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Abstract. Within the multiplicative Riemann–Liouville (RL) fractional framework, we develop multi-
parameter inequalities for multiplicatively differentiable s-convex positive functions. Using a multi-
parameter multiplicative fractional integral identity, we establish several inequalities under the conditions:
(i)Ψ∗ exhibits multiplicative s-convexity, and (ii) (lnΨ∗)q maintains s-convexity (q > 1). Numerical examples
and graphical visualizations verify the proposed inequalities.

1. Motivation and background

Breakthroughs in mathematical analysis often give rise to revolutionary theoretical frameworks. The
multiplicative calculus, also recognized as non-Newtonian calculus, proposed by Grossman and Katz
in Ref. [18], serves as such a paradigm. By substituting linear operations in classical calculus with
multiplicative ones, this theoretical framework can effectively models nonlinear systems with exponential
and multiplicative characteristics. The core of this framework lies in the definition for the multiplicative
derivative:

Ψ∗(γ) = lim
ρ→0

(
Ψ(γ + ρ)
Ψ(γ)

) 1
ρ

, (1)

where Ψ
(
γ
)
, 0 and Ψ(γ+ρ)

Ψ(γ) > 0 for sufficiently small values of ρ. The derivative exists provided that
this limit converges, and its non-zero value signifies the instantaneous logarithmic growth rate, thereby
encapsulating the intensity of exponential variation. This differs from the classical derivative:

Ψ′(γ) = lim
ρ→0

Ψ(γ + ρ) −Ψ(γ)
ρ

. (2)
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Upon comparing the equations (1) and (2), it becomes evident that the multiplicative derivative replaces
the operations of subtraction and multiplication with division and exponentiation, respectively. The rela-
tionship betweenΨ∗ andΨ′ is represented as:

Ψ∗(γ) = exp
{
(lnΨ)′(γ)

}
. (3)

Bashirov et al. [5], drawing from the multiplicative derivative, formulated the definition of the multiplicative
integral:∫ σ

κ

(
Ψ(γ)

)dγ
= exp

{∫ σ

κ
lnΨ(γ)dγ

}
, (4)

where the function Ψ(γ) > 0 is required. The multiplicative integral represents accumulation through
continuous exponentiation, with dγ acting as a multiplicative infinitesimal, whereas the Riemann integral∫ σ
κ

(
Ψ(γ)

)
dγ computes additive summation.

As a formidable mathematical tool, the multiplicative integral derives the cumulative geometric mean
through the exponential reconstruction of logarithmic integrals, thus rendering it apt for exponential
modeling in contexts such as financial compounding and biological population dynamics. Let us illustrate
its application using a bacterial growth model. Suppose J(ε) > 0 represents the size of the population at
time ε. The population’s evolution can be described by the following dynamical model:

J′(ε) = R(ε)J(ε), (5)

where R(ε) > 0 denotes the relative growth rate of the population, and J′(ε) is the rate of change of the
population over time. This idealized model, though neglecting carrying capacity limitations, serves as a
foundational case for generalized growth models (e.g., Logistic growth).

Through the equation (3), we derive the multiplicative reformulation of the equation (5):

J∗(ε) = exp {R(ε)} , (6)

with a multiplicative integral solution given by

J(ε) = J(ε0)
∫ ε

ε0

(
exp{R(ε)}

)dε
, (7)

where J(ε0) is the initial population size.
This example illustrates the application value of multiplicative calculus in differential equations, with

the equation (6) providing a more direct representation of exponential growth dynamics than the equation
(5).

After analyzing multiplicative operations and functional properties, we find that convexity is essential
for the theory of inequalities. An important result in this field is the following Hermite–Hadamard (HH)
inequality

Ψ
(
κ + σ

2

)
≤

1
σ − κ

∫ σ

κ
Ψ

(
γ
)

dγ ≤
Ψ (κ) +Ψ (σ)

2
, (8)

holds for any convex function Ψ defined on [κ, σ]. The inequality (8) reflects the geometric properties of
convexity and contributes to the advancement of integral inequality theory. In particular, Xi and Qi [52]
generalized the HH-type inequality through the following parameterized identity.

Lemma 1.1. [52] Assume that the functionΨ : [κ, σ]→ R exhibits differentiability on (κ, σ). IfΨ′ ∈ L1 [κ, σ] and
λ, µ ∈ R, then the following identity holds:

λΨ (κ) + µΨ (σ)
2

+
2 − λ − µ

2
Ψ

(
κ + σ

2

)
−

1
σ − κ

∫ σ

κ
Ψ (u) du

=
σ − κ

4

∫ 1

0

[
(1 − λ − ε)Ψ′

(
εκ + (1 − ε)

κ + σ
2

)
+

(
µ − ε

)
Ψ′

(
ε
κ + σ

2
+ (1 − ε) σ

)]
dε.
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Later, Toseef et al. [47] proposed the following four-parameter identity extending the HH-type inequal-
ity:

Lemma 1.2. [47] Consider a differentiable function Ψ : [κ, σ] → R where κ < σ, with Ψ′ ∈ L1[κ, σ]. For any
non-negative parameters γ, φ, z and w, the following identity holds:(

1 + γ − w
)

[Ψ (κ) +Ψ (σ)] +
(
φ − γ + w − z

) [
Ψ

(3κ + σ
4

)
+Ψ

(
κ + 3σ

4

)]
+ 2

(
z − φ

)
Ψ

(
κ + σ

2

)
−

2
σ − κ

∫ σ

κ
Ψ (u)du

= (σ − κ)
∫ 1

0
P
(
γ, φ, z,w, ε

)
[Ψ′ (εσ + (1 − ε)κ) −Ψ′ (εκ + (1 − ε) σ)]dε,

where

P
(
γ, φ, z,w, ε

)
=


ε − γ, ε ∈

[
0, 1

4

)
,

ε − φ, ε ∈
[

1
4 ,

1
2

)
,

ε − z, ε ∈
[

1
2 ,

3
4

)
,

ε − w, ε ∈
[

3
4 , 1

]
.

For example, by choosing γ = φ = z = w = 1
2 , the identity in Lemma 1.2 degenerates into the following

trapezoid form:

Ψ (κ) +Ψ (σ)
2

−
1

σ − κ

∫ σ

κ
Ψ (u)du =

σ − κ
2

∫ 1

0

(
ε −

1
2

)
[Ψ′ (εσ + (1 − ε)κ) −Ψ′ (εκ + (1 − ε) σ)]dε. (9)

And by choosing γ = φ = 0 and z = w = 1, the identity in Lemma 1.2 degenerates into the following
midpoint form:

Ψ
(
κ + σ

2

)
−

1
σ − κ

∫ σ

κ
Ψ (u)du =

σ − κ
2

∫ 1

0
ϕ (ε) [Ψ′ (εσ + (1 − ε)κ) −Ψ′ (εκ + (1 − ε) σ)]dε, (10)

where

ϕ (ε) =

ε, 0 ≤ ε < 1
2 ,

ε − 1, 1
2 ≤ ε ≤ 1.

Currently, the exploration of inequalities has expanded into fractional calculus. To proceed, we recall
the definition of RL-fractional integral operators.

Definition 1.3. [24] Assume thatΨ ∈ L1([κ, σ]). For α > 0, the RL-fractional integrals, expressed as Iακ+Ψ(γ) and
I
α
σ−Ψ(γ), are defined as follows:

I
α
κ+Ψ(γ) =

1
Γ(α)

∫ γ

κ
(γ − ε)α−1Ψ(ε)dε, γ > κ,

and

I
α
σ−Ψ(γ) =

1
Γ(α)

∫ σ

γ
(ε − γ)α−1Ψ(ε)dε, γ < σ.

Here, Γ(·) represents the Euler gamma function, and it is defined through the integral representation:

Γ(α) =
∫
∞

0
εα−1e−εdε, Re(α) > 0,

with Γ(α + 1) = αΓ(α).
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Recent advances in fractional calculus have stimulated growing interest in various integral inequalities
involving fractional integrals, yielding important progress. In the context of RL-fractional integrals, Merad
et al. [31] formulated parameterized symmetric inequalities of Simpson-like type for s-t1s-convex functions,
while Nasri et al. [37] derived Newton-type inequalities for s-convex functions, and Sitthiwirattham et al.
[46] yielded parameterized HH–Mercer type inequalities for convex functions. Besides the RL-fractional
integral operators, Zhao et al. [55] constructed a two-parameter identity via generalized fractional integrals,
which can be reduced to Simpson-, midpoint- and trapezoid-type inequalities. Utilizing the local fractional
integrals, Butt and Khan [11] developed parameterized integral inequalities, while Meftah et al. [34] derived
Newton-type inequalities. Additionally, the parameterized local fractional inequalities were proposed by
Zhang and Sun [57] for generalized h-preinvex functions. Further contributions include Qi and Li [42]
on Katugampola fractional inequalities for s-convex functions, Yuan et al. [54] on parameterized fractal-
fractional integral inequalities for fractal (P,m)-convex functions, Benaissa and Azzouz [10] on HH–Fejér
inequalities for ψ-Hilfer fractional integrals, and Butt et al. [12] on HH–Mercer inequalities involving
Atangana–Baleanu Katugampola fractional integrals, along with related works on parameteized fractional
schemes in Refs. [19, 27, 28, 45, 50]. However, all the aforementioned studies have been conducted within
the framework of fractional analyses, rather than multiplicative integrals.

Building upon the RL-fractional integrals, the multiplicative form was proposed in Ref. [1] as a extension.

Definition 1.4. [1] Let α > 0. For a positive function Ψ on [κ, σ], the left- and right-sided multiplicative RL-
fractional integrals, denoted by κI

α
∗Ψ(γ) and ∗IασΨ(γ), respectively, are defined as follows:

κI
α
∗Ψ(γ) = exp

{
I
α
κ+ lnΨ(γ)

}
= exp

{
1
Γ(α)

∫ γ

κ
(γ − ε)α−1lnΨ(ε)dε

}
, γ > κ,

and

∗I
α
σΨ(γ) = exp

{
I
α
σ− lnΨ(γ)

}
= exp

{
1
Γ(α)

∫ σ

γ
(ε − γ)α−1lnΨ(ε)dε

}
, γ < σ,

where the functionΨ(γ) is positive for every γ ∈ [κ, σ], and Γ (·) denotes the Euler gamma function.

Multiplicative calculus has been extended to inequality analysis involving both integer-order and frac-
tional integrals. In the integer-order field, the midpoint- and trapezoid-type inequalities were explored
by Khan and Budak [22] and Xie et al. [53]. Additionally, Meftah et al. derived Maclaurin-type [32]
and dual Simpson-type [33] inequalities for multiplicatively convex functions, and Boole-type inequalities
were established by Mateen and Zhang [29]. Moreover, Berkane et al. [9] developed Right-Radau-type
inequalities for multiplicatively s-convex functions. In 2024, Frioui et al. [17] proposed a dual-parameter
multiplicative integral identity, from which one-point, two-point, and Newton-Cotes type inequalities can
be derived.

In the realm of fractional calculus, through the application of the multiplicative RL-fractional integrals,
Budak and Özçelik [7] studied HH-type inequalities in 2020. This subsequently motivated research by
Boulares et al. [6] on Bullen-type inequalities, by Peng and Du [40] on Maclaurin-type inequalities, by
Moumen et al. [35] on Simpson-type inequalities, and by Lakhdari et al. [25] on Newton-type inequalities.
Later, Mateen et al. [30] established fractional midpoint-Mercer-, trapezoid-Mercer- and HH–Mercer-type
inequalities. Especially, Almatrafi et al. [4] and Zhu et al. [60] proposed parameterized fractional integral
inequalities for multiplicatively s-convex functions, whereas Du and Long [14] developed a multi-parameter
integral identity that enabled the derivation of three-point Newton-Cotes type inequalities, and Zhou and
Du [59] established multi-parameterized inequalities, generalizing traditional inequalities such as Bullen-
type, Boole-type, and other inequalities. Additionally, significant progress has been achieved in research
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on other multiplicative fractional integral inequalities, such as multiplicative conformable fractional in-
tegrals [8], multiplicative tempered fractional integrals [16], multiplicative (k, s)-fractional integrals [56],
multiplicative fractional integrals with exponential kernels [41], multiplicative Atangana–Baleanu frac-
tional integrals [15], and multiplicative k-Atangana–Baleanu fractional integrals [26]. For readers seeking
deeper insights into other multiplicative fractional operators, we suggest consulting Refs. [21, 23, 44, 49, 58]
and the supplementary references cited therein.

