [41], multiplicative Atangana—Baleanu frac-
tional integrals [15], and multiplicative k-Atangana—Baleanu fractional integrals [26]. For readers seeking
deeper insights into other multiplicative fractional operators, we suggest consulting Refs. [21}[23] 44} 49], 58]
and the supplementary references cited therein.

Drawing on prior research findings, this paper aims to explore the parameterized fractional integral
inequalities for multiplicatively once-differentiable s-convex positive functions. The work is structured
as follows: After Sec. [2, a multiplicative RL-fractional identity with two parameters is established for
“differentiable functions in Sec. 3| Leveraging this identity, the corresponding parameterized multiplicative
fractional inequalities are derived, and it is demonstrated that the proposed inequalities outperform the
midpoint- and trapezoid-type inequalities under certain conditions. Sec. ] provides numerical validations
of the results with examples. Finally. Sec. [5|summarizes the findings and concludes the paper.

2. Preliminaries

The organization of this section includes two subsections. Subsection[2.1|states fundamental definitions
on convexity and beta functions, whereas Subsection concentrates on key properties and theorems
relevant to multiplicative calculus. Henceforth, let I € R denote a real interval, and let R* = (0, +o0)
throughout this work.

2.1. Conwvexities and beta functions
The definitions of s-convexity, multiplicative convexity and multiplicative s-convexity are essential to
our main results. To this end, we envoke them as follows.

Definition 2.1. [20] A function V¥ : I — R* exhibits s-convexity for some s € (0,1], if it fulfills the following
inequality

Y(ey+1-ee)<eV(y)+(1-¢)V¥(p)
foranyy,p € land € € [0,1].

Definition 2.2. [36] Consider WV : I — R* satisfying multiplicative convexity (logarithmical convexity) if, for all
y,@ € land ¢ € [0, 1], the following inequality

Wley+ (1 -o)p) <[P [W (]
is satisfied.

Definition 2.3. [51] A function ¥ : I — R* possesses multiplicative s-convexity (logarithmical s-convexity) for
some s € (0, 1], provided that it fulfills the subsequent inequality

W(ey+1-a) <YL W @I
forall y, @ € Ialong with € € [0, 1].

For s = 1, the multiplicative s-convexity coincides with the multiplicative convexity in Definition
We now revisit the definitions of the beta and incomplete beta functions used in this work.

Definition 2.4. [43] For complex numbers @1, ®; with Re(®1) > 0 and Re(®,) > 0, the beta function B(-,-) admits
the following representation:

1
_ _ I'(@1)I(@2)

— o1-11 _ \@2-1 o —
B(@1, @7) f(; e (1 -¢) de T(@1 + 29)’

in which I'(-) denotes the Euler gamma function.



C. Yang, T. S. Du / Filomat 40:3 (2026), 817-848 822

Definition 2.5. [24] Let @1, @, € C satisfy Re(@1) > 0 and Re(@z) > 0. The incomplete beta function takes the
form:

y
B, (@1, @2) = f ™71 (1 - e)‘DZ_l de, 0<y<1.
0

2.2. Multiplicative calculus and related results

Building upon the investigation conducted in Ref. [5], the authors investigated analytical properties of
“integrable operators.

Proposition 2.6. [5] Consider the positive and *integrable functions W and J defined on [«,c]. Then the following
properties hold

(@) f (W(e))* = ( f (‘I’(é‘))dg) , VER,

@fwm@%fwwhfmw,

de
ey | @@
o [ (56) -

S(e)®

mj%m%=fww“£wwﬁxs%a

K g K -1
@fww%lmkﬂww{fmwﬂ.

The n-th *derivative and n-th derivative (n € IN) have the subsequent relationships.

Proposition 2.7. [5] Consider the function WV : I — R* with n-th derivative W™, Then the following relationships
hold

() W'(e) = exp{(In o WY (¢)} = exp {\\1}//’((;) }

(i) W™ (e) = exp {(In o W*)' (&)} = exp {(In o W)"(e)},
(ii)) "™ (¢) = exp {(In o W) (e)}, 1 =1,2,3,- -

Proposition 2.8. [58] Suppose that the positive function V is multiplicatively differentiable on the interval I. If W
is increasing on I, then it holds that W* > 1.

The partial-integral formula of “integrable operators was developed by Ali et al. in Ref. [2].

Theorem 2.9. [2] Consider the multiplicatively differentiable function W : [k, 0] — R*, together with differentiable
functions @ : I — [x,0] and J : [k, 6] = R. Under these conditions, we obtain the identity

(@ ()07 - @@ 1
L (\I/ (@ ()/)) ) [V (D (K))]T‘(K) fo (\y @ (y)):y(},) )dy .

K
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Definition 2.10. [5] Let the function ¥ € R*. The multiplicative modulus (or the multiplicative absolute value) of
W, denoted by |\V|", is defined as follows:

v, V>1,
P =11
— 0<W¥«<l1,
v

7

which can alternatively be expressed as W[ = exp {|In o\W|}, with | - | representing the standard absolute value.
Proposition 2.11. The following multiplicative triangle inequality is readily verified:
W3 < [PTI3I
which holds for all ¥, J € R*.
Proof. From Def. combined with the triangle inequality, the intended conclusion follows. [

Proposition 2.12. [5] Assume that W : [k, 0] — R* is multiplicatively differentiable.
(1) If W*(y) =2 1 for all y € [k, 0], then \V is increasing on [k, o].
(2) If W*(y) < 1forall y € [x,0], then WV is decreasing on [x, o].
We now introduce the *increasing concept and demonstrate one of its significant properties.

Definition 2.13. A function V : [«,c] — R* is called *increasing, if the inequality \\ig/;; < 1 holds for any two

points y1, v € [k, 0] with y1 < y,. The function is termed *decreasing provided that the inequality reverses.

Proposition 2.14. For a multiplicatively differentiable function ¥ : [, ] — R*, we have the following equivalent
assertions:

(i) The function WV is *increasing on [k, o],

(ii) The *differentiable satisfies W*(y) > 1 for all y € [x, o].

Proof. Combining Prop. with part (1) of Prop. yields the desired result: (i) = (ii) = (i). O
To conclude, we state error estimates for the different types of multiplicative quadrature rules: midpoint,
Simpson, Bullen, trapezoid and Milne types.

Theorem 2.15. [38] Assuming that the multiplicatively differentiable function WV : [x,c] — R* is increasing on
[k, 0] with x < o, and V* is multiplicatively convex over [x,c]. Then, we have the multiplicative midpoint-type
integral inequality:

1

[ eor)

g—K

<[ (59 vol

< [w (x) V" (a)]%.

Theorem 2.16. [13] If the requirements of Theorem are fulfilled, then the subsequent multiplicative Simpson-
type inequality holds:

[veo (W(K;(j)f%)r [ (\If<u>>d“)£”

Theorem 2.17. [6] From the hypotheses of Theorem it follows that the multiplicative inequalities of Bullen type
hold:

<[V ()W ()] 7.

1

‘[w o (w (5 w (0)]1 ([ o)

<o (59 v e]

o—K
1

<[www©@]".
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Theorem 2.18. [22] Provided that the hypotheses of Theorem are fulfilled, it follows that the subsequent

multiplicative trapezoid-type inequality is satisfied:

[\y* (x) V" (0) ]

e[ (vw))”

Theorem 2.19. [17] Under the conditions specified in Theorem the subsequent multiplicative inequality of
Milne type holds:

1

H(\W»Z(\P(K;C’)) (¥ () ] ( (‘I’(u))d”)

o=k

<[ () W ()] T ( (Kero))T

5(0—k)

<[w@w @]

3. Main results

This section focuses on establishing multi-parameter inequalities concerning multiplicative RL-fractional
integrals. As a foundation, we first demonstrate the subsequent fractional identity.

Lemma 3.1. Consider a function WV : [k, 0] — R* with multiplicative differentiability on (x, o). Suppose \V* is the
multiplicatively integrable function on [k, o). Then, for A, u € [0, +00), we establish the following identity concerning
the multiplicative RL-fractional integrals:

_ 20711+
(-1

) (fe‘ ((\Ij (ex+(1-e)o) )P“Z‘”"‘Y)dg)nf (ﬁl ((‘1’ (ex+(1-¢)o) )zu(l‘é’)“'—A)df]gzw

Proof. To streamline our presentation, we employ the notations

ot [ (S29)| 7 @ |1 v 0 1w o)

o—k

((\P (ex+(1—¢)o) )H—zaga)dg) > |

1

L= ( fo :
k= (,ﬁl ((‘V (ex+(1-¢)o) )Za(l‘f)“'—A)df)uzk

2

and

Considering Proposition[2.6] one obtains that

L = (foé ((‘I’* (exc+ (1 - £)0) )y—zaga)ds] 2

o=x\de

- fo : ((\y (ex+(1 —e)a))(”_z"gﬂ) : ) . (11)

Leveraging the integration by parts formula in multiplicative form (see Theorem 2.9), we derive from I;
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that
L= (W(%))fyl) N 1
(¥()* fo : (wex+a-o0 )Z)d
[ (5 (o) —
exp {aZ"‘l fz e 1InW(ex + (1 —€) o) ds}
0
:‘yK+a %(\y())% 1
[ ( 2 )] o exp{% f:u (0 —¢)! ln\I’(e)ds}
() @) el T a2

Applying the analogous procedure to I, yields the following conclusion

L= jl‘l ((\y* (exk + (1 —¢) a))[za(l_")“—/\]%)

2

de

A

ol

~ (vo) y 1
[ [ (weera-oa) )"

~(v) (5] —

exp {aZ“‘l ﬁ 1-)*'InW(ex+ (1 -¢)o) de}
Ar 15 1

- (\y (K)) \P(K;O) x aza—l 5
exp {m f (e =) InW(¢) de}

= (W) )\ i\y(" er ‘7) B [*Ifzzg\y(K)]_z = (13)

From the equations (12) and (13), it can be captured that

2971+
(o—K)&

)]1_/\;“ (¥ (0)]} [.77 W (k) s TOW (a)] . (14)

K+0
2

L xL = [V (©)]? [\1/(

Consequently, we establish the desired identity. The proof is thus concluded.

Corollary 3.2. In Lemma 3.1} by choosing A = u1, we have the subsequent identity:

u

[\I’(K)\P(a)r [\y(

20-11(a41)
(o—Kx)

K+0
2

g-K o—K

i (jj ((\P (ex+(1-€)o) )#‘2“5a)d£)2 (f:l ((‘I’ (ex+(1—¢)o) )2“(1—5)0—“)&]2 .

2
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Remark 3.3. From Corollary[3.2} the following specific cases can be derived.
(i) Considering p = 0, we obtain the multiplicative midpoint-type fractional identity

20-1(a+1)

)7

= 0) [Ii (i) - %Jf\y(a)]_

¥

—K

_ (foé ((\y (ex+(1-¢€)o) )—2“8”)d€)nz (ﬁl ((‘I’ (ex+(1-¢€)o) )24(1_8)(‘ )dSJ

For o = 1, this reduces to the multiplicative midpoint-type identity of integer order

o5 [[or)

) ( foé (¥ e+ -0 )‘)d] ( fz 1 (¥ ex+a-00) )H)dj

o—K

(ii) Considering u = %, we obtain the multiplicative fractional equality of Simpson type
_ 2071141
1%

K er o))4 ‘P(o)]é [J%W(K) 10 T2W(0)

—K

[W(K) (\y ( .

3 . ] 1200 de 2 1 . , 24(1-¢)*~1 de\ 2
_(f(; ((\If (é1<+(1—é)o)) ) ] [j; ((\If (éK-l-(l—é)o‘)) ) ] .
For o = 1, this reduces to the multiplicative Simpson-type identity of integer order
[W("’ (v (559 ‘1’<o>]6 ( | U(\P(y»dy)”
3 1_g\de oK 1 5 de)0TK
:(f ((‘I’*(«SK"‘(l—t’?)cf))6 ) ] (ﬁ ((‘I’*(€1<+(1—€)a))6 ) ] )

0
(iii) Considering = 1, we obtain the multiplicative fractional equality of Bullen type

20-11(a+1)
(0-1)%

o=k

K sz a))Z ‘lf(g):|i [*jﬁ%‘P(K) . %]f‘lf(ﬁ)]_

—K

[W(K) (\y ( :

= (foé ((\I/ (ex+(1-¢) o))i—zw)ds] (f:l ((\y (ex+(1—)0) )2«(1_8)a_;)d5] - |

For oo = 1, this reduces to the multiplicative Bullen-type identity of integer order

[woo (v(<29) \If(o)]i ( f g(\lf(y»dy)’(l

= ( fo % (% exa-e) o))}“f)‘k]ﬂ ( f 1 (exra-00)"

(iv) Considering y = %, we obtain the multiplicative fractional equality of Simpson-like type

297 I1(a4)

G-

[\I’(K)‘I/ (K Jz’ ")\y(a)]é [ICL W) - %Iff\y(o)]

_ (j: ((\I/* (ex+(1-¢) G))g—zwszr)de]z [ﬁl ((‘I’* (ex+ (1 £)0) )za(l_g)a_g)d{J > |
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For oo = 1, this reduces to the multiplicative Simpson-like type identity of integer order

[oow (532wl ([ ”owy))dy)"l_g

) (foé ((‘I’ rerlizao) >é€)d8)[w (ﬁl ((\y (ex+(1-¢€)o) )if)djo_" :

(v) Considering u = 1, we obtain the multiplicative fractional equality of trapezoid type

_ 207114y
(o-1)%

[ ()% (0) ] [Ii (k) - o I‘j\I/(o)]

o=k

= (foé ((‘I’* (ex+(1=-¢)o) )1—2agfx)ds]“2K [ﬁl ((\y* (e + (1 — £) 0) )2“‘(1—5)“_1)d€]2 |