Drawing on prior research findings, this paper aims to explore the parameterized fractional integral
inequalities for multiplicatively once-differentiable s-convex positive functions. The work is structured
as follows: After Sec. 2, a multiplicative RL-fractional identity with two parameters is established for
∗differentiable functions in Sec. 3. Leveraging this identity, the corresponding parameterized multiplicative
fractional inequalities are derived, and it is demonstrated that the proposed inequalities outperform the
midpoint- and trapezoid-type inequalities under certain conditions. Sec. 4 provides numerical validations
of the results with examples. Finally. Sec. 5 summarizes the findings and concludes the paper.

2. Preliminaries

The organization of this section includes two subsections. Subsection 2.1 states fundamental definitions
on convexity and beta functions, whereas Subsection 2.2 concentrates on key properties and theorems
relevant to multiplicative calculus. Henceforth, let I ⊆ R denote a real interval, and let R+ = (0,+∞)
throughout this work.

2.1. Convexities and beta functions
The definitions of s-convexity, multiplicative convexity and multiplicative s-convexity are essential to

our main results. To this end, we envoke them as follows.

Definition 2.1. [20] A function Ψ : I → R+ exhibits s-convexity for some s ∈ (0, 1], if it fulfills the following
inequality

Ψ
(
εγ + (1 − ε)φ

)
≤ εsΨ

(
γ
)
+ (1 − ε)sΨ

(
φ
)

for any γ, φ ∈ I and ε ∈ [0, 1].

Definition 2.2. [36] Consider Ψ : I → R+ satisfying multiplicative convexity (logarithmical convexity) if, for all
γ, φ ∈ I and ε ∈ [0, 1], the following inequality

Ψ
(
εγ + (1 − ε)φ

)
≤

[
Ψ

(
γ
)]ε [Ψ (

φ
)]1−ε

is satisfied.

Definition 2.3. [51] A function Ψ : I → R+ possesses multiplicative s-convexity (logarithmical s-convexity) for
some s ∈ (0, 1], provided that it fulfills the subsequent inequality

Ψ
(
εγ + (1 − ε)φ

)
≤

[
Ψ

(
γ
)]εs [
Ψ

(
φ
)](1−ε)s

for all γ, φ ∈ I along with ε ∈ [0, 1].

For s = 1, the multiplicative s-convexity coincides with the multiplicative convexity in Definition 2.2.
We now revisit the definitions of the beta and incomplete beta functions used in this work.

Definition 2.4. [43] For complex numbers ϖ1, ϖ2 with Re(ϖ1) > 0 and Re(ϖ2) > 0, the beta function B(·, ·) admits
the following representation:

B(ϖ1, ϖ2) =
∫ 1

0
εϖ1−1(1 − ε)ϖ2−1 dε =

Γ(ϖ1)Γ(ϖ2)
Γ(ϖ1 + ϖ2)

,

in which Γ(·) denotes the Euler gamma function.
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Definition 2.5. [24] Let ϖ1, ϖ2 ∈ C satisfy Re(ϖ1) > 0 and Re(ϖ2) > 0. The incomplete beta function takes the
form:

Bγ (ϖ1, ϖ2) =
∫ γ

0
εϖ1−1 (1 − ε)ϖ2−1 dε, 0 ≤ γ < 1.

2.2. Multiplicative calculus and related results

Building upon the investigation conducted in Ref. [5], the authors investigated analytical properties of
∗integrable operators.

Proposition 2.6. [5] Consider the positive and ∗integrable functions Ψ and J defined on [κ, σ]. Then the following
properties hold

(i)
∫ σ

κ
((Ψ(ε))ν)dε =

(∫ σ

κ
(Ψ(ε))dε

)ν
, ν ∈ R,

(ii)
∫ σ

κ
(Ψ(ε)J(ε))dε =

∫ σ

κ
(Ψ(ε))dε

·

∫ σ

κ
(J(ε))dε ,

(iii)
∫ σ

κ

(
Ψ(ε)
J(ε)

)dε

=

∫ σ

κ
(Ψ(ε))dε∫ σ

κ
(J(ε))dε

,

(iv)
∫ σ

κ
(Ψ(ε))dε =

∫ ξ

κ
(Ψ(ε))dε

·

∫ σ

ξ
(Ψ(ε))dε, κ ≤ ξ ≤ σ,

(v)
∫ κ

κ
(Ψ(ε))dε = 1 and

∫ σ

κ
(Ψ(ε))dε =

(∫ κ

σ
(Ψ(ε))dε

)−1

.

The n-th ∗derivative and n-th derivative (n ∈N) have the subsequent relationships.

Proposition 2.7. [5] Consider the functionΨ : I→ R+ with n-th derivativeΨ(n). Then the following relationships
hold

(i)Ψ∗(ε) = exp
{
(ln ◦Ψ)′(ε)

}
= exp

{
Ψ′(ε)
Ψ(ε)

}
,

(ii)Ψ∗∗(ε) = exp {(ln ◦Ψ∗)′(ε)} = exp {(ln ◦Ψ)′′(ε)} ,

(iii)Ψ∗(n)(ε) = exp
{
(ln ◦Ψ)(n)(ε)

}
, n = 1, 2, 3, · · ·.

Proposition 2.8. [58] Suppose that the positive function Ψ is multiplicatively differentiable on the interval I. If Ψ
is increasing on I, then it holds thatΨ∗ ≥ 1.

The partial-integral formula of ∗integrable operators was developed by Ali et al. in Ref. [2].

Theorem 2.9. [2] Consider the multiplicatively differentiable functionΨ : [κ, σ]→ R+, together with differentiable
functions Φ : I→ [κ, σ] and J : [κ, σ]→ R. Under these conditions, we obtain the identity∫ σ

κ

(
Ψ∗

(
Φ

(
γ
))J(γ)Φ′(γ))dγ

=
[Ψ (Φ (σ))]J(σ)

[Ψ (Φ (κ))]J(κ)
·

1∫ σ

κ

(
Ψ

(
Φ

(
γ
))J′(γ))dγ

.
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Definition 2.10. [5] Let the functionΨ ∈ R+. The multiplicative modulus (or the multiplicative absolute value) of
Ψ, denoted by |Ψ|∗, is defined as follows:

|Ψ|∗ =

Ψ, Ψ ≥ 1,
1
Ψ
, 0 < Ψ < 1,

which can alternatively be expressed as |Ψ|∗ = exp {| ln ◦Ψ|}, with | · | representing the standard absolute value.

Proposition 2.11. The following multiplicative triangle inequality is readily verified:

|ΨJ|∗ ≤ |Ψ|∗|J|∗,

which holds for allΨ,J ∈ R+.

Proof. From Def. 2.10, combined with the triangle inequality, the intended conclusion follows.

Proposition 2.12. [5] Assume thatΨ : [κ, σ]→ R+ is multiplicatively differentiable.
(1) IfΨ∗(γ) ≥ 1 for all γ ∈ [κ, σ], thenΨ is increasing on [κ, σ].
(2) IfΨ∗(γ) ≤ 1 for all γ ∈ [κ, σ], thenΨ is decreasing on [κ, σ].

We now introduce the ∗increasing concept and demonstrate one of its significant properties.

Definition 2.13. A function Ψ : [κ, σ] → R+ is called ∗increasing, if the inequality Ψ(γ1)
Ψ(γ2) ≤ 1 holds for any two

points γ1, γ2 ∈ [κ, σ] with γ1 ≤ γ2. The function is termed ∗decreasing provided that the inequality reverses.

Proposition 2.14. For a multiplicatively differentiable function Ψ : [κ, σ]→ R+, we have the following equivalent
assertions:
(i) The functionΨ is ∗increasing on [κ, σ],
(ii) The ∗differentiable satisfiesΨ∗(γ) ≥ 1 for all γ ∈ [κ, σ].

Proof. Combining Prop. 2.8 with part (1) of Prop. 2.12 yields the desired result: (i)⇒ (ii)⇒ (i).

To conclude, we state error estimates for the different types of multiplicative quadrature rules: midpoint,
Simpson, Bullen, trapezoid and Milne types.

Theorem 2.15. [38] Assuming that the multiplicatively differentiable function Ψ : [κ, σ] → R+ is increasing on
[κ, σ] with κ < σ, and Ψ∗ is multiplicatively convex over [κ, σ]. Then, we have the multiplicative midpoint-type
integral inequality:∣∣∣∣∣∣∣Ψ

(
κ + σ

2

) (∫ σ

κ
(Ψ (u))du

) 1
κ−σ

∣∣∣∣∣∣∣ ≤
[
Ψ∗ (κ)

(
Ψ∗

(
κ + σ

2

))4
Ψ∗ (σ)

] σ−κ
24

≤

[
Ψ∗ (κ)Ψ∗ (σ)

] σ−κ
8
.

Theorem 2.16. [13] If the requirements of Theorem 2.15 are fulfilled, then the subsequent multiplicative Simpson-
type inequality holds:∣∣∣∣∣∣∣

[
Ψ (κ)

(
Ψ

(
κ + σ

2

))4
Ψ (σ)

] 1
6
(∫ σ

κ
(Ψ (u))du

) 1
κ−σ

∣∣∣∣∣∣∣ ≤ [Ψ∗ (κ)Ψ∗ (σ)]
5(σ−κ)

72 .

Theorem 2.17. [6] From the hypotheses of Theorem 2.15, it follows that the multiplicative inequalities of Bullen type
hold: ∣∣∣∣∣∣∣

[
Ψ (κ)

(
Ψ

(
κ + σ

2

))2
Ψ (σ)

] 1
4
(∫ σ

κ
(Ψ (u))du

) 1
κ−σ

∣∣∣∣∣∣∣ ≤
[
Ψ∗ (κ)

(
Ψ∗

(
κ + σ

2

))2
Ψ∗ (σ)

] σ−κ
32

≤

[
Ψ∗ (κ)Ψ∗ (σ)

] σ−κ
16
.
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Theorem 2.18. [22] Provided that the hypotheses of Theorem 2.15 are fulfilled, it follows that the subsequent
multiplicative trapezoid-type inequality is satisfied:∣∣∣∣∣∣∣ √Ψ (κ)Ψ (σ)

(∫ σ

κ

(
Ψ (u)

)du
) 1
κ−σ

∣∣∣∣∣∣∣ ≤ [
Ψ∗ (κ)Ψ∗ (σ)

] σ−κ
8
.

Theorem 2.19. [17] Under the conditions specified in Theorem 2.15, the subsequent multiplicative inequality of
Milne type holds:∣∣∣∣∣∣∣

[
(Ψ (κ))2

(
Ψ

(
κ + σ

2

))−1
(Ψ (σ))2

] 1
3
(∫ σ

κ
(Ψ (u))du

) 1
κ−σ

∣∣∣∣∣∣∣ ≤ [Ψ∗ (κ)Ψ∗ (σ)]
σ−κ

8

(
Ψ∗

(
κ + σ

2

)) σ−κ
6

≤

[
Ψ∗ (κ)Ψ∗ (σ)

] 5(σ−κ)
24
.

3. Main results

This section focuses on establishing multi-parameter inequalities concerning multiplicative RL-fractional
integrals. As a foundation, we first demonstrate the subsequent fractional identity.

Lemma 3.1. Consider a function Ψ : [κ, σ]→ R+ with multiplicative differentiability on (κ, σ). Suppose Ψ∗ is the
multiplicatively integrable function on [κ, σ]. Then, for λ, µ ∈ [0,+∞), we establish the following identity concerning
the multiplicative RL-fractional integrals:

[Ψ (κ)]
λ
2

[
Ψ

(
κ + σ

2

)]1− λ+µ2

[Ψ (σ)]
µ
2

[
∗I

α
κ+σ

2
Ψ (κ) · κ+σ

2
I
α
∗Ψ (σ)

]− 2α−1Γ(α+1)
(σ−κ)α

=

∫ 1
2

0

((
Ψ∗ (εκ + (1 − ε) σ)

)µ−2αεα)dε

σ−κ

2
∫ 1

1
2

((
Ψ∗ (εκ + (1 − ε) σ)

)2α(1−ε)α−λ)dε

σ−κ

2

.

Proof. To streamline our presentation, we employ the notations

I1 =

∫ 1
2

0

((
Ψ∗ (εκ + (1 − ε) σ)

)µ−2αεα)dε

σ−κ

2

,

and

I2 =

∫ 1

1
2

((
Ψ∗ (εκ + (1 − ε) σ)

)2α(1−ε)α−λ)dε

σ−κ

2

.