For oo = 1, this reduces to the multiplicative trapezoid-type identity of integer order

[vw e ( f G(\If(y»dy)”

1

= (foz ((‘I’ (ex + (1 —¢)0) );_g)de]v—x (ﬁl ((\y (exc+(1— ) o) );_S)dé.]g_,{
= (f: ((\If (exc+ (1 - £)0) );E)dg)a_,c

(vi) Considering i = %, we obtain the multiplicative fractional equality of Milne type

_ 207114y
(o-1)

[(\IJ(K))Z(\IJ(K er (’))_1(\11(0))2]é [Ii () - %If‘lf(o)]

= (jj ((\If (ex+(1-¢) g))é—zﬂga)de]”z” (ﬁl ((‘If (ex+(1—e)0) )2a(1_€)“_§)dg]ﬂzx |

For a =1, this reduces to the multiplicative Milne-type identity of integer order
-1 % o qu
[(\P(w)z(W(K =) (\If(o))z] ([ won)
1 2_\de oK 1 1_g\de
:(fo ((\I’*(8K+(1—s)o))3 ) ) (jz ((\I/*(s1<+(1—£)o))3 ) J

Since the computation of the following two definite integrals is essential for proving subsequent theo-
rems, we now state them as two lemmas.

0—K

Lemma 3.4. Let a,s € (0,1] and y € {A, u} with 0 < y < 400 . Following this, the result presented below holds

1 Ki(asy), v>1,
f & |)/ - 2‘*6‘*| de = (15)
0 K (a,s,7), 0<y<l,
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where

1 V4 1
Kl(a’s'y):?.?l(s+1_a+s+l)'

and

ats+l

Ka@sp =L (oL ) L 1)
T 2 \s+1 a+s+1/) 2+1\s+1 a+s+1/

Proof. (i) We observe that for y > 1, the inequality y — 2*¢* > 0 holds for all ¢ € [0, 3], from which it follows
that

1
2 1 04 1
.S _20(,01 g ( — _)_ 1
fo 6|)/ é|dé 2+1\s+1 a+s+1 (16)

(ii) For 0 < y <1, we define C(‘w) = %y%. Then, it follows that yy — 2%¢% > 0 on [0, ((a,)) and y — 2%¢* < 0 on
[C(ay), 3)- Consequently, we have that

1 1

2 C(a'/}’) 2
f & |)/ - 2“€“| de = f e (y—2%%)de + f ¥ (2%% —y)de
0 0

C(an)

ats+l

_)/“(1_ 1 )_1(V_ 1 ) (17)
T2 \s+1 a+s+1) 2v1\s+1 a+s+1/"

This concludes the proof of Lemma

Lemma 3.5. Provided that the hypotheses of Lemma 3.4 are fulfilled, the result presented below holds

1 Ks(a,s,7), y>1,
f (1-¢)y (y - 2“£“| de = (18)
0 Ky(a,s,7), 0<y<1,

where

1
K3(0(,S,)/): Szl(l—ﬁ)—zaB% (0(+1,S+1),

and

1+

y 1 i s+1
I<4(ac,s,;/):m ot —2(1—57/}-) +20([B%(a+1,s+1)—28%y% (a+1,s+1)].

Proof. Following the proof method of Lemma we deduce the required result.

To facilitate subsequent results, we define the following expression

A\Ij (0(, A/ H;x, O)

_ 20711+
G—10T

=(vw) (v( ‘7))1_/\;# W (@) [ TLW (9 129 (0)]

For the case A = u, we obtain that

297 I1(a+1)
(0—K)&

K+0

Ay (a, 4;%,0) = [‘I/ (K)‘I’(U)]% [‘I’( )]PH [J",%‘I’ () - %Ii‘\y (0)]

Based on Lemma together with the multiplicative s-convexity of W*, we obtain the subsequent
theorem.
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Theorem 3.6. Suppose WV : [x,0] — R* is both multiplicatively differentiable on (x, o) and *increasing on [k, o).
And let the function V* be multiplicatively s-convex on [x, o] with some s € (0,1]. Then, for o € (0,1] and
A, u € [0, +00), the multiplicative fractional integral inequalities presented below are satisfied.

(i) If u > 1,A > 1, then we have that

My (@, i, o) * <[ (K)]%[Kl(a,s,y)+K3(a,s,/\)] [w* (G)]%[K3(a,s,y)+K1(a,s,/\)] ]
(i) If © > 1,0 < A < 1, then we have that

o (@, A, 55, 0) * < (¥ (K)]%[Kl(a,s,y)+K4(a,s,/\)] [w* (G)]%[K3(a,s,y)+K2(a,s,/\)] )
(i) If 0 < u < 1,A > 1, then we have that

My (@, i, o) * < (¥ (K)]%[Kz(a,s,y)ﬂg(a,s,/\)] [w* (O_)]%[K4(a,s,y)+K1(a,s,/\)] )
(iv) If 0 < up < 1,0 < A <1, then we have that

A\I, (a, /\, 5, a) * < [‘I]* (K)]%[Kz(a,s,y)ﬂg(a,s,/\)] [\I’* (O')] =k [K4(a,s,y)+K2(a,s,/\)] )

Here, Ky (a,s,-) and Ky (v, s, ) are given in Lemma 3.4} while K3 (v, s, -) and Ky (v, s, ) are given in Lemma
Proof. By applying the multiplicative integral definition (4) to the identity in Lemma we derive that

a-—K *

) (ﬁé ([\y*(sK +(1-¢) U)]P‘_zas“)dg] 3
§ (f; ([\P*(SK +(1-¢) o)]zn(l“f)“—A)deJ
exp {GZ—K foé (1= 296" InW*(exc + (1 - ) G)dg}

- 1 . (19)
Xexp {0 ; K ﬁ (za (1-¢)" - A) ln\I/*(gK +(1-¢) O)de}

2

Ay (a, A, 4; x,0) omx

2

*

Utilizing Prop. and Def. we conclude that

‘A\y (a, A, w;x,0) ’

exp {% foz (u—2%") ln‘I’*<£1< +(1-¢) a)de}
o-x [* )
exp {T ﬁ (2"‘ (1-¢)" - /\) ln‘I/*(ek +(1-¢) a)ds}

X exp{‘o ; K ﬁl (2“ (1-e)* - /\) ln‘lf*(ek +(1-¢) o)de

2

*

<

X

1
Eh f (u—2%") ln‘lf*(ek +(1-¢) o)de
2 Jo

|

O‘_
2

K fz |y - 2“8“||1n‘I’*<£1< +(1-¢) a)|de
<exp 0 (20)
LO—K

fz (/\ - 2“5”“111‘11*((1 —&)K+ eo)|d£
0
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According to Prop. i.e., the fact that W is “increasing ensures W* > 1, and equivalently, In\?* > 0.
Therefore, we obtain the following result

1
. G;Kfz |‘u—2ae“(ln\ll*(e1<+(1—E)o)de
|A\y (a, A u;x,0)| <exp 5 _(;{ ! (21)
+ 5 j; |/\—2”’€“|1n‘1/*((1—€)K+€a)d€

The multiplicative s-convexity of W* on [, o] implies that

In \I”‘(EK +(1-¢) 0) <EMP (k) +(1-¢e)°’In¥* (o), (22)
and

In ‘I”‘( 1-e)x+ ea) <(A-efInW (k) + & InW (o). (23)

The combination of the inequalities and (23) with the inequality (2I) produces the subsequent result

*

|A\y (A, 5%, 0)
1
O;Kf |t = 2%e%|[¢ In W (i) + (1 - £)° In " (o) |de
<exp oA
+G_Kf ‘A—Zae‘x‘[(l—e)sln‘I’*(K)+€sln‘y*(‘7)]d€
2 o
0-K (fz gS)lu_Z“e“|d€+fz (1-¢) |A_2a€a|de]1n\y* ()
= exp 2 ‘ % ' %
+U;K(f (1—6)S|H—2“e“|d€+f 55|/\_2a5a|d€]ln\y*(a)
0 0

0—-K %s a o : s aa
. > [fos|y—28|de+f0(l—e) (A—Ze(de]
v )

o

;K [fz (1-¢) (y - 2"€“|de + fz €S|/\ - 2“8“|d£]
x [¥ (0] 0 0 . (24)

By employing Lemma 3.4 and Lemma [3.5in the inequality (24), we establish the required result, thereby
concluding the proof of Theorem

Corollary 3.7. In Theorem by taking A = p, it yields the subsequent result

: [\P*(K)\y*(o)]T[Kl(a’s’”%(“’s’“)], =1,

Ay (a, 15 %,0)| <
SE| Ko (a1 )+Ka(aus,
Remark 3.8. From Corollary 3.7} the following specific cases can be derived.
(i) Considering u = 0, we obtain the multiplicative fractional inequality of midpoint type

20-1p(a41) |

(0—x)&

95K [Ky(at,5,0)+Kg(a,5,0)]
< [ (o w o] I (25)

‘\p (K ; ‘7) [Ii W) - %If\ll(o)]_




C. Yang, T. S. Du / Filomat 40:3 (2026), 817-848 831

where

K> (a,5,0) + Ky (a,5,0) = +2“B% (@a+1,5s+1).

25t (@ +s+1)
Furthermore, if we take s = 1, then we get that

*

< [\y (k) W* (o)]ﬁ.

29711+
(o-x)*

‘\y (K * ") [Iﬁ () - m[ﬁ"l’(o)]
2 2 2

In particular, for a = 1, we arrive at the following inequality

e

It is noteworthy that the second inequality in Theorem is of midpoint type under the classical absolute value,
whereas the inequality is of midpoint type under the multiplicative modulus. However, both inequalities admit
the same upper bound.

(ii) Considering u = %, we obtain the multiplicative fractional inequality of Simpson type

%

< [\1/ (x) W* (0) ]* . (26)

Ko\t = 5 [Ka(es 5 a5 4)]
W) (\p( . )) W(o) [Ii W) - %off\lf(o—)] <[w (0¥ (0] , @7)
2
where
1 1
K> (a,s, 5) + Ky (oz,s, §)
1 1 1V 1w
=—— (1-2.-37 1-2(1-23"% —3 %
T arsen L7202 )+3(s+1)[ ( 2 ) tod ]
+2"‘[B1 (a+1,s+1)-2B 1 (a+1,s+1)].
2 HON
Furthermore, if we take s = 1, then we get that
20y |*

(0-1)%

HW(K) (¥ (5 G))4 \P(“)]; |- 75909 - 570 (0)| <[w (0¥ (0) ]T(*3*+ﬁ‘6)

In particular, for a = 1, the following inequality can be obtained

H\m) (‘P(";“))4\P<o>]é [ (\wu»d“)”l” |

It should be noted that Theorem [2.16|presents a Simpson-type inequality in the setting of the classical absolute value,
while the inequality is formulated in the setting of the multiplicative modulus. However, they share the same
upper bound.

(iii) Considering u = 1, we obtain the multiplicative fractional inequality of Bullen type

5(c—«)

<[V ()W) 7. (28)

227 rs |

(0—x)&

< [\If () ¥ (0) ]“’%K[Kz(a,sr%)+1<4(ars,%)]l 29)

H\y(K) (\p (K ; “))2 \y(a)r [Ii W) - %I‘}\I’(o)]




C. Yang, T. S. Du / Filomat 40:3 (2026), 817-848 832

where

1 1
K5 (O(,S, E) + Ky (CV,S, E)

1 1 1 1 s+l 1 a+1\S+1
= + - W+ ——[1-2(1-27%
25+1[a+s+1 (s+1 a+s+1) ] 2(s+l)[ ( ) ]

+2‘*[B% (a+1,s+1)-2B

( )%H (x+1,s+ 1)].

1
2

Furthermore, if we take s = 1, then we get that

[W(K) (\If (K ; o ))2 \I/(a)] ' [ff; W) e If\lf(o)]_z = | [W" (0¥ (0) ]T(*lz*l *xtm)
In particular, for a = 1, we obtain that
[w o) (w(3)) w (o)]4 ( [ <u>>“”)w <[w v e]". (30)

It is worth mentioning that the second inequality in Theorem is of Bullen type under the classical absolute value,
whereas the inequality is of Bullen type under the multiplicative modulus. However, both inequalities share the
same upper bound.

(iv) Considering y = %, we obtain the multiplicative fractional inequality of Simpson-like type

K+o0 3 ‘za;al—rx(ﬁyn ' 5 [Ka(as,3)+Ka(as,3)]
[\y (1) \y( - )\y (0)] [Ii W) - %If\ll(a)] <[¥ 0¥ )] 3D
where
2 2
K> (a,s, 5) + Ky (a,s, 5)
N
~25\3 s+1 a+s+1) 21 (a+s+1)
+ 2 1-2 1_1(%)‘1‘ N +2%Bi(a+1,s+1)—-2B (@+1,s+1)
3(s+1) 2\3 2 ‘ 1) , :
Furthermore, if we take s = 1, then we get that
4t o 1 _ 2T * M(L,(g)%_'_#_l)
[\y (1) \y( - )\1/ (o)]‘ [Ii W) - %IQX‘I’(G)] T 2w v @] T T
2
In particular, if we take a = 1, then we have the multiplicative Simpson-like type inequality of integer order
K+0 3 7 =1 o)
[‘I’(K)‘I' (T)‘I’(o)] ( f (\I/(y))dy) <[w 0w @] " . (32)

(v) Considering u = 1, we obtain the multiplicative fractional inequality of trapezoid type

*

< [\y (x) W* (o)

, (33)

t 2 [Ka(as D+Ky(as 1)
‘[‘1’ W] [J Lo W(K) - sge ffj\y(a)] [




C. Yang, T. S. Du / Filomat 40:3 (2026), 817-848 833

where

1 1

K 1) + K4 (a,s,1) = -
2(@s, 1)+ Klays,1) s+1 2t (a+s+1)

—Z“B% (a+1,5+1).