Considering Proposition 2.6, one obtains that

I1 =

∫ 1
2

0

((
Ψ∗ (εκ + (1 − ε) σ)

)µ−2αεα)dε

σ−κ

2

=

∫ 1
2

0

((
Ψ∗ (εκ + (1 − ε) σ)

)(µ−2αεα) σ−κ2
)dε

. (11)

Leveraging the integration by parts formula in multiplicative form (see Theorem 2.9), we derive from I1
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that

I1 =

(
Ψ

(
κ+σ

2

))− 1
2 (µ−1)

(
Ψ (σ)

)− µ2 ×
1∫ 1

2

0

((
Ψ (εκ + (1 − ε) σ)

)α2α−1εα−1)dε

=
[
Ψ

(
κ + σ

2

)] 1−µ
2 (
Ψ (σ)

) µ
2
×

1

exp

α2α−1
∫ 1

2

0
εα−1 lnΨ (εκ + (1 − ε) σ) dε


=

[
Ψ

(
κ + σ

2

)] 1−µ
2 (
Ψ (σ)

) µ
2
×

1

exp

 α2α−1

(σ − κ)α

∫ σ

κ+σ
2

(σ − ε)α−1 lnΨ (ε) dε


=

[
Ψ

(
κ + σ

2

)] 1−µ
2 (
Ψ (σ)

) µ
2
[
κ+σ

2
I
α
∗Ψ (σ)

]− 2α−1Γ(α+1)
(σ−κ)α . (12)

Applying the analogous procedure to I2 yields the following conclusion

I2 =

∫ 1

1
2

((
Ψ∗ (εκ + (1 − ε) σ)

)[2α(1−ε)α−λ] σ−κ2
)dε

=

(
Ψ (κ)

) λ
2[

Ψ
(
κ+σ

2

)]− 1−λ
2

×
1∫ 1

1
2

((
Ψ (εκ + (1 − ε) σ)

)α2α−1(1−ε)α−1)dε

=
(
Ψ (κ)

) λ
2
[
Ψ

(
κ + σ

2

)] 1−λ
2

×
1

exp

α2α−1
∫ 1

1
2

(1 − ε)α−1 lnΨ (εκ + (1 − ε) σ) dε


=

(
Ψ (κ)

) λ
2
[
Ψ

(
κ + σ

2

)] 1−λ
2

×
1

exp

 α2α−1

(σ − κ)α

∫ κ+σ
2

κ
(ε − κ)α−1 lnΨ (ε) dε


=

(
Ψ (κ)

) λ
2
[
Ψ

(
κ + σ

2

)] 1−λ
2

[
∗I

α
κ+σ

2
Ψ (κ)

]− 2α−1Γ(α+1)
(σ−κ)α

. (13)

From the equations (12) and (13), it can be captured that

I1 × I2 = [Ψ (κ)]
λ
2

[
Ψ

(
κ + σ

2

)]1− λ+µ2

[Ψ (σ)]
µ
2

[
∗I

α
κ+σ

2
Ψ (κ) · κ+σ

2
I
α
∗Ψ (σ)

]− 2α−1Γ(α+1)
(σ−κ)α

. (14)

Consequently, we establish the desired identity. The proof is thus concluded.

Corollary 3.2. In Lemma 3.1, by choosing λ = µ, we have the subsequent identity:

[
Ψ (κ)Ψ (σ)

] µ
2
[
Ψ

(
κ + σ

2

)]1−µ [
∗I

α
κ+σ

2
Ψ (κ) · κ+σ

2
I
α
∗Ψ (σ)

]− 2α−1Γ(α+1)
(σ−κ)α

=

∫ 1
2

0

((
Ψ∗ (εκ + (1 − ε) σ)

)µ−2αεα)dε

σ−κ

2
∫ 1

1
2

((
Ψ∗ (εκ + (1 − ε) σ)

)2α(1−ε)α−µ)dε

σ−κ

2

.
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Remark 3.3. From Corollary 3.2, the following specific cases can be derived.
(i) Considering µ = 0, we obtain the multiplicative midpoint-type fractional identity

Ψ
(
κ + σ

2

) [
∗I

α
κ+σ

2
Ψ(κ) · κ+σ

2
I
α
∗Ψ(σ)

]− 2α−1Γ(α+1)
(σ−κ)α

=

∫ 1
2

0

((
Ψ∗ (εκ + (1 − ε) σ)

)−2αεα)dε

σ−κ

2
∫ 1

1
2

((
Ψ∗ (εκ + (1 − ε) σ)

)2α(1−ε)α)dε

σ−κ

2

.

For α = 1, this reduces to the multiplicative midpoint-type identity of integer order

Ψ
(
κ + σ

2

) (∫ σ

κ
(Ψ(γ))dγ

) 1
κ−σ

=

∫ 1
2

0

((
Ψ∗ (εκ + (1 − ε) σ)

)−ε)dε
σ−κ ∫ 1

1
2

((
Ψ∗ (εκ + (1 − ε) σ)

)1−ε)dε
σ−κ .

(ii) Considering µ = 1
3 , we obtain the multiplicative fractional equality of Simpson type[

Ψ(κ)
(
Ψ

(
κ + σ

2

))4
Ψ(σ)

] 1
6 [
∗I

α
κ+σ

2
Ψ(κ) · κ+σ

2
I
α
∗Ψ(σ)

]− 2α−1Γ(α+1)
(σ−κ)α

=

∫ 1
2

0

((
Ψ∗ (εκ + (1 − ε) σ)

) 1
3−2αεα)dε


σ−κ

2
∫ 1

1
2

((
Ψ∗ (εκ + (1 − ε) σ)

)2α(1−ε)α− 1
3
)dε


σ−κ

2

.

For α = 1, this reduces to the multiplicative Simpson-type identity of integer order[
Ψ(κ)

(
Ψ

(
κ + σ

2

))4
Ψ(σ)

] 1
6
(∫ σ

κ
(Ψ(γ))dγ

) 1
κ−σ

=

∫ 1
2

0

((
Ψ∗ (εκ + (1 − ε) σ)

) 1
6−ε

)dε
σ−κ ∫ 1

1
2

((
Ψ∗ (εκ + (1 − ε) σ)

) 5
6−ε

)dε
σ−κ .

(iii) Considering µ = 1
2 , we obtain the multiplicative fractional equality of Bullen type[

Ψ(κ)
(
Ψ

(
κ + σ

2

))2
Ψ(σ)

] 1
4 [
∗I

α
κ+σ

2
Ψ(κ) · κ+σ

2
I
α
∗Ψ(σ)

]− 2α−1Γ(α+1)
(σ−κ)α

=

∫ 1
2

0

((
Ψ∗ (εκ + (1 − ε) σ)

) 1
2−2αεα)dε


σ−κ

2
∫ 1

1
2

((
Ψ∗ (εκ + (1 − ε) σ)

)2α(1−ε)α− 1
2
)dε


σ−κ

2

.

For α = 1, this reduces to the multiplicative Bullen-type identity of integer order[
Ψ(κ)

(
Ψ

(
κ + σ

2

))2
Ψ(σ)

] 1
4
(∫ σ

κ
(Ψ(γ))dγ

) 1
κ−σ

=

∫ 1
2

0

((
Ψ∗ (εκ + (1 − ε) σ)

) 1
4−ε

)dε
σ−κ ∫ 1

1
2

((
Ψ∗ (εκ + (1 − ε) σ)

) 3
4−ε

)dε
σ−κ .

(iv) Considering µ = 2
3 , we obtain the multiplicative fractional equality of Simpson-like type[

Ψ(κ)Ψ
(
κ + σ

2

)
Ψ(σ)

] 1
3
[
∗I

α
κ+σ

2
Ψ(κ) · κ+σ

2
I
α
∗Ψ(σ)

]− 2α−1Γ(α+1)
(σ−κ)α

=

∫ 1
2

0

((
Ψ∗ (εκ + (1 − ε) σ)

) 2
3−2αεα)dε


σ−κ

2
∫ 1

1
2

((
Ψ∗ (εκ + (1 − ε) σ)

)2α(1−ε)α− 2
3
)dε


σ−κ

2

.
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For α = 1, this reduces to the multiplicative Simpson-like type identity of integer order

[
Ψ(κ)Ψ

(
κ + σ

2

)
Ψ(σ)

] 1
3
(∫ σ

κ
(Ψ(γ))dγ

) 1
κ−σ

=

∫ 1
2

0

((
Ψ∗ (εκ + (1 − ε) σ)

) 1
3−ε

)dε
σ−κ ∫ 1

1
2

((
Ψ∗ (εκ + (1 − ε) σ)

) 2
3−ε

)dε
σ−κ .

(v) Considering µ = 1, we obtain the multiplicative fractional equality of trapezoid type

[
Ψ (κ)Ψ (σ)

] 1
2
[
∗I

α
κ+σ

2
Ψ(κ) · κ+σ

2
I
α
∗Ψ(σ)

]− 2α−1Γ(α+1)
(σ−κ)α

=

∫ 1
2

0

((
Ψ∗ (εκ + (1 − ε) σ)

)1−2αεα)dε

σ−κ

2
∫ 1

1
2

((
Ψ∗ (εκ + (1 − ε) σ)

)2α(1−ε)α−1)dε

σ−κ

2

.

For α = 1, this reduces to the multiplicative trapezoid-type identity of integer order

[
Ψ (κ)Ψ (σ)

] 1
2

(∫ σ

κ
(Ψ(γ))dγ

) 1
κ−σ

=

∫ 1
2

0

((
Ψ∗ (εκ + (1 − ε) σ)

) 1
2−ε

)dε
σ−κ ∫ 1

1
2

((
Ψ∗ (εκ + (1 − ε) σ)

) 1
2−ε

)dε
σ−κ

=

(∫ 1

0

((
Ψ∗ (εκ + (1 − ε) σ)

) 1
2−ε

)dε)σ−κ
.

(vi) Considering µ = 4
3 , we obtain the multiplicative fractional equality of Milne type

[(
Ψ(κ)

)2
(
Ψ

(κ + σ
2

))−1(
Ψ(σ)

)2
] 1

3 [
∗I

α
κ+σ

2
Ψ(κ) · κ+σ

2
I
α
∗Ψ(σ)

]− 2α−1Γ(α+1)
(σ−κ)α

=

∫ 1
2

0

((
Ψ∗ (εκ + (1 − ε) σ)

) 4
3−2αεα)dε


σ−κ

2
∫ 1

1
2

((
Ψ∗ (εκ + (1 − ε) σ)

)2α(1−ε)α− 4
3
)dε


σ−κ

2

.

For α = 1, this reduces to the multiplicative Milne-type identity of integer order[(
Ψ(κ)

)2
(
Ψ

(κ + σ
2

))−1(
Ψ(σ)

)2
] 1

3
(∫ σ

κ
(Ψ(γ))dγ

) 1
κ−σ

=

∫ 1
2

0

((
Ψ∗ (εκ + (1 − ε) σ)

) 2
3−ε

)dε
σ−κ ∫ 1

1
2

((
Ψ∗ (εκ + (1 − ε) σ)

) 1
3−ε

)dε
σ−κ .

Since the computation of the following two definite integrals is essential for proving subsequent theo-
rems, we now state them as two lemmas.

Lemma 3.4. Let α, s ∈ (0, 1] and γ ∈
{
λ, µ

}
with 0 ≤ γ ≤ +∞ . Following this, the result presented below holds

∫ 1
2

0
εs

∣∣∣γ − 2αεα
∣∣∣ dε =


K1

(
α, s, γ

)
, γ > 1,

K2
(
α, s, γ

)
, 0 ≤ γ ≤ 1,

(15)
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where

K1
(
α, s, γ

)
=

1
2s+1

( γ

s + 1
−

1
α + s + 1

)
,

and

K2
(
α, s, γ

)
=
γ

α+s+1
α

2s

( 1
s + 1

−
1

α + s + 1

)
−

1
2s+1

( γ

s + 1
−

1
α + s + 1

)
.

Proof. (i) We observe that for γ > 1, the inequality γ − 2αεα ≥ 0 holds for all ε ∈ [0, 1
2 ], from which it follows

that ∫ 1
2

0
εs

∣∣∣γ − 2αεα
∣∣∣ dε = 1

2s+1

( γ

s + 1
−

1
α + s + 1

)
. (16)

(ii) For 0 ≤ γ ≤ 1, we define ζ(α,γ) =
1
2γ

1
α . Then, it follows that γ − 2αεα ≥ 0 on [0, ζ(α,γ)) and γ − 2αεα < 0 on

[ζ(α,γ),
1
2 ). Consequently, we have that∫ 1

2

0
εs

∣∣∣γ − 2αεα
∣∣∣ dε = ∫ ζ(α,γ)

0
εs (γ − 2αεα

)
dε +

∫ 1
2

ζ(α,γ)

εs (2αεα − γ) dε

=
γ

α+s+1
α

2s

( 1
s + 1

−
1

α + s + 1

)
−

1
2s+1

( γ

s + 1
−

1
α + s + 1

)
. (17)

This concludes the proof of Lemma 3.4.

Lemma 3.5. Provided that the hypotheses of Lemma 3.4 are fulfilled, the result presented below holds

∫ 1
2

0
(1 − ε)s

∣∣∣γ − 2αεα
∣∣∣ dε =


K3

(
α, s, γ

)
, γ > 1,

K4
(
α, s, γ

)
, 0 ≤ γ ≤ 1,

(18)

where

K3
(
α, s, γ

)
=

γ

s + 1

(
1 −

1
2s+1

)
− 2αB 1

2
(α + 1, s + 1) ,

and

K4
(
α, s, γ

)
=

γ

s + 1

[
1 +

1
2s+1 − 2

(
1 −

1
2
γ

1
α

)s+1]
+ 2α

[
B 1

2
(α + 1, s + 1) − 2B 1

2γ
1
α

(α + 1, s + 1)
]
.

Proof. Following the proof method of Lemma 3.5, we deduce the required result.

To facilitate subsequent results, we define the following expression

ΛΨ
(
α, λ, µ;κ, σ

)
:=

(
Ψ (κ)

) λ
2
(
Ψ

(
κ + σ

2

))1− λ+µ2
(Ψ (σ))

µ
2

[
∗I

α
κ+σ

2
Ψ (κ) · κ+σ

2
I
α
∗Ψ (σ)

]− 2α−1Γ(α+1)
(σ−κ)α

.

For the case λ = µ, we obtain that

ΛΨ
(
α, µ;κ, σ

)
:=

[
Ψ (κ)Ψ (σ)

] µ
2
[
Ψ

(
κ + σ

2

)]1−µ [
∗I

α
κ+σ

2
Ψ (κ) · κ+σ

2
I
α
∗Ψ (σ)

]− 2α−1Γ(α+1)
(σ−κ)α

.

Based on Lemma 3.1 together with the multiplicative s-convexity of Ψ∗, we obtain the subsequent
theorem.
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Theorem 3.6. Suppose Ψ : [κ, σ] → R+ is both multiplicatively differentiable on (κ, σ) and ∗increasing on [κ, σ].
And let the function Ψ∗ be multiplicatively s-convex on [κ, σ] with some s ∈ (0, 1]. Then, for α ∈ (0, 1] and
λ, µ ∈ [0,+∞), the multiplicative fractional integral inequalities presented below are satisfied.
(i) If µ > 1, λ > 1, then we have that∣∣∣∣ΛΨ (

α, λ, µ;κ, σ
) ∣∣∣∣∗ ≤ [Ψ∗ (κ)]

σ−κ
2 [K1(α,s,µ)+K3(α,s,λ)] [Ψ∗ (σ)]

σ−κ
2 [K3(α,s,µ)+K1(α,s,λ)] .

(ii) If µ > 1, 0 ≤ λ ≤ 1, then we have that∣∣∣∣ΛΨ (
α, λ, µ;κ, σ

) ∣∣∣∣∗ ≤ [Ψ∗ (κ)]
σ−κ

2 [K1(α,s,µ)+K4(α,s,λ)] [Ψ∗ (σ)]
σ−κ

2 [K3(α,s,µ)+K2(α,s,λ)] .

(iii) If 0 ≤ µ ≤ 1, λ > 1, then we have that∣∣∣∣ΛΨ (
α, λ, µ;κ, σ

) ∣∣∣∣∗ ≤ [Ψ∗ (κ)]
σ−κ

2 [K2(α,s,µ)+K3(α,s,λ)] [Ψ∗ (σ)]
σ−κ

2 [K4(α,s,µ)+K1(α,s,λ)] .

(iv) If 0 ≤ µ ≤ 1, 0 ≤ λ ≤ 1, then we have that∣∣∣∣ΛΨ (
α, λ, µ;κ, σ

) ∣∣∣∣∗ ≤ [Ψ∗ (κ)]
σ−κ

2 [K2(α,s,µ)+K4(α,s,λ)] [Ψ∗ (σ)]
σ−κ

2 [K4(α,s,µ)+K2(α,s,λ)] .

Here, K1 (α, s, ·) and K2 (α, s, ·) are given in Lemma 3.4, while K3 (α, s, ·) and K4 (α, s, ·) are given in Lemma 3.5.

Proof. By applying the multiplicative integral definition (4) to the identity in Lemma 3.1, we derive that

∣∣∣∣ΛΨ (
α, λ, µ;κ, σ

) ∣∣∣∣∗ =
∣∣∣∣∣∣∣∣∣∣∣∣∣

∫ 1
2

0

([
Ψ∗

(
εκ + (1 − ε) σ

)]µ−2αεα
)dε


σ−κ

2

×

∫ 1

1
2

([
Ψ∗

(
εκ + (1 − ε) σ

)]2α(1−ε)α−λ
)dε


σ−κ

2

∣∣∣∣∣∣∣∣∣∣∣∣∣

∗

=

∣∣∣∣∣∣∣∣∣∣∣∣∣
exp

σ − κ2

∫ 1
2

0

(
µ − 2αεα

)
lnΨ∗

(
εκ + (1 − ε) σ

)
dε


×exp

σ − κ2

∫ 1

1
2

(
2α (1 − ε)α − λ

)
lnΨ∗

(
εκ + (1 − ε) σ

)
dε



∣∣∣∣∣∣∣∣∣∣∣∣∣

∗

. (19)

Utilizing Prop. 2.11 and Def. 2.10, we conclude that∣∣∣∣ΛΨ (
α, λ, µ;κ, σ

) ∣∣∣∣∗
≤

∣∣∣∣∣∣∣exp

σ − κ2

∫ 1
2

0

(
µ − 2αεα

)
lnΨ∗

(
εκ + (1 − ε) σ

)
dε


∣∣∣∣∣∣∣
∗

×

∣∣∣∣∣∣∣exp

σ − κ2

∫ 1

1
2

(
2α (1 − ε)α − λ

)
lnΨ∗

(
εκ + (1 − ε) σ

)
dε


∣∣∣∣∣∣∣
∗

= exp


∣∣∣∣∣∣∣σ − κ2

∫ 1
2

0

(
µ − 2αεα

)
lnΨ∗

(
εκ + (1 − ε) σ

)
dε

∣∣∣∣∣∣∣


× exp


∣∣∣∣∣∣σ − κ2

∫ 1

1
2

(
2α (1 − ε)α − λ

)
lnΨ∗

(
εκ + (1 − ε) σ

)
dε

∣∣∣∣∣∣


≤ exp


σ − κ

2

∫ 1
2

0

∣∣∣µ − 2αεα
∣∣∣∣∣∣ lnΨ∗(εκ + (1 − ε) σ

)∣∣∣dε
+
σ − κ

2

∫ 1
2

0

∣∣∣λ − 2αεα
∣∣∣∣∣∣ lnΨ∗( (1 − ε)κ + εσ

)∣∣∣dε
 . (20)
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According to Prop. 2.14, i.e., the fact that Ψ is ∗increasing ensures Ψ∗ ≥ 1, and equivalently, lnΨ∗ ≥ 0.
Therefore, we obtain the following result

∣∣∣∣ΛΨ (
α, λ, µ;κ, σ

) ∣∣∣∣∗ ≤ exp


σ − κ

2

∫ 1
2

0

∣∣∣µ − 2αεα
∣∣∣ lnΨ∗(εκ + (1 − ε) σ

)
dε

+
σ − κ

2

∫ 1
2

0

∣∣∣λ − 2αεα
∣∣∣ lnΨ∗( (1 − ε)κ + εσ

)
dε

 . (21)

The multiplicative s-convexity ofΨ∗ on [κ, σ] implies that

lnΨ∗
(
εκ + (1 − ε) σ

)
≤ εs lnΨ∗ (κ) + (1 − ε)s lnΨ∗ (σ) , (22)

and

lnΨ∗
(

(1 − ε)κ + εσ
)
≤ (1 − ε)s lnΨ∗ (κ) + εs lnΨ∗ (σ) . (23)

The combination of the inequalities (22) and (23) with the inequality (21) produces the subsequent result∣∣∣∣ΛΨ (
α, λ, µ;κ, σ

) ∣∣∣∣∗

≤ exp


σ − κ

2

∫ 1
2

0

∣∣∣µ − 2αεα
∣∣∣[εs lnΨ∗ (κ) + (1 − ε)s lnΨ∗ (σ)

]
dε

+
σ − κ

2

∫ 1
2

0

∣∣∣λ − 2αεα
∣∣∣[ (1 − ε)s lnΨ∗ (κ) + εs lnΨ∗ (σ)

]
dε


= exp


σ − κ

2

∫ 1
2

0
εs

∣∣∣µ − 2αεα
∣∣∣dε + ∫ 1

2

0
(1 − ε)s

∣∣∣λ − 2αεα
∣∣∣dε lnΨ∗ (κ)

+
σ − κ

2

∫ 1
2

0
(1 − ε)s

∣∣∣µ − 2αεα
∣∣∣dε + ∫ 1

2

0
εs

∣∣∣λ − 2αεα
∣∣∣dε lnΨ∗ (σ)


=

[
Ψ∗ (κ)

]σ − κ2

∫ 1
2

0
εs

∣∣∣µ − 2αεα
∣∣∣dε + ∫ 1

2

0
(1 − ε)s

∣∣∣λ − 2αεα
∣∣∣dε

×

[
Ψ∗ (σ)

]σ − κ2

∫ 1
2

0
(1 − ε)s

∣∣∣µ − 2αεα
∣∣∣dε + ∫ 1

2

0
εs

∣∣∣λ − 2αεα
∣∣∣dε

. (24)

By employing Lemma 3.4 and Lemma 3.5 in the inequality (24), we establish the required result, thereby
concluding the proof of Theorem 3.6.

Corollary 3.7. In Theorem 3.6, by taking λ = µ, it yields the subsequent result

∣∣∣∣ΛΨ (
α, µ;κ, σ

) ∣∣∣∣∗ ≤

[
Ψ∗(κ)Ψ∗(σ)

] σ−κ
2

[
K1(α,s,µ)+K3(α,s,µ)

]
, µ > 1,

[
Ψ∗(κ)Ψ∗(σ)

] σ−κ
2

[
K2(α,s,µ)+K4(α,s,µ)

]
, 0 ≤ µ ≤ 1.

Remark 3.8. From Corollary 3.7, the following specific cases can be derived.
(i) Considering µ = 0, we obtain the multiplicative fractional inequality of midpoint type∣∣∣∣∣∣∣Ψ

(
κ + σ

2

) [
∗I

α
κ+σ

2
Ψ(κ) · κ+σ

2
I
α
∗Ψ(σ)

]− 2α−1Γ(α+1)
(σ−κ)α

∣∣∣∣∣∣∣
∗

≤

[
Ψ∗ (κ)Ψ∗ (σ)

] σ−κ
2 [K2(α,s,0)+K4(α,s,0)]

, (25)
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where

K2 (α, s, 0) + K4 (α, s, 0) =
1

2s+1 (α + s + 1)
+ 2αB 1

2
(α + 1, s + 1) .

Furthermore, if we take s = 1, then we get that∣∣∣∣∣∣∣Ψ
(
κ + σ

2

) [
∗I

α
κ+σ

2
Ψ(κ) · κ+σ

2
I
α
∗Ψ(σ)

]− 2α−1Γ(α+1)
(σ−κ)α

∣∣∣∣∣∣∣
∗

≤

[
Ψ∗ (κ)Ψ∗ (σ)

] σ−κ
4(α+1)

.