Furthermore, if we take s = 1, then we get that

20-1p(a41) |*

(W (1) W (0]} [Iﬁ () - %If\lf(o)]i o

a(o—x)

< [\1/ (x) V" (o) ] o

In particular, for a = 1, the following inequality can be derived

1 1%

V)W (0) ( f ’ (W () )d”)

It is noteworthy that the inequality in Theorem is of trapezoid type under the classical absolute value, whereas
the inequality is of trapezoid type under the multiplicative modulus. However, both inequalities admit the same
upper bound.

(vi) Considering y = %, we obtain the multiplicative fractional inequality of Milne type

o—k

<[w@w @] . (34)

%

-1 3 720’7?%1) e[k (a,5,2)+K;5 (s, 2
[(\y(x)f(\y(K er g)) (\I’(o))z] [Ii W) - %[f\lf(a)] T <[ v @] [afest)slasd)] - o5
2
where
4 4 4 1 .
Kafars 5) + Kafas5) - 3641 Farsen 2 op@rlstD.
Furthermore , if we take s = 1, then we get that
2( K+ 0\ 2 ~Eoe * (3~ )
[(W(K)) (\y( . )) (W) ] [Ii W) - %IS\P(O)] <[¥ 0¥ ()] .
In particular, for a = 1, the subsequent inequality can be deduced
2 K+0 -1 2 % 7 d ﬁ ' S(ZK)
[(w 0P (v(532)) @ o) ] ( [ ww ) <[vww ] . (36)

It is noteworthy that the second inequality in Theorem[2.19)is of Milne type under the classical absolute value, whereas
the inequality is of Milne type under the multiplicative modulus. However, both inequalities admit the same
upper bound.

Theorem 3.9. Consider \V : [x, 0] — R* satisfying *increasing on [x, o] and multiplicatively differentiable on (x, o),
and assume that \V* possesses multiplicative convexity on [k, c]. Then, for a € (0,1] and the parameters A, u € [0, 1],
the subsequent multiplicative midpoint-type inequality holds:

_ 20 |*

(o—K)&

<O1(x,0;A, 1) [\I/ (x) ]%Al(a;/w) [\y (G)]%Az(am,)

7

‘\y(" ; U)[J‘fﬂ\y(x) e TOW (o)]

where

Atu

O1(x,0;A, 1) = (\I/ (%) )_% (‘I’(K A 0))T (\I’ (0) )_%,

2
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04 a+2 a+2 [J + 3/\ (04 a+l l
A M = — a - a —_ a —_—
@A) 4(a+2)(“ M) 2@+
and
04 a+2 a+2 /\+3‘U (04 a+l 1
Ba(@hw) = gy (W5 ) - e

Proof. Upon multiplying the inequality (24) through by

(wew) ™ (v (< U)) (v@) "

withs =1and A, u € [0, 1], we can derive that

20l |*

(0-x)*

“P(K er G)[J@W(K) - %If\lf(a)]

(37)
1 K+ o\ 2 . %[Kz(a,l,y)+K4(a,1,A)] . %[Kz(a,1,)\)+1<4(a,1,y)]
<(w) (\p( : )) (@) [ ®)] [ (0)] .
Based on Lemma 3.4 and Lemma 3.5], we can readily obtain that
I 3
Klly=7 (2 av2) 2\2 "avz) Ve )
and
3 a a+l 1 e 1 1
KLy =—gr+ 3y * 9" T 3G+ d@sz VEWH 39)

By substituting the equalities and into the inequality (37), we can obtain the expected result. Thus
the proof is concluded.

Corollary 3.10. In Theorem by setting a = 1, it leads to the subsequent midpoint-type inequality of integer
order:

‘w(“g")( [ <w<y>>d7’)K1”

where

*

] 25 Ao (L;A,1) (40)

<O (x,0;A, 1) [‘I’* (%) ]%Al(hw)[\l’* (o)

1 p+31 1 1
Al(l;/\/}l):E<H3—/\3)—T+§A2+

Z/

and
1 A+3u 1 1
Az(l,’/\,[,l): E(/\:s_‘bla)_T + §y2+ ZI

Remark 3.11. We note that, if ©1(x,0;1,1) < 1, the inequality improves upon the inequality 26) with a
smaller right-hand side value. Now, we present an example to illustrate this fact.

Example 3.12. From the inequality (0), if A = 1 and u = 1, it follows that

‘1’("30)([:(\1'@))”)3”*

< 01 (1,0;1, 1) [¥" (1) ¥ (o) ]* (41)
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where

0, (x,0:1,1) = [\P(K)W(a)]_%\P(K ; ").

Consider the function W(y) = exp {)/3 } fory > 0,and let [«, o] = [¢, e+1] with ¢ > 0. Then, its multiplicatively

differentiable function W*(y) = exp {37/2} is multiplicatively convex on [¢,& + 1]. The requirements of
Corollary are fully met, and we derive that

O (c,e+1;1,1) = [\I’(e)\y(£+l)]_%\y(e+ %)zexp{—%e— g}

Obviously, for all € > 0, the inequality ©; (¢, ¢ +1;1,1) < 1 holds, which verifies the conclusion in Remark

B.11l
Theorem 3.13. Provided that the hypotheses of Theorem 3.9 hold, the subsequent trapezoid-type inequality holds:

20T |*
(o-1)%

Ap(aih )

‘ W (x) W (0) [J‘%\I’(K)-%MITP(O)} < 0, (1,054, 1) [P (K)]%A )[\p (o )] ,

where

u

0 (.00, 1) = (W (9) * (w(“5 O'))AZ# (v©),

and the expressions Ay (a; A, i) and Ay (a; A, ) are defined in Theorem respectively.
Proof. Upon multiplying the inequality (24) through by
1-p

o259

withs = 1and A, p € [0, 1], and applying the equalities presented in (38) and (39) to derive that

g (K) v ((7) I}I@ ' (K) . %ff\lf (G)] [y

‘ 20 Ipgany |*

()™ (v(522) 7 (i) F o] T
< [w @] [rvssgern] -

which conclude the proof of Theorem

Corollary 3.14. In Theorem by setting a = 1, it leads to the subsequent integer-order inequality of trapezoid
type:

My)

R 3)

VTOTe | [ o)) ull

where A1 (1; A, ) and Ay (1; A, ) are defined in Corollary (3.7}

<0y (x,0;A, /,t)[\I/*( )]