In particular, for α = 1, we arrive at the following inequality∣∣∣∣∣∣∣Ψ
(
κ + σ

2

) (∫ σ

κ
(Ψ (u))du

) 1
κ−σ

∣∣∣∣∣∣∣
∗

≤

[
Ψ∗ (κ)Ψ∗ (σ)

] σ−κ
8
. (26)

It is noteworthy that the second inequality in Theorem 2.15 is of midpoint type under the classical absolute value,
whereas the inequality (26) is of midpoint type under the multiplicative modulus. However, both inequalities admit
the same upper bound.
(ii) Considering µ = 1

3 , we obtain the multiplicative fractional inequality of Simpson type∣∣∣∣∣∣∣
[
Ψ(κ)

(
Ψ

(
κ + σ

2

))4
Ψ(σ)

] 1
6 [
∗I

α
κ+σ

2
Ψ(κ) · κ+σ

2
I
α
∗Ψ(σ)

]− 2α−1Γ(α+1)
(σ−κ)α

∣∣∣∣∣∣∣
∗

≤

[
Ψ∗ (κ)Ψ∗ (σ)

] σ−κ
2 [K2(α,s, 1

3 )+K4(α,s, 1
3 )]
, (27)

where

K2

(
α, s,

1
3

)
+ K4

(
α, s,

1
3

)
=

1
2s+1 (α + s + 1)

(
1 − 2 · 3−

α+s+1
α

)
+

1
3 (s + 1)

[
1 − 2

(
1 −

1
2

3−
1
α

)s+1

+
1
2s 3−

s+1
α

]
+ 2α

[
B 1

2
(α + 1, s + 1) − 2B

1
2 ( 1

3 )
1
α

(α + 1, s + 1)
]
.

Furthermore, if we take s = 1, then we get that∣∣∣∣∣∣∣
[
Ψ(κ)

(
Ψ

(
κ + σ

2

))4
Ψ(σ)

] 1
6 [
∗I

α
κ+σ

2
Ψ(κ) · κ+σ

2
I
α
∗Ψ(σ)

]− 2α−1Γ(α+1)
(σ−κ)α

∣∣∣∣∣∣∣
∗

≤

[
Ψ∗ (κ)Ψ∗ (σ)

] σ−κ
2

(
α
α+1 ·3

−
α+1
α + 1

2(α+1)−
1
6

)
.

In particular, for α = 1, the following inequality can be obtained∣∣∣∣∣∣∣
[
Ψ (κ)

(
Ψ

(
κ + σ

2

))4
Ψ (σ)

] 1
6
(∫ σ

κ
(Ψ (u))du

) 1
κ−σ

∣∣∣∣∣∣∣
∗

≤ [Ψ∗ (κ)Ψ∗ (σ)]
5(σ−κ)

72 . (28)

It should be noted that Theorem 2.16 presents a Simpson-type inequality in the setting of the classical absolute value,
while the inequality (28) is formulated in the setting of the multiplicative modulus. However, they share the same
upper bound.
(iii) Considering µ = 1

2 , we obtain the multiplicative fractional inequality of Bullen type∣∣∣∣∣∣∣
[
Ψ(κ)

(
Ψ

(
κ + σ

2

))2
Ψ(σ)

] 1
4 [
∗I

α
κ+σ

2
Ψ(κ) · κ+σ

2
I
α
∗Ψ(σ)

]− 2α−1Γ(α+1)
(σ−κ)α

∣∣∣∣∣∣∣
∗

≤

[
Ψ∗ (κ)Ψ∗ (σ)

] σ−κ
2 [K2(α,s, 1

2 )+K4(α,s, 1
2 )]
, (29)
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where

K2

(
α, s,

1
2

)
+ K4

(
α, s,

1
2

)
=

1
2s+1

[ 1
α + s + 1

+
( 1

s + 1
−

1
α + s + 1

)
2−

s+1
α

]
+

1
2 (s + 1)

[
1 − 2

(
1 − 2−

α+1
α

)s+1
]

+ 2α
[
B 1

2
(α + 1, s + 1) − 2B

( 1
2 )

1
α +1 (α + 1, s + 1)

]
.

Furthermore, if we take s = 1, then we get that∣∣∣∣∣∣∣
[
Ψ(κ)

(
Ψ

(
κ + σ

2

))2
Ψ(σ)

] 1
4 [
∗I

α
κ+σ

2
Ψ(κ) · κ+σ

2
I
α
∗Ψ(σ)

]− 2α−1Γ(α+1)
(σ−κ)α

∣∣∣∣∣∣∣
∗

≤

[
Ψ∗ (κ)Ψ∗ (σ)

] σ−κ
2

(
α
α+1 ·2

−
α+1
α + 1

2(α+1)−
1
4

)
.

In particular, for α = 1, we obtain that∣∣∣∣∣∣∣
[
Ψ (κ)

(
Ψ

(
κ + σ

2

))2
Ψ (σ)

] 1
4
(∫ σ

κ
(Ψ (u))du

) 1
κ−σ

∣∣∣∣∣∣∣
∗

≤

[
Ψ∗ (κ)Ψ∗ (σ)

] σ−κ
16
. (30)

It is worth mentioning that the second inequality in Theorem 2.17 is of Bullen type under the classical absolute value,
whereas the inequality (30) is of Bullen type under the multiplicative modulus. However, both inequalities share the
same upper bound.
(iv) Considering µ = 2

3 , we obtain the multiplicative fractional inequality of Simpson-like type∣∣∣∣∣∣∣
[
Ψ (κ)Ψ

(
κ + σ

2

)
Ψ (σ)

] 1
3
[
∗I

α
κ+σ

2
Ψ(κ) · κ+σ

2
I
α
∗Ψ(σ)

]− 2α−1Γ(α+1)
(σ−κ)α

∣∣∣∣∣∣∣
∗

≤

[
Ψ∗ (κ)Ψ∗ (σ)

] σ−κ
2 [K2(α,s, 2

3 )+K4(α,s, 2
3 )]
, (31)

where

K2

(
α, s,

2
3

)
+ K4

(
α, s,

2
3

)
=

1
2s

(2
3

) α+s+1
α

( 1
s + 1

−
1

α + s + 1

)
+

1
2s+1 (α + s + 1)

+
2

3 (s + 1)

1 − 2

1 −
1
2

(2
3

) 1
α

s+1 + 2α
[
B 1

2
(α + 1, s + 1) − 2B

1
2 ( 2

3 )
1
α

(α + 1, s + 1)
]
.

Furthermore, if we take s = 1, then we get that∣∣∣∣∣∣∣
[
Ψ (κ)Ψ

(
κ + σ

2

)
Ψ (σ)

] 1
3
[
∗I

α
κ+σ

2
Ψ(κ) · κ+σ

2
I
α
∗Ψ(σ)

]− 2α−1Γ(α+1)
(σ−κ)α

∣∣∣∣∣∣∣
∗

≤

[
Ψ∗ (κ)Ψ∗ (σ)

] σ−κ
2

(
α
α+1 ·( 2

3 )
α+1
α + 1

2(α+1)−
1
3

)
.

In particular, if we take α = 1, then we have the multiplicative Simpson-like type inequality of integer order∣∣∣∣∣∣∣
[
Ψ(κ)Ψ

(
κ + σ

2

)
Ψ(σ)

] 1
3
(∫ σ

κ
(Ψ(γ))dγ

) 1
κ−σ

∣∣∣∣∣∣∣
∗

≤

[
Ψ∗ (κ)Ψ∗ (σ)

] 5(σ−κ)
72
. (32)

(v) Considering µ = 1, we obtain the multiplicative fractional inequality of trapezoid type∣∣∣∣∣∣∣[Ψ (κ)Ψ (σ)
] 1

2
[
∗I

α
κ+σ

2
Ψ(κ) · κ+σ

2
I
α
∗Ψ(σ)

]− 2α−1Γ(α+1)
(σ−κ)α

∣∣∣∣∣∣∣
∗

≤

[
Ψ∗ (κ)Ψ∗ (σ)

] σ−κ
2 [K2(α,s,1)+K4(α,s,1)]

, (33)
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where

K2 (α, s, 1) + K4 (α, s, 1) =
1

s + 1
−

1
2s+1 (α + s + 1)

− 2αB 1
2

(α + 1, s + 1) .

Furthermore, if we take s = 1, then we get that∣∣∣∣∣∣∣[Ψ (κ)Ψ (σ)]
1
2

[
∗I

α
κ+σ

2
Ψ(κ) · κ+σ

2
I
α
∗Ψ(σ)

]− 2α−1Γ(α+1)
(σ−κ)α

∣∣∣∣∣∣∣
∗

≤

[
Ψ∗ (κ)Ψ∗ (σ)

] α(σ−κ)
4(α+1)

.

In particular, for α = 1, the following inequality can be derived∣∣∣∣∣∣∣ √Ψ (κ)Ψ (σ)
(∫ σ

κ

(
Ψ (u)

)du
) 1
κ−σ

∣∣∣∣∣∣∣
∗

≤

[
Ψ∗ (κ)Ψ∗ (σ)

] σ−κ
8
. (34)

It is noteworthy that the inequality in Theorem 2.18 is of trapezoid type under the classical absolute value, whereas
the inequality (34) is of trapezoid type under the multiplicative modulus. However, both inequalities admit the same
upper bound.
(vi) Considering µ = 4

3 , we obtain the multiplicative fractional inequality of Milne type∣∣∣∣∣∣∣
[(
Ψ(κ)

)2
(
Ψ

(κ + σ
2

))−1(
Ψ(σ)

)2
] 1

3 [
∗I

α
κ+σ

2
Ψ(κ) · κ+σ

2
I
α
∗Ψ(σ)

]− 2α−1Γ(α+1)
(σ−κ)α

∣∣∣∣∣∣∣
∗

≤

[
Ψ∗ (κ)Ψ∗ (σ)

] σ−κ
2 [K1(α,s, 4

3 )+K3(α,s, 4
3 )]
, (35)

where

K1

(
α, s,

4
3

)
+ K3

(
α, s,

4
3

)
=

4
3 (s + 1)

−
1

2s+1 (α + s + 1)
− 2αB 1

2
(α + 1, s + 1) .

Furthermore , if we take s = 1, then we get that∣∣∣∣∣∣∣
[(
Ψ(κ)

)2
(
Ψ

(κ + σ
2

))−1(
Ψ(σ)

)2
] 1

3 [
∗I

α
κ+σ

2
Ψ(κ) · κ+σ

2
I
α
∗Ψ(σ)

]− 2α−1Γ(α+1)
(σ−κ)α

∣∣∣∣∣∣∣
∗

≤

[
Ψ∗ (κ)Ψ∗ (σ)

] σ−κ
2

(
2
3−

1
2(α+1)

)
.

In particular, for α = 1, the subsequent inequality can be deduced∣∣∣∣∣∣∣
[
(Ψ (κ))2

(
Ψ

(
κ + σ

2

))−1
(Ψ (σ))2

] 1
3
(∫ σ

κ
(Ψ (u))du

) 1
κ−σ

∣∣∣∣∣∣∣
∗

≤

[
Ψ∗ (κ)Ψ∗ (σ)

] 5(σ−κ)
24
. (36)

It is noteworthy that the second inequality in Theorem 2.19 is of Milne type under the classical absolute value, whereas
the inequality (36) is of Milne type under the multiplicative modulus. However, both inequalities admit the same
upper bound.

Theorem 3.9. ConsiderΨ : [κ, σ]→ R+ satisfying ∗increasing on [κ, σ] and multiplicatively differentiable on (κ, σ),
and assume thatΨ∗ possesses multiplicative convexity on [κ, σ]. Then, for α ∈ (0, 1] and the parameters λ, µ ∈ [0, 1],
the subsequent multiplicative midpoint-type inequality holds:∣∣∣∣∣∣∣Ψ

(
κ + σ

2

) [
∗I

α
κ+σ

2
Ψ (κ) · κ+σ

2
I
α
∗Ψ (σ)

]− 2α−1Γ(α+1)
(σ−κ)α

∣∣∣∣∣∣∣
∗

≤ Θ1
(
κ, σ;λ, µ

) [
Ψ∗ (κ)

] σ−κ
2 ∆1(α;λ,µ)[

Ψ∗ (σ)
] σ−κ

2 ∆2(α;λ,µ)
,

where

Θ1
(
κ, σ;λ, µ

)
=

(
Ψ (κ)

)− λ2 (
Ψ

(
κ + σ

2

)) λ+µ
2 (
Ψ (σ)

)− µ2 ,
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∆1
(
α;λ, µ

)
=

α
4 (α + 2)

(
µ

α+2
α − λ

α+2
α

)
−
µ + 3λ

8
+

α
α + 1

λ
α+1
α +

1
2 (α + 1)

,

and

∆2
(
α;λ, µ

)
=

α
4 (α + 2)

(
λ

α+2
α − µ

α+2
α

)
−
λ + 3µ

8
+

α
α + 1

µ
α+1
α +

1
2 (α + 1)

.