Remark 3.15. Under the conditions of Corollary we find that the right term of the inequality is better than
the inequality under certain conditions. Now, we present an example to illustrate this fact.
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Example 3.16. Consider the function W(y) = 3" defined on [, 0], and [x,0] = [, ¢ + 1] with ¢ > 0. Its

multiplicatively differentiable function W*(y) = 3% is multiplicatively convex on [¢, ¢ + 1]. This satisfies all
requirements of Corollary from which we obtain that

Ox(e, e+ 1A, u) [\Ij* (€) ]%Al(l;)\,u) [‘IJ* (e +1) ]%AZ(L/\,#)

2 13— +6u2-9u+6 BB -A+ep?-su+6  A3—y3 7A+39
2, (- 3 HHOUT 96 o | AT A 46u” —Bu Mop® 2 TA% 15
— 3[)\ +(lu 1) :|€ + 2 e+ 2 et 6 T 32 16

Let

M i) = [12 4 (u=17] & + e

M- —-A+6p>—8u+6  A—p* . 7A+39u 15
2 7 R T

+

where A,y € [0,1] and some fixed ¢ > 0. For some fixed ¢ > 0, we find that M (A, i; €) is minimized when

23 + \/456 + (e + %) (Be2+3e+1)

A=hoe) = 3e2+3¢+1 ’

and

2(e+1)" = (460 +1265 + 126 + 166 + 2262 + 12 4+ 2

16 16
H=po(e) = 3e2 +3e+1

After calculations, the right term of the inequality is 33(27+3e43e41)
Let

G(e) = (2£3+352+35+1),

N =

and
H(e) =M (Ao (e),po(e);€) —G(e), e 0.
The derivative function of H (¢) is obtained as

A3 — 3 — Ao +6u2 —8ug +3
5 :

H' () = 3(A2 + 3 — 2u0) € + (A3 — 13 + 613 — 9o + 3) & +

For € > 0, then H' (¢) < 0, which ensures that H (¢) is monotonically decreasing on [0, +o0). Also, we have
that

3-77

HO) = —5;

<0.

It can be readily concluded that H (¢) < 0 for all ¢ > 0. Consequently, the inequality is more precise
than the inequality under the conditions A = A (¢) and u = g (¢).

Given the s-convexity of (InW*)? for g > 1, where p and g adheres to the conjugate condition p + g = pq
with p > 1, the subsequent theorem is established.

Theorem 3.17. Suppose the function WV : [k, 0] — R* is multiplicatively differentiable on (x, ) and *increasing on
[, 0], and assume that (In \W*)" exhibits s-convexity for some s € (0,1] on the closed interval [, o], where g > 1 and
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p > 1 satisfies p + q = pq. Then, for « € (0,1] and A, p € [0, +00), the subsequent multiplicative fractional integral
inequality holds:

TG paspg)

[v(@)] ,

A\I,(a,/\,”;xal [\I/( )]"KQ(/UJasP‘f

where

G pa,sp,q) = (W) l(f |u =2 “|F’de] + (2 - V[f A -2 ”‘lpdsJ

7

and

1 ) ! '
Ca(A, u,a,s; P/Q) (W) lz“l q [f |H o alpdg] _,_[j(; I/\_2a€a|rid€)

Proof. The inequality (21)) in the proof of Theorem 3.6, combined with the Hélder s integral inequality, leads
to the subsequent result

Ny (a, A, 15 %,

1
o—x 2 alP
2 (fo =zt

1

ds]; [ fo i [nw(ex+ 1 -e)o)] de);

<exp ) i ) ) (44)
0~ K 2 aqa . ’ : * . AN LD '
+ 7 [fo A —2% |’”dé] [](; [ln\I/((l—&)K+w)] dé]
By leveraging the s-convexity of (InW*)? on the interval [«, ], we infer that
fz [ln \IJ*(SK +(1—-¢) a)]q de
0
¢ (2
S(In‘l’*(K)) f esde+ InW (o f (1-¢)d
0
= ;(ln\lf (K)) ! (1 - )(ln‘I/ (o))
(s+1)2s+1 s+1 2s+1
1 q 1 q
) v ] (2= 1w o) (45)
“Ne+p2] ™ 5+ 1)+ ‘
Similarly, we have the following result
5 q o5+l _ 1 \7 ! 1 i !
f(; [h’l‘lfi( (1 - E)K + EG)] de < (W) In W (K)} + (W) In\W* (U)} . (46)

Applying the inequalities and to the inequality {#4), and noticing the fact that " + 6" < (Y + O)°
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for i > 0,6 = 0 with T > 1, it yields that

Ay (a, A, y;
o—% o 1\, 2 i
(f |H 2% | d&) (W) InW (K)+(W InW (U)
<exp : X . .
0—-K z 25— 1 \¢ 1 a
— 297 d — | InW¥* ——| InW¥*
+— (f(; A & e] ((s+1)25+1) n (K)+((S+1)2s+1) n (a)}
1
1 » 1
2 1 q
_oa alf 5.
sl [zt a) ((HW) |
5 . ) In " (x)
( f = 2 dg]p (—( Zi)‘zil)q
:exp 1 (47)
v 7
f =22 de| [— '
o—xK (s +1)2s+1
t— 1 . |In¥ (o)
f|# el de| (2oL
(s+1)2s+1

This completes the proof of Theorem

Corollary 3.18. In Theorem [3.17} by choosing A = , we obtain the subsequent result:

Aw (a, 1%, a)| [‘I’ ()W (0 )]MC(‘“S‘WD

7

where

Ci(p a,sp,9) = (ﬁ)q [(2s+1 _1)}7 +1] [j: “u_zagar’ de] .

Especially, for u = 0, we have the subsequent midpoint-type fractional inequality:

20=1p(a1) |*
(o—K)&

< [ (o w (o] T [t

‘\P(K;G)[*I%EU‘I/(K)'K;J?‘P( |

Exploiting the s-convexity of (In W*)7 with g > 1, the subsequent theorem can be established.

Theorem 3.19. Consider the multiplicatively differentiable function \V : [k, 0] — R* that is *increasing on [x, 0],
and suppose that (In\P*)7 possesses s-convexity on [k, o] with some s € (0,1], where g > 1. Then, for a € (0, 1] and
A, 1 € [0, +09), the following inequalities hold for multiplicative RL-fractional integrals.