Proof. Upon multiplying the inequality (24) through by

(
Ψ (κ)

)− λ2 (
Ψ

(
κ + σ

2

)) λ+µ
2 (
Ψ (σ)

)− µ2
with s = 1 and λ, µ ∈ [0, 1], we can derive that∣∣∣∣∣∣∣Ψ

(
κ + σ

2

) [
∗I

α
κ+σ

2
Ψ (κ) · κ+σ

2
I
α
∗Ψ (σ)

]− 2α−1Γ(α+1)
(σ−κ)α

∣∣∣∣∣∣∣
∗

≤

(
Ψ (κ)

)− λ2 (
Ψ

(
κ + σ

2

)) λ+µ
2 (
Ψ (σ)

)− µ2 [
Ψ∗ (κ)

] σ−κ
2

[
K2(α,1,µ)+K4(α,1,λ)

][
Ψ∗ (σ)

] σ−κ
2

[
K2(α,1,λ)+K4(α,1,µ)

]
.

(37)

Based on Lemma 3.4 and Lemma 3.5 , we can readily obtain that

K2
(
α, 1, γ

)
=
γ

α+2
α

2

(1
2
−

1
α + 2

)
−

1
4

(γ
2
−

1
α + 2

)
, γ ∈

{
λ, µ

}
, (38)

and

K4
(
α, 1, γ

)
= −

3
8
γ +

α
α + 1

γ
α+1
α +

1
4
γ

α+2
α +

1
2 (α + 1)

−
1

4 (α + 2)
, γ ∈

{
λ, µ

}
. (39)

By substituting the equalities (38) and (39) into the inequality (37), we can obtain the expected result. Thus
the proof is concluded.

Corollary 3.10. In Theorem 3.9, by setting α = 1, it leads to the subsequent midpoint-type inequality of integer
order: ∣∣∣∣∣∣∣Ψ

(
κ + σ

2

) (∫ σ

κ

(
Ψ

(
γ
))dγ

) 1
κ−σ

∣∣∣∣∣∣∣
∗

≤ Θ1
(
κ, σ;λ, µ

) [
Ψ∗ (κ)

] σ−κ
2 ∆1(1;λ,µ)[

Ψ∗ (σ)
] σ−κ

2 ∆2(1;λ,µ)
, (40)

where

∆1
(
1;λ, µ

)
=

1
12

(
µ3
− λ3

)
−
µ + 3λ

8
+

1
2
λ2 +

1
4
,

and

∆2
(
1;λ, µ

)
=

1
12

(
λ3
− µ3

)
−
λ + 3µ

8
+

1
2
µ2 +

1
4
.

Remark 3.11. We note that, if Θ1 (κ, σ; 1, 1) < 1, the inequality (40) improves upon the inequality (26) with a
smaller right-hand side value. Now, we present an example to illustrate this fact.

Example 3.12. From the inequality (40), if λ = 1 and µ = 1, it follows that∣∣∣∣∣∣∣Ψ
(
κ + σ

2

) (∫ σ

κ

(
Ψ

(
γ
) )dγ

) 1
κ−σ

∣∣∣∣∣∣∣
∗

≤ Θ1 (κ, σ; 1, 1)
[
Ψ∗ (κ)Ψ∗ (σ)

] σ−κ
8
, (41)
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where

Θ1 (κ, σ; 1, 1) =
[
Ψ (κ)Ψ (σ)

]− 1
2
Ψ

(
κ + σ

2

)
.

Consider the functionΨ(γ) = exp
{
γ3

}
forγ ≥ 0, and let [κ, σ] = [ε, ε+1] with ε ≥ 0. Then, its multiplicatively

differentiable function Ψ∗(γ) = exp
{
3γ2

}
is multiplicatively convex on [ε, ε + 1]. The requirements of

Corollary 3.10 are fully met, and we derive that

Θ1 (ε, ε + 1; 1, 1) =
[
Ψ (ε)Ψ (ε + 1)

]− 1
2
Ψ

(
ε +

1
2

)
= exp

{
−

3
4
ε −

3
8

}
.

Obviously, for all ε ≥ 0, the inequality Θ1 (ε, ε + 1; 1, 1) < 1 holds, which verifies the conclusion in Remark
3.11.

Theorem 3.13. Provided that the hypotheses of Theorem 3.9 hold, the subsequent trapezoid-type inequality holds:∣∣∣∣∣∣∣ √Ψ (κ)Ψ (σ)
[
∗I

α
κ+σ

2
Ψ (κ) · κ+σ

2
I
α
∗Ψ (σ)

]− 2α−1Γ(α+1)
(σ−κ)α

∣∣∣∣∣∣∣
∗

≤ Θ2
(
κ, σ;λ, µ

) [
Ψ∗ (κ)

] σ−κ
2 ∆1(α;λ,µ)[

Ψ∗ (σ)
] σ−κ

2 ∆2(α;λ,µ)
,

where

Θ2
(
κ, σ;λ, µ

)
=

(
Ψ (κ)

) 1−λ
2

(
Ψ

(
κ + σ

2

)) λ+µ
2 −1 (

Ψ (σ)
) 1−µ

2 ,

and the expressions ∆1
(
α;λ, µ

)
and ∆2

(
α;λ, µ

)
are defined in Theorem 3.9, respectively.

Proof. Upon multiplying the inequality (24) through by

(
Ψ (κ)

) 1−λ
2

(
Ψ

(
κ + σ

2

)) λ+µ
2 −1 (

Ψ (σ)
) 1−µ

2

with s = 1 and λ, µ ∈ [0, 1], and applying the equalities presented in (38) and (39) to derive that∣∣∣∣∣∣∣ √Ψ (κ)Ψ (σ)
[
∗I

α
κ+σ

2
Ψ (κ) · κ+σ

2
I
α
∗Ψ (σ)

]− 2α−1Γ(α+1)
(σ−κ)α

∣∣∣∣∣∣∣
∗

≤

(
Ψ (κ)

) 1−λ
2

(
Ψ

(
κ + σ

2

)) λ+µ
2 −1 (

Ψ (σ)
) 1−µ

2
[
Ψ∗ (κ)

] σ−κ
2

[
K2(α,1,µ)+K4(α,1,λ)

]
×

[
Ψ∗ (σ)

] σ−κ
2

[
K2(α,1,λ)+K4(α,1,µ)

]
, (42)

which conclude the proof of Theorem 3.13.

Corollary 3.14. In Theorem 3.13, by setting α = 1, it leads to the subsequent integer-order inequality of trapezoid
type: ∣∣∣∣∣∣∣ √Ψ (κ)Ψ (σ)

(∫ σ

κ

(
Ψ

(
γ
))dγ

) 1
κ−σ

∣∣∣∣∣∣∣
∗

≤ Θ2
(
κ, σ;λ, µ

) [
Ψ∗ (κ)

] σ−κ
2 ∆1(1;λ,µ)[

Ψ∗ (σ)
] σ−κ

2 ∆2(1;λ,µ)
, (43)

where ∆1
(
1;λ, µ

)
and ∆2

(
1;λ, µ

)
are defined in Corollary 3.7.

Remark 3.15. Under the conditions of Corollary 3.14, we find that the right term of the inequality (43) is better than
the inequality (34) under certain conditions. Now, we present an example to illustrate this fact.
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Example 3.16. Consider the function Ψ(γ) = 3γ
4

defined on [κ, σ], and [κ, σ] = [ε, ε + 1] with ε ≥ 0. Its
multiplicatively differentiable functionΨ∗(γ) = 34γ3

is multiplicatively convex on [ε, ε+ 1]. This satisfies all
requirements of Corollary 3.14, from which we obtain that

Θ2
(
ε, ε + 1;λ, µ

) [
Ψ∗ (ε)

] 1
2∆1(1;λ,µ)[

Ψ∗ (ε + 1)
] 1

2∆2(1;λ,µ)

= 3
[
λ2+(µ−1)2

]
ε3+

λ3
−µ3+6µ2

−9µ+6
2 ε2+

λ3
−µ3
−λ+6µ2

−8µ+6
2 ε+

λ3
−µ3

6 +µ2
−

7λ+39µ
32 + 15

16 .

Let

M
(
λ, µ; ε

)
=

[
λ2 +

(
µ − 1

)2
]
ε3 +

λ3
− µ3 + 6µ2

− 9µ + 6
2

ε2

+
λ3
− µ3

− λ + 6µ2
− 8µ + 6

2
ε +

λ3
− µ3

6
+ µ2

−
7λ + 39µ

32
+

15
16
,

where λ, µ ∈ [0, 1] and some fixed ε ≥ 0. For some fixed ε ≥ 0, we find that M
(
λ, µ; ε

)
is minimized when

λ = λ0 (ε) =
−2ε3 +

√
4ε6 +

(
ε + 7

16

)
(3ε2 + 3ε + 1)

3ε2 + 3ε + 1
,

and

µ = µ0 (ε) =
2 (ε + 1)3

−

√
4ε6 + 12ε5 + 12ε4 + 16ε3 + 267

16 ε
2 + 139

16 ε +
25
16

3ε2 + 3ε + 1
.

After calculations, the right term of the inequality (34) is 3
1
2 (2ε3+3ε2+3ε+1).

Let

G (ε) =
1
2

(
2ε3 + 3ε2 + 3ε + 1

)
,

and

H (ε) =M
(
λ0 (ε) , µ0 (ε) ; ε

)
− G (ε) , ε ≥ 0.

The derivative function of H (ε) is obtained as

H′ (ε) = 3
(
λ2

0 + µ
2
0 − 2µ0

)
ε2 +

(
λ3

0 − µ
3
0 + 6µ2

0 − 9µ0 + 3
)
ε +

λ3
0 − µ

3
0 − λ0 + 6µ2

0 − 8µ0 + 3

2
.

For ε ≥ 0, then H′ (ε) < 0, which ensures that H (ε) is monotonically decreasing on [0,+∞). Also, we have
that

H (0) =
3 − 7

√
7

192
< 0.

It can be readily concluded that H (ε) < 0 for all ε ≥ 0. Consequently, the inequality (43) is more precise
than the inequality (34) under the conditions λ = λ0 (ε) and µ = µ0 (ε).

Given the s-convexity of (lnΨ∗)q for q > 1, where p and q adheres to the conjugate condition p + q = pq
with p > 1, the subsequent theorem is established.

Theorem 3.17. Suppose the functionΨ : [κ, σ]→ R+ is multiplicatively differentiable on (κ, σ) and ∗increasing on
[κ, σ], and assume that (lnΨ∗)q exhibits s-convexity for some s ∈ (0, 1] on the closed interval [κ, σ], where q > 1 and
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p > 1 satisfies p + q = pq. Then, for α ∈ (0, 1] and λ, µ ∈ [0,+∞), the subsequent multiplicative fractional integral
inequality holds:

∣∣∣∣ΛΨ(α, λ, µ;κ, σ)
∣∣∣∣∗ ≤ [

Ψ∗(κ)
] σ−κ

2 C1(λ,µ,α,s;p,q)[
Ψ∗(σ)

] σ−κ
2 C2(λ,µ,α,s;p,q)

,

where

C1(λ, µ, α, s; p, q) =
(

1
(s + 1) 2s+1

) 1
q


∫ 1

2

0
|µ − 2αεα|pdε


1
p

+
(
2s+1
− 1

) 1
q

∫ 1
2

0
|λ − 2αεα|pdε


1
p
 ,

and

C2(λ, µ, α, s; p, q) =
(

1
(s + 1) 2s+1

) 1
q

(2s+1
− 1

) 1
q

∫ 1
2

0
|µ − 2αεα|pdε


1
p

+

∫ 1
2

0
|λ − 2αεα|pdε


1
p
 .

Proof. The inequality (21) in the proof of Theorem 3.6, combined with the Hölder’s integral inequality, leads
to the subsequent result∣∣∣∣ΛΨ (

α, λ, µ;κ, σ
) ∣∣∣∣∗

≤ exp


σ − κ

2

∫ 1
2

0

∣∣∣µ − 2αεα
∣∣∣p dε


1
p
∫ 1

2

0

[
lnΨ∗

(
εκ + (1 − ε) σ

)]q
dε


1
q

+
σ − κ

2

∫ 1
2

0
|λ − 2αεα|p dε


1
p
∫ 1

2

0

[
lnΨ∗

(
(1 − ε)κ + εσ

)]q
dε


1
q


. (44)

By leveraging the s-convexity of (lnΨ∗)q on the interval [κ, σ], we infer that

∫ 1
2

0

[
lnΨ∗

(
εκ + (1 − ε) σ

)]q
dε

≤

(
lnΨ∗ (κ)

)q
∫ 1

2

0
εsdε +

(
lnΨ∗ (σ)

)q
∫ 1

2

0
(1 − ε)sdε

=
1

(s + 1) 2s+1

(
lnΨ∗ (κ)

)q
+

1
s + 1

(
1 −

1
2s+1

) (
lnΨ∗ (σ)

)q

=

( 1
(s + 1) 2s+1

) 1
q

lnΨ∗ (κ)


q

+

( 2s+1
− 1

(s + 1) 2s+1

) 1
q

lnΨ∗ (σ)


q

. (45)

Similarly, we have the following result

∫ 1
2

0

[
lnΨ∗

(
(1 − ε)κ + εσ

)]q
dε ≤

( 2s+1
− 1

(s + 1) 2s+1

) 1
q

lnΨ∗ (κ)


q

+

( 1
(s + 1) 2s+1

) 1
q

lnΨ∗ (σ)


q

. (46)

Applying the inequalities (45) and (46) to the inequality (44), and noticing the fact that ψτ + δτ ≤ (ψ + δ)τ
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for ψ ≥ 0, δ ≥ 0 with τ ≥ 1, it yields that∣∣∣∣ΛΨ (
α, λ, µ;κ, σ

) ∣∣∣∣∗

≤ exp


σ − κ

2

∫ 1
2

0

∣∣∣µ − 2αεα
∣∣∣p dε


1
p
( 1

(s + 1) 2s+1

) 1
q

lnΨ∗ (κ) +
(

2s+1
− 1

(s + 1) 2s+1

) 1
q

lnΨ∗ (σ)


+
σ − κ

2

∫ 1
2

0
|λ − 2αεα|p dε


1
p
( 2s+1

− 1
(s + 1) 2s+1

) 1
q

lnΨ∗ (κ) +
(

1
(s + 1) 2s+1

) 1
q

lnΨ∗ (σ)





= exp



σ − κ
2



∫ 1
2

0

∣∣∣µ − 2αεα
∣∣∣p dε


1
p (

1
(s + 1) 2s+1

) 1
q

+

∫ 1
2

0
|λ − 2αεα|p dε


1
p (

2s+1
− 1

(s + 1) 2s+1

) 1
q


lnΨ∗ (κ)

+
σ − κ

2



∫ 1
2

0
|λ − 2αεα|p dε


1
p (

1
(s + 1) 2s+1

) 1
q

+

∫ 1
2

0

∣∣∣µ − 2αεα
∣∣∣p dε


1
p (

2s+1
− 1

(s + 1) 2s+1

) 1
q


lnΨ∗ (σ)



. (47)

This completes the proof of Theorem 3.17.

Corollary 3.18. In Theorem 3.17, by choosing λ = µ, we obtain the subsequent result:∣∣∣∣ΛΨ (
α, µ;κ, σ

) ∣∣∣∣∗ ≤ [
Ψ∗ (κ)Ψ∗ (σ)

] σ−κ
2 C1

1(µ,α,s;p,q)
,

where

C1
1(µ, α, s; p, q) =

(
1

(s + 1) 2s+1

) 1
q [(

2s+1
− 1

) 1
q
+ 1

] ∫ 1
2

0

∣∣∣µ − 2αεα
∣∣∣p dε


1
p

.

Especially, for µ = 0, we have the subsequent midpoint-type fractional inequality:∣∣∣∣∣∣∣Ψ
(
κ + σ

2

) [
∗I

α
κ+σ

2
Ψ (κ) · κ+σ

2
I
α
∗Ψ (σ)

]− 2α−1Γ(α+1)
(σ−κ)α

∣∣∣∣∣∣∣
∗

≤

[
Ψ∗ (κ)Ψ∗ (σ)

] σ−κ
4

(
1

(s+1)2s

) 1
q
(

1
αp+1

) 1
p
[
(2s+1

−1)
1
q +1

]
.

Exploiting the s-convexity of (lnΨ∗)q with q > 1, the subsequent theorem can be established.

Theorem 3.19. Consider the multiplicatively differentiable function Ψ : [κ, σ] → R+ that is ∗increasing on [κ, σ],
and suppose that (lnΨ∗)q possesses s-convexity on [κ, σ] with some s ∈ (0, 1], where q > 1. Then, for α ∈ (0, 1] and
λ, µ ∈ [0,+∞), the following inequalities hold for multiplicative RL-fractional integrals.
(i) If µ > 1, λ > 1, then we have that

∣∣∣∣ΛΨ (
α, λ, µ;κ, σ

) ∣∣∣∣∗ ≤ [
Ψ∗ (κ)

] σ−κ2


(
η1(α,µ)

)1− 1
q (

K1(α,s,µ)
) 1

q
+

(
η1(α,λ)

)1− 1
q (

K3(α,s,λ)
) 1

q


×

[
Ψ∗ (σ)

] σ−κ2


(
η1(α,µ)

)1− 1
q (

K3(α,s,µ)
) 1

q
+

(
η1(α,λ)

)1− 1
q (

K1(α,s,λ)
) 1

q

.



C. Yang, T. S. Du / Filomat 40:3 (2026), 817–848 839

(ii) If µ > 1, 0 ≤ λ ≤ 1, then we have that

∣∣∣∣ΛΨ (
α, λ, µ;κ, σ

) ∣∣∣∣∗ ≤ [
Ψ∗ (κ)

] σ−κ2


(
η1(α,µ)

)1− 1
q (

K1(α,s,µ)
) 1

q
+(η2(α,λ))1− 1

q
(

K4(α,s,λ)
) 1

q


×

[
Ψ∗ (σ)

] σ−κ2


(
η1(α,µ)

)1− 1
q (

K3(α,s,µ)
) 1

q
+

(
η2(α,λ)

)1− 1
q (

K2(α,s,λ)
) 1

q

.

(iii) If 0 ≤ µ ≤ 1, λ > 1, then we have that

∣∣∣∣ΛΨ (
α, λ, µ;κ, σ

) ∣∣∣∣∗ ≤ [
Ψ∗ (κ)

] σ−κ2


(
η2(α,µ)

)1− 1
q (

K2(α,s,µ)
) 1

q
+

(
η1(α,λ)

)1− 1
q (

K3(α,s,λ)
) 1

q


×

[
Ψ∗ (σ)

] σ−κ2


(
η2(α,µ)

)1− 1
q (

K4(α,s,µ)
) 1

q
+

(
η1(α,λ)

)1− 1
q (

K1(α,s,λ)
) 1

q

.

(iv) If 0 ≤ µ ≤ 1, 0 ≤ λ ≤ 1, then we have that

∣∣∣∣ΛΨ (
α, λ, µ;κ, σ

) ∣∣∣∣∗ ≤ [
Ψ∗ (κ)

] σ−κ2


(
η2(α,µ)

)1− 1
q (

K2(α,s,µ)
) 1

q
+

(
η2(α,λ)

)1− 1
q (

K4(α,s,λ)
) 1

q


×

[
Ψ∗ (σ)

] σ−κ2


(
η2(α,µ)

)1− 1
q (

K4(α,s,µ)
) 1

q
+

(
η2(α,λ)

)1− 1
q (

K2(α,s,λ)
) 1

q

.

Here, for γ ∈ {λ, µ},

η1
(
α, γ

)
=

1
2

(
γ −

1
α + 1

)
,

η2
(
α, γ

)
=

α
α + 1

γ
α+1
α −

1
2

(
γ −

1
α + 1

)
,

and K1(α, s, γ) and K2(α, s, γ) are given in Lemma 3.4, while K3(α, s, γ) and K4(α, s, γ) are given in Lemma 3.5.

Proof. The inequality (21) in the proof of Theorem 3.6, combined with the power-mean integral inequality,
leads to the subsequent result∣∣∣∣ΛΨ (

α, λ, µ;κ, σ
) ∣∣∣∣∗

≤ exp


σ − κ

2

∫ 1
2

0

∣∣∣µ − 2αεα
∣∣∣dε1− 1

q
∫ 1

2

0

∣∣∣µ − 2αεα
∣∣∣ [lnΨ∗(εκ + (1 − ε) σ

)]q
dε


1
q

+
σ − κ

2

∫ 1
2

0

∣∣∣λ − 2αεα
∣∣∣dε1− 1

q
∫ 1

2

0

∣∣∣λ − 2αεα
∣∣∣ [lnΨ∗( (1 − ε)κ + εσ

)]q
dε


1
q


. (48)

By leveraging the s-convexity of (lnΨ∗)q on the interval [κ, σ], we deduce that∫ 1
2

0

∣∣∣µ − 2αεα
∣∣∣ [lnΨ∗(εκ + (1 − ε) σ

)]q
dε

≤

(
lnΨ∗ (κ)

)q
∫ 1

2

0
εs

∣∣∣µ − 2αεα
∣∣∣dε + (

lnΨ∗ (σ)
)q

∫ 1
2

0
(1 − ε)s

∣∣∣µ − 2αεα
∣∣∣dε

=


∫ 1

2

0
εs

∣∣∣µ − 2αεα
∣∣∣dε

1
q

lnΨ∗ (κ)


q

+


∫ 1

2

0
(1 − ε)s

∣∣∣µ − 2αεα
∣∣∣dε

1
q

lnΨ∗ (σ)


q

. (49)



C. Yang, T. S. Du / Filomat 40:3 (2026), 817–848 840

Similarly, we have that

∫ 1
2

0

∣∣∣λ − 2αεα
∣∣∣ [lnΨ∗( (1 − ε)κ + εσ

)]q
dε

≤


∫ 1

2

0
(1 − ε)s

∣∣∣λ − 2αεα
∣∣∣dε

1
q

lnΨ∗ (κ)


q

+


∫ 1

2

0
εs

∣∣∣λ − 2αεα
∣∣∣dε

1
q

lnΨ∗ (σ)


q

. (50)

Applying the inequalities (49) and (50) to the inequality (48), and noticing the fact that ψτ + δτ ≤ (ψ + δ)τ

for ψ ≥ 0, δ ≥ 0 with τ ≥ 1, we derive that

∣∣∣∣ΛΨ (
α, λ, µ;κ, σ

) ∣∣∣∣∗

≤ exp



σ − κ
2

∫ 1
2

0

∣∣∣µ − 2αεα
∣∣∣ dε1− 1

q

×

( lnΨ∗ (κ)
) ∫ 1

2

0
εs

∣∣∣µ − 2αεα
∣∣∣ dε

1
q

+
(

lnΨ∗ (σ)
) ∫ 1

2

0
(1 − ε)s

∣∣∣µ − 2αεα
∣∣∣ dε

1
q


+
σ − κ

2

∫ 1
2

0
|λ − 2αεα|dε

1− 1
q

×

( lnΨ∗ (κ)
) ∫ 1

2

0
(1 − ε)s

|λ − 2αεα|dε


1
q

+
(

lnΨ∗ (σ)
) ∫ 1

2

0
εs
|λ − 2αεα|dε


1
q




= exp



σ − κ
2

(
lnΨ∗ (κ)

)


∫ 1
2

0

∣∣∣µ − 2αεα
∣∣∣ dε1− 1

q
∫ 1

2

0
εs

∣∣∣µ − 2αεα
∣∣∣ dε

1
q

+

∫ 1
2

0
|λ − 2αεα|dε

1− 1
q
∫ 1

2

0
(1 − ε)s

|λ − 2αεα|dε


1
q



+
σ − κ

2

(
lnΨ∗ (σ)

)


∫ 1
2

0

∣∣∣µ − 2αεα
∣∣∣ dε1− 1

q
∫ 1

2

0
(1 − ε)s

∣∣∣µ − 2αεα
∣∣∣ dε

1
q

+

∫ 1
2

0
|λ − 2αεα|dε

1− 1
q
∫ 1

2

0
εs
|λ − 2αεα|dε


1
q





. (51)

Also, we have that

∫ 1
2

0

∣∣∣γ − 2αεα
∣∣∣ dε =


1
2

(
γ −

1
α + 1

)
, γ > 1,

α
α + 1

γ
α+1
α −

1
2

(
γ −

1
α + 1

)
, 0 ≤ γ ≤ 1, γ ∈

{
λ, µ

}
.

(52)

Applying Lemma 3.4, Lemma 3.5 and the equality (52) to the inequality (51) produces the required conclu-
sion, thereby concluding the proof of Theorem 3.19.
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Corollary 3.20. In Theorem 3.19, by choosing λ = µ, we have the subsequent result

∣∣∣∣ΛΨ (
α, µ;κ, σ

) ∣∣∣∣∗ ≤


[
Ψ∗(κ)Ψ∗(σ)

] σ−κ2

(
η1(α,µ)

)1− 1
q

(

K1(α,s,µ)
) 1

q
+

(
K3(α,s,µ)

) 1
q

,

µ > 1,

[
Ψ∗(κ)Ψ∗(σ)

] σ−κ2

(
η2(α,µ)

)1− 1
q

(

K2(α,s,µ)
) 1

q
+

(
K4(α,s,µ)

) 1
q

,

0 ≤ µ ≤ 1.