(i) If u > 1,A > 1, then we have that

l

%“[(m(ar#)) 7 <K1 (as #))

]

i

1

(171 (o, /\)) ) <K3(a,s,)u))%}

1

( 1(a,/\)>1_ ! (K1 (a,s,/\)) i ]

&\H

Ay (o, A, 4%, 0) ’* < [‘If” (K)]

Q\—‘
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(i) If u > 1,0 < A <1, then we have that

o-x 117% s, i m(a, 1-1 . i
v (e d piw0)| <[wr (0] (o) {sten) oo ress) }

1 1 1

y [\y @ ] T{(m (ﬂw))17 (Ka (alw))% +<’72(0¢,/\))17 (Kz(a,s,A)) ! } |

(i) If 0 < u < 1, A > 1, then we have that

1 1

5 l(’]z(a,y))lg] (Kz (a,s,y)) ! +(r]1 (a,/\))li% (Kg(a,s,)t)) ! }

En {(772 (“4‘))17% (K4 (“'sr#)) ' +<’71 (a,/\))li% (K1 (fos,/\)) } ]

Ay (a, A, 1, %,0) |* < [\I/ (K)]

x [¥" (o) ]
(iv) If 0 < u <1,0 < A <1, then we have that

1

(o))~ (keasn)’ +(qzw))l5(1@(“,5,»)‘1’}

2 (nto)

x[\If*(a)]Lz

Ay (a, A, 1%, 0) |* < [\If (K)]%K

1-1

! (K4 (a,s,p)) ' +<772(0¢,/\))17% (Kz (045,/\)) d ]

Here, for y € {A, u},

1 1
m (@) = E(y_ a+1)'

(@,7) = a Lﬂ_l( B 1 )
(e U A U U &

and Ki(a, s, y) and Ky(a, s, y) are given in Lemma 3.4, while K3(a, s, y) and Ky(a, s, ) are given in Lemma 3.5

Proof. The inequality in the proof of Theorem combined with the power-mean integral inequality,
leads to the subsequent result

A (o, A, y; x,0) ’

) i %
= Uo = zae“lde] UO = 2| [inw(ex+ (1 - ) o) de]

<exp . N : (48)
+ 2 ; K (j; (A - 2“6“((:15] [jo‘z )A - 2“6"‘) [ln\I’*( 1-&)x+ EG)]q de)
By leveraging the s-convexity of (InW*)? on the interval [«, 0], we deduce that
: q
= 2% [In W~ 1- d
j; |y I3 )[n (€K+( s)a)] I3
1 1
< (ln‘If* (%) )qf es)‘u - 2“£“|de + (ln‘lf* (0) )qf 1-e) (y - 2"‘6”‘|d€
0 0
. 1 q . 1 q
= [(fz gs)‘u - 2"‘5"‘|ds] InW* ()| + [(fz (1-¢)y |y - 2“€“|de] InW* (0)| . (49)
0 0
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Similarly, we have that

% a o * S Y KN
fo |/\—25 |[ln\I’((1 e)1<+w)] de

M

1

1 q
3 q
f (1-¢)y |/\ - 2“€“|de) InW* (k)| +
0

<

k

840

(50)

1 1 1
fz 65))\ - 2“8“)ds]] In W~ (0)
0

Applying the inequalities (#9) and (50) to the inequality {8), and noticing the fact that ) + 6" < (¢ + 0)"

for ¢ > 0,6 > 0 with T > 1, we derive that

A (o, A, y; x,0) ’

%
o- K(f |}l o a|d€]
l % 1
(ln\I’*(K))f |y 2% “|de (ln‘I’*(a)) f (1—8)5|y—2"‘€"‘|de
0 0
<exp . 1-1
o—-x| 2 !
[f I/\—Z"E“Ide)
0
1 1
i 7 1 q
xl(ln\l’*(x))(f (l—g)s|)\—2“s“|de] +(1n‘1’*(o))(f esm—zagﬂde”
0 0
(A i
(f |y 2% "‘(de] (f £S|y—2“€“|d£)
o- . 0
— ln‘I’ (1< -1 % 1
(f A —2%% de (f (1—€)s|/\—2“5"‘|d£]
=exp e 0 . (51)
g 1 q
[f |y 2% “(de] ( (1—€)S|y—2“€“)de]
+ 228 ¢
IS i
(f A —=2% “Ide) (f SSIA—Z“S‘*lde]
0
Also, we have that
1 1
! E(y_oc+1)' y>1
I b-zerfae = 2)
0 a a1 1 1
a+1yl_§(y_a+1)' 0=y<l yeibuh

Applying Lemma 3.4, Lemma 3.5]and the equality

to the inequality (51) produces the required conclu-

sion, thereby concluding the proof of Theorem .19
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Corollary 3.20. In Theorem by choosing A = u, we have the subsequent result

[W*(K)W*(U)]T('ll(“#)) (Kl(a,S,y)> +(K3(0‘r5'!1)) }, u>1,

Ay (a, 4;%,0) ) <

1

[\Ij*(K)\y,e (G)]T(nz(w)) (Kz(a,s,y)) +(1<4(a,s,,1)) }/ O<u<l.

S

Furthermore, we have the following results:
(i) If u = 0, then we have the subsequent midpoint-type fractional inequality

20-1r(a41) |*

(o—K)%

(5 1’%[ L) (2418, (@ 1,541) %]
< [\Ij,i (K) W (0)] 1 (uz+l) ((msn)z ) ( % ) .

\y(" Jz’ G)[J@\II(K) : mI‘j‘I’(o)]_
2 2

(ii) If u = 1, then we have the subsequent trapezoid-type fractional inequality

297 e |*

W () W (0) [*ID%\I/ (x) - %fi‘\l’ (O)] =)

1 1
1 q 7
_— ¢ \1-7 s+1_ q
ok ( _a (1 __1 25111 et
3 (az+1 ) [( 25 (s+1 s+l ) +( (s+1)2° 2 B% (a+1’5+1))

<[w (1) ¥ (0) ]

4. Numerical examples

Theoretical conclusions are computationally verified in this section through 2-D and 3-D plots of the
inequalities. The resulting plots demonstrate numerical tendencies, reinforcing both correctness and sig-
nificance.

Example 4.1. Given the function ¥ (y) = exp {7/5”} defined for y € [0, co) with fixed s € (0, 1], we can infer
that the function W* (y) = exp {(s + 1) °} is multiplicatively s-convex on [0, o) with s € (0,1]. By selecting
k=0,0 =1and a € (0, 1], the assumptions of Theoremare fulfilled.

(i) For A = 4 and u = 2, it follows that

1 04 1 -1
exp{’l—g—m-ﬁ—a-?f* B%(ﬂ,S‘f‘Z)‘}
1 s+1 1 1
SeXp{zsj—m'Zsj‘Fl—(S‘Fl)‘za B%(6¥+1,S+1)}. (53)
(if) For A = 1 and p = 3, it follows that
1 04 1 -1
oo {3~ 3w~ arer e e 2 B s )
3 1 s+1 1 ol
Sexp{i—zsj—m-ﬁ—(s+1)‘2 B%((X+1,S+1)}. (54)
(iii) For A =4 and u = %, it follows that
1 5 1 a 1 1
opl[i-1 5~ rert mm e 2 B s

1 /9 s+1 1 1 1\s+1
(2o S N\ o2 (poot
2s+2(2 a+s+1)+4[ 5 ( ) ]

(55)
+(s+1)-2071 [B% (@+1,5+1)=2B s (@+1,5+ 1)]