Furthermore, we have the following results:
(i) If µ = 0, then we have the subsequent midpoint-type fractional inequality∣∣∣∣∣∣∣Ψ

(
κ + σ

2

) [
∗I

α
κ+σ

2
Ψ (κ) · κ+σ

2
I
α
∗Ψ (σ)

]− 2α−1Γ(α+1)
(σ−κ)α

∣∣∣∣∣∣∣
∗

≤

[
Ψ∗ (κ)Ψ∗ (σ)

] σ−κ
4 ( 1

α+1 )1− 1
q

( 1
(α+s+1)2s

) 1
q
+
(
2α+1B 1

2
(α+1,s+1)

) 1
q

.

(ii) If µ = 1, then we have the subsequent trapezoid-type fractional inequality∣∣∣∣∣∣∣ √Ψ (κ)Ψ (σ)
[
∗I

α
κ+σ

2
Ψ (κ) · κ+σ

2
I
α
∗Ψ (σ)

]− 2α−1Γ(α+1)
(σ−κ)α

∣∣∣∣∣∣∣
∗

≤

[
Ψ∗ (κ)Ψ∗ (σ)

] σ−κ4 ( α
α+1 )1− 1

q


(

1
2s ( 1

s+1−
1

α+s+1 )
) 1

q
+
(

2s+1
−1

(s+1)2s −2α+1B 1
2

(α+1,s+1)
) 1

q


.

4. Numerical examples

Theoretical conclusions are computationally verified in this section through 2-D and 3-D plots of the
inequalities. The resulting plots demonstrate numerical tendencies, reinforcing both correctness and sig-
nificance.

Example 4.1. Given the function Ψ
(
γ
)
= exp

{
γs+1

}
defined for γ ∈ [0,∞) with fixed s ∈ (0, 1], we can infer

that the function Ψ∗
(
γ
)
= exp

{
(s + 1)γs} is multiplicatively s-convex on [0,∞) with s ∈ (0, 1]. By selecting

κ = 0, σ = 1 and α ∈ (0, 1], the assumptions of Theorem 3.6 are fulfilled.
(i) For λ = 4 and µ = 2, it follows that

exp
{∣∣∣∣∣1 − 1

2s −
α

α + s + 1
·

1
2s+2 − α · 2

α−1B 1
2

(α, s + 2)
∣∣∣∣∣}

≤ exp
{ 1

2s+1 −
s + 1

α + s + 1
·

1
2s+2 + 1 − (s + 1) · 2α−1B 1

2
(α + 1, s + 1)

}
. (53)

(ii) For λ = 1 and µ = 3, it follows that

exp
{∣∣∣∣∣32 − 1

2s+1 −
α

α + s + 1
·

1
2s+2 − α · 2

α−1B 1
2

(α, s + 2)
∣∣∣∣∣}

≤ exp
{3

2
−

1
2s+1 −

s + 1
α + s + 1

·
1

2s+2 −
(s + 1) · 2α−1B 1

2
(α + 1, s + 1)

}
. (54)

(iii) For λ = 4 and µ = 1
2 , it follows that

exp
{∣∣∣∣∣14 − 5

4
·

1
2s+1 −

α
α + s + 1

·
1

2s+2 − α · 2
α−1B 1

2
(α, s + 2)

∣∣∣∣∣}
≤ exp


1

2s+2

(9
2
−

s + 1
α + s + 1

)
+

1
4

[
1 −

1
2s

(
2 − 2−

1
α

)s+1
]

+ (s + 1) · 2α−1
[
B 1

2
(α + 1, s + 1) − 2B

2−
α+1
α

(α + 1, s + 1)
]

 . (55)
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(iv) For λ = 2
3 and µ = 1

3 , it follows that

exp
{∣∣∣∣∣16 + 1

2s+2 −
α

α + s + 1
·

1
2s+2 − α · 2

α−1B 1
2

(α, s + 2)
∣∣∣∣∣}

≤ exp


1

α + s + 1
·

1
2s+2

2α · (2
3

) α+s+1
α

+
2
3

(s + 1) −
1
3
α

 + 1
6

[
1 −

1
2s

(
2 − 3−

1
α

)s+1
]

+ (s + 1) · 2α−1
[
B 1

2
(α + 1, s + 1) − 2B 1

2 ·3
−

1
α

(α + 1, s + 1)
]

 . (56)

The comparative analysis in Fig. 1 shows that the left-sided values are clearly smaller than the right-sided
values, thereby providing numerical support for Theorem 3.6.

(a) λ = 4, µ = 2 (b) λ = 1, µ = 3

(c) λ = 4, µ = 1
2 (d) λ = 2

3 , µ =
1
3

Figure 1: Numerical comparison of the inequalities (53)–(56) in Theorem 3.6 versus Example 4.1, illustrated
via 3-D plot for α, s ∈ (0, 1].

Example 4.2. For γ ∈ R, the hyperbolic functions are defined as sinhγ = 1
2 (eγ− e−γ) and coshγ = 1

2 (eγ+ e−γ).
ForΨ

(
γ
)
= exp

{
sinhγ

}
defined on [0,∞), it can be deduced that its multiplicatively differentiable function

Ψ∗
(
γ
)
= exp

{
coshγ

}
. Notably, the function

(
lnΨ∗

(
γ
))q =

(
coshγ

)q possesses s-convexity on [0,∞) with
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q > 1. By taking κ = 0, σ = 1, p = 3
2 , q = 3, s = 1 and α ∈ (0, 1], all hypotheses specified in Theorem 3.17 are

fulfilled. Consequently, this simplifies the inequality stated in Theorem 3.17:∣∣∣∣ΛΨ(α, λ, µ; 0, 1)
∣∣∣∣∗

= exp


∣∣∣∣∣∣∣
(
1 −

λ + µ

2

)
sinh

1
2
+
µ

2
sinh 1 − α · 2α−1

∫ 1
2

0
εα−1

[
sinh ε + sinh (1 − ε)

]
dε

∣∣∣∣∣∣∣


≤

[
Ψ∗(0)

] 1
2 C1(λ,µ,α,1; 3

2 ,3)[
Ψ∗(1)

] 1
2 C2(λ,µ,α,1; 3

2 ,3)

= exp



1
4


∫ 1

2

0

∣∣∣µ − 2αεα
∣∣∣ 3

2 dε


2
3

+
3√

3

∫ 1
2

0

∣∣∣λ − 2αεα
∣∣∣ 3

2 dε


2
3


+
cosh 1

4


∫ 1

2

0

∣∣∣λ − 2αεα
∣∣∣ 3

2 dε


2
3

+
3√

3

∫ 1
2

0

∣∣∣µ − 2αεα
∣∣∣ 3

2 dε


2
3



. (57)

From the numerical comparison in Tabs. 1–4 and Figs. 2–5, it is clear that left-side values are smaller
than right-side values, confirming Theorem 3.17 numerically.

Table 1: Numerical comparison of the inequality
(57) in Theorem 3.17 with λ = 3 and µ = 2

α the left term the right term

0.1 1.2028 4.6571
0.2 1.1946 5.0254
0.3 1.1875 5.3609
0.4 1.1817 5.6660
0.5 1.1768 5.9438
0.6 1.1727 6.1972
0.7 1.1692 6.4289
0.8 1.1662 6.6415
0.9 1.1636 6.8369
1.0 1.1613 7.0172

0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

the left term

the right term

Figure 2: Numerical comparison of the inequality (57)
in Theorem 3.17 versus Example 4.2, illustrated via 2-
D plot across α ∈ (0, 1] with λ = 3 and µ = 2
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Table 2: Numerical comparison of the inequality
(57) in Theorem 3.17 with λ = 3

5 and µ = 4

α the left term the right term

0.1 2.9884 5.5774
0.2 3.0090 5.6558
0.3 3.0269 5.7743
0.4 3.0418 5.9168
0.5 3.0544 6.0696
0.6 3.0651 6.2239
0.7 3.0743 6.3748
0.8 3.0823 6.5194
0.9 3.0893 6.6567
1.0 3.0953 6.7862

0.2 0.4 0.6 0.8 1

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

the left term

the right term

Figure 3: Numerical comparison of the inequality (57)
in Theorem 3.17 versus Example 4.2, illustrated via 2-
D plot across α ∈ (0, 1] with λ = 3

5 and µ = 4

Table 3: Numerical comparison of the inequality
(57) in Theorem 3.17 with λ = 2 and µ = 2

3

α the left term the right term

0.1 1.4336 1.8987
0.2 1.4238 1.9277
0.3 1.4154 1.9777
0.4 1.4084 2.0378
0.5 1.4026 2.1010
0.6 1.3977 2.1634
0.7 1.3935 2.2233
0.8 1.3899 2.2799
0.9 1.3868 2.3330
1.0 1.3841 2.3825

0.2 0.4 0.6 0.8 1

1.2

1.4

1.6

1.8

2

2.2

2.4

the left term

the right term

Figure 4: Numerical comparison of the inequality (57)
in Theorem 3.17 versus Example 4.2, illustrated via 2-
D plot across α ∈ (0, 1] with λ = 2 and µ = 2

3
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Table 4: Numerical comparison of the inequality
(57) in Theorem 3.17 with λ = 1

2 and µ = 1
3

α the left term the right term

0.1 1.0815 1.6299
0.2 1.0741 1.5294
0.3 1.0678 1.4605
0.4 1.0626 1.4139
0.5 1.0582 1.3823
0.6 1.0545 1.3610
0.7 1.0513 1.3468
0.8 1.0486 1.3376
0.9 1.0462 1.3318
1.0 1.0442 1.3284

0.2 0.4 0.6 0.8 1

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

the left term

the right term

Figure 5: Numerical comparison of the inequality (57)
in Theorem 3.17 versus Example 4.2, illustrated via 2-
D plot across α ∈ (0, 1] with λ = 1

2 and µ = 1
3

Example 4.3. Consider the function Ψ
(
γ
)
= exp

{
q

q+3γ
q+3

q

}
defined for γ ∈ [0,∞) with q > 1. We deduce

its multiplicatively differentiable function Ψ∗
(
γ
)
= exp

{
γ

3
q
}
. Additionally,

(
lnΨ∗

(
γ
))q = γ3 is shown to be

s-convex for γ ≥ 0 and q > 1. As a result, all requirements of Theorem 3.19 are met. Fixing κ = 0, σ = 1 and
s = 1

2 across α ∈ (0, 1], we examine four parameter configurations: (i) λ = 3
2 , µ =

4
3 ; (ii) λ = 1, µ = 2; (iii)

λ = 5
3 , µ =

2
3 ; (iv) λ = µ = 1

3 . As demonstrated in Fig. 6, the left-hand values are always smaller than the
right-hand values, thereby offering numerical support for Theorem 3.19.

5. Conclusions

This study establishes multi-parameter inequalities for multiplicatively s-convex functions using mul-
tiplicative RL-fractional integrals. By deriving a two-parameter identity for multiplicatively differentiable
functions, we obtain multiplicative integral inequalities. Under certain conditions, we can further optimize
the upper bounds for the midpoint and trapezoidal inequalities developed in this paper. Our work provides
a unified framework for multiple inequality types—including midpoint-, Simpson-, Bullen-, trapezoid- and
Milne-type inequalities—advancing the theory of multiplicative calculus, particularly multiplicative frac-
tional integrals.

Beyond the multiplicative RL-fractional integrals, future research may focus on multi-parameter in-
equalities for other types of multiplicative fractional integrals, as exemplified by multiplicative Katugam-
pola fractional integrals [3], multiplicative ψ-Hilfer fractional integrals [48], and multiplicative tempered
fractional integrals [39]. These directions could advance multiplicative fractional calculus theory.
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(a) λ = 3
2 , µ =

4
3 (b) λ = 1, µ = 2

(c) λ = 5
3 , µ =

2
3 (d) λ = 1

3 , µ =
1
3

Figure 6: Numerical comparison of the Example 4.3, illustrated via 3-D plot for α ∈ (0, 1] and q ∈ [2, 10]
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[5] A. E. Bashirov, E. M. Kurpınar, A. Özyapıcı, Multiplicative calculus and its applications, J. Math. Anal. Appl., 337 (2008) 36–48.
[6] H. Boulares, B. Meftah, A. Moumen, R. Shafqat, H. Saber, T. Alraqad, E. E. Ali, Fractional multiplicative Bullen-type inequalities for

multiplicative differentiable functions, Symmetry, 15 (2) (2023) 451.
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