<exp
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(iv) For A = % and p = %, it follows that
1 1 a 1 1
exp{‘a Yo Tavsel o V2B ‘“'”2)‘}

ats+l
1 1 2\ 2 1 1 1 s+
m'ﬁ[za'%) +§(S+1)_§a}+5[1_§(2_3a) ]

+(s+1)-2¢71 [B% (@+1,5+1)-2B, 1 (a+1s+ 1)]

o

<exp (56)

The comparative analysis in Fig. |1 shows that the left-sided values are clearly smaller than the right-sided
values, thereby providing numerical support for Theorem [3.6]

w

25

L
N

~

Function value ¥(a, s)
~
Function value ¥(a, 5)

: 4
Variable s 0 02 0 Variable s 0

0 Variable a 01 Variable a

04
02 03

@A=4pu=2 b)yA=1u=3

00 the left term - [ the left term
[ |the right term

125

Function value ¥(a, s)
&

1.05

Function value ¥(a, 5)

04

Variable a Variable s 02 04

Variable s 0
(U 0 Variable o

©A=4du=1 (A=3u=1

Figure 1: Numerical comparison of the inequalities (53)-(56) in Theorem[.6|versus Example[d.1} illustrated
via 3-D plot for a,s € (0, 1].

Example 4.2. For y € RR, the hyperbolic functions are defined as sinhy = $(¢” —¢™”) and coshy = $(e” +¢7).
For W (y) = exp {sinh y} defined on [0, o), it can be deduced that its multiplicatively differentiable function
W*(y) = exp{coshy}. Notably, the function (InW*(y))" = (coshy)’ possesses s-convexity on [0, ) with



q>1. By takingx =0,0 = 1,p = 3, = 3,s = 1 and a € (0,1], all hypotheses specified in Theorem are
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fulfilled. Consequently, this simplifies the inequality stated in Theorem 3.17

|/hy(a, A, 1;0,1) )
A+ 1 2
= exp (1 - s sinh = + £ sinh1l—a-2%7! f 8“_1[sinh£ +sinh (1 — ¢€) ]de
2 2 2 0
1C1(Apa1;3,3) 3Co(Aua,1;3,3)
S[\P*(O)]Z tpa [\y*(l)]z 2V A, L5

= ex

From the numerical comparison in Tabs. |14 and Figs.
than right-side values, confirming Theorem

Table 1: Numerical comparison of the inequality

1 3 1 R
1 : u—2%" %de +V3 i A =282 de
4
0 0
[f (A—Z“e“(zds] + \3/3([ |y—2"‘s"‘ Zde]
0 0

it is clear that left-side values are smaller
numerically.

+

cosh1
4

in Theorem[3.17|with A = 3 and p =2

2

a  theleftterm the right term T S
01  1.2028 4.6571 i P

02  1.1946 5.0254 s T

0.3 1.1875 5.3609

0.4 1.1817 5.6660 !

0.5 1.1768 5.9438 )

06 11727 6.1972 i

07 11692 6.4289 |

08  1.1662 6.6415

0.9 1.1636 6.8369 =
1.0 11613 7.0172 T vabiea

Figure 2: Numerical comparison of the inequality (57)

in Theorem [3.17]versus Example 4.2} illustrated via 2-
D plot across @ € (0,1] with A =3 and u =2



Table 2: Numerical comparison of the inequality

C. Yang, T. S. Du / Filomat 40:3 (2026), 817-848

(57) in Theorem[3.17|with A = 2 and pu = 4

a

the left term

the right term

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

2.9884
3.0090
3.0269
3.0418
3.0544
3.0651
3.0743
3.0823
3.0893
3.0953

5.5774
5.6558
5.7743
5.9168
6.0696
6.2239
6.3748
6.5194
6.6567
6.7862

Table 3: Numerical comparison of the inequality

in Theoremwith A=2andp =3

a

the left term

the right term

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.4336
1.4238
1.4154
1.4084
1.4026
1.3977
1.3935
1.3899
1.3868
1.3841

1.8987
1.9277
1.9777
2.0378
2.1010
2.1634
2.2233
2.2799
2.3330
2.3825

844

Function value

I I I
0.2 0.4 0.6
Variable o

Figure 3: Numerical comparison of the inequality (57)
in Theorem [3.17]versus Example illustrated via 2-

D plot across a € (0,1] with A = 2

and y =4

Function value
@

I I I
0.2 0.4 0.6
Variable o

Figure 4: Numerical comparison of the inequality (57)
in Theorem [3.17]versus Example[#.2] illustrated via 2-
D plot across a € (0,1] with A =2 and p = 3
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Table 4: Numerical comparison of the inequality

(57) in Theorem withA =1and p =1 17
a theleftterm the right term "l
0.1 1.0815 1.6299
0.2 1.0741 1.5294 Pl T
0.3 1.0678 1.4605 e
0.4 1.0626 1.4139 Bl
0.5 1.0582 1.3823
0.6 1.0545 1.3610
0.7 1.0513 1.3468 A |
0.8 1.0486 1.3376 I S S S
0.9 1.0462 1.3318 e ‘
1.0 1.0442 1.3284 Vasiabe o

Figure 5: Numerical comparison of the inequality
in Theorem [3.17]versus Example illustrated via 2-

D plot across a € (0,1] with A = 7 and u = %

q+3

Example 4.3. Consider the function ¥ () = exp {q%yT} defined for y € [0, o) with ¢ > 1. We deduce

its multiplicatively differentiable function W (y) = exp {y% } Additionally, (InW* (y))" = y® is shown to be
s-convex for y > 0 and g > 1. As a result, all requirements of Theorem [3.19 are met. Fixing ¥ = 0,0 = 1 and
s = % across a € (0,1], we examine four parameter configurations: (i) A = %, u = % ; (i) A =1, u = 2; (iii)
A= g, u = % ;(iVIA=pu= % As demonstrated in Fig. @ the left-hand values are always smaller than the
right-hand values, thereby offering numerical support for Theorem 3.19}

5. Conclusions

This study establishes multi-parameter inequalities for multiplicatively s-convex functions using mul-
tiplicative RL-fractional integrals. By deriving a two-parameter identity for multiplicatively differentiable
functions, we obtain multiplicative integral inequalities. Under certain conditions, we can further optimize
the upper bounds for the midpoint and trapezoidal inequalities developed in this paper. Our work provides
a unified framework for multiple inequality types—including midpoint-, Simpson-, Bullen-, trapezoid- and
Milne-type inequalities—advancing the theory of multiplicative calculus, particularly multiplicative frac-
tional integrals.

Beyond the multiplicative RL-fractional integrals, future research may focus on multi-parameter in-
equalities for other types of multiplicative fractional integrals, as exemplified by multiplicative Katugam-
pola fractional integrals [3], multiplicative i-Hilfer fractional integrals [48], and multiplicative tempered
fractional integrals [39]. These directions could advance multiplicative fractional calculus theory.
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15 the left term 18 the left term
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Figure 6: Numerical comparison of the Example illustrated via 3-D plot for a € (0,1] and g € [2,10]
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